JP2022139211A - 推定装置、方法およびプログラム - Google Patents

推定装置、方法およびプログラム Download PDF

Info

Publication number
JP2022139211A
JP2022139211A JP2021039485A JP2021039485A JP2022139211A JP 2022139211 A JP2022139211 A JP 2022139211A JP 2021039485 A JP2021039485 A JP 2021039485A JP 2021039485 A JP2021039485 A JP 2021039485A JP 2022139211 A JP2022139211 A JP 2022139211A
Authority
JP
Japan
Prior art keywords
bone
radiation
subject
image
radiographic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021039485A
Other languages
English (en)
Inventor
伴子 瀧
Tomoko Taki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2021039485A priority Critical patent/JP2022139211A/ja
Priority to US17/591,614 priority patent/US20220287663A1/en
Priority to CN202210228124.XA priority patent/CN115120253A/zh
Publication of JP2022139211A publication Critical patent/JP2022139211A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/505Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/483Diagnostic techniques involving scattered radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/09Supervised learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20028Bilateral filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30008Bone

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Quality & Reliability (AREA)
  • Physiology (AREA)
  • Toxicology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Analysis (AREA)

Abstract

【課題】推定装置、方法およびプログラムにおいて、運動器の疾患を高精度で予測できるようにする。【解決手段】少なくとも1つのプロセッサを備え、プロセッサは、骨部を含む被写体を単純撮影することにより取得した単純放射線画像から骨部の骨密度に関連する推定結果を導出する学習済みニューラルネットワークとして機能する。学習済みニューラルネットワークは、(i)エネルギー分布が異なる放射線により骨部を含む被写体を撮影することにより取得された2つの放射線画像、(ii)被写体の放射線画像および被写体の骨部を表す骨部画像、または(iii)被写体の放射線画像および被写体の骨部の骨密度を表す骨密度画像と、被写体の骨部の骨密度に関連する情報とを教師データとして用いて学習されてなる。【選択図】図3

