WO2023182259A1 - Terminal material and electrical connection terminal - Google Patents

Terminal material and electrical connection terminal Download PDF

Info

Publication number
WO2023182259A1
WO2023182259A1 PCT/JP2023/010836 JP2023010836W WO2023182259A1 WO 2023182259 A1 WO2023182259 A1 WO 2023182259A1 JP 2023010836 W JP2023010836 W JP 2023010836W WO 2023182259 A1 WO2023182259 A1 WO 2023182259A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
coating layer
terminal
layer
base material
Prior art date
Application number
PCT/JP2023/010836
Other languages
French (fr)
Japanese (ja)
Inventor
倫丈 竃本
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2023182259A1 publication Critical patent/WO2023182259A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present disclosure relates to terminal materials and electrical connection terminals.
  • a material in which a coating layer made of another metal is provided on the surface of a base material made of metal such as copper or copper alloy is often used.
  • the covering layer can impart desired properties to the electrical connection terminal.
  • a coating layer containing a Cu--Sn alloy is known as a coating layer that can reduce friction on the surface of a terminal material and reduce the insertion force (combinant force) required to connect an electrical connection terminal.
  • an alloy part 41 made of a Cu-Sn alloy and having irregularities is formed, as in the terminal material 9 shown in FIG.
  • a structure in which the portion 42 covers the surface of the alloy portion 41 is formed. It is said that because the alloy part 41 made of a hard Cu-Sn alloy is present below the Sn part 42, the effect of lowering friction can be obtained at the same time as the effect of lowering contact resistance due to the contribution of the Sn part 42. .
  • Patent Document 1 discloses that at least the surface of the contact part with the mating material of the copper alloy base material is , discloses a terminal including a layer obtained by reflow processing a layer formed by sequentially laminating a nickel plating layer, a copper plating layer, and a tin plating layer with a thickness of 1.1 ⁇ m or less. A copper-tin alloy layer is formed by the reflow process. Patent Document 1 states that by making the tin plating layer thinner, the mechanical resistance caused by plastic deformation during terminal insertion can be reduced.
  • Patent Document 1 attempts to reduce the insertion force of the terminal by thinning the Sn plating layer, which is the raw material for alloy formation, but does not mention the Cu-Sn alloy and the distribution of Sn in the coating layer. Not yet. By considering the distribution of Cu-Sn alloy and Sn in the coating layer, it is possible that friction can be effectively reduced.
  • the terminal material of the present disclosure includes a base material and a coating layer that covers the surface of the base material, and the coating layer includes an alloy portion made of a Cu-Sn alloy and a Sn , both the alloy part and the Sn part are exposed on the surface of the coating layer, and the alloy exposure rate indicating the area ratio occupied by the alloy part on the surface of the coating layer is 30%. That's all.
  • the electrical connection terminal of the present disclosure is configured to include the terminal material, and the coating layer is formed on the surface of the base material at least in the contact portion that contacts the other conductive member.
  • the terminal material and electrical connection terminal according to the present disclosure are terminal materials that can effectively reduce surface friction from the viewpoint of the distribution of Cu-Sn alloy and Sn in the coating layer containing Cu-Sn alloy and Sn. , and such electrical connection terminals.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a terminal material according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing the structure of material layers for forming the terminal material.
  • FIG. 3 is a cross-sectional view schematically showing the structure of an electrical connection terminal according to an embodiment of the present disclosure.
  • FIG. 4 shows a table of scanning electron microscope images obtained by observing the surface of the coating layer, the binarized image obtained from the images, and the alloy exposure rate.
  • FIG. 5 is a diagram in which the alloy exposure rate and the terminal insertion force are plotted against the thickness of the Sn portion.
  • FIG. 6 is a cross-sectional view schematically showing the structure of a terminal material in which the Sn portion is formed thick.
