JP2022128101A - Plating material for electronic component and electronic component - Google Patents

Plating material for electronic component and electronic component Download PDF

Info

Publication number
JP2022128101A
JP2022128101A JP2021026443A JP2021026443A JP2022128101A JP 2022128101 A JP2022128101 A JP 2022128101A JP 2021026443 A JP2021026443 A JP 2021026443A JP 2021026443 A JP2021026443 A JP 2021026443A JP 2022128101 A JP2022128101 A JP 2022128101A
Authority
JP
Japan
Prior art keywords
plating
surface layer
layer
epma
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021026443A
Other languages
Japanese (ja)
Other versions
JP7155312B2 (en
Inventor
晃一 片山
Koichi Katayama
知亮 ▲高▼橋
Tomoaki Takahashi
浩徳 成井
Hironori Narui
淳雄 大江
Atsuo Oe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021026443A priority Critical patent/JP7155312B2/en
Priority to PCT/JP2021/033595 priority patent/WO2022176243A1/en
Priority to TW110134625A priority patent/TWI788016B/en
Publication of JP2022128101A publication Critical patent/JP2022128101A/en
Application granted granted Critical
Publication of JP7155312B2 publication Critical patent/JP7155312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Abstract

To provide a plating material and an electronic component having low insertion force (frictional force) and sufficient high-moisture durability.SOLUTION: A plating material comprises a base plating layer that is made of Ni or a Ni alloy and is provided on a surface of a base material, and a surface layer that is made of a Sn-In-Cu alloy and is provided on the base plating layer.SELECTED DRAWING: Figure 4

Description

本発明は、めっき材料及び電子部品に関する。 The present invention relates to plating materials and electronic parts.

民生用及び車載用電子機器用接続部品であるコネクタには、黄銅やリン青銅の表面にNiやCuの下地めっきを施し、さらにその上にSn又はSn合金めっきを施した材料が使用されている。近年、Sn又はSn合金めっきは、めっき材をプレス加工で成形したオス端子及びメス端子嵌合時の挿入力の低減化が求められている。 Connectors, which are connecting parts for consumer and vehicle-mounted electronic devices, use materials obtained by plating the surface of brass or phosphor bronze with Ni or Cu underplating, and then further plating it with Sn or Sn alloy. . In recent years, Sn or Sn alloy plating is required to reduce the insertion force when fitting a male terminal and a female terminal formed by pressing a plated material.

特許文献1には、基材に下地めっきを施し、次に第1層のSnめっきを施し、更にその上に第1層の1/2以下の平均厚さInめっきを施し、続いてリフローして外観良好なSn-In合金めっきを得ることができると記載されている。 In Patent Document 1, a substrate is plated as a base, then a first layer of Sn plating is applied, and further In plating having an average thickness of 1/2 or less of the first layer is applied thereon, followed by reflowing. It is described that a Sn—In alloy plating with a good appearance can be obtained by

また、特許文献2には、基材表面にSnめっき層を施し、このめっき上にAg、Bi、Cu、In、Znめっきを施し、リフロー処理することが記載されている。 Further, Patent Document 2 describes that a Sn plating layer is applied to the base material surface, Ag, Bi, Cu, In, and Zn plating is applied to the plating, and reflow treatment is performed.

また、特許文献3には、導電性基材の外側にスズもしくはスズ合金からなる第1めっき層と、該第1めっき層の表面にインジウムからなる第2めっき層とを有する多層めっき材料をリフロー処理することが記載されている。 Further, in Patent Document 3, a multilayer plating material having a first plating layer made of tin or a tin alloy on the outside of a conductive substrate and a second plating layer made of indium on the surface of the first plating layer is reflowed. described to be processed.

特開平11-279791号公報JP-A-11-279791 特開2002-317295号公報JP-A-2002-317295 特開2010-280955号公報JP 2010-280955 A

しかしながら、特許文献1や2に記載の技術については、近年求められている挿入力の低減化方法、また高湿環境下での特性劣化防止方法が明らかになっていない。 However, with regard to the techniques described in Patent Documents 1 and 2, a method for reducing insertion force, which has been demanded in recent years, and a method for preventing characteristic deterioration in a high-humidity environment have not been clarified.

また、特許文献3に記載の技術は、所定のリフロー条件によって、導電性基材の表面にスズ、スズ-銀合金、スズ-ビスマス合金、スズ-銅合金、及びスズ-銀-銅合金等の第1めっき層と、該第1めっき層の表面にインジウムからなる第2めっき層とを形成しているが、リフロー条件及びめっき構成について、さらなる改良の余地がある。 In addition, the technique described in Patent Document 3 is such that tin, tin-silver alloy, tin-bismuth alloy, tin-copper alloy, tin-silver-copper alloy, etc. are deposited on the surface of the conductive substrate under predetermined reflow conditions. Although the first plating layer and the second plating layer made of indium are formed on the surface of the first plating layer, there is room for further improvement in reflow conditions and plating configuration.

本発明は上記の課題を解決するためになされたものであり、挿入力(摩擦力)が低く、良好な高湿耐久性を有するめっき材料及び電子部品を提供することを課題とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a plating material and an electronic component having a low insertion force (frictional force) and good high humidity durability.

本発明者らは、鋭意検討の結果、基材上に下地めっき層と表層とを形成し、これら各層を所定の金属で構成することで、上記課題を解決することができることを見出した。 As a result of intensive studies, the present inventors have found that the above problems can be solved by forming a base plating layer and a surface layer on a base material and forming each of these layers with a predetermined metal.