Description

本開示は、推定装置、方法およびプログラムに関する。
骨粗鬆症等の骨系疾患において、骨密度の診断に用いられる代表的な骨塩定量方法の1つにDXA法(Dual X-ray Absorptiometry)が知られている。DXA法は、人体に入射し透過する放射線が、人体を構成する物質(例えば骨)に依存する減弱係数μ(cm2/g)とその密度ρ(g/cm3)および厚さt(cm)によって特徴付けされる減弱を受けることを利用し、2種類のエネルギーの放射線で撮影して得られた放射線画像のピクセル値から、骨塩量を算出する手法である。
また、被写体を撮影することにより取得された放射線画像を用いて、骨密度を評価するための各種手法が提案されている。例えば特許文献1,2には、ニューラルネットワークを学習することにより構築された学習済みニューラルネットワークを用いることにより、骨が写っている画像から骨密度に関する情報を推定する手法が提案されている。特許文献1に記載された手法においては、単純撮影により取得された骨が写っている画像および骨密度を教師データとしてニューラルネットワークの学習が行われる。また、特許文献1に記載された手法においては、単純撮影により取得された骨が写っている画像、骨密度および骨密度に関連する情報(例えば年齢、性別、体重、飲酒習慣、喫煙習慣、骨折歴、体脂肪率および皮下脂肪率等)を教師データとして用いて、ニューラルネットワークの学習が行われる。
なお、単純撮影とは、被写体に1回放射線を照射して、被写体の透過像である1枚の2次元画像を取得する撮影方法である。以降の説明においては、単純撮影により取得した放射線画像を単純放射線画像と称するものとする。
米国特許第6064716号明細書 国際公開第2020/054738号
しかしながら、さらに高精度で骨密度を推定することが望まれている。
本開示は上記事情に鑑みなされたものであり、骨密度を高精度で推定できるようにすることを目的とする。
本開示による推定装置は、少なくとも1つのプロセッサを備え、
プロセッサは、骨部を含む被写体を単純撮影することにより取得した単純放射線画像から骨部の骨密度に関連する推定結果を導出する学習済みニューラルネットワークとして機能し、
学習済みニューラルネットワークは、(i)エネルギー分布が異なる放射線により骨部を含む被写体を撮影することにより取得された2つの放射線画像、(ii)被写体の放射線画像および被写体の骨部を表す骨部画像、または(iii)被写体の放射線画像および被写体の骨部の骨密度を表す骨密度画像と、被写体の骨部の骨密度に関連する情報とを教師データとして用いて学習されてなる。
なお、本開示による推定装置においては、骨密度に関連する情報は、
エネルギー分布が異なる放射線により骨部および軟部を含む被写体を撮影することにより取得された2つの放射線画像のうちの少なくとも一方の放射線画像に基づいて推定された、被写体の体厚分布、
2つの放射線画像を取得した際の撮影条件、および
2つの放射線画像を重み付け減算するエネルギーサブトラクション処理により導出された、骨部が抽出された骨部画像における骨部領域の画素値に基づいて導出されるものであってもよい。
また、本開示による推定装置においては、骨部画像は、2つの放射線画像のうちの少なくとも一方の放射線画像を用いて被写体の骨部および軟部を認識し、
骨部および軟部の認識結果と2つの放射線画像とを用いて骨部および軟部についての減弱係数を導出し、
減弱係数を用いてエネルギーサブトラクション処理を行うことにより導出されるものであってもよい。
また、本開示による推定装置においては、骨部画像は、骨部画像に含まれる骨部の画素値に基づいて重み付け減算に用いる新たな重み係数を導出し、
2つの放射線画像に対して新たな重み係数を用いて重み付け減算を行うことにより新たな骨部画像を導出し、
新たな骨部画像に基づくさらに新たな重み係数の導出、およびさらに新たな重み係数に基づくさらに新たな骨部画像の導出を繰り返すことにより導出されるものであってもよい。
また、本開示による推定装置においては、骨部画像は、軟部についての異なるエネルギー分布毎の減弱係数、軟部の厚さ、骨部についての異なるエネルギー分布毎の減弱係数、および骨部の厚さを初期値から変更しつつ、異なるエネルギー分布毎に、軟部の減弱係数×軟部の厚さ+骨部の減弱係数×骨部の厚さの値と、放射線画像の各画素値との相違を導出し、
相違が最小となるまたは相違が予め定められたしきい値未満となる、異なるエネルギー分布毎の軟部の減弱係数および骨部の減弱係数を導出し、
軟部の減弱係数および骨部の減弱係数に基づいて導出された重み係数を用いてエネルギーサブトラクション処理を行うことにより導出されるものであってもよい。
また、本開示による推定装置においては、骨部画像は、被写体の軟部に含まれる複数の組成の組成割合を導出し、
組成割合に応じて2つの放射線画像の画素毎に軟部における異なるエネルギー分布毎の減弱係数を導出し、
導出された軟部の減弱係数および予め定められた骨部の減弱係数に基づいて導出された重み係数を用いてエネルギーサブトラクション処理を行うことにより導出されるものであってもよい。
また、本開示による推定装置においては、組成割合は、2つの放射線画像のそれぞれについての画素毎に、被写体の体厚をそれぞれ第1の体厚および第2の体厚として導出し、
第1の体厚および第2の体厚に基づいて、放射線画像の画素毎に導出されるものであってもよい。
また、本開示による推定装置においては、組成割合は、複数の組成のそれぞれについての異なるエネルギー分布毎の減弱係数に基づいて、第1の体厚および第2の体厚を導出し、
組成の厚さおよび組成毎の減弱係数を変更しつつ、第1の体厚および第2の体厚を導出し、第1の体厚と第2の体厚との相違が予め定められたしきい値以下となる組成の厚さに基づいて導出されるものであってもよい。
また、本開示による推定装置においては、骨部画像は、被写体に照射された放射線のうち被写体により散乱された散乱線成分を2つの放射線画像から除去する散乱線除去処理を行い、散乱線成分が除去された2つの放射線画像に対するエネルギーサブトラクション処理により導出されるものであってもよい。
また、本開示による推定装置においては、散乱線除去処理は、被写体と放射線画像を検出する放射線検出器との間に介在する物体の体厚分布に応じた放射線特性を取得し、
撮影条件、体厚分布および物体の放射線特性を用いて、2つの放射線画像のそれぞれに含まれる放射線の一次線分布および散乱線分布を導出し、
2つの放射線画像のそれぞれについての一次線分布および散乱線分布の和と、2つの放射線画像の各位置における画素値との誤差を導出し、誤差が予め定められたしきい値未満となるように体厚分布を更新し、更新した体厚分布に基づく放射線特性の導出、並びに2つの放射線画像のそれぞれに含まれる一次線分布および散乱線分布の導出を繰り返し、
誤差が予め定められたしきい値未満となったときの散乱線分布を2つの放射線画像のそれぞれから減算することにより行われるものであってもよい。
また、本開示による推定装置においては、散乱線除去処理は、2つの放射線画像を用いて被写体を透過した放射線の第1の一次線分布および散乱線分布を導出し、
第1の一次線分布および散乱線分布、並びに被写体と放射線画像を検出する放射線検出器との間に介在する物体の放射線特性とを用いて、物体を透過した放射線の第2の一次線分布および散乱線分布を導出し、
第2の一次線分布および散乱線分布を用いて、被写体および物体を透過後の放射線画像を導出することにより行われるものであってもよい。
また、本開示による推定装置においては、散乱線除去処理は、2つの放射線画像において、放射線が被写体を透過して放射線検出部に到達した被写体領域と、放射線が被写体を透過せずに放射線検出部に直接的に到達した直接放射線領域とを検出することにより領域検出画像を導出し、
領域検出画像と散乱線の広がりに関する散乱線広がり情報とに基づいて、散乱線成分に関する散乱線画像を導出し、
2つの放射線画像から散乱線画像を減算することにより行われるものであってもよい。
また、本開示による推定装置においては、骨部画像は、2つの放射線画像のうちS/Nが高い第1の放射線画像に対する第1の粒状抑制処理の処理内容を導出し、
第1の粒状抑制処理の処理内容に基づいて、S/Nが低い第2の放射線画像に対する第2の粒状抑制処理の処理内容を導出し、
第1の粒状抑制処理の処理内容に基づいて第1の放射線画像に対して粒状抑制処理を行い、
第2の粒状抑制処理の処理内容に基づいて第2の放射線画像に対して粒状抑制処理を行い、
粒状抑制処理が行われた2つの放射線画像を用いて導出されるものであってもよい。
この場合、第1の粒状抑制処理の処理内容は、第1の放射線画像および第2の放射線画像の少なくとも一方に基づいて導出された被写体の物理量マップに基づいて導出されるものであってもよい。
また、本開示による推定装置においては、骨密度に関連する情報は、骨密度、被写体の骨折リスクの評価値、骨部の治療後の治癒状態を表す情報の少なくとも1つを含むものであってもよい。
本開示による推定方法は、骨部を含む被写体を単純撮影することにより取得した単純放射線画像から骨部の骨密度に関連する推定結果を導出する学習済みニューラルネットワークを用いて、単純放射線画像から骨密度に関連する推定結果を導出する推定方法であって、
学習済みニューラルネットワークは、(i)エネルギー分布が異なる放射線により骨部を含む被写体を撮影することにより取得された2つの放射線画像、(ii)被写体の放射線画像および被写体の骨部を表す骨部画像、または(iii)被写体の放射線画像および被写体の骨部の骨密度を表す骨密度画像と、被写体の骨部の骨密度に関連する情報とを教師データとして用いて学習されてなる。
なお、本開示による推定方法を、コンピュータに実行させるためのプログラムとして提供してもよい。
本開示によれば、骨密度を高精度で推定できる。
本開示の第1の実施形態による推定装置を適用した放射線画像撮影システムの構成を示す概略ブロック図 第1の実施形態による推定装置の概略構成を示す図 第1の実施形態による推定装置の機能的な構成を示す図 本実施形態において用いられるニューラルネットワークの概略構成を示す図 教師データを示す図 第1の実施形態による情報導出装置の概略構成を示す図 第1の実施形態による情報導出装置の機能的な構成を示す図 骨部画像を示す図 被写体の体厚に対する骨部と軟部とのコントラストの関係を示す図 補正係数を取得するためのルックアップテーブルの一例を示す図 ニューラルネットワークの学習を説明するための図 学習済みニューラルネットワークが行う処理の概念図 推定結果の表示画面を示す図 第1の実施形態において行われる学習処理のフローチャート 第1の実施形態において行われる推定処理のフローチャート 第2の実施形態による情報導出装置の機能的な構成を示す図 減弱を表す指標値の算出を説明するための図 減弱を表す指標値の算出を説明するための図 第3の実施形態による情報導出装置の機能的な構成を示す図 体厚分布と初期重み係数との関係を規定したテーブルを示す図 骨部の画素値と骨部の厚さとの関係を規定したテーブルを示す図 軟部の厚さおよび骨部の厚さと重み係数との関係を規定したテーブルを示す図 第4の実施形態による情報導出装置の機能的な構成を示す図 軟部の厚さの初期値と軟部の減弱係数の初期値との関係を規定したテーブルを示す図 軟部の厚さおよび骨部の厚さと減弱係数との関係を規定したテーブルを示す図 第5の実施形態による情報導出装置の機能的な構成を示す図 低エネルギー画像および高エネルギー画像により導出される体厚の相違を説明するための図 2つの放射線画像から導出した体厚の差と脂肪の組成割合とを対応付けたテーブルを示す図 第6の実施形態による情報導出装置における散乱線除去部の機能的な構成を示す図 第6の実施形態における撮影を説明するための図 被写体の体厚に応じた散乱線透過率の計測を説明するための図 被写体の体厚に応じた散乱線透過率の計測を説明するための図 被写体の体厚分布と、被写体および放射線検出器の間に介在する物体の散乱線透過率との関係を表すテーブル 被写体の体厚に応じた一次線透過率の計測を説明するための図 被写体の体厚に応じた一次線透過率の計測を説明するための図 被写体の体厚分布と、被写体および放射線検出器の間に介在する物体の一次線透過率との関係を表すテーブル 天板とグリッドとの間に空気層が介在する状態を示す図 第7の実施形態による情報導出装置における散乱線除去部の機能的な構成を示す図 第7の実施形態における第1導出部の機能を説明するための図 被写体の体厚を推定する方法を説明するための図 点拡散関数を示す図 放射線の経路を示す図 第8の実施形態による情報導出装置の機能的な構成を示す図 第1の放射線画像に対するバイラテラルフィルタを示す図 図44に示す第1の放射線画像の局所領域に対応する第2の放射線画像の局所領域を示す図 第2の放射線画像に対するバイラテラルフィルタの例を示す図 第9の実施形態による情報導出装置の機能的な構成を示す図 物理量マップに対するバイラテラルフィルタの例を示す図 第10の実施形態による情報導出装置の機能的な構成を示す図 筋肉組織を透過後の放射線と脂肪組織を透過後の放射線とのエネルギースペクトルの一例を示す図 統計値と10年以内の骨折発症確率との関係を示すグラフ 教師データの他の例を示す図 第11の実施形態による情報導出装置の機能的な構成を示す図 被写体の骨部に埋め込まれた人工骨の一例を示す図 術後の各段階における、大腿骨内部におけるステムからの距離と骨塩量との関係の一例を示すグラフ 人間の骨の断面構造の一例を示す断面図 教師データの他の例を示す図 第12の実施形態による情報導出装置における散乱線除去部の機能的な構成を示す図 被写体領域および直接放射線領域の検出を説明するための図 特定ライン部分の領域検出画像を示す図 特定ライン部分の散乱線画像を示す図 特定ライン部分の体厚分布を示す図 教師データの他の例を示す図 教師データの他の例を示す図 推定結果の表示画面の他の例を示す図
以下、図面を参照して本開示の実施形態について説明する。図1は本開示の第1の実施形態による推定装置を適用した放射線画像撮影システムの構成を示す概略ブロック図である。図1に示すように、第1の実施形態による放射線画像撮影システムは、撮影装置1と、画像保存システム9と、第1の実施形態による推定装置10と、情報導出装置50とを備える。撮影装置1、推定装置10および情報導出装置50は、不図示のネットワークを介して画像保存システム9と接続されている。
撮影装置1は、第1の放射線検出器5および第2の放射線検出器6に、放射線源3から発せられ、被写体Hを透過したX線等の放射線を、それぞれエネルギーを変えて照射するいわゆる1ショット法によるエネルギーサブトラクションを行うことが可能な撮影装置である。撮影時においては、図1に示すように、放射線源3に近い側から順に、第1の放射線検出器5、銅板等からなる放射線エネルギー変換フィルタ7、および第2の放射線検出器6を配置して、放射線源3を駆動させる。なお、第1および第2の放射線検出器5,6と放射線エネルギー変換フィルタ7とは密着されている。
これにより、第1の放射線検出器5においては、いわゆる軟線も含む低エネルギーの放射線による被写体Hの第1の放射線画像G1が取得される。また、第2の放射線検出器6においては、軟線が除かれた高エネルギーの放射線による被写体Hの第2の放射線画像G2が取得される。したがって、第1の放射線画像G1と第2の放射線画像G2とは、エネルギー分布が異なる放射線により被写体Hを撮影することにより取得されたものとなる。第1および第2の放射線画像G1,G2は、推定装置10に入力される。第1の放射線画像G1および第2の放射線画像G1のいずれも、被写体Hの股間周辺を含む正面像である。
第1および第2の放射線検出器5,6は、放射線画像の記録および読み出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生する、いわゆる直接型の放射線検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフさせることによって放射線画像信号が読み出される、いわゆるTFT読出方式のもの、または読取り光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。
また、撮影装置1は第1の放射線検出器5のみを用いて被写体Hの単純撮影を行うことにより、被写体Hの単純2次元画像である単純放射線画像G0を取得することも可能である。上記第1および第2の放射線画像G1,G2を取得する撮影を単純撮影と区別するためにエネルギーサブトラクション撮影と称する。本実施形態においては、エネルギーサブトラクション撮影により取得された第1および第2の放射線画像G1,G2は、後述する学習用データとして使用される。また、単純撮影により取得された単純放射線画像G0は、後述するように骨密度に関連する推定結果の導出に使用される。
画像保存システム9は、撮影装置1により取得された放射線画像の画像データを保存するシステムである。画像保存システム9は、保存している放射線画像から、推定装置10からの要求に応じた画像を取り出して、要求元の装置に送信する。画像保存システム9の具体例としては、PACS(Picture Archiving and Communication Systems)が挙げられる。なお、本実施形態においては、画像保存システム9には、後述するニューラルネットワークを学習するための多数の教師データが保存されている。
次いで、第1の実施形態に係る推定装置について説明する。まず、図2を参照して、第1の実施形態に係る推定装置のハードウェア構成を説明する。図2に示すように、推定装置10は、ワークステーション、サーバコンピュータおよびパーソナルコンピュータ等のコンピュータであり、CPU(Central Processing Unit)11、不揮発性のストレージ13、および一時記憶領域としてのメモリ16を備える。また、推定装置10は、液晶ディスプレイ等のディスプレイ14、キーボードおよびマウス等の入力デバイス15、並びに不図示のネットワークに接続されるネットワークI/F(InterFace)17を備える。CPU11、ストレージ13、ディスプレイ14、入力デバイス15、メモリ16およびネットワークI/F17は、バス18に接続される。なお、CPU11は、本開示におけるプロセッサの一例である。
ストレージ13は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、およびフラッシュメモリ等によって実現される。記憶媒体としてのストレージ13には、推定装置10にインストールされた推定プログラム12Aおよび学習プログラム12Bが記憶される。CPU11は、ストレージ13から推定プログラム12Aおよび学習プログラム12Bを読み出してメモリ16に展開し、展開した推定プログラム12Aおよび学習プログラム12Bを実行する。
なお、推定プログラム12Aおよび学習プログラム12Bは、ネットワークに接続されたサーバコンピュータの記憶装置、あるいはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じて推定装置10を構成するコンピュータにダウンロードされ、インストールされる。または、DVD(Digital Versatile Disc)、CD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体から推定装置10を構成するコンピュータにインストールされる。
次いで、第1の実施形態による推定装置の機能的な構成を説明する。図3は、第1の実施形態による推定装置の機能的な構成を示す図である。図3に示すように、推定装置10は、画像取得部21、情報取得部22、推定部23、学習部24および表示制御部25を備える。そして、CPU11は、推定プログラム12Aを実行することにより、画像取得部21、情報取得部22、推定部23および表示制御部25として機能する。また、CPU11は、学習プログラム12Bを実行することにより、学習部24として機能する。
画像取得部21は、撮影装置1に被写体Hのエネルギーサブトラクション撮影を行わせることにより、第1および第2の放射線検出器5,6から、例えば被写体Hの股間付近の正面像である第1の放射線画像G1および第2の放射線画像G2を取得する。第1の放射線画像G1および第2の放射線画像G2の取得に際しては、撮影線量、線質、菅電圧、放射線源3と第1および第2の放射線検出器5,6の表面との距離であるSID(Source Image receptor Distance)、放射線源3と被写体Hの表面との距離であるSOD(Source Object Distance)、並びに散乱線除去グリッドの有無等の撮影条件が設定される。
SODおよびSIDについては、後述するように体厚分布の算出に用いられる。SODについては、例えば、TOF(Time Of Flight)カメラで取得することが好ましい。SIDについては、例えば、ポテンショメーター、超音波距離計およびレーザー距離計等で取得することが好ましい。
撮影条件は、操作者による入力デバイス15からの入力により設定すればよい。設定された撮影条件は、ストレージ13に記憶される。エネルギーサブトラクション撮影により取得された第1および第2の放射線画像G1,G2並びに撮影条件は画像保存システム9にも送信されて保存される。第1および第2の放射線画像G1,G2は後述する教師データの導出に使用される。
また、画像取得部21は、第1の放射線検出器5のみを用いて撮影装置1に被写体Hの単純撮影を行わせることにより、被写体Hの股間付近の正面像である単純放射線画像G0を取得する。
なお、本実施形態においては、推定プログラム12Aとは別個のプログラムにより第1および第2の放射線画像G1,G2、並びに単純放射線画像G0を取得してストレージ13に記憶するようにしてもよい。この場合、画像取得部21は、ストレージ13に記憶された第1および第2の放射線画像G1,G2並びに単純放射線画像G0を処理のためにストレージ13から読み出すことにより取得する。
情報取得部22は、画像保存システム9からネットワークI/F17を介して、後述するニューラルネットワークを学習するための教師データを取得する。
推定部23は、単純放射線画像G0から被写体Hに含まれる骨部の骨密度に関連する推定結果を導出する。本実施形態においては、骨密度に関連する推定結果として単純放射線画像G0に含まれる骨部領域のうちの対象骨についての骨密度の推定結果を導出するものとする。このために、推定部23は、単純放射線画像G0が入力されると骨密度を出力する学習済みニューラルネットワーク23Aを用いて骨密度に関連する推定結果を導出する。
学習部24は、教師データを用いてニューラルネットワークを機械学習することにより、学習済みニューラルネットワーク23Aを構築する。ニューラルネットワークとしては、単純パーセプトロン、多層パーセプトロン、ディープニューラルネットワーク、畳み込みニューラルネットワーク、ディープビリーフネットワーク、リカレントニューラルネットワーク、および確率的ニューラルネットワーク等が挙げられる。本実施形態においては、ニューラルネットワークとして畳み込みニューラルネットワークを用いるものとする。
図4は、本実施形態において用いられるニューラルネットワークを示す図である。図4に示すように、ニューラルネットワーク30は、入力層31、中間層32および出力層33を備える。中間層32は、例えば、複数の畳み込み層35、複数のプーリング層36および全結合層37を備える。ニューラルネットワーク30では、出力層33の前段に全結合層37が存在している。そして、ニューラルネットワーク30では、入力層31と全結合層37との間において、畳み込み層35とプーリング層36とが交互に配置されている。
なお、ニューラルネットワーク30の構成は図4の例に限定されるものではない。例えば、ニューラルネットワーク30は、入力層31と全結合層37との間に、1つの畳み込み層35と1つのプーリング層36とを備えるものであってもよい。
図5はニューラルネットワークの学習に使用する教師データの例を示す図である。図5に示すように、教師データ40は、学習用データ41と正解データ42とからなる。本実施形態においては、骨密度の推定結果を得るために学習済みニューラルネットワーク23Aに入力されるデータは単純放射線画像G0であるが、学習用データ41は、上記のエネルギーサブトラクション撮影により取得された第1の放射線画像G1および第2の放射線画像G2の2つの放射線画像を含む。
正解データ42は、学習用データ41を取得した被写体の対象骨(すなわち大腿骨)についての骨密度である。なお、本実施形態においては、2次元の単純放射線画像G0から単位面積あたりの骨密度を推定するものであるため、骨密度の単位は(g/cm2)である。正解データ42である骨密度は情報導出装置50により導出される。本実施形態においては、例えば、特開2019-202035号公報に記載された手法を用いることにより、正解データ42となる骨密度を導出する。なお、正解データ42となる骨密度が被写体の骨部の骨密度に関連する情報の一例である。以下、情報導出装置50について説明する。
図6は第1の実施形態による情報導出装置の構成を示す概略ブロック図である。図6に示すように第1の実施形態による情報導出装置50は、ワークステーション、サーバコンピュータおよびパーソナルコンピュータ等のコンピュータであり、CPU51、不揮発性のストレージ53、および一時記憶領域としてのメモリ56を含む。また、情報導出装置50は、液晶ディスプレイ等のディスプレイ54、キーボードおよびマウス等のポインティングデバイス等からなる入力デバイス55、並びに不図示のネットワークに接続されるネットワークI/F57を含む。CPU51、ストレージ53、ディスプレイ54、入力デバイス55、メモリ56およびネットワークI/F57は、バス58に接続される。
ストレージ53は、ストレージ13と同様に、HDD、SSD、およびフラッシュメモリ等によって実現される。記憶媒体としてのストレージ53には、情報導出プログラム52が記憶される。CPU51は、ストレージ53から情報導出プログラム52を読み出してメモリ56に展開し、展開した情報導出プログラム52を実行する。
次いで、第1の実施形態による情報導出装置の機能的な構成を説明する。図7は、第1の実施形態による情報導出装置の機能的な構成を示す図である。図7に示すように第1の実施形態による情報導出装置50は、画像取得部61、散乱線除去部62、サブトラクション部63および骨密度導出部64を備える。そして、CPU51が情報導出プログラム52を実行することにより、CPU51は、画像取得部61、散乱線除去部62、サブトラクション部63および骨密度導出部64として機能する。
画像取得部61は、画像保存システム9に保存された学習用データ41となる第1放射線画像G1および第2の放射線画像G2を取得する。なお、画像取得部61は、推定装置10の画像取得部21と同様に撮影装置1に被写体Hの撮影を行わせることにより、第1の放射線画像G1および第2の放射線画像G2を取得するものであってもよい。
また、画像取得部61は、画像保存システム9に保存された、第1および第2の放射線画像を取得した際の撮影条件も取得する。撮影条件は、第1の放射線画像G1および第2の放射線画像G2を取得した際の撮影線量、管電圧、SID、SOD並びに散乱線除去グリッドの有無等である。
ここで、第1の放射線画像G1および第2の放射線画像G2の各々には、被写体Hを透過した放射線の一次線成分以外に、被写体H内において散乱された放射線に基づく散乱線成分が含まれる。このため、散乱線除去部62は、第1の放射線画像G1および第2の放射線画像G2から散乱線成分を除去する。例えば、散乱線除去部62は、特開2015-043959号公報に記載された方法を適用して、第1の放射線画像G1および第2の放射線画像G2から散乱線成分を除去してもよい。特開2015-043959号公報に記載された手法等を用いる場合、被写体Hの体厚分布の導出および散乱線成分を除去するための散乱線成分の導出が同時に行われる。
以下、第1の放射線画像G1からの散乱線成分の除去について説明するが、第2の放射線画像G2からの散乱線成分の除去も同様に行うことができる。まず、散乱線除去部62は、初期体厚分布T0(x,y)を有する被写体Hの仮想モデルを取得する。仮想モデルは、初期体厚分布T0(x,y)に従った体厚が、第1の放射線画像G1の各画素の座標位置に対応付けられた、被写体Hを仮想的に表すデータである。なお、初期体厚分布T0(x,y)を有する被写体Hの仮想モデルは、情報導出装置50のストレージ53に予め記憶されていてもよい。また、散乱線除去部62は、撮影条件に含まれるSIDとSODに基づいて、被写体Hの体厚分布T(x、y)を算出してもよい。この場合、初期体厚分布T0(x,y)は、SIDからSODを減算することにより求めることができる。
次に、散乱線除去部62は、仮想モデルに基づいて、仮想モデルの撮影により得られる一次線画像を推定した推定一次線画像と、仮想モデルの撮影により得られる散乱線画像を推定した推定散乱線画像とを合成した画像を、被写体Hの撮影により得られた第1の放射線画像G1を推定した推定画像として生成する。
次に、散乱線除去部62は、推定画像と第1の放射線画像G1との違いが小さくなるように仮想モデルの初期体厚分布T0(x,y)を修正する。散乱線除去部62は、推定画像と第1の放射線画像G1との違いが予め定められた終了条件を満たすまで推定画像の生成および体厚分布の修正を繰り返し行う。散乱線除去部62は、終了条件を満たした際の体厚分布を、被写体Hの体厚分布T(x,y)として導出する。また、散乱線除去部62は、終了条件を満たした際の散乱線成分を第1の放射線画像G1から減算することにより、第1の放射線画像G1に含まれる散乱線成分を除去する。
サブトラクション部63は、エネルギーサブトラクション処理を行うことにより、第1および第2の放射線画像G1,G2から、被写体Hの骨部が抽出された骨部画像Gbを導出する。なお、以降の処理における第1および第2の放射線画像G1,G2は散乱線成分が除去されたものである。骨部画像Gbを導出する場合には、サブトラクション部63は、第1および第2の放射線画像G1,G2に対して、下記の式(1)に示すように、それぞれ対応する画素間での重み付け減算を行うことにより、図8に示すように、各放射線画像G1,G2に含まれる被写体Hの骨部が抽出された骨部画像Gbを生成する。式(1)において、αは重み係数である。なお、骨部画像Gbにおける骨部領域内の各画素の画素値が骨部画素値となる。
Gb(x,y)=α・G2(x,y)-G1(x,y) (1)