  • the terminal material of the present disclosure includes a base material and a coating layer that covers the surface of the base material, and the coating layer includes an alloy portion made of a Cu-Sn alloy and a Sn , both the alloy part and the Sn part are exposed on the surface of the coating layer, and the alloy exposure rate indicating the area ratio occupied by the alloy part on the surface of the coating layer is 30%. That's all.
  • the Cu--Sn alloy comes into direct contact with the other party's conductive member, such as the other party's terminal. Furthermore, since the amount of Sn portions present on the surface of the coating layer is reduced, wear due to digging up or adhesion of the Sn portions becomes less likely to occur. As a result, the friction on the surface of the coating layer is kept low. In particular, when the alloy exposure rate on the surface of the coating layer is 30% or more, the friction reduction effect of the Cu--Sn alloy can be sufficiently obtained.
  • the alloy exposure rate is preferably 50% or less.
  • a coating layer in which Sn is exposed at a certain exposure rate along with the Cu--Sn alloy can be easily manufactured by a method of laminating and heating a Cu layer and a Sn layer. Further, by sufficiently exposing Sn to the surface of the coating layer, the friction reduction effect due to the contribution of the Cu--Sn alloy and the effect due to the contribution of Sn, such as reduction in contact resistance, are both achieved.
  • the average thickness of the Sn portion is preferably 0.10 ⁇ m or more and 0.35 ⁇ m or less. Further, the average thickness of the alloy portion is preferably 0.25 ⁇ m or more and 0.48 ⁇ m or less. Then, by a method of laminating and heating a Cu layer and a Sn layer, a coating layer having a high alloy exposure rate and an excellent friction reduction effect can be manufactured.
  • the base material is made of Cu or a Cu alloy, and further includes a diffusion suppressing layer made of Ni or a Ni alloy between the base material and the coating layer.
  • the diffusion suppressing layer made of Ni and Ni alloy effectively suppresses atoms such as Cu constituting the base material from diffusing into the coating layer. Thereby, it is possible to reduce the influence of atomic diffusion from the base material, exhibit a predetermined alloy exposure rate, and stably obtain a coating layer with reduced friction.
  • the electrical connection terminal of the present disclosure is configured to include the terminal material, and the coating layer is formed on the surface of the base material at least in the contact portion that contacts the other conductive member.
  • both the alloy part and the Sn part are exposed on the surface of the contact part and have a predetermined alloy exposure ratio, so that the contact part can maintain a low surface friction coefficient as described above. It becomes what is given.
  • the electrical connection terminal is preferably configured as a male terminal for a printed circuit board.
  • Male terminals for printed circuit boards are often constructed as post-plated products in which a base material is formed into the terminal shape and then a metal coating layer is formed. , the thickness of the coating layer is unevenly distributed, and a thick metal coating layer is likely to be formed at sharp points such as the tips of male terminals. As a result, friction may increase at the tip.
  • an alloy exposure rate of 30% or more is ensured, so even if there are areas where the coating layer is locally thick, surface friction is effectively reduced, including at those areas. low insertion force can be achieved.
  • the term "elementary metal” includes cases where it contains unavoidable impurities.
  • alloy includes both a solid solution and an intermetallic compound.
  • an alloy containing a certain metal as a main component refers to an alloy in which the metal element is contained in the composition in an amount of 50 atomic % or more.
  • Terminal materials according to embodiments of the present disclosure will be described below.
  • a cross section of a terminal material 1 according to an embodiment of the present disclosure is schematically shown in FIG.
  • the terminal material 1 includes a base material 2 and a coating layer 4 that covers the surface of the base material 2. Although optional, it is preferable to provide a diffusion suppressing layer 3 between the base material 2 and the coating layer 4.
  • the coating layer 4 is preferably exposed on the outermost surface of the terminal material 1, but a thin film (not shown) such as an organic layer may be added to the surface of the coating layer 4 unless it significantly affects the characteristics of the coating layer 4. may be provided.
  • the material constituting the base material 2 is not particularly limited.
  • the base material 2 Cu or Cu alloy, Al or Al alloy, Fe or Fe alloy, etc., which are often used as constituent materials of electrical connection members, can be suitably used.