以上の知見を基礎として完成した本発明の実施形態は、以下のように特定される。
(1)基材の表面に設けられた、NiまたはNi合金からなる下地めっき層と、
前記下地めっき層の上に設けられた、Sn-In-Cu合金からなる表層と、
を備えためっき材料。
(2)前記表層をEPMAで観察した時のCu5atm%以上の面積率が50%以上である、(1)に記載のめっき材料。
(3)前記表層をEPMAで観察した時のIn30atm%以上の面積率が50%以上である、(1)または(2)に記載のめっき材料。
(4)前記表層をEPMAで観察した時のCu20atm%以上の面積率が90%以上である、(1)~(3)のいずれかに記載のめっき材料。
(5)前記表層には、EPMAで観察される、Cu濃度が周囲より高い領域と、Cu濃度が周囲より低い領域とが混在している、(1)~(4)のいずれかに記載のめっき材料。
(6)請求項(1)~(5)のいずれかに記載のめっき材料を備えた電子部品。
An embodiment of the present invention completed based on the above knowledge is specified as follows.
(1) a base plating layer made of Ni or a Ni alloy provided on the surface of the substrate;
A surface layer made of a Sn--In--Cu alloy provided on the base plating layer;
Plating material with
(2) The plating material according to (1), wherein the area ratio of Cu 5 atm % or more when the surface layer is observed by EPMA is 50% or more.
(3) The plating material according to (1) or (2), wherein the surface layer has an area ratio of 30 atm % or more of In when observed by EPMA of 50% or more.
(4) The plated material according to any one of (1) to (3), wherein the surface layer has an area ratio of 20 atm % or more of Cu when observed with EPMA of 90% or more.
(5) The surface layer according to any one of (1) to (4), in which a region having a higher Cu concentration than the surroundings and a region having a lower Cu concentration than the surroundings observed by EPMA are mixed. plating material.
(6) An electronic component comprising the plating material according to any one of (1) to (5).

本発明の実施形態によれば、挿入力(摩擦力)が低く、良好な高湿耐久性を有するめっき材料及び電子部品を提供することができる。 According to the embodiments of the present invention, it is possible to provide a plating material and an electronic component having a low insertion force (frictional force) and excellent high humidity durability.

実施例1に係る断面TEM像である。4 is a cross-sectional TEM image according to Example 1. FIG. 実施例2に係る断面TEM像である。4 is a cross-sectional TEM image according to Example 2. FIG. 実施例3に係る断面TEM像である。4 is a cross-sectional TEM image according to Example 3. FIG. 実施例1に係るライン分析による深さ方向の各元素濃度のグラフである。4 is a graph of each element concentration in the depth direction by line analysis according to Example 1. FIG. 実施例2に係るライン分析による深さ方向の各元素濃度のグラフである。10 is a graph of each element concentration in the depth direction by line analysis according to Example 2. FIG. 実施例3に係るライン分析による深さ方向の各元素濃度のグラフである。10 is a graph of each element concentration in the depth direction by line analysis according to Example 3. FIG. Cuリッチ(rich)な領域と、Cuプア(poor)な領域とが混在している表層の断面のEPMA観察写真である。It is an EPMA observation photograph of a cross section of a surface layer in which a Cu-rich region and a Cu-poor region are mixed. 実施例1に係る、オス端子として機能するピンが40本連なったサンプルの高温高湿試験後の外観観察写真である。4 is an appearance observation photograph after a high-temperature and high-humidity test of a sample in which 40 pins functioning as male terminals are arranged in a row, according to Example 1. FIG. 比較例1に係る、高温高湿試験の前後の外観観察写真である。4 is an appearance observation photograph before and after a high-temperature and high-humidity test according to Comparative Example 1. FIG.

以下、本発明のめっき材料及び電子部品の実施形態について説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the plating material and electronic component of the present invention will be described, but the present invention is not to be construed as being limited thereto, and as long as it does not depart from the scope of the present invention, based on the knowledge of those skilled in the art. Various alterations, modifications and improvements are possible.

<めっき材料の構成>
本発明の実施形態に係るめっき材料は、基材上に下地めっき層が設けられ、下地めっき層上に表層が設けられている。
<Configuration of plating material>
A plating material according to an embodiment of the present invention includes a base plated layer provided on a substrate, and a surface layer provided on the base plated layer.

(基材)
基材としては、特に限定されないが、例えば、銅及び銅合金、Fe系材、ステンレス、チタン及びチタン合金、アルミニウム及びアルミニウム合金などの金属基材を用いることができる。また、金属基材に樹脂層を複合させたものであっても良い。金属基材に樹脂層を複合させたものとは、例としてFPCまたはFFC基材上の電極部分などがある。
(Base material)
The substrate is not particularly limited, but metal substrates such as copper and copper alloys, Fe-based materials, stainless steel, titanium and titanium alloys, aluminum and aluminum alloys can be used. Moreover, what combined the resin layer with the metal base material may be used. Examples of composites of metal substrates and resin layers include electrode portions on FPC or FFC substrates.

(下地めっき層)
下地めっき層は、基材上に設けられており、NiまたはNi合金からなる。NiまたはNi合金によって下地めっき層を形成することで、硬い下地めっき層により真実接触面積が減り、凝着しにくくなり、摩擦(挿入力)が低下する。また、下地めっき層が、基材の構成金属の表層への拡散を防止して耐熱性やはんだ濡れ性などを向上させる。下地めっき層のNi合金は、Niと、Cr、Mn、P、Fe及びCoからなる化合物群から選択された1種又は2種以上とで構成することができる。下地めっき層の構成金属として、半光沢Ni、光沢Niを使用した場合はS等の添加剤による有機物を含有しても良い。
(underlying plating layer)
The base plating layer is provided on the substrate and is made of Ni or a Ni alloy. By forming the base plating layer with Ni or a Ni alloy, the hard base plating layer reduces the real contact area, makes it difficult to adhere, and reduces friction (insertion force). In addition, the underlying plating layer prevents the constituent metals of the substrate from diffusing to the surface layer, thereby improving heat resistance and solder wettability. The Ni alloy of the base plating layer can be composed of Ni and one or more selected from the compound group consisting of Cr, Mn, P, Fe and Co. When semi-bright Ni or bright Ni is used as the constituent metal of the underlying plating layer, an organic substance such as an additive such as S may be contained.