骨密度導出部64は、骨部画像Gbの画素毎に骨密度を導出する。本実施形態において、骨密度導出部64は、骨部画像Gbの各画素値を、基準撮影条件により取得した場合の骨画像の画素値に変換することにより骨密度Bを導出する。具体的には、骨密度導出部64は、後述するルックアップテーブルから取得される補正係数を用いて、骨部画像Gbの各画素値を補正することにより骨密度を導出する。
ここで、放射線源3における管電圧が高く、放射線源3から放射される放射線が高エネルギーであるほど、放射線画像における軟部と骨部とのコントラストが小さくなる。また、放射線が被写体Hを透過する過程において、放射線の低エネルギー成分が被写体Hに吸収され、放射線が高エネルギー化するビームハードニングが生じる。ビームハードニングによる放射線の高エネルギー化は、被写体Hの体厚が大きいほど大きくなる。
図9は被写体Hの体厚に対する骨部と軟部とのコントラストの関係を示す図である。なお、図9においては、80kV、90kVおよび100kVの3つの管電圧における、被写体Hの体厚に対する骨部と軟部とのコントラストの関係を示している。図9に示すように、管電圧が高いほどコントラストは低くなる。また、被写体Hの体厚がある値を超えると、体厚が大きいほどコントラストは低くなる。なお、骨部画像Gbにおける骨部領域の画素値が大きいほど、骨部と軟部とのコントラストは大きくなる。このため、図9に示す関係は、骨部画像Gbにおける骨部領域の画素値が大きいほど、高コントラスト側にシフトすることとなる。
第1の実施形態において、骨部画像Gbにおける、撮影時の管電圧に応じたコントラストの相違、およびビームハードニングの影響によるコントラストの低下を補正するための補正係数を取得するためのルックアップテーブルが、情報導出装置50のストレージ53に記憶されている。補正係数は、骨部画像Gbの各画素値を補正するための係数である。
図10は補正係数を取得するためのルックアップテーブルの一例を示す図である。図10において、基準撮影条件を、管電圧90kVに設定したルックアップテーブル(以下、単にテーブルとする)LUT1が例示されている。図10に示すようにテーブルLUT1において、管電圧が大きいほど、かつ被写体Hの体厚が大きいほど、大きい補正係数が設定されている。図10に示す例において、基準撮影条件が管電圧90kVであるため、管電圧が90kVで体厚が0の場合に、補正係数が1となっている。なお、図10において、テーブルLUT1を2次元で示しているが、補正係数は骨部領域の画素値に応じて異なる。このため、テーブルLUT1は、実際には骨部領域の画素値を表す軸が加わった3次元のテーブルとなる。
骨密度導出部64は、被写体Hの体厚分布T(x,y)およびストレージ13に記憶された管電圧の設定値を含む撮影条件に応じた画素毎の補正係数C0(x,y)を、テーブルLUT1から抽出する。そして、骨密度導出部64は、下記式(2)に示すように、骨部画像Gbにおける骨部領域の各画素(x,y)に対して、補正係数C0(x,y)を乗算することにより、骨部画像Gbの画素毎の骨密度B(x,y)(g/cm2)を導出する。このようにして導出された骨密度B(x,y)は、基準撮影条件である90kVの管電圧により被写体Hを撮影することにより取得され、かつビームハードニングの影響が除去された放射線画像に含まれる骨部領域の画素値を表すものとなる。このため、導出される骨密度を各画素の画素値とする骨密度画像が骨密度導出部64により導出されることとなる。
B(x,y)=C0(x,y)×Gb(x,y) (2)
さらに、本実施形態においては、骨密度導出部64は、対象骨についてのみ骨密度Bの代表値を導出する。例えば、対象骨が大腿骨である場合、骨密度導出部64は、骨部画像Gbにおける大腿骨の領域における各画素の骨密度Bの代表値を導出することにより、大腿骨の領域の骨密度Bの代表値を導出する。代表値としては、平均値、中央値、最小値および最大値等を用いることができる。本実施形態においては、対象骨である大腿骨の骨密度の代表値を正解データ42として用いる。
正解データ42として用いられる骨密度は、学習用データ41を取得した時期と同一時期に導出され、画像保存システム9に送信される。画像保存システム9においては、学習用データ41と正解データ42とが対応付けられて教師データ40として保存される。なお、学習のロバスト性向上のために、同一の画像に対して拡大縮小、コントラストの変更、移動、面内の回転、反転およびノイズ付与等の少なくとも1つを行った画像を学習用データ41として含む教師データ40を追加で作成して保存するようにしてもよい。
推定装置10に戻り、学習部24は、多数の教師データ40を用いてニューラルネットワークを学習する。図11は、ニューラルネットワーク30の学習を説明するための図である。ニューラルネットワーク30の学習を行うに際し、学習部24は、ニューラルネットワーク30の入力層31に学習用データ41すなわち第1および第2の放射線画像G1,G2を入力する。そして、学習部24は、ニューラルネットワーク30の出力層33から、対象骨の骨密度を出力データ47として出力させる。そして、学習部24は、出力データ47と正解データ42との相違を損失L0として導出する。
学習部24は、損失L0に基づいてニューラルネットワーク30を学習する。具体的には、学習部24は、損失L0を小さくするように、畳み込み層35におけるカーネルの係数、各層間の結合の重み、および全結合層37における結合の重み等(以下パラメータ48とする)を調整する。パラメータ48の調整方法としては、例えば、誤差逆伝播法を用いることができる。学習部24は、損失L0が予め定められたしきい値以下となるまでパラメータ48の調整を繰り返す。これによって、単純放射線画像G0が入力された場合に、対象骨の骨密度を出力するようにパラメータ48が調整されて、学習済みニューラルネットワーク23Aが構築される。構築された学習済みニューラルネットワーク23Aはストレージ13に記憶される。
図12は学習済みニューラルネットワーク23Aが行う処理の概念図である。図12に示すように、上記のようにして構築された学習済みニューラルネットワーク23Aに、患者の単純放射線画像G0が入力されると、学習済みニューラルネットワーク23Aは入力された単純放射線画像G0に含まれる対象骨(すなわち大腿骨)についての骨密度を出力するようになる。
表示制御部25は、推定部23が推定した骨密度の推定結果をディスプレイ14に表示する。図13は推定結果の表示画面を示す図である。図13に示すように表示画面70は、画像表示領域71と骨密度表示領域72とを有する。画像表示領域71には被写体Hの単純放射線画像G0が表示される。また、骨密度表示領域72には、推定部23が推定した骨密度における大腿骨の関節周辺の骨密度の代表値が表示される。
次いで、第1の実施形態において行われる処理について説明する。図14は第1の実施形態において行われる学習処理を示すフローチャートである。まず、情報取得部22が画像保存システム9から教師データ40を取得し(ステップST1)、学習部24が、教師データ40に含まれる学習用データ41をニューラルネットワーク30に入力して骨密度を出力させ、正解データ42との相違に基づく損失L0を用いてニューラルネットワーク30を学習し(ステップST2)、ステップST1にリターンする。そして、学習部24は、損失L0が予め定められたしきい値となるまで、ステップST1,ST2の処理を繰り返し、学習処理を終了する。なお、学習部24は、学習を予め定められた回数繰り返すことにより、学習処理を終了するものであってもよい。これにより、学習部24は、学習済みニューラルネットワーク23Aを構築する。
次いで、第1の実施形態における推定処理について説明する。図15は第1の実施形態における推定処理を示すフローチャートである。なお、単純放射線画像G0は、撮影により取得されてストレージ13に記憶されているものとする。処理を開始する指示が入力デバイス15から入力されると、画像取得部21が、単純放射線画像G0をストレージ13から取得する(ステップST11)。次いで、推定部23が単純放射線画像G0から骨密度に関連する推定結果を導出する(ステップST12)。そして、表示制御部25が、推定部23が導出した骨密度に関連する推定結果を単純放射線画像G0と併せてディスプレイ14に表示し(ステップST13)、処理を終了する。
このように、本実施形態においては、第1および第2の放射線画像G1,G2を教師データとして学習がなされることにより構築された学習済みニューラルネットワーク23Aを用いて、単純放射線画像G0に含まれる被写体Hの骨密度に関連する推定結果を導出するようにした。ここで、本実施形態においては、ニューラルネットワークの学習に第1および第2の放射線画像G1,G2という2つの放射線画像を用いている。このため、1つの放射線画像と骨密度に関連する情報とを教師データとして用いる場合と比較して、学習済みニューラルネットワーク23Aは、単純放射線画像G0からより精度よく骨密度に関連する推定結果を導出可能なものとなっている。したがって、本実施形態によればより精度よく骨密度に関する推定結果を導出することができる。
なお、上記第1の実施形態においては、正解データ42の骨密度として、DXA法または超音波法により測定された値を用いてもよい。超音波法を用いて骨密度を測定する装置では、例えば、腰部に対して超音波が当てられて当該腰部の骨密度が測定されたり、踵に対して超音波が当てられて当該踵の骨密度が測定されたりする。
また、上記第1の実施形態においては、正解データ42の骨密度を導出するに際し、第1および第2の放射線画像G1,G2のうちの少なくとも一方の放射線画像を用いて被写体Hの骨部および軟部を認識し、骨部および軟部の認識結果と第1および第2の放射線画像G1,G2とを用いて骨部および軟部についての放射線の減弱係数を導出し、導出した減弱係数を用いてエネルギーサブトラクション処理を行うことにより、骨部画像Gbを導出してもよい。以下、これを第2の実施形態として説明する。なお、第2の実施形態におけるエネルギーサブトラクション処理は、例えば国際公開第2020/175319号に記載されている。
図16は第2の実施形態による情報導出装置の機能的な構成を示す図である。なお、図16において図7と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。図16に示すように、第2の実施形態による情報導出装置50Aは、第1の実施形態による情報導出装置50に対して構造物認識部65および重み係数導出部66をさらに備えたものである。
構造物認識部65は、第1および第2の放射線画像G1,G2の少なくとも一方を用いて、被写体Hに含まれる構造物を認識する。第2の実施形態においては認識する構造物は骨部および軟部である。第2の実施形態において、構造物認識部65は、画像取得部61が取得した第1および第2の放射線画像G1,G2の双方を認識処理に使用するものとするが、第1および第2の放射線画像G1,G2のいずれか一方を認識処理に使用するものであってもよい。なお、構造物認識部65は、散乱線除去処理後の第1および第2の放射線画像G1,G2を用いて構造物を認識するものであってもよく、散乱線除去処理前の第1および第2の放射線画像G1,G2を用いて構造物を認識するものであってもよい。
構造物認識部65は、第1および第2の放射線画像G1,G2に写る被写体Hに含まれる構造物の位置、大きさおよび/または形状等を認識する。すなわち、構造物認識部65が行う認識処理は、放射線画像に写る被写体Hにおいて、他の組織等との境界を有する構造物の位置、大きさおよび/または形状等を特定する処理である。第2の実施形態においては、構造物として被写体Hの骨部および軟部を認識する。
重み係数導出部66は、構造物認識部65の認識結果と、第1および第2の放射線画像G1,G2とを用いて、構造物認識部65が認識した構造物について、放射線の減弱を表す指標値を、サブトラクション処理の際に使用する重み係数αとして導出する。減弱係数はいわゆる線源弱係数であり、吸収または散乱等によって放射線が減弱する程度(割合)を表す。減弱係数は、放射線が透過する構造物の具体的な組成(密度等)および厚さ(質量)によって異なる。
重み係数導出部66は、第1および第2の放射線画像G1,G2の対応する画素における画素値の比または差を用いて減弱を表す指標値を算出する。図17および図18は減弱を表す指標値の算出を説明するための図である。なお、図17および図18においては、3つの構造物についての減弱を表す指標値の算出を説明する。図17に示すように、第1の放射線画像G1において組成が「Ca」「Cb」および「Cc」の3種類の構造物があり、これらの第1の放射線画像G1における画素値がいずれも「V1」であったとする。一方、第2の放射線画像G2において対応する画素の画素値それぞれ「Va」「Vb」および「Vc」となる。この画素値の減少程度は、各構造物(各組成物)による放射線の減弱の程度に対応する。このため、図18に示すように、重み係数導出部66は、第1の放射線画像G1の画素値と、対応する第2の放射線画像G2の画素値との比または差を用いて、組成「Ca」の構造物の減弱を表す指標値μa、組成「Cb」の構造物の減弱を表す指標値μb、および組成「Cc」の構造物の減弱を表す指標値μcを算出することができる。第2の実施形態においては、重み係数導出部66は、組成を骨部および軟部とすることにより、骨部の減弱を表す指標値および軟部の減弱を表す指標値を算出する。
なお、第1の放射線画像G1における画素値と第2の放射線画像G2における対応する画素の画素値の比または差が分かれば減弱を表す指標値μを算出できる。このため、説明のために各組成「Ca」「Cb」および「Cc」の画素値が第1の放射線画像G1において共通の「V1」であることとしたが、第1の放射線画像G1において各組成「Ca」「Cb」および「Cc」の画素値が共通である必要はない。
本実施形態においては、サブトラクション部63において骨部画像Gbを導出する。このため、重み係数導出部66は、第1および第2の放射線画像G1,G2における軟部領域について、低エネルギー画像である第1の放射線画像G1の画素値Gs1(x,y)と高エネルギー画像である第2の放射線画像G2の画素値Gs2(x,y)との比率Gs1(x,y)/Gs2(x,y)を減弱を表す指標値、すなわち上記式(1)における重み係数αとして導出する。なお、比率Gs1(x,y)/Gs2(x,y)は、軟部についての高エネルギーの放射線に対する減弱係数μhsに対する低エネルギーの放射線に対する減弱係数μlsの比率μls/μhsを表すものとなる。
第2の実施形態において、サブトラクション部63は、重み係数導出部66が導出した重み係数αを用いて、上記式(1)によりエネルギーサブトラクション処理を行うことにより、骨部画像Gbを導出する。式(1)における重み係数αは、重み係数導出部66が導出した骨部の減弱係数および軟部の減弱係数から導出される。
そして、第2の実施形態においては、サブトラクション部63が導出した骨部画像Gbを用いて、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
次いで、本開示の第3の実施形態について説明する。図19は第3の実施形態による情報導出装置の機能的な構成を示す図である。なお、図19において図7と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。第3の実施形態においては、正解データ42となる骨密度を導出するに際し、骨部画像Gbに含まれる骨部の画素値に基づいて、重み付け減算に用いる新たな重み係数を導出し、第1および第2の放射線画像G1,G2に対して新たな重み係数を用いて重み付け減算を行うことにより新たな骨部画像を導出し、新たな骨部画像に基づくさらに新たな重み係数の導出、およびさらに新たな重み係数に基づくさらに新たな骨部画像の導出を繰り返すことにより、骨部画像Gbを導出するようにしたものである。
このために、図19に示すように、第3の実施形態による情報導出装置50Bは、第1の実施形態による情報導出装置50に対して、初期重み係数設定部67および重み係数導出部68をさらに備える。
初期重み係数設定部67は、散乱線除去部62が終了条件を満たした際の体厚分布に基づいて、サブトラクション部63がサブトラクション処理を行う際の重み係数の初期値である初期重み係数を設定する。ここで、第3の実施形態においては、サブトラクション部63は、初期重み係数設定部67が設定した初期重み係数および重み係数導出部68が導出した重み係数αを用いて、上記の式(1)により骨部画像Gbを導出する。
初期重み係数設定部67は、散乱線除去部62が終了条件を満たした際の体厚分布に基づいて、重み係数の初期値である初期重み係数α0を設定する。第3の実施形態においては、図20に示すように、体厚分布と初期重み係数α0との関係を規定したテーブルLUT2がストレージ53に記憶されている。初期重み係数設定部67は、テーブルLUT2を参照して、体厚分布に基づいて初期重み係数α0を設定する。
ここで、上述したビームハードニングの程度は、被写体H内における軟部の厚さtsおよび骨部の厚さtbに依存するため、軟部の減弱係数μsおよび骨部の減弱係数μbは、ts、tbの関数として、μs(ts,tb)、μb(ts,tb)と定義することができる。
エネルギーサブトラクション処理においては、2つの異なるエネルギー分布を有する画像があるため、低エネルギー画像(本実施形態においては第1の放射線画像G1)の軟部の減弱係数はμls(ts,tb)、骨部の減弱係数はμlb(ts,tb)と表すことができる。また、高エネルギー画像(本実施形態においては第2の放射線画像G2)の軟部の減弱係数はμhs(ts,tb)、骨部の減弱係数はμhb(ts,tb)と表すことができる。
骨部画像Gbを導出するためには、放射線画像に含まれる軟部のコントラストを消去する必要がある。このため、重み係数αは軟部の減弱係数の比を用いて、α=μls(ts,tb)/μhs(ts,tb)により求めることができる。すなわち、重み係数αは軟部の厚さtsおよび骨部の厚さtbの関数として表すことができる。
第3の実施形態においては、サブトラクション部63は、まず、初期重み係数設定部67が設定した初期重み係数α0を用いて、第1および第2の放射線画像G1,G2を相対応する画素間で重み付け減算するサブトラクション処理を行う。その後、後述するように、重み係数導出部68が導出した重み係数αnewを用いてサブトラクション処理を行う。
重み係数導出部68は、骨部画像Gbに含まれる骨部の画素値Gb(x,y)に基づいて、新たな重み係数αnewを導出する。ここで、骨部の画素値Gb(x,y)は、被写体Hの骨部の厚さに対応する。このため、第3の実施形態においては、各種厚さを有する骨部をシミュレートした基準物体を予め撮影することにより、基準物体の放射線画像を基準放射線画像として取得する。そして、基準放射線画像における基準物体の領域の画素値と、基準物体の厚さとの関係とを用いて、骨部の画素値と厚さとの関係を規定するテーブルを予め導出し、ストレージ53に記憶しておく。図21は骨部の画素値と骨部の厚さとの関係を規定したテーブルを示す図である。図21に示すテーブルLUT3は、骨部の画素値Gb(x,y)が低い(すなわち輝度が高い)ほど、骨部が厚いことを表している。
重み係数導出部68は、テーブルLUT3を参照して、骨部画像Gbの各画素値Gb(x,y)から、骨部画像Gbの各画素における骨部の厚さtbを導出する。なお、骨部画像Gbにおける骨部が存在しない領域は軟部のみからなるため、骨部の厚さtbは0となる。一方、重み係数導出部68は、骨部画像Gbにおいて、骨部の厚さtbが0でない画素においては、散乱線除去部62が終了条件を満たした際の体厚分布から骨部の厚さtbを減算することにより、軟部の厚さtsを導出する。
上述したように、重み係数αは、軟部の厚さtsおよび骨部の厚さtbの関数として表すことができる。第3の実施形態においては、軟部の厚さtsおよび骨部の厚さtbと重み係数αとの関係を規定したテーブルがストレージ53に記憶されている。図22は軟部の厚さtsおよび骨部の厚さtbと重み係数αとの関係を規定したテーブルを示す図である。図22に示すように、テーブルLUT4は、軟部の厚さtsおよび骨部の厚さtbと、重み係数αとの関係を3次元的に表すものとなっている。ここで、テーブルLUT4は、軟部の厚さtsおよび骨部の厚さtbが大きいほど、重み係数αが小さい値となっている。
なお、第3の実施形態においては、撮影時に使用する放射線のエネルギー分布に応じて、複数のテーブルLUT4が用意されて情報導出装置50Bのストレージに記憶されている。重み係数導出部68は、撮影条件に基づいて撮影時に使用した放射線のエネルギー分布の情報を取得し、取得したエネルギー分布の情報に対応するテーブルLUT4をストレージから読み出して、重み係数の導出に使用する。そして、重み係数導出部68は、導出した骨部の厚さtbおよび軟部の厚さtsに基づいて、テーブルLUT4を参照して、新たな重み係数αnewを導出する。
サブトラクション部63は、重み係数導出部68が導出した新たな重み係数αnewを用いて、上記式(1)により、新たな骨部画像Gbnewを導出する。
なお、新たな骨部画像Gbnewを最終的な骨部画像Gbとして用いてもよいが、第3の実施形態においては、重み係数αの導出およびサブトラクション処理を繰り返し行う。
すなわち、重み係数導出部68は、新たな骨部画像Gbnewにおける骨部の画素値に基づいて、テーブルLUT3を参照して、新たな骨部の厚さtbnewを導出する。そして、重み係数導出部68は、新たな骨部の厚さtbnewと、1つ前の処理において求めた骨部の厚さtbとの差分Δtbを導出し、差分Δtbが予め定められたしきい値未満となったか否かを判定する。差分Δtbがしきい値以上である場合には、重み係数導出部68は、新たな骨部の厚さtbnewから新たな軟部の厚さtsnewを導出し、新たな骨部の厚さtbnewおよび新たな軟部の厚さtsnewに基づいて、テーブルLUT4を参照して、さらに新たな重み係数αnewを導出する。
サブトラクション部63は、さらに新たな重み係数αnewを用いてサブトラクション処理を行い、さらに新たな骨部画像Gbnewを導出する。
そして重み係数導出部68が、さらに新たな骨部画像Gbnewに基づいて、さらに新たな骨部の厚さtbnewを導出し、さらに新たな骨部の厚さtbnewと1つ前の処理において求めた骨部の厚さtbとの差分Δtbを導出する。
第3の実施形態においては、重み係数導出部68が導出した差分Δtbが、予め定められたしきい値未満となるまで、サブトラクション部63および重み係数導出部68により、サブトラクション処理および重み係数αnewの導出を繰り返す。
そして、第3の実施形態においては、差分Δtbがしきい値未満となったときの骨部画像Gbを用いて、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
次いで、本開示の第4の実施形態について説明する。図23は第4の実施形態による情報導出装置の機能的な構成を示す図である。なお、図23において図7と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。本開示の第4の実施形態においては、正解データ42となる骨密度を導出するに際し、軟部についての異なるエネルギー分布毎の減弱係数、軟部の厚さ、骨部についての異なるエネルギー分布毎の減弱係数、および骨部の厚さを初期値から変更しつつ、異なるエネルギー分布毎に、軟部の減弱係数×軟部の厚さ+骨部の減弱係数×骨部の厚さの値と、放射線画像の各画素値との相違を導出し、相違が最小となるまたは相違が予め定められたしきい値未満となる、異なるエネルギー分布毎の軟部の減弱係数および骨部の減弱係数を導出し、軟部の減弱係数および骨部の減弱係数に基づいて導出された重み係数を用いてエネルギーサブトラクション処理を行うことにより、骨部画像Gbを導出するようにしたものである。
このために、図23に示すように、第4の実施形態による情報導出装置50Cは、第1の実施形態による情報導出装置50に対して、初期値導出部81、減弱係数導出部82および重み係数導出部83をさらに備える。
初期値導出部81は、エネルギーサブトラクション処理を行う際の重み係数を導出するための、軟部についての異なるエネルギー分布毎の減弱係数、軟部の厚さ、骨部についての異なるエネルギー分布毎の減弱係数、および骨部の厚さの初期値を導出する。具体的には、低エネルギーの放射線についての軟部の減弱係数μls、高エネルギーの放射線についての軟部の減弱係数μhs、軟部の厚さts、低エネルギーの放射線についての骨部の減弱係数μlb、高エネルギーの放射線についての骨部の減弱係数μhb、および骨部の厚さtbの初期値μls0、μhs0、ts0、μlb0、μhb0、tb0を導出する。
第4の実施形態においては、サブトラクション部63は、後述するように重み係数導出部83が導出した重み係数を用いて、上記式(1)に示すように、第1および第2の放射線画像G1,G2を相対応する画素間で重み付け減算するサブトラクション処理を行うことにより、被写体Hにおける骨部が抽出された骨部画像Gbを導出する。
ここで、上述したように、軟部の減弱係数μsおよび骨部の減弱係数μbは、ts、tbの関数として、μs(ts,tb)、μb(ts,tb)と定義することができる。このため、第4の実施形態においても第3の実施形態と同様に、低エネルギー画像(本実施形態においては第1の放射線画像G1)の軟部の減弱係数はμls(ts,tb)、骨部の減弱係数はμlb(ts,tb)と表すことができる。また、高エネルギー画像(本実施形態においては第2の放射線画像G2)の軟部の減弱係数はμhs(ts,tb)、骨部の減弱係数はμhb(ts,tb)と表すことができる。
骨部画像Gbを導出するためには、放射線画像に含まれる軟部のコントラストを消去する必要がある。このため、重み係数αは軟部の減弱係数の比を用いて、α=μls(ts,tb)/μhs(ts,tb)により求めることができる。なお、以降の説明においては、減弱係数μls(ts,tb)、μhs(ts,tb)、μlb(ts,tb)、μhb(ts,tb)は、(ts,tb)を省略して、単に減弱係数μls、μhs、μlb、μhbと表すものとする。
初期値導出部81は、軟部の厚さtsの初期値ts0として、散乱線除去部62が終了条件を満たした際の体厚分布を用いる。なお、第4の実施形態においては、散乱線除去処理を行う際に使用する体厚分布は、被写体Hが軟部のみからなると仮定した体厚分布とする。このため、骨部の厚さtbの初期値tb0は0となる。また、減弱係数の初期値μls0、μhs0、μlb0、μhb0としては、軟部および骨部の厚さts、tbの初期値ts0,tb0に応じた値を導出する。第4の実施形態においては、骨部の厚さtbの初期値tb0が0であるため、骨部の減弱係数μlb0、μhb0は0となる。軟部の減弱係数μls0、μhs0は軟部の厚さtsの初期値ts0に応じた値が導出される。このために、第4の実施形態においては、軟部の厚さtsの初期値ts0と軟部の減弱係数の初期値μls0、μhs0との関係を規定したテーブルがストレージ53に記憶されている。
図24は、軟部の厚さtsの初期値ts0と軟部の減弱係数の初期値μls0、μhs0との関係を規定したテーブルを示す図である。初期値導出部81は、ストレージ53に記憶されたテーブルLUT5を参照して、軟部の厚さtsの初期値ts0に応じた軟部の減弱係数の初期値μls0、μhs0を導出する。
減弱係数導出部82は、異なるエネルギー分布毎の軟部の減弱係数μls、μhsおよび骨部の減弱係数μlb、μhbを導出する。ここで、エネルギーサブトラクション処理のために、エネルギー分布が異なる放射線により被写体Hを撮影することにより、低エネルギー画像および高エネルギー画像が取得される。本実施形態においては、第1の放射線画像G1が低エネルギー画像であり、第2の放射線画像G2が高エネルギー画像となる。低エネルギー画像である第1の放射線画像G1の各画素の画素値G1(x,y)および高エネルギー画像である第2の放射線画像G2の各画素の画素値G2(x,y)は、対応する画素位置における軟部の厚さts(x,y)、骨部の厚さtb(x,y)、および減弱係数μls(x,y)、μhs(x,y)、μlb(x,y)、μhb(x,y)を用いて、下記の式(3)、(4)により表される。なお、式(3)、(4)においては(x,y)の記載は省略している。
G1=μls×ts+μlb×tb (3)
G2=μhs×ts+μhb×tb (4)
エネルギーサブトラクション処理を行うための重み係数αを導出するためには、減弱係数μls(x,y)、μhs(x,y)、μlb(x,y)、μhb(x,y)を導出する必要がある。減弱係数μls(x,y)、μhs(x,y)、μlb(x,y)、μhb(x,y)は、上述したように軟部の厚さtsおよび骨部の厚さtbの関数として表されるため、減弱係数μls(x,y)、μhs(x,y)、μlb(x,y)、μhb(x,y)を導出するためには、軟部の厚さtsおよび骨部の厚さtbを導出する必要がある。式(3)、(4)をts、tbについて解くと下記の式(5)、(6)となる。
ts={μhb×G1-μlb×G2}/{μls×μhb-μlb×μhs}(5)
tb={μls×G2-μhs×G1}/{μls×μhb-μlb×μhs}(6)
ここで、式(5)、(6)の右辺の減弱係数μls(x,y)、μhs(x,y)、μlb(x,y)、μhb(x,y)は、軟部の厚さtsおよび骨部の厚さtbの関数として表されるため、式(5)、(6)を代数的に解くことはできない。
このため、第4の実施形態においては、下記の式(7)、(8)に示すエラー関数EL、EHを設定する。エラー関数EL,EHが、異なるエネルギー分布毎に、軟部の減弱係数×軟部の厚さ+骨部の減弱係数×骨部の厚さの値と、放射線画像の各画素値との相違に対応する。そして、エラー関数EL,EHを同時に最小とするために、第4の実施形態においては、式(9)に示すエラー関数E0を設定する。そして、軟部の厚さts、骨部の厚さtbおよび減弱係数μls、μhs、μlb、μhbを初期値から変更しつつ、エラー関数E0を最小とするか、またはエラー関数E0が予め定められたしきい値未満となる軟部の厚さtsおよび骨部の厚さtbの組み合わせを導出する。この際、最急降下法および共役勾配法等の最適化アルゴリズムを用いて、軟部の厚さtsおよび骨部の厚さtbを導出することが好ましい。この際に用いる軟部の厚さts、骨部の厚さtbおよび減弱係数μls、μhs、μlb、μhbの初期値は、初期値導出部81が導出したts0、tb0、μls0、μhs0、μlb0、μhb0を用いる。
EL=G1-{μls×ts+μlb×tb} (7)