  • Cu or Cu alloy which is a metal with excellent conductivity and mechanical properties, can be suitably used.
  • the diffusion suppression layer 3 is a layer that suppresses atoms such as Cu that constitute the base material 2 from diffusing into the coating layer 4.
  • constituent atoms of the base material diffuse to the surface of the coating layer 4 and undergo oxidation, the contact resistance of the surface of the coating layer 4 increases. Further, due to the influence of the diffused constituent atoms of the base material, there is a possibility that the desired composition and material distribution cannot be obtained in the coating layer 4. Therefore, by providing the diffusion suppressing layer 3 between the base material 2 and the coating layer 4, it is possible to suppress those phenomena that may occur when constituent atoms of the base material diffuse into the coating layer 4.
  • the type of diffusion suppressing layer 3 is not limited as long as it can suppress the diffusion of constituent atoms of the base material, but Ni or Ni alloy is preferably used as a metal that exhibits a high diffusion suppressing effect. It can be applied to Although the thickness of the diffusion suppressing layer 3 is not particularly limited, it is preferably 0.5 ⁇ m or more from the viewpoint of obtaining a sufficient diffusion suppressing effect. On the other hand, from the viewpoint of workability, etc., the thickness is preferably 2 ⁇ m or less. At the interface between the diffusion suppressing layer 3, the base material 2, and the coating layer 4, a region where the metal forming the diffusion suppressing layer 3 and the metal forming the base material 2 and the coating layer 4, respectively, formed an alloy is formed. may have.
  • the covering layer 4 is configured as a metal layer containing Sn and Cu.
  • the coating layer 4 does not have a uniform composition and includes both an alloy part 41 made of a Cu--Sn alloy and an Sn part 42 made of Sn. It is preferable that the coating layer 4 is composed only of Sn and Cu, excluding unavoidable impurities and atoms that unavoidably diffuse from the base material 2 and the diffusion suppressing layer 3. It is preferable that the alloy part 41 and the Sn part 42 be composed of only a Cu-Sn alloy and Sn, respectively, excluding unavoidable impurities, but a small amount of impurities or additive elements other than the Cu-Sn alloy and Sn may be added. (for example, 10% by mass or less).
  • the composition of the Cu--Sn alloy constituting the alloy portion 41 is not particularly limited, it is preferably composed of an intermetallic compound of Cu 6 Sn 5 as a main component. The details of the structure of the coating layer 4 will be explained below.
  • the coating layer 4 has an alloy part 41 made of a Cu-Sn alloy and an Sn part 42 made of Sn, and both the alloy part 41 and the Sn part 42 is exposed on the surface of the coating layer 4.
  • the alloy portion 41 is configured as a layer having an uneven structure projecting like a mountain.
  • the Sn portion 42 is formed by covering the alloy portion 41 so as to fill the unevenness of the uneven structure.
  • the coating layer 4, which includes the alloy part 41 made of a Cu-Sn alloy having an uneven structure and the Sn part 42 covering the surface thereof, is formed by combining the Cu layer 5 and the Sn layer 6 as described later. It can be easily manufactured by sequentially laminating the layers and heating them.
  • both the alloy part 41 and the Sn part 42 are exposed on the outermost surface of the coating layer 4. That is, near the top of the convex portion of the uneven structure of the alloy portion 41, there is an exposed alloy portion 41a where the Cu—Sn alloy is exposed and is not covered with the Sn portion 42. Then, on the surface of the coating layer 4, the area ratio occupied by the alloy part 41, that is, the alloy exposure ratio expressed as the ratio of the area occupied by the exposed alloy part 41a to the entire surface area is 30% or more. There is.
  • the Sn portion 42 exhibits low contact resistance and provides good electrical connection characteristics between the surface of the terminal material 1 and the other conductive member.
  • the alloy portion 41 plays a role in keeping the friction low (reducing the coefficient of friction) in the coating layer 4 because the Cu--Sn alloy has characteristics such as high hardness.