下地めっき層のビッカース硬さは、Hv150~500程度であるのが好ましい。下地めっき層のビッカース硬さが、Hv150未満では摩擦力低減への影響が小さく、Hv500を超えると曲げ加工性が悪くなるおそれがある。下地めっき層のビッカース硬さは、Hv170~350であるのがより好ましい。 The Vickers hardness of the underlying plating layer is preferably about Hv 150-500. If the Vickers hardness of the underlying plating layer is less than Hv150, the influence on frictional force reduction is small, and if it exceeds Hv500, bending workability may deteriorate. More preferably, the Vickers hardness of the underlying plating layer is Hv 170-350.

(表層)
表層は、下地めっき層の上に設けられており、Sn-In-Cu合金からなる。このような構成によれば、表層がSn及びInを含むため、めっき材の摩擦力(挿入力)が低下する。また、表層がCuを含むため、めっき材の高湿耐久性が良好となる。
(surface)
The surface layer is provided on the underlying plating layer and is made of a Sn--In--Cu alloy. According to such a configuration, since the surface layer contains Sn and In, the frictional force (insertion force) of the plated material is reduced. Moreover, since the surface layer contains Cu, the high-humidity durability of the plated material is improved.

表層は、EPMAで観察した時のCu5atm%以上の面積率が50%以上であることが好ましい。このような構成によれば、表層のCu5atm%以上の面積率が50%以上であるため、高湿耐久性がより良好となる。高湿耐久性をより高めるという観点からは、表層のCu10atm%以上の面積率が50%以上であることがより好ましく、60%以上であることが更により好ましい。 The surface layer preferably has an area ratio of 5 atm % or more of Cu when observed by EPMA of 50% or more. According to such a structure, since the area ratio of Cu 5 atm % or more in the surface layer is 50% or more, the high humidity durability is further improved. From the viewpoint of further enhancing high-humidity durability, the area ratio of Cu 10 atm % or more in the surface layer is more preferably 50% or more, and even more preferably 60% or more.

表層は、EPMAで観察した時のIn30atm%以上の面積率が50%以上であることが好ましい。このような構成によれば、表層をEPMAで観察した時のIn30atm%以上の面積率が50%以上であるため、めっき材の挿入力(摩擦力)がより低下する。挿入力(摩擦力)をより低下させるという観点からは、表層をEPMAで観察した時のIn30atm%以上の面積率が60%以上であることがより好ましく、64%以上であることが更により好ましい。 The surface layer preferably has an area ratio of 30 atm % or more of In observed by EPMA of 50% or more. According to such a configuration, the area ratio of In 30 atm % or more when the surface layer is observed by EPMA is 50% or more, so the insertion force (frictional force) of the plated material is further reduced. From the viewpoint of further reducing the insertion force (frictional force), the area ratio of 30 atm% or more of In when the surface layer is observed with EPMA is more preferably 60% or more, and even more preferably 64% or more. .

表層は、EPMAで観察した時のCu20atm%以上の面積率が90%以上であることが好ましい。このような構成によれば、表層をEPMAで観察した時のCu20atm%以上の面積率が90%以上であるため、めっき材の加熱後の接触抵抗の増加が抑制される。めっき材の加熱後の接触抵抗の増加をより抑制するという観点からは、表層をEPMAで観察した時のCu20atm%以上の面積率が92%以上であることがより好ましい。 The surface layer preferably has an area ratio of 20 atm % or more Cu of 90% or more when observed by EPMA. According to such a configuration, since the area ratio of 20 atm % or more of Cu is 90% or more when the surface layer is observed by EPMA, an increase in contact resistance after heating of the plated material is suppressed. From the viewpoint of further suppressing an increase in contact resistance after heating of the plated material, it is more preferable that the area ratio of Cu 20 atm % or more when the surface layer is observed by EPMA is 92% or more.

表層には、EPMAで観察される、Cu濃度が周囲より高い領域と、Cu濃度が周囲より低い領域とが混在してもよい。このような構成によれば、表層において、Cuリッチ(rich)な領域と、Cuプア(poor)な領域とが混在するため、Cuリッチな領域とCuプアな領域との割合を調整することで、種々の特性に適した表層の構成とすることができる。例えば、Cuプアな領域を小さくすることにより、めっき材の接触抵抗を低く維持することができる。図7は、Cuリッチ(rich)な領域と、Cuプア(poor)な領域とが混在している様子を示す、表層(Sn-In-Cu層)の断面のEPMA観察写真である。図7の矢印で指し示される薄い領域がCuリッチな領域に、図7の矢印で指し示される濃い領域がCuプアな領域にそれぞれ対応する。 In the surface layer, a region having a higher Cu concentration than the surroundings and a region having a lower Cu concentration than the surroundings, observed by EPMA, may coexist. According to such a configuration, a Cu-rich region and a Cu-poor region coexist in the surface layer. Therefore, by adjusting the ratio of the Cu-rich region and the Cu-poor region, , the structure of the surface layer suitable for various characteristics. For example, by reducing the Cu-poor region, the contact resistance of the plated material can be kept low. FIG. 7 is an EPMA observation photograph of a cross section of a surface layer (Sn--In--Cu layer) showing a mixture of Cu-rich regions and Cu-poor regions. A thin region indicated by an arrow in FIG. 7 corresponds to a Cu-rich region, and a dense region indicated by an arrow in FIG. 7 corresponds to a Cu-poor region.