EH=G2-{μhs×ts+μhb×tb} (8)
E0=EL2+EH2 (9)
なお、軟部の厚さtsおよび骨部の厚さtbを導出する過程において使用する減弱係数は、予め定められた軟部の厚さtsおよび骨部の厚さtbと減弱係数との関係を規定したテーブルを参照して導出する。このようなテーブルは情報導出装置のストレージ53に記憶されている。
図25は軟部の厚さtsおよび骨部の厚さtbと減弱係数との関係を規定したテーブルを示す図である。図25に示すように、テーブルLUT6は、軟部の厚さtsおよび骨部の厚さtbと、減弱係数μとの関係を3次元的に表すものとなっている。なお、図25には1つのLUT6のみを示しているが、テーブルは減弱係数μls、μhs、μlb、μhbのそれぞれについて用意されてストレージに記憶されている。ここで、テーブルLUT6は、軟部の厚さtsおよび骨部の厚さtbが大きいほど、減弱係数μが小さい値となっている。
減弱係数導出部82は、エラー関数E0を最小とするか、またはエラー関数E0があらかじめ定められたしきい値未満となったときの軟部の厚さtsおよび骨部の厚さtbを導出すると、テーブルLUT6を参照して、減弱係数μls、μhs、μlb、μhbを導出する。
重み係数導出部83は、サブトラクション部63がサブトラクション処理を行う際に使用する重み係数αを導出する。すなわち、重み係数導出部83は、減弱係数導出部82が導出した減弱係数μls、μhs、μlb、μhbを用いて、α=μls/μhsの演算を行うことにより重み係数αを導出する。
第4の実施形態においては、サブトラクション部63は、重み係数導出部83が導出した重み係数αを用いて、上記式(1)により骨部画像Gbを導出する。そして、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
次いで、本開示の第5の実施形態について説明する。図26は第5の実施形態による情報導出装置の機能的な構成を示す図である。なお、図26において図7と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。本開示の第5の実施形態においては、正解データ42となる骨密度を導出するに際し、被写体Hの軟部に含まれる複数の組成の組成割合を導出し、組成割合に応じて第1および第2の放射線画像G1,G2の画素毎に軟部における異なるエネルギー分布毎の減弱係数を導出し、導出された軟部の減弱係数および予め定められた骨部の減弱係数に基づいて導出された重み係数を用いてサブトラクション処理を行うことにより、骨部画像Gbを導出するようにしたものである。
このために、図26に示すように、第5の実施形態による情報導出装置50Dは、第1の実施形態による情報導出装置50に対して、組成割合導出部84および減弱係数設定部85をさらに備える。
組成割合導出部84は、被写体Hの組成割合を取得する。第5の実施形態においては、組成割合導出部84は、第1および第2の放射線画像G1,G2に基づいて、被写体Hの組成割合を導出することにより組成割合を取得する。なお、第5の実施形態においては、組成割合として、脂肪の組成割合を導出するものとする。このため、被写体Hには骨部が含まれているが、説明のために、第1および第2の放射線画像G1,G2には、骨部は含まれず、軟部のみが含まれているものとして説明する。
組成割合を導出するために、組成割合導出部84は、まず、第1および第2の放射線画像G1,G2のそれぞれについての画素毎に、被写体Hの体厚をそれぞれ第1の体厚および第2の体厚として導出する。具体的には、組成割合導出部84は、第1の放射線画像G1に関して、輝度分布が被写体Hの体厚の分布と一致するものと仮定し、第1の放射線画像G1の画素値を、被写体Hの筋肉における放射線の減弱係数を用いて厚さに変換することにより、被写体Hの第1の体厚t1を導出する。また、組成割合導出部84は、第2の放射線画像G2に関して、輝度分布が被写体Hの体厚の分布と一致するものと仮定し、第2の放射線画像G2の画素値を、被写体Hの筋肉における減弱係数を用いて厚さに変換することにより、被写体Hの第2の体厚t2を導出する。
ここで、上述したビームハードニングの程度は、被写体H内における脂肪の厚さtfおよび筋肉の厚さtmに依存するため、脂肪の減弱係数μfおよび筋肉の減弱係数μmは、脂肪の厚さtfおよび筋肉の厚さtmの非線形の関数として、μf(tf,tm)、μm(tf,tm)と定義することができる。
第5の実施形態においては、低エネルギー画像である第1の放射線画像G1についての脂肪の減弱係数はμlf(tf,tm)、筋肉の減弱係数はμlm(tf,tm)と表すことができる。また、高エネルギー画像である第2の放射線画像G2についての脂肪の減弱係数はμhf(tf,tm)、筋肉の減弱係数はμhm(tf,tm)と表すことができる。
また、低エネルギー画像である第1の放射線画像G1の軟部領域における各画素の画素値G1(x,y)および高エネルギー画像である第2の放射線画像G2の軟部領域における各画素の画素値G2(x,y)は、対応する画素位置における脂肪の厚さtf(x,y)、筋肉の厚さtm(x,y)、および減弱係数μlf(x,y)、μhf(x,y)、μlm(x,y)、μhm(x,y)を用いて、それぞれ下記の式(10)、(11)により表される。なお、式(10)、(11)においては、(x,y)の記載は省略している。
G1=μlf×tf+μlm×tm (10)
G2=μhf×tf+μhm×tm (11)
上述したように、第5の実施形態においては、第1の体厚t1および第2の体厚t2を導出する際には、第1の放射線画像G1および第2の放射線画像G2の画素値を、被写体Hにおける筋肉の減弱係数を用いて厚さに変換している。このため、第5の実施形態においては、組成割合導出部84は、第1の体厚t1および第2の体厚t2を、下記の式(12)、(13)により導出していることとなる。なお、式(12)、(13)においては、(x,y)の記載は省略している。
t1=G1/μlm (12)
t2=G2/μhm (13)
第1および第2の体厚t1,t2を導出した画素位置において、被写体Hには筋肉のみしか含まれない場合、第1の体厚t1と第2の体厚t2とは一致する。しかしながら、実際の被写体Hにおいては、第1および第2の放射線画像G1,G2の同一の画素位置においては、筋肉および脂肪の双方が含まれる。このため、式(12)、(13)により導出した第1および第2の体厚t1,t2は、被写体Hの実際の体厚とは一致しなくなる。また、低エネルギー画像である第1の放射線画像G1から導出した第1の体厚t1と、高エネルギー画像である第2の放射線画像G2から導出した第2の体厚t2とでは、第1の体厚t1の方が第2の体厚t2よりも大きい値となる。
例えば、図27に示すように、実際の体厚が100mmであり、脂肪および筋肉の厚さがそれぞれ30mmおよび70mmであったとする。この場合、低エネルギーの放射線による取得される第1の放射線画像G1により導出した第1の体厚t1は例えば80mm、高エネルギーの放射線による取得される第2の放射線画像G2により導出した第2の体厚t2は例えば70mmと導出される。また、第1の体厚t1と第2の体厚t2との相違は、脂肪の組成割合が大きいほど大きくなる。
ここで、第1の体厚t1と第2の体厚t2との相違は、被写体Hにおける脂肪および筋肉の組成割合に応じて変化する。このため、第5の実施形態においては、脂肪の組成割合を種々変化させた被写体モデルを、異なるエネルギー分布の放射線により撮影し、これにより取得された2つの放射線画像から体厚をそれぞれ導出し、2つの放射線画像から導出した体厚の差と、脂肪の組成割合とを対応付けたテーブルを予め作成してストレージ53に記憶しておく。
図28は、2つの放射線画像から導出した体厚の差と脂肪の組成割合とを対応付けたテーブルを示す図である。図28に示すように、テーブルLUT7は横軸が2つの放射線画像のそれぞれから導出した体厚の差であり、縦軸が脂肪の組成割合である。図28に示すように、2つの放射線画像のそれぞれから導出した体厚の差が大きいほど脂肪の組成割合が大きくなっている。なお、2つの放射線画像のそれぞれから導出した体厚の差と、脂肪の組成割合とを対応付けたテーブルは、撮影時に使用する放射線のエネルギー分布毎に用意されて、ストレージ53に記憶される。
組成割合導出部84は、導出した第1の体厚t1と第2の体厚t2との差分を導出し、情報導出装置50Dのストレージに記憶されたLUT7を参照して、脂肪の組成割合R(x,y)を導出する。なお、導出した脂肪の組成割合R(x,y)を100%から減算することにより、筋肉の組成割合を導出することができる。
減弱係数設定部85は、脂肪の組成割合R(x,y)に応じて、第1および第2の放射線画像G1,G2の画素毎に、第1および第2の放射線画像G1,G2を取得する際に使用する放射線の減弱係数を設定する。具体的には、被写体Hの軟部の減弱係数を設定する。ここで、第5の実施形態においては、第1の放射線画像G1は低エネルギー画像に相当し、第2の放射線画像G2は高エネルギー画像に相当する。このため、減弱係数設定部85は、低エネルギー画像についての軟部の減弱係数μls(x,y)および高エネルギー画像についての軟部の減弱係数μhs(x,y)を、下記の式(14)、(15)により導出する。なお、式(14)、(15)においては、(x,y)の記載は省略している。また、μlmは低エネルギー画像における筋肉の減弱係数、μlfは低エネルギー画像における脂肪の減弱係数、μhmは高エネルギー画像における筋肉の減弱係数、μhfは高エネルギー画像における脂肪の減弱係数である。
μls=(1-R)×μlm+R×μlf (14)
μhs=(1-R)×μhm+R×μhf (15)
第5の実施形態において、サブトラクション部63は、減弱係数設定部85が設定した減弱係数μls、μhsを用いて、サブトラクション処理を行う。この際、サブトラクション部63は、上記式(1)における重み係数αを導出する。第5の実施形態において使用する重み係数αは、減弱係数設定部85が設定した減弱係数を用いて、α=μls/μhsにより導出される。そして、サブトラクション部63は、導出した重み係数αを用いて上記式(1)により骨部画像Gbを導出する。そして、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
次いで、本開示の第6の実施形態による情報導出装置について説明する。なお、第6の実施形態による情報導出装置の構成は、第1の実施形態による情報導出装置50の構成と同一であり、散乱線除去部62が行う処理のみが異なるため、ここでは詳細な説明は省略する。図29は第6の実施形態による情報導出装置における散乱線除去部の機能的な構成を示す図である。図29に示すように、第6の実施形態による情報導出装置における散乱線除去部62Aは、撮影条件取得部91、体厚導出部92、特性取得部93、線分布導出部94および演算部95を備える。
なお、第6の実施形態においては、図30に示す撮影装置1Aを用いて撮影台4に仰臥している被写体Hを、散乱線除去グリッド8をさらに用いて撮影することにより取得した第1および第2の放射線画像G1,G2を取得し、第1および第2の放射線画像G1,G2を教師データ40として用いるものである。なお、図30においては、撮影台4は天板4Aを有し、天板4Aの下方に放射線源3の側から順に散乱線除去グリッド(以下、単にグリッドとする)8、第1の放射線検出器5、フィルタ7および第2の放射線検出器6が配置されており、これらが取付部4Bにより天板4Aの下方に取付けられている。
撮影条件取得部91は、教師データ40を生成するに際し、学習用データ41としての第1および第2の放射線画像G1,G2を取得するために被写体Hのエネルギーサブトラクション撮影時に使用した撮影条件を画像保存システム9から取得する。なお、第6の実施形態においては、撮影条件として放射線の線質も含む。線質は、放射線源3における放射線発生器の管電圧[kV]、総ろ過量[mmAl当量]および半価層[mmAl]のうちの1つ以上を用いて規定される。管電圧は発生される放射線エネルギー分布の最大値を意味する。総ろ過量は放射線源3における放射線発生器およびコリメータ等の撮影装置1を構成する各構成部品が持つろ過量を、アルミニウムの厚さに換算したものである。総ろ過量は、大きいほど撮影装置1でのビームハードニングの影響が大きく、放射線の波長分布における高エネルギー成分が多いものとなる。半価層は発生された放射線エネルギー分布に対して、線量を半分に減衰させるために要するアルミニウムの厚さにより定義される。半価層のアルミニウムが厚いほど、放射線の波長分布における高エネルギー成分が多いものとなる。
体厚導出部92は、第1および第2の放射線画像G1,G2の少なくとも一方および撮影条件に基づいて、被写体Hの体厚分布を導出する。以下、体厚導出部92が導出する体厚分布を初期体厚分布T0と称する。以下、初期体厚分布T0の導出について説明する。なお、以降の説明においては第1の放射線画像G1を用いた体厚の導出および散乱線の除去について説明するが、第2の放射線画像G2を用いても同様に体厚の導出および散乱線の除去を行うことができる。
まず、被写体Hが存在しない状態において、放射線源3を駆動して放射線検出器5に放射線を照射した場合、放射線源3から発せられた放射線の放射線検出器5への到達線量I0(x,y)は、下記の式(16)により表される。式(16)において、撮影条件に含まれるmAsは管電流時間積、kVは管電圧である。なお、半価層も考慮した場合、到達線量I0(x,y)は、下記の式(16-1)により表される。ここで、Fは基準となるSID(例えば100cm)にて、基準となる線量(例えば1mAs)を被写体Hがない状態で放射線検出器5に照射した場合に、放射線検出器5に到達する放射線量を表す非線形の関数である。Fは、管電圧毎または管電圧および半価層に依存して変化する。また、到達線量I0は、放射線検出器5により取得される放射線画像の画素毎に導出されるため、(x,y)は各画素の画素位置を表す。また、以降の説明においては、半価層を考慮する場合と考慮しない場合との双方を含めるため、下記の式(16-2)に示すように、各式における括弧内にmmAlを含めることにより表すものとする。
I0(x,y)=mAs×F(kV)/SID2 (16)
I0(x,y)=mAs×F(kV,mmAl)/SID2 (16-1)
I0(x,y)=mAs×F(kV(,mmAl))/SID2 (16-2)
また、初期体厚分布をT0、初期体厚分布T0を有する場合の被写体Hの減弱係数をμ(T0)、散乱線の広がりを考慮しない場合における、初期体厚分布T0を有する被写体Hを透過後の放射線に含まれる散乱線量と一次線量との比であるScatter-to-Primary RatioをSTPR(T0)とすると、被写体Hを透過後の線量I1は、下記の式(17)により表される。なお、式(17)においては、初期体厚分布T0、到達線量I0、および線量I1は、単純放射線画像G0の画素毎に導出されるが、(x,y)を省略している。また、STPRは体厚のみならず、管電圧[kV]および半価層[mmAl]にも依存する非線形関数であるが、式(17)においては、kVおよびmmAlの表記を省略している。
I1=I0×exp{-μ(T0)×T0}×{1+STPR(T0)} (17)
式(17)において、線量I1は単純放射線画像G0の各画素における画素値であり、到達線量I0は上記式(16)、(16-1)により導出される。その一方で、FおよびSTPRは非線形な関数であるため、式(17)をT0について代数的に解くことはできない。このため、体厚導出部92は、下記の式(18)または式(18-1)に示すエラー関数E1を定義する。そして、エラー関数E1を最小とするか、またはエラー関数E1が予め定められたしきい値未満となるT0を初期体厚分布として導出する。この際、体厚導出部92は、最急降下法および共役勾配法等の最適化アルゴリズムを用いて、初期体厚分布T0を導出する。
E1=[I1-I0×exp{-μ(T0)×T0}×{1+STPR(T0)}]2 (18)
E1=|I1-I0×exp{-μ(T0)×T0}×{1+STPR(T0)}| (18-1)
特性取得部93は、撮影時に被写体Hと第1および第2の放射線検出器5,6との間に介在する物体の放射線特性を取得する。ここで、被写体Hを透過した後の放射線が、被写体Hと放射線検出器5との間に介在する物体を透過する際には、被写体Hを透過した後の放射線の線質に応じて放射線の透過率が変化する。また、被写体Hを透過した後の放射線に含まれる一次線と散乱線とでは、放射線の進行方向および線質の相違により、透過率がそれぞれ異なるものとなる。このため、第6の実施形態においては、物体の放射線特性として、物体の一次線透過率および散乱線透過率を用いるものとする。
なお、上述したように、被写体Hを透過した後の放射線が、被写体Hと放射線検出器5との間に介在する物体を透過する際には、被写体Hを透過した後の放射線の線質に応じて放射線の透過率が変化する。また、被写体Hを透過した後の放射線の線質は、被写体Hの体厚分布Tに依存する。このため、一次線透過率および散乱線透過率は、被写体Hの体厚分布Tの関数としてそれぞれTp(T)、Ts(T)と表すことができる。
また、被写体Hを透過した後の放射線の線質は、撮影条件に含まれる放射線源3の線質にも依存している。線質は管電圧および半価層に依存している。このため、一次線透過率および散乱線透過率は、厳密にはそれぞれTp(kV(,mmAl),T)、Ts(kV(,mmAl),T)と表される。なお、以降の説明においては、一次線透過率および散乱線透過率として、単にTp、Tsと表す場合があるものとする。
ここで、被写体Hと放射線検出器5との間に介在する物体の一次線透過率Tpおよび散乱線透過率Tsは、上述したように被写体Hの体厚分布Tに依存する。このため、第6の実施形態においては、被写体の体厚分布Tを模した各種厚さを有するファントムを用いて、被写体Hの体厚分布Tに応じた、物体の一次線透過率Tpおよび散乱線透過率Tsを計測し、計測結果に基づいて被写体Hの体厚分布Tと物体の一次線透過率Tpおよび散乱線透過率Tsとの関係を規定するテーブルを生成し、第6の実施形態による情報導出装置のストレージに記憶しておくものとする。以下、被写体Hの体厚分布Tに応じた、物体の一次線透過率Tpおよび散乱線透過率Tsの計測について説明する。
まず、散乱線透過率Tsの算出について説明する。図31および図32は被写体Hの体厚に応じた散乱線透過率Tsの計測を説明するための図である。まず図31に示すように、放射線検出器5の表面に人体を模したファントム101を載置し、さらにファントム101の上に鉛板102を載置する。ここで、ファントム101は5cm、10cm、20cm等の各種厚さを有し、例えば水と同様の放射線透過率を有するアクリル等の材料からなる。この状態において、放射線源3を駆動して放射線検出器5に放射線を照射することにより、特性取得部93は、計測用の放射線画像K0を取得する。放射線画像K0の信号値は、放射線検出器5における放射線が直接照射される領域において値が大きく、ファントム101の領域および鉛板102の領域の順に信号値が小さくなる。
なお、鉛板102は放射線を透過しないため、放射線画像K0における鉛板102の領域においては信号値は0となるはずである。しかしながら、放射線検出器5の鉛板102に対応する領域には、ファントム101により散乱された放射線が到達する。このため、放射線画像K0における鉛板102の領域は、ファントム101による散乱線成分に対応する信号値S0を有するものとなる。
次に、図32に示すように、撮影装置1の天板4A上にファントム101を載置し、さらにファントム101の上に鉛板102を載置する。そして、被写体Hを撮影する場合と同様に、天板4Aの下方に放射線検出器5およびグリッド8を配置した状態で、放射線源3を駆動して放射線検出器5に放射線を照射することにより、特性取得部93は、計測用の放射線画像K1を取得する。放射線画像K1の信号値は、放射線画像K0と同様に、放射線検出器5における放射線が直接照射される領域において値が大きく、ファントム101の領域および鉛板102の領域の順に信号値が小さくなる。ここで、図32に示すように、ファントム101と放射線検出器5との間に、天板4Aおよびグリッド8を介在させた状態で撮影を行った場合、放射線検出器5の鉛板102に対応する領域には、ファントム101により散乱された放射線のみならず、天板4Aおよびグリッド8により散乱された放射線も到達する。このため、放射線画像K1における鉛板102の領域は、ファントム101と天板4Aおよびグリッド8とによる散乱線成分に対応する信号値S1を有するものとなる。
なお、信号値S1は天板4Aおよびグリッド8による散乱線成分を含むため、図31に示す信号値S0より大きい値となる。したがって、厚さがtのファントム101を撮影した場合における、被写体Hと放射線検出器5との間に介在する物体、すなわち天板4Aおよびグリッド8の散乱線透過率Tsは、S1/S0により算出することができる。
第6の実施形態においては、特性取得部93は、厚さが異なる少なくとも2種類のファントムを用いて、図31および図32に示すようにして各厚さに対応する散乱線透過率Tsを算出する。また、特性取得部93は、ファントム101にない厚さの散乱線透過率Tsについては、計測した複数の厚さについての散乱線透過率Tsを補間することにより導出する。そしてこれにより、特性取得部93は、各厚さの間の厚さについての散乱線透過率を補間することにより、図33に示すように、被写体Hの体厚と、被写体Hおよび放射線検出器5の間に介在する物体の散乱線透過率Tsとの関係を表すテーブルLUT8を生成する。
次に、一次線透過率の算出について説明する。図34および図35は被写体Hの体厚に応じた一次線透過率Tpの計測を説明するための図である。まず図34に示すように、まず放射線検出器5の表面に人体を模したファントム101を載置する。ここで、ファントム101は散乱線透過率Tsを導出した場合と同様のものを用いる。そしてこの状態において、放射線源3を駆動して放射線検出器5に放射線を照射することにより、特性取得部93は、計測用の放射線画像K2を取得する。放射線画像K2におけるファントム101に対応する領域の信号値S2は、ファントム101を透過した放射線の一次線成分および散乱線成分の双方を含む。ここで、ファントム101を透過した放射線の散乱線成分は、上記図31に示す手法により求めた放射線画像K0における信号値S0である。このため、ファントム101を透過した放射線の一次線成分は、S2-S0により導出される。
次に、図35に示すように、撮影装置1の天板4A上にファントム101を載置し、被写体Hを撮影する場合と同様に、天板4Aの下方に放射線検出器5およびグリッド8を配置した状態で、放射線源3を駆動して放射線検出器5に放射線を照射することにより、特性取得部93は、計測用の放射線画像K3を取得する。放射線画像K3のファントム101に対応する領域の信号値S3は、ファントム101並びに天板4Aおよびグリッド8を透過した放射線の一次線成分および散乱線成分の双方を含む。ここで、ファントム101並びに天板4Aおよびグリッド8を透過した放射線の散乱線成分は、上記図32に示す手法により求めた放射線画像K1における信号値S1である。このため、ファントム101と天板4Aおよびグリッド8とを透過した放射線の一次線成分は、S3-S1により導出される。
したがって、ファントム101を撮影した場合における、被写体Hと放射線検出器5との間に介在する天板4Aおよびグリッド8の一次線透過率Tpは、(S3-S1)/(S2-S0)により算出することができる。そして、第6の実施形態においては、特性取得部93は、厚さが異なる少なくとも2種類のファントムを用いて、図34および図35に示すようにして各厚さに対応する一次線透過率Tpを算出する。また、特性取得部93は、ファントム101にない厚さの一次線透過率Tpについては、計測した複数の厚さについての一次線透過率Tpを補間することにより導出する。そしてこれにより、特性取得部93は、図36に示すように、被写体Hの体厚と、被写体Hおよび放射線検出器5の間に介在する物体の一次線透過率Tpとの関係を表すテーブルLUT9を生成する。
上記のように生成されたテーブルLUT8,LUT9は、第6の実施形態による情報導出装置のストレージ53に記憶される。なお、テーブルは、各種撮影条件(すなわち、線質、線量および線源距離)、さらには使用するグリッド8の種類に応じて生成されて、ストレージ13に記憶されるものとする。
特性取得部93は、撮影条件取得部91が取得した撮影条件に応じて、ストレージ53に記憶されたテーブルLUT8,LUT9を参照して、被写体Hと放射線検出器5との間に介在する物体についての、初期体厚分布T0に対応する一次線透過率Tp(T0)および散乱線透過率Ts(T0)を取得する。なお、一次線透過率Tpおよび散乱線透過率Tsは線質にも依存するため、一次線透過率Tpおよび散乱線透過率TsはそれぞれTp(kV(,mmAl),T0)、Ts(kV(,mmAl),T0)と表すことができる。
線分布導出部94は、撮影条件、体厚分布および被写体Hと放射線検出器5との間に介在する物体の放射線特性を用いて、放射線検出器5により検出される放射線の一次線分布および散乱線分布を導出する。ここで、被写体Hを透過した後の放射線の一次線分布Ip0および散乱線分布Is0は、体厚分布をTとした場合、下記の式(19)、(20)により表される。式(20)におけるPSFは、1つの画素から広がる散乱線の分布を表す点拡散関数(Point Spread Function)であり、線質および体厚に応じて定義される。また、*は畳み込み演算を示す。一次線分布Ip0および散乱線分布Is0は、単純放射線画像G0の画素毎に導出されるが、式(19)、(20)においては、(x,y)は省略している。また、第6の実施形態においては、後述するように体厚分布と一次線分布Ip0および散乱線分布Is0の導出を繰り返し行うものであるが、1回目の一次線分布Ip0および散乱線分布Is0の導出に際しては、体厚分布Tは初期体厚分布T0が使用される。
Ip0=I0×exp{-μ(T)×T} (19)
Is0=Ip0×STPR(kV(,mmAl),T)*PSF(kV(,mmAl),T) (20)
さらに、線分布導出部94は、被写体Hと放射線検出器5との間に介在する物体の一次線透過率Tpおよび散乱線透過率Tsを用いて、下記の式(21)、(22)により、放射線検出器5に到達する一次線分布Ip1および散乱線分布Is1を導出する。さらに、下記の式(23)により、一次線分布Ip1と散乱線分布Is1との総和Iw1を導出する。式(21)、(22)においても、1回目の一次線分布Ip1および散乱線分布Is1の導出に際しては、体厚分布Tは初期体厚分布T0が使用される。
Ip1=Ip0×Tp(kV(,mmAl),T) (21)
Is1=Is0×Ts(kV(,mmAl),T) (22)
Iw1=Ip1+Is1 (23)
演算部95は、一次線分布Ip1および散乱線分布Is1の総和Iw1と、第1の放射線画像G1の各画素位置における線量、すなわち画素値I1との誤差E2を導出する。誤差E2の導出は、下記の式(24)または式(24-1)により行う。式(24)および式(24-1)において、Nは第1の放射線画像G1の画素数、Σは第1の放射線画像G1の全画素における和を表す。なお、式(24-1)は、log内においてI1/Iw1の演算を行っているため、被写体Hに照射される線量すなわち到達線量I0に依存することなく、誤差E2を導出することができる。
E2=(1/N)×Σ{I1-Iw1}2 (24)
E2=(1/N)×Σ|log{I1/Iw1}| (24-1)
そして、演算部95は、誤差E2を最小とするか、または誤差E2が予め定められたしきい値未満となるように体厚分布Tを更新する。そして、演算部95は、更新した体厚分布に基づく、一次線透過率Tpおよび散乱線透過率Tsの取得、並びに一次線分布Ip1および散乱線分布Is1の導出を繰り返す。ここで、演算部95が行う演算を繰り返し演算と称するものとする。また、第6の実施形態においては、演算部95は、誤差E2が予め定められたしきい値未満となるように、繰り返し演算を行うものとする。そして、演算部95は、誤差E2が予め定められたしきい値未満となる被写体Hの体厚分布Tcに基づいて導出された一次線分布Ipcを画素値とする処理済みの第1の放射線画像Gc1を出力する。
なお、一次線透過率Tpおよび散乱線透過率Tsの繰り返しの取得、並びに一次線分布Ip1および散乱線分布Is1の繰り返しの導出は、それぞれ特性取得部93および線分布導出部94が行う。
一方、第2の放射線画像G2についても第1の放射線画像G1と同様に一次線分布Ipcを導出する。なお、第1の放射線画像G1についての一次線分布をIpc-1とし、第2の放射線画像G2についての一次線分布をIpc-2とする。そして演算部95は一次線分布Ipc-2を画素値とする処理済みの第2の放射線画像Gc2を出力する。
第6の実施形態においては、サブトラクション部63は処理済みの第1および第2の放射線画像Gc1,Gc2を用いて骨部画像Gbを導出する。そして、サブトラクション部63が導出した骨部画像Gbを用いて、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
なお、第6の実施形態において導出された骨密度Bを正解データとして用いて学習を行うことにより構築された学習済みニューラルネットワーク23Aは、図30に示す撮影装置1Aにより被写体Hを単純撮影した単純放射線画像G0が入力されると、被写体Hと放射線検出器との間に介在する物体を考慮した骨密度を出力するものとなる。
また、上記第6の実施形態においては、被写体Hと放射線検出器5との間に介在する物体として、撮影台4の天板4Aおよびグリッド8を用いているが、図37に示すように、天板4Aとグリッド8との間に空気層103が介在する場合がある。このような場合は、線分布導出部94においては、空気層103も被写体Hと放射線検出器5との間に介在する物体に含めて、一次線分布Ip1および散乱線分布Is1を導出することが好ましい。この場合、一次線分布Ip1および散乱線分布Is1は、下記の式(21-1)、(22-1)に示すように、上記式(21)、(22)に対して、空気層103の厚さtairに応じた点拡散関数PSFair(kV(,mmAl),tair)を畳み込み演算することにより導出すればよい。なお、空気層103の厚さtairは、天板4Aの下面とグリッド8の被写体H側の面との距離となる。
Ip1=Ip0×Tp(kV(,mmAl),T)*PSFair(kV(,mmAl),tair) (21-1)
Is1=Is0×Ts(kV(,mmAl),T)*PSFair(kV(,mmAl),tair) (22-1)