  • the presence of the alloy portion 41 in the lower layer of the Sn portion 42 provides a friction reduction effect on the surface of the Sn portion 42 . Further, since the alloy portion 41 is exposed on the outermost surface and comes into direct contact with the other conductive member, an even higher effect in reducing friction can be obtained.
  • both the Sn portion 42 and the alloy portion 41 made of Cu-Sn are exposed on the surface of the coating layer 4, so that contact resistance can be reduced, etc. It is possible to enjoy both the effects of the alloy portion 41 and the effects of the alloy portion 41, such as reduction of friction.
  • the Sn portion 42 is formed thickly as shown in FIG. By occupying a large volume, when sliding is performed between the Sn portions 42 and the other conductive member, the Sn portions 42 cause digging and adhesion, thereby increasing the coefficient of friction.
  • the alloy exposure rate of the alloy part 41 is 30% or more. This results in a particularly excellent friction reduction effect.
  • the alloy part 41 occupies 30% or more of the surface of the coating layer 4, comes into contact with the other conductive member, and is directly involved in the friction phenomenon during sliding, so that the friction reduction effect of the alloy part 41 is highly exhibited. It is from.
  • the fact that the exposure rate of the alloy part 41 is high means that the thickness of the Sn part 42 covering the alloy part 41 is kept small, and the amount of Sn part 42 present in the coating layer 4 is reduced. It means that.
  • the terminal material 1 according to the present embodiment has an excellent effect of reducing friction on the surface of the coating layer 4. This reduction in friction is obtained as a result of the distribution of the alloy portions 41 and Sn portions 42 in the coating layer 4.
  • the alloy exposure rate is more preferably 35% or more, more preferably 40% or more, or 45% or more.
  • the upper limit of the alloy exposure rate is not particularly determined, but it is preferably kept at about 50% or less, and even 48% or less. An alloy exposure rate of 30% or more and below these upper limits can be easily achieved in the structure of the coating layer 4 in which the Sn part 42 covers the surface of the alloy part 41 having an uneven structure. It can be easily obtained by a method of laminating layers 6 and heating them. In addition, if the alloy exposure rate is below the above upper limit, the exposure rate of the Sn portion 42 will be ensured sufficiently large, so that in addition to the friction reduction effect of the alloy portion 41, the Sn portion The effects brought about by 42 can also be fully obtained.
  • the details of the thickness and distribution of the Sn portion 42 and the alloy portion 41 are not particularly limited as long as the above alloy exposure rate is given. However, since it is easy to provide the coating layer 4 having an alloy exposure rate of 30% or more and preferably 50% or less, and it is easy to form the coating layer 4 by laminating and heating the Cu layer 5 and the Sn layer 6, the coating It is preferable that layer 4 has the following configuration.
  • the thickness of the Sn portion 42 is preferably smaller than the thickness (average value; the same applies below) of the alloy portion 41.
  • the thicknesses of the Sn portion 42 and the alloy portion 41 are not particularly limited.
  • the thickness (average value) of the Sn portion 42 is preferably 0.35 ⁇ m or less, more preferably 0.25 ⁇ m or less, or 0.20 ⁇ m or less. This makes it easy to ensure a high alloy exposure rate, and it is also possible to effectively suppress an increase in friction due to digging up or adhesion of the Sn portion 42.
  • the thickness (average value) of the Sn portion 42 is preferably 0.10 ⁇ m or more, more preferably 0.12 ⁇ m or more.
  • the thickness (average value) of the alloy portion 41 should be 0.25 ⁇ m or more, further 0.30 ⁇ m or more, or 0.35 ⁇ m or more, from the viewpoint of ensuring a sufficient alloy exposure rate and making it easier to obtain the effect of reducing friction. It is preferable that there be.
  • the thickness of the alloy portion 41 is preferably 0.48 ⁇ m or less, and more preferably 0.45 ⁇ m or less.