表層を構成するSn-In-Cu合金は、η相と呼ばれるCuIn合金とCuSn合金が任意比x:yで混ざった(Cu7In4x(Cu6Sn5yを含んでもよく、τ2相と呼ばれるCu2In3Sn、または、Sn-In合金を含んでもよい。また、表層にはNiを含んでもよい。特に、下地めっき層由来のNiが表層に含まれることがある。 The Sn--In--Cu alloy forming the surface layer may contain (Cu 7 In 4 ) x (Cu 6 Sn 5 ) y in which a CuIn alloy and a CuSn alloy, called η phase, are mixed at an arbitrary ratio x:y, and τ2 It may also include Cu 2 In 3 Sn called phases, or Sn—In alloys. Also, the surface layer may contain Ni. In particular, the surface layer may contain Ni derived from the underlying plating layer.

<めっき材料の製造方法>
本発明の実施形態に係るめっき材料の製造方法としては、まず、基材上に、NiまたはNi合金層を設け、さらに、Cu、In、およびSnの順に積層させてめっきする。当該めっきとしては、湿式(電気、無電解)めっきを用いることができる。また、乾式(スパッタ、イオンプレーティング等)めっき等を用いてもよい。めっき後は、リフロー処理(加熱処理)をすることで、本発明の実施形態に係るめっき材料を形成することができる。
<Manufacturing method of plating material>
As a method for producing a plating material according to an embodiment of the present invention, first, a Ni or Ni alloy layer is provided on a substrate, and Cu, In, and Sn are laminated in this order and plated. As the plating, wet (electrical, electroless) plating can be used. Alternatively, dry (sputtering, ion plating, etc.) plating or the like may be used. After plating, the plated material according to the embodiment of the present invention can be formed by performing reflow treatment (heat treatment).

リフローの条件、すなわち加熱温度と加熱時間を調整することにより、表層の厚さや組成が決定される。リフロー条件は、最高到達点160~300℃であり、加熱時間8~20秒を、室温から到達温度までの加熱時間で実施する。 The thickness and composition of the surface layer are determined by adjusting the reflow conditions, that is, the heating temperature and heating time. The reflow conditions are a maximum reaching point of 160 to 300° C., and a heating time of 8 to 20 seconds from room temperature to the reaching temperature.

(後処理)
上述のように、リフロー処理を施した後に、表層上に、更に摩擦を低下させ、また低ウィスカ性及び耐久性も向上させる目的で後処理を施しても良い。後処理によって潤滑性や耐食性が向上し、酸化が抑制されて、耐熱性やはんだ濡れ性等の耐久性を向上させることができる。具体的には、一般的な電子材料用のコンタクトオイルや酸化防止剤などが該当する。
(post-processing)
As described above, after the reflow treatment, the surface layer may be post-treated for the purpose of further reducing friction and improving whisker resistance and durability. Post-treatment improves lubricity and corrosion resistance, suppresses oxidation, and improves durability such as heat resistance and solder wettability. Specifically, contact oils and antioxidants for general electronic materials are applicable.

<めっき材料の用途>
本発明の実施形態に係るめっき材料の用途は特に限定しないが、例えば電子部品用金属材料として使用することができ、当該電子部品用金属材料を接点部分に備えたコネクタ端子、電子部品用金属材料を接点部分に備えたFFC端子またはFPC端子、電子部品用金属材料を外部接続用電極に備えた電子部品などが挙げられる。なお、端子については、圧着端子、はんだ付け端子、プレスフィット端子等、配線側との接合方法によらない。外部接続用電極には、タブに表面処理を施した接続用部品や半導体のアンダーバンプメタル用に表面処理を施した材料などがある。
<Uses of plating materials>
Although the use of the plating material according to the embodiment of the present invention is not particularly limited, it can be used, for example, as a metal material for electronic parts. and FFC terminals or FPC terminals provided with a contact portion, and electronic parts provided with a metal material for electronic parts as an electrode for external connection. The terminal may be a crimp terminal, a soldered terminal, a press-fit terminal, or the like, regardless of the method of joining to the wiring side. External connection electrodes include connection parts with surface-treated tabs and surface-treated materials for semiconductor under bump metals.

また、このように形成されたコネクタ端子を用いてコネクタを作製しても良く、FFC端子またはFPC端子を用いてFFCまたはFPCを作製しても良い。 Further, a connector may be manufactured using the connector terminals formed in this manner, and an FFC or FPC may be manufactured using the FFC terminals or the FPC terminals.

また、本発明の実施形態に係るめっき材料は、ハウジングに取り付ける装着部の一方側にメス端子接続部が、他方側に基板接続部がそれぞれ設けられ、該基板接続部を基板に形成されたスルーホールに圧入して該基板に取り付ける圧入型端子に用いても良い。 In addition, the plating material according to the embodiment of the present invention is provided with a female terminal connecting portion on one side and a board connecting portion on the other side of the mounting portion attached to the housing, and the board connecting portion is provided with a through-hole formed on the board. It may be used as a press-fit type terminal that is press-fitted into a hole and attached to the board.

コネクタはオス端子とメス端子の両方が本発明の実施形態に係るめっき材料であっても良いし、オス端子またはメス端子の片方だけであっても良い。なおオス端子とメス端子の両方を本発明の実施形態に係るめっき材料にすることで、更に凝着摩擦力が小さくなり、挿入力が向上する。 Both the male terminal and the female terminal of the connector may be the plating material according to the embodiment of the present invention, or only one of the male terminal and the female terminal may be used. By using the plating material according to the embodiment of the present invention for both the male terminal and the female terminal, the adhesive friction force is further reduced and the insertion force is improved.

以下、本発明の実施例と比較例を共に示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。 Examples of the present invention and comparative examples are presented below, but they are provided for better understanding of the present invention and are not intended to limit the present invention.

<めっき材料の作製>
実施例1~9及び比較例1として、下記の素材に対し、電解脱脂、酸洗をこの順で行った。次に、表1に示す条件で、第1めっき、第2めっき、第3めっき、第4めっき、リフロー処理の順に実施し、めっき材料のサンプルを製造した。第1~第4めっきの厚さは、それぞれ、挿入力の低減効果、リフロー条件と合わせて適宜決定することができる。
<Production of plating material>
As Examples 1 to 9 and Comparative Example 1, the following materials were subjected to electrolytic degreasing and pickling in this order. Next, under the conditions shown in Table 1, first plating, second plating, third plating, fourth plating, and reflow treatment were performed in this order to produce samples of the plating material. The thicknesses of the first to fourth platings can be appropriately determined according to the effect of reducing the insertion force and the reflow conditions.