次いで、本開示の第7の実施形態による情報導出装置について説明する。なお、第7の実施形態による情報導出装置の構成は、第1の実施形態による情報導出装置の構成と同一であり、散乱線除去部62が行う処理のみが異なるため、ここでは詳細な説明は省略する。図38は第7の実施形態による情報導出装置における散乱線除去部の機能的な構成を示す図である。図38に示すように、第7の実施形態による情報導出装置における散乱線除去部62Bは、第1導出部97、第2導出部98および画像生成部99を備える。
第7の実施形態による情報導出装置は、第1導出部97が、第1および第2の放射線画像G1,G2を用いて被写体Hを透過した放射線の第1の一次線分布および散乱線分布を導出し、第2導出部98が、第1の一次線分布および散乱線分布、並びに被写体Hと放射線画像を検出する放射線検出器との間に介在する物体の放射線特性とを用いて、物体を透過した放射線の第2の一次線分布および散乱線分布を導出し、画像生成部99が、第2の一次線分布および散乱線分布を用いて、被写体および物体を透過後の放射線画像を導出することにより散乱線除去処理を行うものである。なお、第7の実施形態による情報導出装置が行う散乱線除去処理は、国際公開第2020/241664号に記載されたものである。以下、第1の放射線画像G1からの散乱線除去処理について説明するが、第2の放射線画像G2に対しても同様に散乱線除去処理を行うことができる。
第1導出部97は、第1の放射線画像G1を用いて、被写体Hを透過した放射線の成分(一次線成分および散乱線成分)を推定する。第1導出部97が行う導出処理(以下、第1導出処理という)において「被写体Hを透過した放射線」とは、被写体Hの透過後、かつ天板4Aおよびグリッド8等の物体の透過前の放射線である。
また、被写体Hを透過した放射線の成分とは、具体的には、放射線が被写体Hを透過した成分および/または被写体Hが散乱した放射線の成分をいう。すなわち、放射線が被写体Hを透過した成分とは、被写体Hを透過後の一次線成分である。被写体Hが散乱した放射線の成分とは、被写体Hを透過後の散乱線成分である。任意の位置Xに向けて被写体Hに入射する放射線について、被写体Hが一次線を生成する作用素g1および散乱線成分を生成する作用素h1であると捉えれば、図39に示すように、被写体H透過後の一次線成分はg1(X)であり、被写体H透過後の散乱線成分はh1(X)である。
第1導出部97は、第1の放射線画像G1を用いて、被写体Hを透過後の一次線成分g1(X)、被写体Hを透過後の散乱線成分h1(X)、またはこれらの両方を推定する。第7の実施形態においては、第1導出部97は、第1の放射線画像G1を用いて、被写体H透過後の一次線成分g1(X)と、被写体H透過後の散乱線成分h1(X)と、をそれぞれ推定する。
なお、第1の放射線画像G1から被写体H透過後の一次線成分g1(X)を推定する場合、第1導出部97は、第1の放射線画像G1から、推定した一次線成分g1(X)を減算することにより、被写体Hを透過後の散乱線成分h1(X)を推定する。また、第1の放射線画像G1から被写体H透過後の散乱線成分h1(X)を推定する場合、第1導出部97は、第1の放射線画像G1から、推定した散乱線成分h1(X)を減算することにより、被写体H透過後の一次線成分g1(X)を推定する。
第1導出部97が行う第1導出処理は、例えば、第1の放射線画像G1を用いて被写体Hの体厚を推定し、かつ推定した被写体Hの体厚を用いて、被写体Hを透過した放射線の成分を推定することによって行うことができる。この場合、第1導出部97は、推定した被写体Hの体厚に基づいて、第1の放射線画像G1の画素毎に(あるいは複数の画素からなる所定の区画毎に)、放射線が被写体Hを透過した一次線成分g1(X)と、被写体Hが散乱した放射線の散乱線成分h1(X)とを推定する。
例えば、図40に示すように、被写体Hがある場合(「被写体あり」)の画素値V2は、被写体Hがない場合(「被写体なし」)の画素値V1よりも小さい。これは被写体Hの吸収等によるものである。このため、これらの差Δ(=V1-V2)は、被写体Hの体厚に関連する。一方、被写体Hがない場合の画素値V1は、放射線が被写体Hを介さずに放射線検出器5に到達した領域(直接領域)の画素値、または、予め行う実験(被写体Hを置かない撮影)等によって知ることができる。このため、第1導出部97は、被写体Hをおいて撮影した第1の放射線画像G1の画素値V2から、被写体Hの体厚を推定できる。
また、被写体H透過後の一次線成分g1(X)および散乱線成分h1(X)は、いずれも被写体Hの体厚に関連する。例えば、被写体Hの体厚が厚いほど、被写体Hの吸収等により一次線成分g1(X)は少なくなり、かつ入射する放射線に対して散乱線成分h1(X)が多くなる。こうした被写体Hの性質すなわち特定のエネルギーを有する放射線に対する被写体Hの透過量および散乱量は、放射線撮影の前に実験等により予め求めておくことができる。
このため、第1導出部97は、例えば、被写体H毎、または被写体Hの撮影部位毎に、その透過量および散乱量に係る特性(以下、被写体散乱特性という)を関数あるいはテーブル等の形式で保有しておく。そして、撮影に用いた放射線のエネルギー等と、推定した実際の被写体Hの体厚と、を用いて、放射線の透過量および散乱量を求めることにより、その被写体H透過後の一次線成分g1(X)および散乱線成分h1(X)を推定する。
第1導出部97が出力する導出結果(以下、第1導出結果という)は、被写体Hを透過後の位置P1における一次線成分g1(X)、被写体Hを透過後の位置P1における散乱線成分h1(X)、または被写体Hを透過後の位置P1における放射線の強度分布f1(X)である。位置P1における放射線の強度分布f1(X)は、例えば、上記の一次線成分g1(X)と散乱線成分h1(X)の和または重み付け和である。第7の実施形態においては、第1導出部97は、被写体Hを透過後の位置P1における放射線の強度分布f1(X)を、例えば画像の形式あるいは画像を構築し得るデータの集合体の形式で、第1導出結果として出力する。なお、第1導出部97は、被写体Hを透過後の一次線成分g1(X)または散乱線成分h1(X)の一方を導出結果として出力することもできる。
第2導出部98は、第1導出部97の導出結果と、放射線が被写体Hの透過後にさらに透過する天板4Aおよびグリッド8等の物体の散乱特性とを用いて、物体を透過した放射線の成分を推定する。第2導出部98の導出処理(以下、第2導出処理という)において、「物体を透過した」とは、被写体Hがある位置を透過し、かつその後に物体を透過したことをいう。このため、被写体Hの具体的な形状等によって、被写体Hを透過せず、直接的に物体を透過したことを含む。
具体的には、第2導出部98は、放射線が被写体Hおよび物体を透過した成分、または被写体Hもしくは物体のうち少なくともいずれかが散乱した放射線の成分を推定する。放射線が被写体Hおよび物体を透過した成分とは、物体透過後の一次線成分である。被写体Hもしくは物体のうち少なくともいずれかが散乱した放射線の成分とは、物体透過後の散乱線成分である。
物体の散乱特性は、物体を透過する放射線量および/または物体が散乱する放射線量の分布を定める。第7の実施形態においては、物体を透過する放射線量の分布を定める第1特性g2(X)と、物体が散乱する放射線量の分布を定める第2特性h2(X)と、を含む散乱特性f2(X)である。具体的には、散乱特性f2(X)は、第1特性g2(X)と、第2特性h2(X)の和または重み付け和であり、例えばf2(X)=g2(X)+h2(X)である。
第1特性g2(X)は、任意の位置Xに向けて被写体Hを介さずに直接的に物体に入射する放射線の透過線量を決定する関数またはテーブル等である。また、第2特性h2(X)は、任意の位置Xに向けて被写体Hを介さずに直接的に物体に入射する放射線の透過線量を決定する関数またはテーブル等である。例えば、物体が撮影台4の天板4Aのみである場合、第1特性g2(X)は天板4Aの透過線量の分布を決定し、第2特性h2(X)は天板4Aの散乱線量の分布を決定する。物体の具体的な構成(撮影台4等の使用または不使用等)の状態は放射線撮影前に既知である。このため、第1特性g2(X)および第2特性h2(X)は例えば物体の具体的な構成毎に、あるいは物体の組み合わせ毎に実験等により予め求めておくことができる。また、物体を、入射する放射線から一次線成分と散乱線成分を生成するものであると捉えれば、第1特性g2(X)は入射する放射線に応じた一次線成分を生成する作用素であり、第2特性h2(X)は入射する放射線に応じた散乱線成分を生成する作用素である。
第7の実施形態においては、第2導出部98は、例えば物体の具体的な構成毎に、第1特性g2(X)および第2特性h2(X)を予め保有する。その結果、第2導出部98は、物体の散乱特性f2(X)を予め保有する。ただし、第2導出部98は、必要に応じて、第1特性g2(X)、第2特性h2(X)および/または散乱特性f2(X)を取得できる。
図41に示すように、任意の点X0に向けて入射する放射線(X)が物体を透過した後の強度分布は、PSF(point spread function(点拡散関数))120によって近似できる。PSF120は、例えば、ガウス関数(Gaussian)である。そして、任意の点X0に向けて物体に入射する放射線(X)のうち、任意の点X0およびその近傍に到達する成分が一次線成分の分布121であり、PSF120からこの一次線成分の分布121を除く部分が散乱線成分の分布122である。
さらに、撮影に使用する放射線のエネルギー等、並びに物体である天板4A等の材質(密度等)および厚さ(質量)が既知であるため、ピークの高さおよび半値幅等、PSF120の具体的形状は予め定まる。したがって、例えば、被写体Hを置かずに撮影をして得た放射線画像に対して、上記の散乱線成分の分布122の逆畳み込み演算(deconvolution)をすることにより、第2特性h2(X)を予め求めることができる。また、被写体Hを置かずに撮影をして得た放射線画像から、第2特性h2(X)を減算することにより、または一次線成分の分布121の逆畳み込み演算をすることにより、第1特性g2(X)を予め求めることができる。
第2導出部98は、第1導出部97の導出結果である第1導出結果に物体の散乱特性を作用させることにより、物体を透過した放射線の成分を推定する。具体的には、物体は、第1導出結果が表す分布の放射線の入射を受ける。このため、第2導出部98は、物体の散乱特性f2(X)の引数を第1導出結果(f1(X))とすることによって、物体を透過した放射線の成分を推定する。すなわち、第2導出部98は、下記の式(25)に基づく演算により、物体を透過した放射線の成分を推定する。第7の実施形態においては、第1導出結果は、f1(X)=g1(X)+h1(X)であるから、上記の式(25)は下記の式(26)のように表すことができ、かつ式(27)のように展開できる。
f2(f1(X))=g2(f1(X))+h2(f1(X)) (25)
f2(f1(X))=g2(g1(X)+h1(X))+h2(g1(X)+h1(X)) (26)
f2(f1(X))=g2g1(X)+g2h1(X)+h2g1(X)+h2h1(X) (27)
図42に示すように、上記式(27)の右辺第1項の「g2g1(X)」は、撮影に使用する放射線のうち、被写体Hを透過し、かつ物体(図42においては天板4Aを示している)を透過して、任意の点X0にある画素P(X0)に到達する放射線Ra1を表す。式(27)の右辺第2項の「g2h1(X)」は、撮影に使用する放射線のうち、被写体Hが含む散乱体D1によって散乱され、その後、物体を透過して、任意の点X0にある画素P(X0)に到達する放射線Ra2を表す。式(27)の右辺第3項の「h2g1(X)」は、撮影に使用する放射線のうち、被写体Hを透過し、その後、物体が含む散乱体D3によって散乱されて、任意の点X0にある画素P(X0)に到達する放射線Ra3を表す。また、式(27)の右辺第4項の「h2h1(X)」は、撮影に使用する放射線のうち、被写体Hが含む散乱体D2によって散乱され、その後、物体が含む散乱体D4によってさらに散乱されて、任意の点X0にある画素P(X0)に到達する放射線Ra4を表す。
上記により、第2導出部98は、式(27)の第1項「g2g1(X)」および/または第2項から第4項の和「g2h1(X)+h2g1(X)+h2h1(X)」を求める。式(27)の第1項「g2g1(X)」が物体透過後の一次線成分の分布を表し、第2項から第4項の和「g2h1(X)+h2g1(X)+h2h1(X)」が物体透過後の散乱線成分の分布を表すからである。第7の実施形態においては、第2導出部98は、物体透過後の一次線成分の分布g2g1(X)を求め、これを導出結果として出力する。
画像生成部99は、第2導出部98の導出結果を用いて、被写体Hおよび物体を透過した放射線によって被写体Hの像を形成する処理済み放射線画像を生成する。第2導出部98が、放射線が被写体Hおよび物体を透過した一次線成分を推定する場合、画像生成部99は、第2導出部98の導出結果である第2導出結果を画像化することにより、処理済み放射線画像を生成する。また、第2導出部98が、被写体Hまたは物体が放射線を散乱した散乱線成分を推定する場合、画像生成部99は、第1の放射線画像G1から第2導出部98の導出結果である第2導出結果を減算することにより、処理済み放射線画像を生成する。
第7の実施形態においては、第2導出部98が物体透過後の一次線成分の分布を出力するため、画像生成部99はこれを画像化することにより、処理済み放射線画像を生成する。したがって、第2導出部98が出力する一次線成分の分布g2g1(X)が実質的に散乱線成分が除去された処理済みの放射線画像である。なお、画像生成部99は、生成した処理済み放射線画像に対して、必要に応じて各種画像処理等(例えばコントラストの調整処理または構造物の強調処理等)を施すことができる。
なお、第6および第7の実施形態による散乱線除去処理を、上記第1から第5の実施形態において行うようにしてもよい。この場合、情報導出装置50A~50Dは、散乱線除去部62に代えて散乱線除去部62Aまたは散乱線除去部62Bを有するものとなる。
次いで、本開示の第8の実施形態について説明する。図43は第8の実施形態による情報導出装置の機能的な構成を示す図である。なお、図43において図7と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。本開示の第7の実施形態においては、第1および第2の放射線画像G1,G2に対して粒状抑制処理を行い、粒状抑制処理が行われた第1および第2の放射線画像G1,G2を用いてエネルギーサブトラクション処理を行うようにしたものである。このために、図43に示すように、第8の実施形態による情報導出装置50Eは、第1の実施形態による情報導出装置50に対して、処理内容導出部86および粒状抑制処理部87をさらに備える。
処理内容導出部86は、第1の放射線画像G1に対する第1の粒状抑制処理の処理内容を導出し、第1の粒状抑制処理の処理内容に基づいて、第2の放射線画像G2に対する第2の粒状抑制処理の処理内容を導出する。
ここで、本実施形態においては、1ショット法による被写体Hを撮影して第1および第2の放射線画像G1,G2を取得している。1ショット法の場合、被写体Hを透過した放射線は、間に放射線エネルギー変換フィルタ7を介在させて重ねられた2つの放射線検出器5,6に照射される。このため、放射線源3から離れた側にある第2の放射線検出器6は、放射線源3に近い側にある第1の放射線検出器5よりも照射される線量が小さくなる。その結果、第2の放射線画像G2は第1の放射線画像G1よりも、放射線の量子ノイズが多く、S/Nが低いものとなる。このため、とくに第2の放射線画像G2に対しては、量子ノイズに起因する粒状を抑制するための粒状抑制処理を施す必要がある。
処理内容導出部86は、第1の放射線画像G1および第2の放射線画像G1のうち、S/Nが高い第1の放射線画像G1に対する第1の粒状抑制処理の処理内容を導出する。そして、処理内容導出部86は、第1の粒状抑制処理の処理内容に基づいて、第2の放射線画像G2に対する第2の粒状抑制処理の処理内容を導出する。以下、処理内容の導出について説明する。
粒状抑制処理としては、注目画素を中心とする3×3あるいは5×5等の予め定められたサイズを有する、ガウシアンフィルタ等の平滑化フィルタによるフィルタリング処理が挙げられる。しかしながら、ガウシアンフィルタを用いると、第1および第2の放射線画像G1,G2に含まれる構造物のエッジがぼけてしまう可能性がある。このため、第8の実施形態においては、エッジのぼけを防止しつつ粒状を抑制するエッジ保存平滑化フィルタを用いて、粒状抑制処理を行う。エッジ保存平滑化フィルタとしては、注目画素に隣接する画素について、注目画素から離れるほど重み付けが小さくなり、注目画素との画素値の差が大きいほど重みが小さくなるような正規分布を重み付けとするバイラテラルフィルタを用いる。
図44は第1の放射線画像G1に対するバイラテラルフィルタの例を示す図である。なお、図44は、第1の放射線画像G1に含まれるエッジ付近の5×5画素の局所領域A1を2つ並べて示している。また、図44に示す2つの局所領域A1は同一であるが、それぞれ注目画素の位置が異なる。図44の左側の局所領域A1においては、エッジの境界に接する低濃度の画素が注目画素P11となっている。バイラテラルフィルタは、上述したように、注目画素に隣接する画素について、注目画素から離れるほど重み付けが小さくなり、注目画素との画素値の差が大きいほど重みが小さくなるような正規分布を重み付けとするものである。
このため、処理内容導出部86は、バイラテラルフィルタのフィルタサイズを、注目画素の画素値と注目画素の周囲の画素の画素値との差に基づいて決定する。例えば、注目画素の画素値と注目画素の周囲の画素値との差が小さいほど、フィルタサイズを大きくする。また、処理内容導出部86は、バイラテラルフィルタの重みを、注目画素の画素値と注目画素の周囲の画素の画素値との差に基づいて決定する。例えば、注目画素の画素値と注目画素の周囲の画素値との差が小さいほど、注目画素に近い画素に対する重みを、注目画素から離れた画素に対する重みよりも大きくする。
これにより、処理内容導出部86は、図44の左側の局所領域A1の注目画素P11に対しては、図44の左側に示すような重みを有する3×3のバイラテラルフィルタF11を、第1の粒状抑制処理の処理内容として導出する。
図44の右側の局所領域A1においては、エッジの境界に接する高濃度の画素が注目画素P12となっている。このため、処理内容導出部86は、図44の右側の局所領域A1の注目画素P12に対しては、図44の右側に示すような重みを有する3×3のバイラテラルフィルタF12を、第1の粒状抑制処理の処理内容として導出する。
図45は図44に示す第1の放射線画像の局所領域A1に対応する第2の放射線画像の局所領域A2を示す図である。なお、図45は、第2の放射線画像G2に含まれるエッジ付近の5×5画素の局所領域A2を示す。局所領域A2は、図44に示す第1の放射線画像G1における局所領域A1と同一位置の領域である。図45に示す2つの局所領域A2は同一であるが、それぞれ注目画素の位置が異なる。図45の左側の局所領域A2においては、図44の左側の局所領域A1に示す注目画素P11に対応する画素が、注目画素P21となっている。図45の右側の局所領域A2においては、図44の右側の局所領域A1に示す注目画素P12に対応する画素が、注目画素P22となっている。
ここで、第2の放射線画像G2が取得される第2の放射線検出器6には、第1の放射線画像G1が取得される第1の放射線検出器5よりも照射される放射線の線量が低い。このため、第2の放射線画像G2は、第1の放射線画像G1と比較して放射線の量子ノイズが多く、粒状が悪いため、エッジが明確に現れていない。また、量子ノイズの影響により、エッジ境界付近における高濃度の領域に低濃度の画素が含まれていたり、低濃度の領域に高濃度の画素が含まれていたりする。このため、第2の放射線画像G2からは、第1の放射線画像G1のように、エッジを保存しつつ粒状を抑制するバイラテラルフィルタを適切に決定することができない。
この場合、ガウシアンフィルタのような平滑化フィルタを用いることが考えられる。しかしながら、このような平滑化フィルタを用いると、ノイズの抑制とエッジの保存とを両立させることができず、その結果、エッジがノイズに埋もれてしまい、第2の放射線画像G2に含まれる構造物のエッジを復元できなくなってしまう。
このため、第8の実施形態においては、処理内容導出部86は、第1の放射線画像G1に対する第1の粒状抑制処理の処理内容に基づいて、第2の放射線画像に対する第2の粒状抑制処理の処理内容を導出する。すなわち、処理内容導出部86は、第2の放射線画像G2の各画素に対して行う第2の粒状抑制処理の処理内容を、第1の放射線画像G1の第2の放射線画像G2の各画素に対応する画素に対して行う第1の粒状抑制処理の処理内容と同一となるように、第2の粒状抑制処理の処理内容を導出する。具体的には、処理内容導出部86は、第1の放射線画像G1の各画素に対して決定されたバイラテラルフィルタと同一のサイズおよび同一の重みを有するバイラテラルフィルタを、第2の放射線画像G2に対する第2の粒状抑制処理の処理内容として導出する。
図46は第2の放射線画像G2に対するバイラテラルフィルタの例を示す図である。なお、図46には、図44と同様に、第2の放射線画像G2に含まれるエッジ付近の5×5画素の局所領域A2を示す。図46に示すように、処理内容導出部86は、第2の放射線画像G2の局所領域A2の注目画素P21に対しては、第1の放射線画像G1の局所領域A1の注目画素P11に対して導出されたバイラテラルフィルタF11と同一のサイズおよび同一の重みを有するバイラテラルフィルタF21を、第2の粒状抑制処理の処理内容として導出する。
また、第2の放射線画像G2の局所領域A2の注目画素P22に対しては、処理内容導出部86は、第1の放射線画像G1の局所領域A1の注目画素P12に対して導出されたバイラテラルフィルタF12と同一のサイズおよび同一の重みを有するバイラテラルフィルタF22を、第2の粒状抑制処理の処理内容として導出する。
なお、第2の粒状抑制処理の処理内容を導出するに際しては、第1の放射線画像G1と第2の放射線画像G2との画素位置を対応付ける必要がある。このため、第1の放射線画像G1と第2の放射線画像G2との位置合わせを行うことが好ましい。
粒状抑制処理部87は、第1の放射線画像G1および第2の放射線画像G2に対して粒状抑制処理を行う。すなわち、処理内容導出部86が導出した処理内容に基づいて、第1の放射線画像G1および第2の放射線画像G2に対して粒状抑制処理を行う。具体的には、第1の放射線画像G1に対しては、第1の放射線画像G1について導出されたバイラテラルフィルタによるフィルタリング処理を行う。また、第2の放射線画像G2に対しては、第1の放射線画像G1に基づいて導出されたバイラテラルフィルタによるフィルタリング処理を行う。
第8の実施形態においては、サブトラクション部63は、粒状抑制処理が行われた第1および第2の放射線画像G1,G2を用いて、上記式(1)により、骨部画像Gbを導出する。そして、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
次いで、本開示の第9の実施形態について説明する。図47は第9の実施形態による情報導出装置の機能的な構成を示す図である。なお、図47において図43と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。本開示の第9の実施形態による情報導出装置50Fは、第8の実施形態による情報導出装置50Eに対して、第1の放射線画像G1および第2の放射線画像G2の少なくとも一方に基づいて、被写体Hの物理量マップを導出するマップ導出部88をさらに備え、処理内容導出部86において、物理量マップに基づいて、第2の放射線画像G2に対する第2の粒状抑制処理の処理内容を導出するようにした点が第8の実施形態と異なる。
マップ導出部88は、被写体Hについての物理量マップを導出する。物理量としては、被写体Hの体厚および骨密度等が挙げられる。体厚は、散乱線除去部62が終了条件を満たした際の体厚分布を用いることができる。骨密度は骨密度導出部64が導出した骨密度を用いることができる。
ここで、粒状抑制処理の対象となる第1および第2の放射線画像G1,G2は、撮影条件によって、画像に含まれる構造のコントラストが変動する。このため、バイラテラルフィルタを用いてエッジ保存平滑化処理を行う場合は、撮影条件に応じて、保存するエッジの強度をコントロールする必要がある。一方、被写体Hの体厚を表す体厚マップにおいては、マップ内に含まれる構造のコントラストは、撮影条件に依存しない厚さ(mm)により表される。
このため、第9の実施形態においては、処理内容導出部86は、物理量マップに基づいて、第1の放射線画像G1に対する第1の粒状抑制処理の処理内容を導出する。図48は物理量マップに対するバイラテラルフィルタの例を示す図である。なお、図48は、物理量マップに含まれるエッジ付近の5×5画素の局所領域A3を2つ並べて示している。図48に示す2つの局所領域A3は同一であるが、それぞれ注目画素の位置が異なる。図48の左側の局所領域A3には、エッジ上の高濃度の画素が注目画素P31となっている。このため、図48の左側の局所領域A3の注目画素P31に対しては、図48の左側に示すような重みを有する3×3のバイラテラルフィルタF31が、第1の粒状抑制処理の処理内容として導出される。
図48の右側の局所領域A3には、エッジの境界に接する低濃度の画素が注目画素P32となっている。このため、図48の右側の局所領域A3の注目画素P32に対しては、図48の右側に示すような重みを有する3×3のバイラテラルフィルタF32が、第1の粒状抑制処理の処理内容として導出される。
第9の実施形態においても、処理内容導出部86は、第1の放射線画像G1の各画素に対して決定されたバイラテラルフィルタと同一のバイラテラルフィルタを、第2の放射線画像G2に対する第2の粒状抑制処理の処理内容として導出する。すなわち、第2の放射線画像G2において、第1の放射線画像G1の局所領域A3と対応する局所領域においては、局所領域A3の注目画素P31に対応する画素に対して、バイラテラルフィルタF31と同一のサイズおよび同一の重みを有するバイラテラルフィルタを、第2の粒状抑制処理の処理内容として導出する。また、第2の放射線画像G2において、第1の放射線画像G1の局所領域A3の注目画素P32に対応する画素に対して、バイラテラルフィルタF32と同一のサイズおよび同一の重みを有するバイラテラルフィルタを、第2の粒状抑制処理の処理内容として導出する。
そして、第9の実施形態においては、粒状抑制処理部87が処理内容導出部86が導出した処理内容に基づいて、第1の放射線画像G1および第2の放射線画像G2に対して、粒状抑制処理を行う。サブトラクション部63は、粒状抑制処理が行われた第1および第2の放射線画像G1,G2を用いて、上記式(1)により、骨部画像Gbを導出する。そして、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
なお、上記第8および第9の実施形態において行われる粒状抑制処理を、上記第1から第7の実施形態において行うようにしてもよい。
また、上記各実施形態においては、骨密度に関連する情報として単純放射線画像G0の骨密度を推定しているが、これに限定されるものではない。例えば、骨折リスクの評価値を骨密度に関連する推定結果として導出するようにしてもよい。以下、これを第10の実施形態として説明する。骨折リスクの評価値の導出は例えば国際公開第2020/166561号に記載された手法を用いることができる。
図49は第10の実施形態による情報導出装置の機能的な構成を示す図である。なお、図49において図7と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。本開示の第10の実施形態においては、正解データ42としての骨密度の導出に代えて、骨折リスクの評価値を導出するようにしたものである。このために、図49に示すように、第10の実施形態による情報導出装置50Gは、第1の実施形態による情報導出装置50に対して筋肉量導出部110、統計値導出部111および評価値導出部112をさらに備える。
なお、第10の実施形態による情報導出装置50Gのサブトラクション部63は、骨部画像Gbに加えて、第1および第2の放射線画像G1,G2から被写体Hの軟部組織が抽出された軟部画像Gsを導出する。軟部画像Gsは下記の式(28)により導出する。式(25)において、βは軟部組織を抽出するための重み係数である。
Gs(x、y)=G1(x、y)-β×G2(x、y) (28)
筋肉量導出部110は、軟部画像Gsにおける軟部領域の画素毎に、画素値に基づいて筋肉量を導出する。軟部組織は、筋肉組織、脂肪組織、血液、および水分を含む。第10の実施形態の筋肉量導出部110では、軟部組織における脂肪組織以外の組織を、筋肉組織とみなす。すなわち、第10の実施形態の筋肉量導出部110では、筋肉組織に、血液および水分も含めた非脂肪組織を筋肉組織として扱うものとする。
筋肉量導出部110は、軟部画像Gsから、筋肉組織および脂肪組織のエネルギー特性の差を利用して、筋肉と脂肪とを分離する。図50に示すように、人体である被写体Hに入射前の放射線に比べて、被写体Hを透過後の放射線の線量は低くなる。また、筋肉組織と脂肪組織とは吸収するエネルギーが異なり、減弱係数が異なるため、被写体Hを透過後の放射線のうち、筋肉組織を透過後の放射線と、脂肪組織を透過後の放射線とではエネルギースペクトルが異なる。図50に示すように、被写体Hを透過して、第1の放射線検出器5および第2の放射線検出器6の各々に照射される放射線のエネルギースペクトルは、被写体Hの体組成、具体的には、筋肉組織と脂肪組織との割合に依存する。筋肉組織よりも脂肪組織の方が放射線を透過しやすいため、脂肪組織に比べて筋肉組織の割合が多い方が、人体を透過後の放射線の線量が少なくなる。
このため、筋肉量導出部110は、軟部画像Gsから、上述した筋肉組織および脂肪組織のエネルギー特性の差を利用して、筋肉と脂肪とを分離する。すなわち、筋肉量導出部110は、軟部画像Gsから筋肉画像を生成する。また、筋肉量導出部110は、筋肉画像の画素値に基づいて各画素の筋肉量を導出する。