  • the specific distribution shape of the alloy part 41 and the Sn part 42 exposed on the surface of the coating layer 4 is not particularly limited, but from the viewpoint of effectively utilizing the characteristics of both the alloy part 41 and the Sn part 42. It is only necessary that the alloy portion 41 and the Sn portion 42 are distributed so that they both occupy a certain amount of area and coexist at a location that contacts the other conductive member, such as a contact portion of a terminal.
  • the method of forming the coating layer 4 is not particularly limited, but a method of alloying Cu and Sn can be suitably used. That is, as shown in FIG. 2, a raw material 1' is prepared in which a Cu layer 5 and a Sn layer 6 are laminated in this order on the surface of a base material 2 on which a diffusion suppressing layer 3 is appropriately formed. The Cu layer 5 and the Sn layer 6 are preferably formed by electrolytic plating. Next, this raw material 1' is heated at a temperature equal to or higher than the melting point of Sn (reflow treatment). By heating, alloying of Cu and Sn occurs, and an alloy portion 41 made of a Cu--Sn alloy is formed.
  • the Sn that was not spent on alloying becomes the Sn portion 42.
  • the alloy portion 41 is formed as a layer having an uneven structure without any special operation, and the Sn layer is formed to fill the unevenness. 42 can form a coating layer 4 that covers the alloy part 41.
  • the alloy exposure rate in the coating layer 4 can be controlled, for example, by the thicknesses of the Cu layer 5 and the Sn layer 6 in the raw material 1'. From the viewpoint of sufficiently increasing the alloy exposure rate, the thickness of the Sn layer 6 should be kept at 6.0 times or less, further 5.0 times or less, and 4.0 times or less than the Cu layer 5. It is preferable to leave it there. Further, the thickness of the Sn layer 6 is preferably set to 0.60 ⁇ m or less, 0.50 ⁇ m or less, or 0.40 ⁇ m or less.
  • the thickness of the Sn layer 6 is set to 1 It is preferable to set it to .0 times or more, further 2.0 times or more, or 3.0 times or more. Further, the thickness of the Sn layer 6 is preferably set to 0.10 ⁇ m or more, 0.20 ⁇ m or more, or 0.30 ⁇ m or more.
  • the thickness of the Cu layer 5 is preferably 0.05 ⁇ m or more, or 0.10 ⁇ m or more, and preferably 0.20 ⁇ m or less.
  • the ratio of the thickness of the Sn layer 6 and the Cu layer 5 in the raw material 1' is the atomic ratio of Sn atoms and Cu atoms contained in the entire coating layer 4 in the coating layer 4 after alloy formation.
  • the value converted to the volume ratio of Cu can be confirmed from the configuration of the terminal material 1.
  • An electrical connection terminal is configured to include the terminal material 1 according to the embodiment of the present disclosure described above.
  • the coating layer 4 is formed at least on a contact portion such as a mating terminal that comes into contact with a mating conductive member.
  • the covering layer 4 (and the diffusion suppressing layer 3) may be formed on the entire surface of the electrical connection terminal or only on a part of the surface as long as it is formed on at least the contact portion.
  • FIG. 3 illustrates the structure of the PCB male terminal 10.
  • the PCB male terminal 10 is a long electrical connection terminal, and has a board connection part 11 at one end that is inserted into a through hole of a printed circuit board and connected, and the other end is inserted into a mating connection terminal. It has a terminal connection part 12 in the shape of a fitting type male terminal that is connected by a connector or the like.
  • a coating layer 4 is provided on the surface of the base material 2 at a location that includes at least the board connection portion 11 and the terminal connection portion 12, which serve as contact portions.
  • the coating layer 4 is formed over the entire surface.
  • both the alloy part 41 and the Sn part 42 are exposed on the surface of the coating layer 4, and by having an alloy exposure rate of 30% or more, friction is reduced. It has an excellent friction reduction effect, and electrical connection terminals made of the terminal material 1 according to the embodiment of the present disclosure, including the male terminal 10 for PCB, can enjoy the friction reduction effect at the contact portion. . That is, for example, insertion force (or fitting force; the same in this specification) is the force required when inserting and fitting the terminal connecting part 11 with a mating conductive member such as a female terminal with sliding movement. can be kept small.