(素材)
(1)板材:厚み0.20mm、幅25mm、成分Cu-30Zn
(2)オス端子:厚み0.64mm、幅0.64mm、成分Cu-30Zn
(material)
(1) Plate material: thickness 0.20 mm, width 25 mm, component Cu-30Zn
(2) Male terminal: thickness 0.64 mm, width 0.64 mm, component Cu-30Zn

(第1めっき条件)
・無光沢Niめっき
めっき方法:電気めっき
めっき液:スルファミン酸Niめっき液(JX金属商事(株)、スルファミン酸Niめっき液1014)
めっき温度:55℃
電流密度:0.5~10A/dm2
(First plating condition)
Matte Ni plating Plating method: Electroplating Plating solution: Ni sulfamate plating solution (JX Metal Trading Co., Ltd., Ni sulfamate plating solution 1014)
Plating temperature: 55°C
Current density: 0.5-10A/dm 2

(第2めっき条件)
・Cuめっき
めっき方法:電気めっき
めっき液:硫酸Cuめっき液(Cu濃度60g/L)
めっき温度:20~45℃
電流密度:1~10A/dm2
(Second plating condition)
・Cu plating Plating method: Electroplating Plating solution: Cu sulfate plating solution (Cu concentration 60 g / L)
Plating temperature: 20-45°C
Current density: 1-10A/dm 2

(第3めっき条件)
・Snめっき
めっき方法:電気めっき
めっき液:メタンスルホン酸Snめっき液(JX金属商事(株)、NSP-S200)
めっき温度:20~60℃
電流密度:0.5~10A/dm2
(Third plating condition)
・ Sn plating Plating method: Electroplating Plating solution: Sn methanesulfonic acid plating solution (JX Metal Trading Co., Ltd., NSP-S200)
Plating temperature: 20-60°C
Current density: 0.5-10A/dm 2

(第4めっき条件)
・Inめっき
めっき方法:電気めっき
めっき液:Inめっき液(日本エレクトロプレイティング・エンジニヤース(株)、ミクロファブIn4950)
めっき温度:30℃
電流密度:0.5~8A/dm2
(Fourth plating condition)
In plating Plating method: electroplating Plating solution: In plating solution (Japan Electroplating Engineers Co., Ltd., Microfab In4950)
Plating temperature: 30°C
Current density: 0.5-8 A/dm 2

(リフロー処理)
リフロー処理は、電気管状炉を650℃に設定し、大気雰囲気の電気管状炉内におかれたサンプルが160℃~300℃に達したことを熱電対で確認して、表1に示す処理時間及び温度で実施した。
(reflow treatment)
In the reflow treatment, the electric tubular furnace was set to 650 ° C., and it was confirmed with a thermocouple that the sample placed in the electric tubular furnace in the air atmosphere reached 160 ° C. to 300 ° C. The treatment time shown in Table 1 was and temperature.

<評価>
・表層におけるCu、Inの原子濃度
以下の評価方法によって、実施例1~9及び比較例1に係る試料について、表層におけるCu、Inの原子濃度をそれぞれ評価した。
まず、EPMA:電子プローブマイクロアナライザー(JXA-8500F、日本電子株式会社製)を用いて、以下に示す条件で面分析により試料の表面を測定した。
走査:ステージスキャン
加圧電流:15.0kv
照射電流:2.5×10-8
測定倍率:1000倍
時間:35ms
測定点数:230×170
測定間隔:(X軸、Y軸)=(0.50μm、0.50μm)
測定領域:(X軸、Y軸)=(115μm、85μm)
<Evaluation>
Atomic Concentrations of Cu and In in Surface Layers The atomic concentrations of Cu and In in the surface layers of the samples according to Examples 1 to 9 and Comparative Example 1 were evaluated by the following evaluation methods.
First, using an EPMA: electron probe microanalyzer (JXA-8500F, manufactured by JEOL Ltd.), the surface of the sample was measured by area analysis under the conditions shown below.
Scanning: Stage scanning Applied current: 15.0 kv
Irradiation current: 2.5×10 −8 A
Measurement magnification: 1000 times Time: 35 ms
Number of measurement points: 230 x 170
Measurement interval: (X axis, Y axis) = (0.50 μm, 0.50 μm)
Measurement area: (X axis, Y axis) = (115 μm, 85 μm)

・断面分析
透過電子顕微鏡:TEM(日本電子株式会社製JEM-2100F)を用いて、加速電圧:200kVとして、実施例1、2、3に係る試料の断面分析を行なった結果を図1~6に示す。
Cross-sectional analysis Transmission electron microscope: Using a TEM (JEM-2100F manufactured by JEOL Ltd.), accelerating voltage: 200 kV, the results of cross-sectional analysis of the samples according to Examples 1, 2, and 3 are shown in FIGS. shown in

図1に実施例1に係る断面TEM像を示す。図2に実施例2に係る断面TEM像を示す。図3に実施例3に係る断面TEM像を示す。図1~3ではライン分析方向を矢印で示している。なお、図1に示すように、下地めっき層と表層との境界には、表層の合金とNiとの合金層が生じていることもある。 FIG. 1 shows a cross-sectional TEM image according to Example 1. As shown in FIG. FIG. 2 shows a cross-sectional TEM image according to Example 2. As shown in FIG. FIG. 3 shows a cross-sectional TEM image according to Example 3. As shown in FIG. The direction of line analysis is indicated by arrows in FIGS. In addition, as shown in FIG. 1, an alloy layer of the alloy of the surface layer and Ni may be generated at the boundary between the base plating layer and the surface layer.