なお、筋肉量導出部110が、軟部画像Gsから筋肉と脂肪とを分離する具体的な方法は限定されないが、一例として、第10の実施形態の筋肉量導出部110は、下記の式(29)および式(30)式により、軟部画像Gsから筋肉画像を生成する。具体的には、まず、筋肉量導出部110は、式(29)により、軟部画像Gs内の各画素位置(x,y)における筋肉率rm(x,y)を導出する。なお、式(29)におけるμmは筋肉組織の減弱係数に応じた重み係数であり、μfは脂肪組織の減弱係数に応じた重み係数である。また、Δ(x,y)は、濃度差分布を表す。濃度差分布とは、放射線が被写体Hを透過することなく第1の放射線検出器5および第2の放射線検出器6に到達することにより得られる濃度から見た濃度変化の画像上の分布である。濃度変化の画像上の分布は、軟部画像Gsにおける放射線が直接、第1の放射線検出器5および第2の放射線検出器6に照射することにより得られる素抜け領域における濃度から被写体Hの領域における各画素の濃度を減算することにより算出される。
rm(x,y)={μf-Δ(x,y)/T(x,y)}/(μf-μm) (29)
さらに、筋肉量導出部110は、下記式(30)により、軟部画像Gsから筋肉画像Gmを生成する。なお、式(30)における、x、yは筋肉画像Gmの各画素の座標である。
Gm(x,y)=rm(x,y)×Gs(x,y) (30)
そして、筋肉量導出部110は、下記(31)式に示すように、筋肉画像Gmの各画素(x,y)に対して、予め定められた画素値と筋肉量との関係を表す係数C1(x,y)を乗算することにより、筋肉画像Gmの画素毎の筋肉量M(x,y)(g/cm2)を導出する。
M(x,y)=C1(x,y)×Gm(x,y) (31)
統計値導出部111は、骨密度導出部64が導出した骨密度および筋肉量に基づいて、被写体に関する統計値を求める。統計値は、後述するように、骨折リスクを評価するための骨折リスク評価値の算出に用いられる。具体的には、統計値導出部111は、下記式(32)に示すように、骨密度の空間的な分布に関する骨密度分布指標値Bd、および、筋肉量に関する空間的な分布に関する筋肉量分布指標値Mdに基づいて、統計値Qを導出する。
Q=W1×Bd+W2×Md (32)
式(32)のW1、W2は、それぞれ重み係数であり、大量の骨密度分布指標値および筋肉量分布指標値を集めて回帰分析に従って定める。
骨密度分布指標値は、骨密度の値がどのように広がっているかを表す値である。骨密度分布指標値としては、例えば、骨密度の単位面積当たりの値、平均値、中間値、最大値、および最小値等がある。筋肉量分布指標値は、筋肉量の値がどのように広がっているかを表す値である。筋肉量分布指標値としては、例えば、筋肉量の平均値、中間値、最大値、および最小値等がある。
また、統計値導出部111は、骨密度および筋肉量に加えて、被写体の身長、体重、年齢、および骨折歴等のうち少なくともいずれかに基づいて、統計値Qを求めるようにしてもよい。例えば、骨密度、筋肉量、および年齢に基づいて統計値を求める場合には、骨密度分布指標値Bd、筋肉量分布指標値Md、および年齢Yに基づいて、下記式(33)により、統計値Qが算出される。
Q=W1×Bd+W2×Md+W3×Y (33)
式(33)のW1、W2、W3は、それぞれ重み係数であり、骨密度分布指標値および筋肉量分布指標値とそれら指標値に対応する被写体の年齢に関するデータを大量に集め、それらデータに基づく回帰分析に従って、重み係数W1、W2、W3を定める。なお、年齢の他、被写体の身長、体重、および骨折歴等を加えて統計値を求める場合においても、重み係数を掛け合わせて加算することが好ましい。
式(33)を用いる場合、大量のデータに基づく回帰分析によって得られる重み係数が「W1=2.0、W2=0.1、W3=-0.01」である場合、ある被写体Hの骨密度分布指標値Bdが「1.0g/cm2」、筋肉量分布指標値が「20kg」、年齢Yが「40歳」とすると、下記式(34)により、統計値Qは「3.6」となる。
Q=2.0×1.0+0.1×20+(-0.01)×40=3.6 (34)
評価値導出部112は、統計値Qに基づいて、被写体Hの骨折リスクを評価するための骨折リスク評価値を算出する。統計値Qと骨折リスク評価値との関係は、大量の診断データから得られていることから、評価値導出部112では、この関係を用いて、骨折リスク評価値を算出する。統計値Qと骨折リスク評価値との関係は予め導出してテーブルとしてストレージ53に記憶しておけばよい。
例えば、骨折リスク評価値としては、被写体Hの診断時(第1および第2の放射線画像G1,G2の取得時)から10年以内の骨折発症確率がある。そして、上記のように、統計値Qの算出に式(33)を使用し、かつ大量のデータに基づく回帰分析によって得られる重み係数が「W1=2.0、W2=0.1、W3=-0.01」である場合には、「10年以内の骨折発症確率」と「統計値Q」との関係は、図51に示すように、統計値Qが大きくなるほど、骨折発症確率が低くなるように表される。
第10の実施形態においては、情報導出装置50Gが導出した骨折リスク評価値が教師データの正解データとして用いられる。図52は第10の実施形態において導出される教師データを示す図である。図52に示すように教師データ40Aは、第1および第2の放射線画像G1,G2を含む学習用データ41と、骨折リスク評価値である正解データ42Aとからなる。
図52に示す教師データ40Aを用いてニューラルネットワークを学習することにより、単純放射線画像G0が入力されると骨折リスク評価値を骨密度に関連する推定結果として出力する学習済みニューラルネットワーク23Aを構築することができる。
次いで、本開示の第11の実施形態について説明する。図53は第11の実施形態による情報導出装置の機能的な構成を示す図である。なお、図53において図7と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。本開示の第11の実施形態においては、正解データ42としての骨密度の導出に代えて、治療後の骨部の治癒状態を表す情報を導出するようにしたものである。このために、図53に示すように、第11の実施形態による情報導出装置50Hは、第1の実施形態による情報導出装置50に対して治癒情報導出部114をさらに備える。なお、第11の実施形態においては、骨部の治療として、骨部に人工骨等の人工物を埋め込む手術を行ったものとする。
治癒情報導出部114は、被写体Hの骨部に埋め込まれた人工骨等の人工物の周辺の骨密度に基づいて、人工物が被写体Hの骨部に埋め込まれた後の被写体の骨部の状態を示す情報を、治癒情報として導出する。人工骨等の人工物は、粉砕骨折や腫瘍等により失われた骨を代替するため、外科的手術により生体内に埋め込まれる。
図54は、被写体の骨部に埋め込まれた人工骨の一例を示す図である。図54には、人工股関節置換術が施された被写体Hの骨部が例示されており、被写体Hの大腿骨130に人工関節のステム131が埋め込まれている。
ステム131を固定する方法として、直接固定法(セメントレス固定)および間接固定法(セメント固定)が知られている。直接固定法においては、セメントを使用することなく、ステム131を大腿骨130の内部の空洞に挿入する。大腿骨130の内部の空洞は、ステム131がフィットするように、予め形状が整えられる。ステム131の表面は粗面化されており、骨組織がステム131の内部に向かって浸透するように成長していく。すなわち、ステム131を大腿骨130に埋め込んだ直後においては、ステム131と大腿骨130との間には空洞が存在しているが、大腿骨130が回復すると、骨組織の成長に伴って空洞は縮小して消滅する。したがって、ステム131の周辺の骨密度を取得することで、術後における大腿骨130の回復の程度を把握することが可能である。
図55は、術後の各段階における、大腿骨130内部におけるステム131からの距離と骨密度との関係の一例を示すグラフである。図55に示すグラフの横軸は、図54における直線Lに沿った位置である。図55において、実線はステム131を大腿骨130に埋め込んだ直後の初期段階に対応し、点線は回復途中の段階に対応し、一点鎖線は完治段階に対応する。図55に示すように、術後の初期段階では、大腿骨130とステム131とは密着しておらず、ステム131の近傍における骨密度は極めて少ない。回復に伴って、骨組織がステム131の内部に向かって浸透するように成長していくことで、ステム131の近傍における骨密度は増加する。一方、ステム131から遠方位置における骨密度は、術後の各段階において略一定である。完治段階においては、ステム131の近傍における骨密度と遠方位置における骨密度とは、略同等となる。
以下において、治癒情報導出部114が、治癒情報を導出する態様について、図54に示す人工股関節置換術が施された場合を例に説明する。治癒情報導出部114は、ステム131からの距離が相対的に近い位置LAにおける骨密度BAと、ステム131からの距離が相対的に遠い位置XBにおける骨密度BBとの差異に応じた数値ΔBを、治癒情報として導出する。例えば、治癒情報導出部114は、骨密度の差(ΔB=BB-BA)を治癒情報として導出してもよい。この場合、治癒情報として導出される数値は、回復に伴って小さくなり、0に近づいていく。また、治癒情報導出部114は、骨密度の比(ΔB=BA/BB)を治癒情報として導出してもよい。この場合、治癒情報として導出される数値ΔBは、骨部の回復に伴って大きくなり、1に近づいていく。すなわち、骨密度BAとBBとの差異に応じた数値ΔBは、術後における骨部の回復の度合いを示す数値であるといえる。したがって、治癒情報として数値ΔBを導出することで、術後における大腿骨130の回復の程度を定量的に把握することが可能である。
なお、治癒情報導出部114は、骨密度導出部64によって導出された、骨部画像Gbの画素毎の骨密度Bを用いて治癒情報を導出する。第1の放射線画像G1、第2の放射線画像G2および骨部画像Gbのいずれの画像においても、ステム131の画素値は骨部領域における画素値とは顕著に異なっているので、上記の各画像においてステム131が存在する領域を特定することが可能である。したがって、治癒情報導出部114は、第1の放射線画像G1、第2の放射線画像G2および骨部画像Gbのいずれかの画像に基づいて、ステム131からの距離を特定することが可能である。
図56は、人間の骨の断面構造の一例を示す断面図である。図56に示すように、人間の骨は、海綿骨140と、海綿骨140の外側を覆う皮質骨141と、を含んで構成されている。皮質骨141は、海綿骨140よりも硬く、緻密である。海綿骨140は、骨髄腔内に広がる骨梁と呼ばれる小さな骨の柱の集合体である。骨梁の形態には、板状と棒状構造があり、互いに連結している。海綿骨140の骨密度と、皮質骨141の骨密度とは顕著に異なるため、骨部画像Gbの画素毎の骨密度Bから皮質骨141と海綿骨140とを区別することが可能である。
海綿骨140に人工物が埋め込まれている場合には、治癒情報導出部114は、骨部画像Gbの画素毎の骨密度Bに基づいて海綿骨140の領域を特定し、人工物の周辺における海綿骨140の骨密度に基づいて治癒情報を導出してもよい。具体的には、治癒情報導出部114は、人工物からの距離が相対的に近い海綿骨140内の位置XAにおける骨密度BAと、人工物からの距離が相対的に遠い海綿骨140内の位置XBにおける骨密度BBとの差異に応じた数値ΔBを治癒情報として導出してもよい。
一方、皮質骨141に人工物が埋め込まれている場合には、治癒情報導出部114は、骨部画像Gbの画素毎の骨密度Bに基づいて皮質骨141の領域を特定し、人工物の周辺における皮質骨141の骨密度に基づいて治癒情報を導出することが好ましい。具体的には、治癒情報導出部114は、人工物からの距離が相対的に近い皮質骨141内の位置XAにおける骨密度BAと、人工物からの距離が相対的に遠い皮質骨141内の位置XBにおける骨密度BBとの差異に応じた数値ΔBを治癒情報として導出してもよい。
また、被写体Hの骨部に埋め込まれた人工物が海綿骨140および皮質骨141の双方に及んでいる場合、骨部画像Gbの画素毎の骨密度Bに基づいて、海綿骨140および皮質骨141の領域を特定し、人工物の周辺における海綿骨140および皮質骨141の双方の骨密度に基づいて、治癒情報を導出してもよい。具体的には、治癒情報導出部114は、人工物からの距離が相対的に近い海綿骨140内の位置LA1における骨密度BA1と、人工物からの距離が相対的に遠い海綿骨140内の位置LB1における骨密度BB1との差異に応じた数値ΔB1を治癒情報として導出するとともに、人工物からの距離が相対的に近い皮質骨141内の位置LA2における骨密度BA2と、人工物からの距離が相対的に遠い皮質骨141内の位置LB2における骨密度BB2との差異に応じた数値ΔB2を治癒情報として導出してもよい。なお、被写体Hの骨部に埋め込まれた人工物が海綿骨140および皮質骨141の双方に及んでいる場合、人工物の周辺における海綿骨140および皮質骨141のうちの一方の骨密度に基づいて、治癒情報を導出してもよい。すなわち、数値ΔB1および数値ΔB2のうちの一方を治癒情報として導出してもよい。
第11の実施形態においては、第11の実施形態による情報導出装置50Hが導出した治癒情報が教師データの正解データとして用いられる。図57は第11の実施形態において導出される教師データを示す図である。図57に示すように教師データ40Bは、第1および第2の放射線画像G1,G2を含む学習用データ41と、治癒情報の数値である正解データ42Bとからなる。
図57に示す教師データ40Bを用いてニューラルネットワークを学習することにより、単純放射線画像G0が入力されると治癒状況を表す情報を治癒情報として出力する学習済みニューラルネットワーク23Aを構築することができる。
次いで、本開示の第12の実施形態による情報導出装置について説明する。なお、第12の実施形態による情報導出装置の構成は、第1の実施形態による情報導出装置の構成と同一であり、散乱線除去部62が行う処理のみが異なるため、ここでは詳細な説明は省略する。なお、第12の実施形態においては、第6の実施形態と同様に図30に示す撮影装置1Aを用いて被写体Hを撮影することにより取得した第1および第2の放射線画像G1,G2を教師データ40として用いるものである。
図58は第12の実施形態による情報導出装置における散乱線除去部の機能的な構成を示す図である。図58に示すように、第12の実施形態による情報導出装置における散乱線除去部62Cは、領域検出部150、散乱線画像導出部151、画素値算出部152、画素値置換部153、境界位置調整部154および演算部155を備える。
領域検出部150は、第1および第2の放射線画像G1,G2において、放射線が被写体Hを透過して第1および第2の放射線検出器5,6に到達した被写体領域と、放射線が被写体Hを透過せずに、天板4Aのみを透過して、第1および第2の放射線検出器5,6に直接的に到達した直接放射線領域を検出することにより領域検出画像を得る。
具体的には、領域検出部150は、図59に示すように、第1の放射線画像G1の画素値が領域用しきい値未満の領域を被写体領域160として検出し、第1の放射線画像G1の画素値が領域用しきい値以上の領域を直接放射線領域161として検出する。例えば、領域検出画像を、被写体領域160を「0」とし、直接放射線領域161を「1」とする二値化画像とした場合には、第1の放射線画像G1の特定ライン162では、図60に示すような分布が得られる。なお、領域検出部150は、しきい値処理による領域検出に代えて、被写体領域と直接放射線領域とを検出するように学習がなされた学習済みニューラルネットワークを用いるようにしてもよい。
なお、領域用しきい値は、撮影条件毎に定められており、被写体Hを撮影する際の撮影条件に対応する領域用しきい値を用いることが好ましい。また、領域検出処理は、第1の放射線画像G1および第2の放射線画像G2の双方に対して行ってもよいが、いずれか一方に対して行ってもよい。
散乱線画像導出部151は、領域検出画像と、散乱線の広がりに関する散乱線広がり情報とに基づいて、散乱線成分に関する散乱線画像を得る。演算部155は、第1および第2の放射線画像G1,G2から散乱線画像を減算することにより、散乱線成分除去済みの放射線画像を得る。なお、散乱線画像導出部151で用いられる散乱線広がり情報としては、例えば、図41に示すものを用いることができる。
そして、散乱線画像導出部151では、領域検出画像とPSFとを畳み込む、「領域検出画像*PSF(*は畳み込み演算子)」の演算によって、散乱線成分を含む散乱線画像を得る。なお、散乱線画像導出部151は、第1の放射線画像G1および第2の放射線画像G2のそれぞれに対して散乱線画像を導出する。
散乱線画像では、直接放射線領域の散乱線成分の画素値を、第1および第2の放射線画像G1,G2の直接放射線領域161の画素値をそのまま用いてもよいが、直接放射線領域161の画素値は飽和(第1および第2の放射線検出器5,6の撮像センサが受光可能な画素値を超える)していることが多い。このため、散乱線画像の直接放射線領域の画素値として、画素値の飽和がなく、かつ散乱線の影響を考慮した非飽和の画素値である非飽和散乱線画素値を理論的に算出し、この理論的に算出した非飽和散乱線画素値を散乱線画像の直接放射線領域の画素値に置き換えることが好ましい。
画素値算出部152は、放射線の線量と、画素値の飽和がなく、かつ散乱線の影響を考慮した場合に得られる非飽和の画素値である非飽和散乱線画素値との関係を示す非飽和散乱線画素値用関係を参照して、撮影線量に対応する非飽和散乱線画素値を算出する。そして、画素値置換部153は、直接放射線領域の画素値を非飽和散乱線画素値に置き換える。具体的には、図61に示すように、散乱線画像導出部151が導出した散乱線画像において、直接放射線領域161の画素値を、画素値算出部152にて求めた非飽和散乱線画素値に置換する。
非飽和散乱線画素値用関係は、撮影条件毎に、直接放射線領域用のテーブル(不図示)に予め定められて、ストレージ53に記憶されている。画素値算出部152は、直接放射線領域用テーブルを参照して、被写体Hを撮影する際の撮影条件に対応するいずれかの非飽和散乱線画素値用関係を使用するか、または、被写体Hを撮影する際の撮影条件を満たす複数の非飽和散乱線画素値用関係を組み合わせて使用する。また、非飽和散乱線画素値は、例えば、「非飽和散乱線画素値=画素値の飽和が無い場合に得られる非飽和画素値×直接放射線領域の散乱線含有率」により算出することが好ましい。
上記したように、領域検出部150では、領域用しきい値を用いて、被写体領域160と直接放射線領域161とを区別しているが、領域用しきい値で検出した直接放射線領域161には、被写体Hにおける皮膚に近い軟部領域を透過した領域も含まれる場合がある。このような軟部領域からも散乱線が出ているとした場合には、第1および第2の放射線画像G1,G2から散乱線画像を減算処理すると、過剰に散乱線成分を除去することになる。このため、被写体領域160と直接放射線領域161との境界位置を特定幅分だけ調整できるようにし、境界位置を調整後の領域検出画像と散乱線広がり情報とに基づいて、散乱線画像を得るようにする。
境界位置調整部154は、被写体領域160と直接放射線領域161との境界位置を特定幅分だけ調整する。境界位置の調整は、直接放射線領域の画素値が画素値用しきい値を上回っている場合、または放射線の線量が線量用しきい値を上回っている場合に行うことが好ましい。また、特定幅は、被写体Hの部位、被写体Hの撮影方法および撮影条件の少なくとも1つに基づいて、定められることが好ましい。また、特定幅は、放射線画像のうち境界位置の近傍の画素値に基づいて、定められることが好ましい。
具体的には、被写体Hの部位のうち被写体Hの形状、すなわち被写体Hの体厚分布から特定幅を定める場合には、図62の特定ライン162部分の体厚分布に示すように、領域用しきい値で検出した直接放射線領域161のうち体厚が0を超える部分Pxを特定幅とする。この部分Pxに対応する特定幅分だけ境界位置BPを調整することにより、被写体領域160が特定幅分だけ広がる一方、直接放射線領域161が特定幅分だけ狭まる。また、特定幅を境界位置の近傍の画素値に基づいて定める場合には、境界位置の画素と、境界位置から特定範囲にある画素であって画素値が特定範囲を有する近傍画素との画素間距離に基づいて、特定幅を定めることが好ましい。
第12の実施形態においては、サブトラクション部63は処理済みの第1および第2の放射線画像G1,G2を用いて骨部画像Gbを導出する。そして、サブトラクション部63が導出した骨部画像Gbを用いて、骨密度導出部64が骨密度Bおよび対象骨における骨密度Bの代表値を導出する。
なお、上記第12の実施形態による散乱線除去処理を、上記第1から第5および第8から第11の実施形態において行うようにしてもよい。
なお、上記各実施形態においては、教師データ40の学習用データ41として、第1および第2の放射線画像G1,G2を用いているが、これに限定されるものではない。図63の教師データ40Cに示すように、第2の放射線画像G2に代えて骨部画像Gbを学習用データ41Cとして用いるようにしてもよい。この場合、骨部画像Gbは上記第1から第11の実施形態のいずれによって導出されるものであってもよい。また、図64の教師データ40Dに示すように、第2の放射線画像G2に代えて、各画素が骨密度の値となる骨密度画像Gdを学習用データ41Dとして用いるようにしてもよい。この場合、骨密度画像Gdは上記第1から第12の実施形態のいずれにおいて導出された骨密度の値を画素値とするものであってもよい。
また、上記各実施形態において、教師データ40の正解データ42として、骨密度導出部64が導出した骨密度Bを画素値とする骨密度画像を用いてもよい。この場合、推定装置10の推定部23は、単純放射線画像G0から骨密度画像を骨密度に関連する推定結果として導出するものとなる。このように、骨密度画像を導出した場合、表示画面には骨密度画像を表示するようにしてもよい。
図65は推定結果の表示画面の他の例を示す図である。図65に示すように表示画面70Aは、図13に示す表示画面70と同様の画像表示領域71を有する。画像表示領域71には被写体Hの単純放射線画像G0における骨密度の推定結果である骨密度画像Gdが表示される。骨密度画像Gdにおいては骨密度に応じて骨部領域に模様が付与されている。なお、図65においては説明を簡単なものとするために、大腿骨についてのみ骨塩量を表す模様が付与されている。画像表示領域71の下方には、付与された模様についての骨塩量の大小を示すリファレンス73が表示されている。操作者はリファレンス73を参照しつつ骨密度画像Gdを読影することにより、患者の骨密度を容易に認識することができる。なお、模様に代えて、骨密度に応じて異なる色を骨密度画像Gdに付与するようにしてもよい。
また、上記各実施形態においては、股関節付近の大腿骨についての骨密度に関連する情報を推定しているが、対象となる骨は大腿骨に限定されるものではない。膝関節付近の大腿骨および脛骨、腰椎等の椎骨、踵骨並びに中手骨等の任意の骨部についての骨密度に関連する情報を推定するに際しても、本開示の技術を適用できる。
また、上記各実施形態においては、ニューラルネットワークを学習するための教師データに含まれる正解データとして、骨密度、骨折リスクおよび治癒情報を用いている。このため、推定部23が単純放射線画像G0から推定する骨密度に関連する情報は、単純放射線画像G0における骨密度、骨折リスクおよび治癒情報となるが、これらに限定されるものではない。YAM、TスコアまたはZスコアを正解データとして学習済みニューラルネットワーク23Aを構築し、単純放射線画像G0から骨密度に関連する情報として、YAM、TスコアおよびZスコアを推定するようにしてもよい。また、推定部23において、推定する骨密度に関連する情報として、骨折の有無、腫瘍の有無、インプラントの有無の検知結果を用いてもよく、骨粗鬆症の判定結果を用いてもよい。また、多発性骨髄腫、リウマチ、関節症および軟骨の硬化等、骨密度に関連する骨の疾患のを骨密度に関連する情報として推定するようにしてもよい。この場合、正解データとしてこれらの骨密度に関連する情報を含む教師データを用いて学習済みニューラルネットワーク23Aを構築するようにすればよい。
また、上記各実施形態においては、正解データとしての骨密度を導出する際に、第1の放射線画像G1および第2の放射線画像G2そのものを用いているが、これに限定されるものではない。第1の放射線画像G1および第2の放射線画像G2の各画素について、周囲の画素との移動平均を算出し、移動平均を各画素の画素値とする第1の放射線画像G1および第2の放射線画像G2を用いて骨密度を導出してもよい。ここで、骨密度の判定に際しては皮質骨が重要な情報になるため、皮質骨が視認できる解像度、例えば被写体の実サイズで2mm以下の解像度を保つように、各画素について周囲の画素との移動平均を算出すればよい。この場合、放射線源3、被写体Hおよび放射線検出器5,6の相互の距離の情報、並びに放射線検出器5,6の画素サイズの情報等から、移動平均に使用する画素を適宜決定すればよい。
なお、上記各実施形態においては、推定装置10においてニューラルネットワークの学習を行って学習済みニューラルネットワーク23Aを構築しているが、これに限定されるものではない。推定装置10以外の他の装置において構築された学習済みニューラルネットワーク23Aを、本実施形態における推定装置10の推定部23に用いるようにしてもよい。
また、上記各実施形態においては、骨密度を導出するためのエネルギーサブトラクション処理を行うに際し、1ショット法により第1および第2の放射線画像G1,G2を取得しているが、これに限定されるものではない。1つの放射線検出器のみ用いて撮影を2回行う、いわゆる2ショット法により第1および第2の放射線画像G1,G2を取得してもよい。2ショット法の場合、被写体Hの体動により、第1の放射線画像G1および第2の放射線画像G2に含まれる被写体Hの位置がずれる可能性がある。このため、第1の放射線画像G1および第2の放射線画像G2において、被写体の位置合わせを行った上で、本実施形態の処理を行うことが好ましい。
位置合わせの処理としては、例えば特開2011-255060号公報に記載された手法を用いることができる。特開2011-255060号公報に記載された手法は、第1および第2の放射線画像G1,G2のそれぞれについての、周波数帯域が異なる構造物を表す複数の第1の帯域画像および複数の第2の帯域画像を生成し、対応する周波数帯域の第1の帯域画像および第2の帯域画像における、互いに対応する位置の位置ずれ量を取得し、位置ずれ量に基づいて第1の放射線画像G1と第2の放射線画像G2との位置合わせを行うようにしたものである。
また、上記各実施形態においては、第1および第2の放射線検出器5,6を用いて被写体Hを撮影するシステムにおいて取得した放射線画像を用いて、教師データの正解データとしての骨密度の導出および骨密度に関連する情報の推定処理を行っているが、放射線検出器に代えて、蓄積性蛍光体シートを用いて第1および第2の放射線画像G1,G2を取得する場合にも、本開示の技術を適用できることはもちろんである。この場合、2枚の蓄積性蛍光体シートを重ねて被写体Hを透過した放射線を照射して、被写体Hの放射線画像情報を各蓄積性蛍光体シートに蓄積記録し、各蓄積性蛍光体シートから放射線画像情報を光電的に読み取ることにより第1および第2の放射線画像G1,G2を取得すればよい。なお、蓄積性蛍光体シートを用いて第1および第2の放射線画像G1,G2を取得する場合にも、2ショット法を用いるようにしてもよい。
また、上記実施形態における放射線は、とくに限定されるものではなく、X線の他、α線またはγ線等を用いることができる。
また、上記実施形態において、例えば、推定装置10の画像取得部21、情報取得部22、推定部23、学習部24および表示制御部25、並びに情報導出装置50等の画像取得部61、散乱線除去部62、サブトラクション部63および骨密度導出部64等といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。
1、1A 撮影装置
3 放射線源
4 撮影台
4A 天板
4B 取付部
5、6 放射線検出器
7 放射線エネルギー変換フィルタ
8 散乱線除去グリッド
9 画像保存システム
10 推定装置
11、51 CPU
12 推定処理プログラム
12B 学習プログラム
13、53 ストレージ
14、54 ディスプレイ
15、55 入力デバイス
16、56 メモリ
17、57 ネットワークI/F
18、58 バス
21 画像取得部
22 情報取得部
23 推定部
23A 学習済みニューラルネットワーク
24 学習部
25 表示制御部
30 ニューラルネットワーク
31 入力層
32 中間層
33 出力層
35 畳み込み層
36 プーリング層
37 全結合層
40、40A、40B、40C、40D 教師データ
41、41C、41D 学習用データ
42、42A、42B、42C 正解データ
47 出力データ
48 パラメータ
50,50A、50B、50C、50D、50E、50G、50H 情報導出装置
52 情報導出プログラム
61 画像取得部
62、62A、62B 散乱線除去部
63 サブトラクション部
64 骨密度導出部
65 構造物認識部
66 重み係数導出部
67 初期重み係数設定部
68 重み係数導出部
70、70A 表示画面
71 画像表示領域
72 骨密度表示領域
73 リファレンス
81 初期値導出部
82 減弱係数導出部
83 重み係数導出部
84 組成割合導出部
85 減弱係数設定部
86 処理内容導出部
87 粒状抑制処理部
88 マップ導出部
91 撮影条件取得部
92 体厚導出部
93 特性取得部
94 線分布導出部
95 演算部
97 第1導出部
98 第2導出部
99 画像生成部
101 ファントム
102 鉛板
103 空気層
110 筋肉量導出部
111 統計値導出部
112 評価値導出部
114 治癒情報導出部
120 PSF
121 一次線成分の分布
122 散乱線成分の分布
130 大腿骨
131 ステム
140 海綿骨
141 皮質骨
150 領域検出部
151 散乱線画像導出部
152 画素値算出部
153 画素値置換部
154 境界位置調整部
155 演算部
160 被写体領域
161 直接放射線領域
162 特定ライン
A1~A3 局所領域
BP 境界位置
C0 補正係数
D1~D4 散乱体
F11、F12、F21、F22、F31、F32 バイラテラルフィルタ
G0 単純放射線画像
G1,G2 放射線画像
Gb 骨部画像
Gd 骨密度画像
K1~K3 放射線画像
L 距離
LUT1~LUT9 テーブル
P11、P12、P21、P22、P31、P32 注目領域
Q 統計値
Ra 放射線