  • a plurality of male PCB terminals 10 are often inserted and mated all at once in the state of a connector fixed to a connector housing, and reducing the insertion force of each terminal 10 has a large insertion force reduction effect for the connector as a whole. Leads to.
  • male terminals for PCBs are often formed by forming a base material into a predetermined terminal shape by punching or the like, and then forming a metal coating layer on the surface of the base material by plating (post-plating).
  • the thickness of the metal coating layer at sharp points such as the tips of the board connection part 11 and the terminal connection part 12 is affected by the primary current distribution during plating.
  • a non-uniform distribution in which the thickness is larger than other parts is likely to occur in the metal coating layer. If a metal coating layer such as a Sn layer that is prone to adhesion or digging is formed thickly at the contact portion, the terminal insertion force will increase.
  • the alloy portion 41 is exposed together with the Sn portion 42 on the surface of the coating layer 4, and the alloy exposure rate is 30% or more.
  • the alloy exposure rate is 30% or more.
  • a Ni diffusion suppressing layer with a thickness of 1 ⁇ m was formed on the surface of a flat copper alloy base material, and then a Cu layer and a Sn layer were formed in this order to obtain a raw material.
  • Each metal layer was formed by electrolytic plating.
  • the thickness of the Cu layer 5 was 0.1 ⁇ m, and the thickness of the Sn layer was as shown in Table 1 below.
  • this raw material was heated and subjected to a reflow treatment to form a coating layer including an alloy part and a Sn part by alloying Cu and Sn.
  • a copper alloy base material was punched into the shape of the male terminal for PCB shown in Fig. 3, and the surface was coated with a Ni layer, a Cu layer, and a Sn layer in the same manner as above.
  • a coating layer was formed on the terminal surface by layer formation and reflow treatment.
  • a 0.64 mm square terminal was used as the terminal.
  • the produced terminals were set in a connector housing to produce a 40-pole test model connector imitating a multi-pole connector for PCB.
  • FIG. 4 shows SEM images of the surfaces of a plurality of samples in which the thickness of the Sn layer of the raw material was varied, together with the binarized image and the value of the alloy exposure rate.
  • the scale bar in the SEM image indicates 50 ⁇ m.
  • the region observed darkly corresponds to the alloy part made of a Cu-Sn alloy, and the region observed brightly corresponds to the Sn part. From the SEM images, it is confirmed that both the alloy part and the Sn part are mixed and exposed on the surface of each sample.
  • the alloy exposure rate varies depending on the sample, and the alloy exposure rate tends to be high in regions where the Sn layer of the raw material has a relatively small thickness.
  • Table 1 summarizes the thickness of the Sn layer of the raw material, the alloy exposure rate, the thickness of each part, and the measured values of the connector fitting force for each sample.
  • the alloy exposure rate values shown in Table 1 and FIG. 5, which will be described later, are the average of the same measurement results as in FIG. 4 obtained at a plurality of observation points.
  • the values of the alloy exposure rate and the connector fitting force are plotted against the average thickness of the Sn portion in the coating layer for the data shown in Table 1.
  • the alloy exposure rate is indicated by a diamond, and its value is shown on the left axis.
  • the connector fitting force is indicated by a circle, and its value is shown on the right axis.