また、上記ライン分析による深さ方向の各元素濃度のグラフを、図4(実施例1)、図5(実施例2)、図6(実施例3)に示す。分析した元素は、表層の組成と、OとCである。これら元素を指定元素とする。また、指定元素の合計を100%として、各元素の濃度(at%)を分析した。ただし、Cは試料の断面加工(FIB加工)の際に生じる不可避不純物であるため、図4~図6ではC以外の元素についてのみ示している。C以外の元素の結果から試料の表層の構造を決定した。 4 (Example 1), FIG. 5 (Example 2), and FIG. 6 (Example 3) are graphs of each element concentration in the depth direction obtained by the line analysis. The analyzed elements are the composition of the surface layer and O and C. These elements are designated elements. Also, the concentration (at %) of each element was analyzed with the sum of the specified elements set to 100%. However, since C is an unavoidable impurity generated during cross-sectional processing (FIB processing) of the sample, only elements other than C are shown in FIGS. The structure of the surface layer of the sample was determined from the results of the elements other than C.

・挿入力(初期挿入力)
得られた試料の挿入力は、市販のSnリフローめっきメス端子(025型住友TS/矢崎090IIシリーズメス端子非防水)を用いて、めっきを施した実施例1~9及び比較例1に係るオス端子と挿抜試験することによって評価した。
・Insertion force (initial insertion force)
The insertion force of the obtained sample was measured using a commercially available Sn reflow-plated female terminal (type 025 Sumitomo TS/Yazaki 090II series female terminal non-waterproof), and the males according to Examples 1 to 9 and Comparative Example 1 were plated. It was evaluated by performing an insertion/extraction test with the terminal.

試験に用いた測定装置は、アイコーエンジニアリング(株)製1311NRであり、オスピンの摺動距離3mmで評価した。サンプル数は5個とした。挿入力は、各サンプルの最大値を平均した値を採用した。 The measuring device used for the test was 1311NR manufactured by Aikoh Engineering Co., Ltd., and the evaluation was performed with a sliding distance of the male pin of 3 mm. Five samples were used. As the insertion force, a value obtained by averaging the maximum values of each sample was adopted.

・接触抵抗
接触抵抗は(株)山崎精機研究所製の精密摺動試験装置CRS-G2050型を用い、接点荷重3Nに設定し、四端子法にて測定した。コネクタを模倣するため、接点部の凸材はSnめっき板材(Cu-30ZnにSnを1μmめっき)をφ3mmの半球状に加工したものを使用した。当該接触抵抗を表2に「初期接触抵抗」として示す。また、大気加熱(180℃、120時間以上)試験後のサンプルの接触抵抗を測定し、評価した。当該接触抵抗を表2に「耐熱接触抵抗」として示す。また、初期接触抵抗(R1)に対する耐熱接触抵抗(R2)の抵抗増加量(R2-R1)及び抵抗増加率((R2-R1)/R1)×100[%]を求めた。
Contact resistance Contact resistance was measured by the four-terminal method using a CRS-G2050 type precision sliding tester manufactured by Yamazaki Seiki Laboratory Co., Ltd. with a contact load of 3N. In order to imitate a connector, a Sn-plated plate (Cu-30Zn plated with Sn to a thickness of 1 μm) was processed into a hemispherical shape of φ3 mm for the convex member of the contact portion. The contact resistance is shown in Table 2 as "initial contact resistance". In addition, the contact resistance of the sample after the atmospheric heating (180° C., 120 hours or more) test was measured and evaluated. The contact resistance is shown in Table 2 as "heat resistant contact resistance". Also, the resistance increase amount (R 2 -R 1 ) and the resistance increase rate ((R 2 -R 1 )/R 1 ) x 100 [%] of the heat-resistant contact resistance (R 2 ) with respect to the initial contact resistance (R 1 ) asked.

・高湿耐久性
高湿耐久性は、高温高湿試験後サンプルの外観で評価した。より具体的には、実施例1~9、及び比較例1の各条件について、オス端子として機能するピンが40本連なったサンプルを用意し、85℃85RT%の大気雰囲気下に240時間放置した後の、両端10ピンを除いた中央20ピンの外観を目視で評価した。このとき、外観に変化(変色)が見られなかったものをAと評価し、変化が見られたものをBと評価した。図8に、実施例1について、上述のオス端子として機能するピンが40本連なったサンプルの高温高湿試験後の外観観察写真を示す。図9に、比較例1の高温高湿試験の前後の外観観察写真を示す。図9を参照して、タブ側のピン(図9のキャリアより下側のピン)において、高温高湿試験後に白い領域が増えている、即ち、外観の変化が生じていることが分かる。
- High Humidity Durability The high humidity durability was evaluated by the appearance of the sample after the high temperature and high humidity test. More specifically, for each of the conditions of Examples 1 to 9 and Comparative Example 1, a sample having 40 pins functioning as male terminals was prepared and left in an air atmosphere of 85° C. and 85 RT% for 240 hours. After that, the appearance of the center 20 pins excluding the 10 pins at both ends was visually evaluated. At this time, A was evaluated when no change (discoloration) was observed in appearance, and B was evaluated when a change was observed. FIG. 8 shows an appearance observation photograph after a high-temperature and high-humidity test of a sample in which 40 pins functioning as male terminals are arranged in a row in Example 1. As shown in FIG. FIG. 9 shows photographs of the external appearance of Comparative Example 1 before and after the high-temperature and high-humidity test. Referring to FIG. 9, it can be seen that the tab-side pin (the pin below the carrier in FIG. 9) has an increased white area after the high temperature and high humidity test, that is, a change in appearance occurs.

また、下地めっき層を無光沢Niめっきで構成している。この場合、下地めっき層の押し込み硬さはHv150~500の範囲である。 Also, the underlying plating layer is composed of matte Ni plating. In this case, the indentation hardness of the underlying plating layer is in the range of Hv 150-500.