Claims (17)

  1. 少なくとも1つのプロセッサを備え、
    前記プロセッサは、
    骨部を含む被写体を単純撮影することにより取得した単純放射線画像から前記骨部の骨密度に関連する推定結果を導出する学習済みニューラルネットワークとして機能し、
    前記学習済みニューラルネットワークは、(i)エネルギー分布が異なる放射線により骨部を含む被写体を撮影することにより取得された2つの放射線画像、(ii)前記被写体の放射線画像および前記被写体の前記骨部を表す骨部画像、または(iii)前記被写体の放射線画像および前記被写体の前記骨部の骨密度を表す骨密度画像と、前記被写体の骨部の骨密度に関連する情報とを教師データとして用いて学習されてなる、推定装置。
  2. 前記骨密度に関連する情報は、
    エネルギー分布が異なる放射線により骨部および軟部を含む被写体を撮影することにより取得された2つの放射線画像のうちの少なくとも一方の放射線画像に基づいて推定された、前記被写体の体厚分布、
    前記2つの放射線画像を取得した際の撮影条件、および
    前記2つの放射線画像を重み付け減算するエネルギーサブトラクション処理により導出された、前記骨部が抽出された骨部画像における骨部領域の画素値に基づいて導出される請求項1に記載の推定装置。
  3. 前記骨部画像は、
    前記2つの放射線画像のうちの少なくとも一方の放射線画像を用いて前記被写体の前記骨部および前記軟部を認識し、
    前記骨部および前記軟部の認識結果と前記2つの放射線画像とを用いて前記骨部および前記軟部についての減弱係数を導出し、
    前記減弱係数を用いて前記エネルギーサブトラクション処理を行うことにより導出される請求項2に記載の推定装置。
  4. 前記骨部画像は、
    前記骨部画像に含まれる前記骨部の画素値に基づいて前記重み付け減算に用いる新たな重み係数を導出し、
    前記2つの放射線画像に対して前記新たな重み係数を用いて前記重み付け減算を行うことにより新たな骨部画像を導出し、
    前記新たな骨部画像に基づくさらに新たな重み係数の導出、およびさらに新たな重み係数に基づくさらに新たな骨部画像の導出を繰り返すことにより導出される請求項2に記載の推定装置。
  5. 前記骨部画像は、
    前記軟部についての異なるエネルギー分布毎の減弱係数、前記軟部の厚さ、前記骨部についての異なるエネルギー分布毎の減弱係数、および前記骨部の厚さを初期値から変更しつつ、異なるエネルギー分布毎に、前記軟部の減弱係数×前記軟部の厚さ+前記骨部の減弱係数×前記骨部の厚さの値と、前記放射線画像の各画素値との相違を導出し、
    前記相違が最小となるまたは前記相違が予め定められたしきい値未満となる、前記異なるエネルギー分布毎の前記軟部の減弱係数および前記骨部の減弱係数を導出し、
    前記軟部の減弱係数および前記骨部の減弱係数に基づいて導出された重み係数を用いて前記エネルギーサブトラクション処理を行うことにより導出される請求項2に記載の推定装置。
  6. 前記骨部画像は、
    前記被写体の前記軟部に含まれる複数の組成の組成割合を導出し、
    前記組成割合に応じて前記2つの放射線画像の画素毎に前記軟部における異なるエネルギー分布毎の減弱係数を導出し、
    導出された前記軟部の減弱係数および予め定められた前記骨部の減弱係数に基づいて導出された重み係数を用いて前記エネルギーサブトラクション処理を行うことにより導出される請求項2に記載の推定装置。
  7. 前記組成割合は、
    前記2つの放射線画像のそれぞれについての画素毎に、前記被写体の体厚をそれぞれ第1の体厚および第2の体厚として導出し、
    前記第1の体厚および前記第2の体厚に基づいて、前記放射線画像の画素毎に導出される請求項6に記載の推定装置。
  8. 前記組成割合は、
    前記複数の組成のそれぞれについての前記異なるエネルギー分布毎の減弱係数に基づいて、前記第1の体厚および前記第2の体厚を導出し、
    前記組成の厚さおよび前記組成毎の減弱係数を変更しつつ、前記第1の体厚および前記第2の体厚を導出し、前記第1の体厚と前記第2の体厚との相違が予め定められたしきい値以下となる前記組成の厚さに基づいて導出される請求項7に記載の推定装置。
  9. 前記骨部画像は、
    前記被写体に照射された放射線のうち前記被写体により散乱された散乱線成分を前記2つの放射線画像から除去する散乱線除去処理を行い、前記散乱線成分が除去された前記2つの放射線画像に対する前記エネルギーサブトラクション処理により導出される請求項2から8のいずれか1項に記載の推定装置。
  10. 前記散乱線除去処理は、前記被写体と前記放射線画像を検出する放射線検出器との間に介在する物体の前記体厚分布に応じた放射線特性を取得し、
    前記撮影条件、前記体厚分布および前記物体の放射線特性を用いて、前記2つの放射線画像のそれぞれに含まれる放射線の一次線分布および散乱線分布を導出し、
    前記2つの放射線画像のそれぞれについての前記一次線分布および前記散乱線分布の和と、前記2つの放射線画像の各位置における画素値との誤差を導出し、前記誤差が予め定められたしきい値未満となるように前記体厚分布を更新し、更新した体厚分布に基づく前記放射線特性の導出、並びに前記2つの放射線画像のそれぞれに含まれる前記一次線分布および前記散乱線分布の導出を繰り返し、
    前記誤差が予め定められたしきい値未満となったときの前記散乱線分布を前記2つの放射線画像のそれぞれから減算することにより行われる請求項9に記載の推定装置。
  11. 前記散乱線除去処理は、前記2つの放射線画像を用いて前記被写体を透過した前記放射線の第1の一次線分布および散乱線分布を導出し、
    前記第1の一次線分布および前記散乱線分布、並びに前記被写体と前記放射線画像を検出する放射線検出器との間に介在する物体の放射線特性とを用いて、前記物体を透過した前記放射線の第2の一次線分布および散乱線分布を導出し、
    前記第2の一次線分布および散乱線分布を用いて、前記被写体および前記物体を透過後の放射線画像を導出することにより行われる請求項9に記載の推定装置。
  12. 前記散乱線除去処理は、前記2つの放射線画像において、前記放射線が前記被写体を透過して放射線検出部に到達した被写体領域と、前記放射線が前記被写体を透過せずに前記放射線検出部に直接的に到達した直接放射線領域とを検出することにより領域検出画像を導出し、
    前記領域検出画像と散乱線の広がりに関する散乱線広がり情報とに基づいて、散乱線成分に関する散乱線画像を導出し、
    前記2つの放射線画像から前記散乱線画像を減算することにより行われる請求項9に記載の推定装置。
  13. 前記骨部画像は、
    前記2つの放射線画像のうちS/Nが高い第1の放射線画像に対する第1の粒状抑制処理の処理内容を導出し、
    前記第1の粒状抑制処理の処理内容に基づいて、S/Nが低い第2の放射線画像に対する第2の粒状抑制処理の処理内容を導出し、
    前記第1の粒状抑制処理の処理内容に基づいて前記第1の放射線画像に対して粒状抑制処理を行い、
    前記第2の粒状抑制処理の処理内容に基づいて前記第2の放射線画像に対して粒状抑制処理を行い、
    前記粒状抑制処理が行われた前記2つの放射線画像を用いて導出される請求項2から12のいずれか1項に記載の推定装置。
  14. 前記第1の粒状抑制処理の処理内容は、
    前記第1の放射線画像および前記第2の放射線画像の少なくとも一方に基づいて導出された前記被写体の物理量マップに基づいて導出される請求項13に記載の推定装置。
  15. 前記骨密度に関連する情報は、骨密度、前記被写体の骨折リスクの評価値、前記骨部の治療後の治癒状態を表す情報の少なくとも1つを含む請求項1から14のいずれか1項に記載の推定装置。
  16. 骨部を含む被写体を単純撮影することにより取得した単純放射線画像から前記骨部の骨密度に関連する推定結果を導出する学習済みニューラルネットワークを用いて、前記単純放射線画像から前記骨密度に関連する推定結果を導出する推定方法であって、
    前記学習済みニューラルネットワークは、(i)エネルギー分布が異なる放射線により骨部を含む被写体を撮影することにより取得された2つの放射線画像、(ii)前記被写体の放射線画像および前記被写体の前記骨部を表す骨部画像、または(iii)前記被写体の放射線画像および前記被写体の前記骨部の骨密度を表す骨密度画像と、前記被写体の骨部の骨密度に関連する情報とを教師データとして用いて学習されてなる、推定方法。
  17. 骨部を含む被写体を単純撮影することにより取得した単純放射線画像から前記骨部の骨密度に関連する推定結果を導出する学習済みニューラルネットワークを用いて、前記単純放射線画像から前記骨密度に関連する推定結果を導出する手順をコンピュータに実行させる推定プログラムであって、
    前記学習済みニューラルネットワークは、(i)エネルギー分布が異なる放射線により骨部を含む被写体を撮影することにより取得された2つの放射線画像、(ii)前記被写体の放射線画像および前記被写体の前記骨部を表す骨部画像、または(iii)前記被写体の放射線画像および前記被写体の前記骨部の骨密度を表す骨密度画像と、前記被写体の骨部の骨密度に関連する情報とを教師データとして用いて学習されてなる、推定プログラム。
JP2021039485A 2021-03-11 2021-03-11 推定装置、方法およびプログラム Pending JP2022139211A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021039485A JP2022139211A (ja) 2021-03-11 2021-03-11 推定装置、方法およびプログラム
US17/591,614 US20220287663A1 (en) 2021-03-11 2022-02-03 Estimation device, estimation method, and estimation program
CN202210228124.XA CN115120253A (zh) 2021-03-11 2022-03-07 推定装置、方法及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021039485A JP2022139211A (ja) 2021-03-11 2021-03-11 推定装置、方法およびプログラム