  • Terminal material 1' Raw material 10 Male terminal for PCB 11 Board connection part 12 Terminal connection part 2 Base material 3 Diffusion suppression layer 4 Covering layer 41 Alloy part 41a Alloy exposed part 42 Sn part 5 Cu layer 6 Sn layer 9 Sn part Thick terminal material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Provided are: a terminal material configured to effectively reduce the surface friction from the perspective of a Cu-Sn alloy and Sn distributions within a coating layer containing the Cu-Sn alloy and Sn; and an electrical connection terminal comprising such terminal material. A terminal material 1 comprises a substrate 2 and a coating layer 4 that covers a surface of the substrate 2. The coating layer 4 has an alloy portion 41 composed of a Cu-Sn alloy, and a Sn portion 42 composed of Sn. On a surface of the coating layer 4, both the alloy portion 41 and the Sn portion 42 are exposed. On the surface of the coating layer 4, the alloy exposure rate, which is the area percentage that the alloy portion 41 accounts for, is 30% or more. The electrical connection terminal is configured to include the terminal material 1. The coating layer 4 is formed on the surface of the substrate 2, at least at a contact section where the terminal comes into contact with a mating electroconductive member.

Description

端子材料および電気接続端子Terminal materials and electrical connection terminals
 本開示は、端子材料および電気接続端子に関する。 The present disclosure relates to terminal materials and electrical connection terminals.
 電気接続端子を構成する端子材料としては、銅または銅合金等の金属よりなる基材の表面に、他種の金属よりなる被覆層を設けた材料が用いられることが多い。被覆層によって、電気接続端子に所望の特性を付与することができる。端子材料の表面における摩擦を低減し、電気接続端子の接続に要する挿入力(篏合力)を低減することができる被覆層として、Cu-Sn合金を含んだものが知られている。Cu層とSn層を積層し、加熱により合金化を起こすと、図6に示す端子材料9のように、Cu-Sn合金よりなり凹凸を有する合金部41が形成され、余剰のSnよりなるSn部42がその合金部41の表面を覆った構造が形成される。硬質なCu-Sn合金よりなる合金部41がSn部42の下層に存在することで、低摩擦化の効果が、Sn部42の寄与による低接触抵抗化の効果と同時に得られるとされている。 As the terminal material constituting the electrical connection terminal, a material in which a coating layer made of another metal is provided on the surface of a base material made of metal such as copper or copper alloy is often used. The covering layer can impart desired properties to the electrical connection terminal. A coating layer containing a Cu--Sn alloy is known as a coating layer that can reduce friction on the surface of a terminal material and reduce the insertion force (combinant force) required to connect an electrical connection terminal. When a Cu layer and a Sn layer are laminated and alloyed by heating, an alloy part 41 made of a Cu-Sn alloy and having irregularities is formed, as in the terminal material 9 shown in FIG. A structure in which the portion 42 covers the surface of the alloy portion 41 is formed. It is said that because the alloy part 41 made of a hard Cu-Sn alloy is present below the Sn part 42, the effect of lowering friction can be obtained at the same time as the effect of lowering contact resistance due to the contribution of the Sn part 42. .
 この種のCu-Sn合金よりなる合金部とSn部を含んだ被覆層を有する電気接続端子の具体例として、特許文献1では、銅合金製母材の少なくとも相手材との接触部の表面に、順次、ニッケルめっき層、銅めっき層及び1.1μm以下の厚さの錫めっき層を積層してなる層をリフロー処理して得られる層を含む端子が開示されている。リフロー処理により、銅錫合金層が形成される。特許文献1では、錫めっき層を薄層化することにより、端子挿入時における塑性変形に伴う機械的抵抗力を低減できるとしている。 As a specific example of an electrical connection terminal having a coating layer containing an alloy part made of this type of Cu-Sn alloy and a Sn part, Patent Document 1 discloses that at least the surface of the contact part with the mating material of the copper alloy base material is , discloses a terminal including a layer obtained by reflow processing a layer formed by sequentially laminating a nickel plating layer, a copper plating layer, and a tin plating layer with a thickness of 1.1 μm or less. A copper-tin alloy layer is formed by the reflow process. Patent Document 1 states that by making the tin plating layer thinner, the mechanical resistance caused by plastic deformation during terminal insertion can be reduced.