試験条件及び評価結果を表1、2に示す。 Test conditions and evaluation results are shown in Tables 1 and 2.

Figure 2022128101000002
Figure 2022128101000002

Figure 2022128101000003
Figure 2022128101000003

(評価結果)
実施例1~9では、いずれも、挿入力(摩擦力)が低く、良好な高湿耐久性を有するめっき材料が得られた。また、接触抵抗の増加率も抑制されていた。
(Evaluation results)
In each of Examples 1 to 9, a plated material having a low insertion force (frictional force) and good high-humidity durability was obtained. Also, the rate of increase in contact resistance was suppressed.

比較例1は表層の主成分がInめっきであって、Snを含まないものであり、嵌合する相手部材がSn材であると、異種金属接合となり、ガルバニック腐食が懸念される。加えてInは酸化しやすく、接圧が低いコネクタへは使用し難いという問題が生じる。また、Cuの含有量が少なく、高湿耐久性が不良であった。 In Comparative Example 1, the main component of the surface layer is In plating and does not contain Sn, and if the mating member to be fitted is a Sn material, dissimilar metals will be joined and galvanic corrosion may occur. In addition, In is easily oxidized, and there arises a problem that it is difficult to use for connectors with low contact pressure. Moreover, the content of Cu was small, and the high humidity durability was poor.

以上の知見を基礎として完成した本発明の実施形態は、以下のように特定される。
(1)基材の表面に設けられた、NiまたはNi合金からなる下地めっき層と、
前記下地めっき層の上に設けられた、Sn-In-Cu合金からなる表層と、
を備え、前記表層には、EPMAで観察される、Cu濃度が周囲より高い領域と、Cu濃度が周囲より低い領域とが混在している、電子部品用めっき材料。
(2)前記表層をEPMAで観察した時のCu5atm%以上の面積率が50%以上である、(1)に記載の電子部品用めっき材料。
(3)前記表層をEPMAで観察した時のIn30atm%以上の面積率が50%以上である、(1)または(2)に記載の電子部品用めっき材料。
(4)前記表層をEPMAで観察した時のCu20atm%以上の面積率が90%以上である、(1)~(3)のいずれかに記載の電子部品用めっき材料。
)(1)~()のいずれかに記載の電子部品用めっき材料を備えた電子部品。
An embodiment of the present invention completed based on the above knowledge is specified as follows.
(1) a base plating layer made of Ni or a Ni alloy provided on the surface of the substrate;
A surface layer made of a Sn--In--Cu alloy provided on the base plating layer;
A plating material for electronic parts, wherein the surface layer has a mixture of a region with a higher Cu concentration than the surroundings and a region with a lower Cu concentration than the surroundings, as observed by EPMA .
(2) The plating material for electronic parts according to (1), wherein the surface layer has an area ratio of 5 atm % or more of Cu when observed with EPMA of 50% or more.
(3) The plating material for electronic parts according to (1) or (2), wherein the surface layer has an area ratio of 30 atm % or more of In when observed by EPMA of 50% or more.
(4) The plating material for electronic parts according to any one of (1) to (3), wherein the surface layer has an area ratio of 20 atm % or more of Cu when observed by EPMA of 90% or more.
( 5 ) An electronic component comprising the plating material for electronic components according to any one of (1) to ( 4 ).

以上の知見を基礎として完成した本発明の実施形態は、以下のように特定される。
(1)基材の表面に設けられた、NiまたはNi合金からなる下地めっき層と、
前記下地めっき層の上に設けられた、Sn-In-Cu合金からなる表層と、
を備え、前記表層には、EPMAで観察される、Cu濃度が周囲より高い領域と、Cu濃度が周囲より低い領域とが混在しており前記表層をEPMAで観察した時のCu5atm%以上の面積率が50%以上である、電子部品用めっき材料
(2)前記表層をEPMAで観察した時のIn30atm%以上の面積率が50%以上である、(1)に記載の電子部品用めっき材料。
)前記表層をEPMAで観察した時のCu20atm%以上の面積率が90%以上である、(1)または(2)に記載の電子部品用めっき材料。
)(1)~()のいずれかに記載の電子部品用めっき材料を備えた電子部品。
An embodiment of the present invention completed based on the above knowledge is specified as follows.
(1) a base plating layer made of Ni or a Ni alloy provided on the surface of the substrate;
A surface layer made of a Sn--In--Cu alloy provided on the base plating layer;
In the surface layer, a region with a higher Cu concentration than the surroundings observed by EPMA and a region with a lower Cu concentration than the surroundings are mixed . A plating material for electronic parts , having an area ratio of 50% or more .
(2 ) The plating material for electronic parts according to (1 ), wherein the surface layer has an area ratio of 30 atm % or more of In when observed by EPMA of 50% or more.
( 3 ) The plating material for electronic parts according to (1) or (2) , wherein the surface layer has an area ratio of 20 atm % or more of Cu when observed with EPMA of 90% or more.
( 4 ) An electronic component comprising the plating material for electronic components according to any one of (1) to ( 3 ).