Publications (1)

Publication Number Publication Date
JP2022139211A true JP2022139211A (ja) 2022-09-26

Family

ID=83195359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021039485A Pending JP2022139211A (ja) 2021-03-11 2021-03-11 推定装置、方法およびプログラム

Country Status (3)

Country Link
US (1) US20220287663A1 (ja)
JP (1) JP2022139211A (ja)
CN (1) CN115120253A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115661052B (zh) * 2022-10-13 2023-09-12 高峰医疗器械(无锡)有限公司 牙槽骨的骨质检测方法、装置、设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165900A (zh) * 2018-04-24 2021-01-01 株式会社岛津制作所 图像解析方法、分割方法、骨密度测量方法、学习模型生成方法和图像生成装置
JP6906479B2 (ja) * 2018-05-25 2021-07-21 富士フイルム株式会社 骨塩情報取得装置、方法およびプログラム
CN112654291A (zh) * 2018-09-10 2021-04-13 京瓷株式会社 推定装置、推定系统以及推定程序

Also Published As

Publication number Publication date
US20220287663A1 (en) 2022-09-15
CN115120253A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
JP6906479B2 (ja) 骨塩情報取得装置、方法およびプログラム
JP2022140050A (ja) 推定装置、方法およびプログラム
JP7016293B2 (ja) 骨塩情報取得装置、方法およびプログラム
JP2022139211A (ja) 推定装置、方法およびプログラム
US20230096694A1 (en) Image processing device, image processing method, and image processing program
CN115131277A (zh) 推定装置、方法及计算机可读存储介质
US10089728B2 (en) Radiation-image processing device and method
JP7016294B2 (ja) 骨塩情報取得装置、方法およびプログラム
US20220323032A1 (en) Learning device, learning method, and learning program, radiation image processing device, radiation image processing method, and radiation image processing program
Dendere et al. Dual-energy X-ray absorptiometry for measurement of phalangeal bone mineral density on a slot-scanning digital radiography system
WO2023054287A1 (ja) 骨疾患予測装置、方法およびプログラム、学習装置、方法およびプログラム並びに学習済みニューラルネットワーク
US20230172576A1 (en) Radiation image processing device, radiation image processing method, and radiation image processing program
JP7342140B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP2023012763A (ja) 推定装置、方法およびプログラム
JP7436723B2 (ja) 情報処理装置、情報処理方法、及び情報処理プログラム
JP7258165B2 (ja) 画像処理装置、方法およびプログラム
JP2024040945A (ja) 画像処理装置、方法およびプログラム
US20220335605A1 (en) Estimation device, estimation method, and estimation program
JP7289922B2 (ja) エネルギーサブトラクション処理装置、方法およびプログラム
JP2022122131A (ja) 運動器疾患予測装置、方法およびプログラム、学習装置、方法およびプログラム並びに学習済みニューラルネットワーク
WO2021095447A1 (ja) 画像処理装置、放射線撮影装置、画像処理方法及びプログラム
JP2024042609A (ja) 放射線画像処理装置、その作動方法、及び放射線画像処理プログラム
CN118043908A (zh) 骨疾病预测装置、方法及程序、学习装置、方法及程序、以及学习完成神经网络
JP2023047910A (ja) 脂肪量導出装置、方法およびプログラム
JP2023177980A (ja) 放射線画像処理装置、方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240521