Claims (6)

基材の表面に設けられた、NiまたはNi合金からなる下地めっき層と、
前記下地めっき層の上に設けられた、Sn-In-Cu合金からなる表層と、
を備えためっき材料。
A base plating layer made of Ni or a Ni alloy provided on the surface of the base material;
A surface layer made of a Sn--In--Cu alloy provided on the base plating layer;
Plating material with
前記表層をEPMAで観察した時のCu5atm%以上の面積率が50%以上である、請求項1に記載のめっき材料。 2. The plated material according to claim 1, wherein the surface layer has an area ratio of 5 atm % or more of Cu when observed by EPMA of 50% or more. 前記表層をEPMAで観察した時のIn30atm%以上の面積率が50%以上である、請求項1または2に記載のめっき材料。 3. The plating material according to claim 1, wherein an area ratio of 30 atm % or more of In is 50% or more when the surface layer is observed by EPMA. 前記表層をEPMAで観察した時のCu20atm%以上の面積率が90%以上である、請求項1~3のいずれか1項に記載のめっき材料。 The plating material according to any one of claims 1 to 3, wherein the surface layer has an area ratio of 20 atm% or more of Cu when observed by EPMA, which is 90% or more. 前記表層には、EPMAで観察される、Cu濃度が周囲より高い領域と、Cu濃度が周囲より低い領域とが混在している、請求項1~4のいずれか一項に記載のめっき材料。 The plating material according to any one of claims 1 to 4, wherein the surface layer has a mixture of a region with a higher Cu concentration than the surroundings and a region with a lower Cu concentration than the surroundings, which are observed by EPMA. 請求項1~5のいずれか1項に記載のめっき材料を備えた電子部品。 An electronic component comprising the plating material according to any one of claims 1 to 5.
JP2021026443A 2021-02-22 2021-02-22 Plating materials for electronic parts and electronic parts Active JP7155312B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021026443A JP7155312B2 (en) 2021-02-22 2021-02-22 Plating materials for electronic parts and electronic parts
PCT/JP2021/033595 WO2022176243A1 (en) 2021-02-22 2021-09-13 Plated material and electronic component
TW110134625A TWI788016B (en) 2021-02-22 2021-09-16 Plating materials and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021026443A JP7155312B2 (en) 2021-02-22 2021-02-22 Plating materials for electronic parts and electronic parts

Publications (2)

Publication Number Publication Date
JP2022128101A true JP2022128101A (en) 2022-09-01
JP7155312B2 JP7155312B2 (en) 2022-10-18

Family

ID=82931319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021026443A Active JP7155312B2 (en) 2021-02-22 2021-02-22 Plating materials for electronic parts and electronic parts

Country Status (3)

Country Link
JP (1) JP7155312B2 (en)
TW (1) TWI788016B (en)
WO (1) WO2022176243A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279791A (en) * 1998-03-27 1999-10-12 Nippon Mining & Metals Co Ltd Formation of tin-indium solder alloy plated layer
JP2007204854A (en) * 2001-01-19 2007-08-16 Furukawa Electric Co Ltd:The Plated material, method of producing the same, and electrical/electronic part using the same
JP2007321177A (en) * 2006-05-30 2007-12-13 Nikko Kinzoku Kk COPPER ALLOY MATERIAL PLATED WITH REFLOW Sn HAVING EXCELLENT WHISKER-FORMING RESISTANCE, AND ELECTRONIC COMPONENT USING THE SAME
JP2009263786A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2009263785A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2010265540A (en) * 2009-05-18 2010-11-25 Kyowa Densen Kk Lead frame, manufacturing method therefor, electronic parts and electronic device using the same, and plated material to be used in them
JP2015045056A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102395713B (en) * 2009-04-14 2014-07-16 三菱伸铜株式会社 Conductive member and manufacturing method thereof
JP5138827B1 (en) * 2012-03-23 2013-02-06 Jx日鉱日石金属株式会社 Metal materials for electronic parts, connector terminals, connectors and electronic parts using the same
TWI449620B (en) * 2012-11-20 2014-08-21 Univ Nat Taiwan Science Tech Method for manufacturing ni/in/sn/cu multilayer structure
JP6445895B2 (en) * 2014-03-04 2018-12-26 Dowaメタルテック株式会社 Sn plating material and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279791A (en) * 1998-03-27 1999-10-12 Nippon Mining & Metals Co Ltd Formation of tin-indium solder alloy plated layer
JP2007204854A (en) * 2001-01-19 2007-08-16 Furukawa Electric Co Ltd:The Plated material, method of producing the same, and electrical/electronic part using the same
JP2007321177A (en) * 2006-05-30 2007-12-13 Nikko Kinzoku Kk COPPER ALLOY MATERIAL PLATED WITH REFLOW Sn HAVING EXCELLENT WHISKER-FORMING RESISTANCE, AND ELECTRONIC COMPONENT USING THE SAME
JP2009263786A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2009263785A (en) * 2008-03-31 2009-11-12 Furukawa Electric Co Ltd:The Connecting component metal material and method of manufacturing the same
JP2010265540A (en) * 2009-05-18 2010-11-25 Kyowa Densen Kk Lead frame, manufacturing method therefor, electronic parts and electronic device using the same, and plated material to be used in them
JP2015045056A (en) * 2013-08-27 2015-03-12 Jx日鉱日石金属株式会社 Metallic material for electronic component, method for producing the same, and connector terminal, connector and electronic component using the same

Also Published As

Publication number Publication date
TWI788016B (en) 2022-12-21
WO2022176243A1 (en) 2022-08-25
TW202233896A (en) 2022-09-01
JP7155312B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CA2879453C (en) Metallic material for electronic components, and connector terminals, connectors and electronic components using same
EP2868776B1 (en) Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material
US10826203B2 (en) Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
JP5667152B2 (en) Surface treatment plating material, method for producing the same, and electronic component
US10373730B2 (en) Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
US10594066B2 (en) Metallic material for electronic components and method for producing same, and connector terminals, connectors and electronic components using same
JP2008285729A (en) REFLOW Sn-PLATED MATERIAL AND ELECTRONIC PARTS USING THE SAME
CN110199054B (en) Surface treatment plating material, connector terminal, connector, FFC terminal, FFC, FPC, and electronic component
JP2014139345A (en) Surface treatment plated material and production method of the same, and electronic component
JP6553333B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP7155312B2 (en) Plating materials for electronic parts and electronic parts
JP6503159B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP7080942B2 (en) Plating materials for electronic components and electronic components
WO2022219904A1 (en) Male pin for connector and manufacturing method of male pin for connector
WO2023182259A1 (en) Terminal material and electrical connection terminal
JP2023061782A (en) Plated materials and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R151 Written notification of patent or utility model registration

Ref document number: 7155312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151