特開2003-147579号公報Japanese Patent Application Publication No. 2003-147579
 上記のように、端子材料において、Cu-Sn合金よりなる合金部とSn部を含む被覆層を基材の表面に形成することで、低摩擦化、および端子の低挿入力化を図ることが考えられる。しかし、被覆層の表面の摩擦挙動において、Cu-Sn合金とSnは、全く異なる寄与を示すはずである。すると、被覆層において、Cu-Sn合金とSnがどのように分布しているかが、摩擦の制御において重要となる。特許文献1では、合金形成の原料となるSnめっき層を薄層化することにより、端子の低挿入力化を図っているが、被覆層におけるCu-Sn合金およびSnの分布については、言及されていない。被覆層におけるCu-Sn合金とSnの分布を検討することで、摩擦の低減を効果的に達成できる可能性がある。 As mentioned above, in the terminal material, by forming a coating layer containing an alloy part made of a Cu-Sn alloy and a Sn part on the surface of the base material, it is possible to reduce friction and reduce the insertion force of the terminal. Conceivable. However, in the frictional behavior of the surface of the coating layer, the Cu-Sn alloy and Sn should show completely different contributions. Then, how the Cu--Sn alloy and Sn are distributed in the coating layer becomes important in controlling friction. Patent Document 1 attempts to reduce the insertion force of the terminal by thinning the Sn plating layer, which is the raw material for alloy formation, but does not mention the Cu-Sn alloy and the distribution of Sn in the coating layer. Not yet. By considering the distribution of Cu-Sn alloy and Sn in the coating layer, it is possible that friction can be effectively reduced.
 そこで、Cu-Sn合金とSnを含む被覆層における、Cu-Sn合金とSnの分布の観点から、表面の摩擦を効果的に低減することができる端子材料、およびそのような電気接続端子を提供することを課題とする。 Therefore, we provide a terminal material that can effectively reduce surface friction from the viewpoint of the distribution of Cu-Sn alloy and Sn in a coating layer containing Cu-Sn alloy and Sn, and such an electrical connection terminal. The task is to do so.
 本開示の端子材料は、基材と、前記基材の表面を被覆する被覆層と、を有し、前記被覆層は、Cu-Sn合金より構成される合金部と、Snより構成されるSn部と、を有し、前記被覆層の表面には、前記合金部と前記Sn部の両方が露出され、前記被覆層の表面において前記合金部が占める面積率を示す合金露出率が、30%以上である。 The terminal material of the present disclosure includes a base material and a coating layer that covers the surface of the base material, and the coating layer includes an alloy portion made of a Cu-Sn alloy and a Sn , both the alloy part and the Sn part are exposed on the surface of the coating layer, and the alloy exposure rate indicating the area ratio occupied by the alloy part on the surface of the coating layer is 30%. That's all.
 本開示の電気接続端子は、前記端子材料を含んで構成され、少なくとも、相手方導電部材と接触する接点部において、前記基材の表面に、前記被覆層が形成されている。 The electrical connection terminal of the present disclosure is configured to include the terminal material, and the coating layer is formed on the surface of the base material at least in the contact portion that contacts the other conductive member.
 本開示にかかる端子材料および電気接続端子は、Cu-Sn合金とSnを含む被覆層における、Cu-Sn合金とSnの分布の観点から、表面の摩擦を効果的に低減することができる端子材料、およびそのような電気接続端子となる。 The terminal material and electrical connection terminal according to the present disclosure are terminal materials that can effectively reduce surface friction from the viewpoint of the distribution of Cu-Sn alloy and Sn in the coating layer containing Cu-Sn alloy and Sn. , and such electrical connection terminals.
図1は、本開示の一実施形態にかかる端子材料の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of a terminal material according to an embodiment of the present disclosure. 図2は、上記端子材料を形成するための材料層の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of material layers for forming the terminal material. 図3は、本開示の一実施形態にかかる電気接続端子の構造を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the structure of an electrical connection terminal according to an embodiment of the present disclosure. 図4は、被覆層の表面を観察した走査電子顕微鏡像と、そこから得られる2値化像および合金露出率を表にまとめたものである。FIG. 4 shows a table of scanning electron microscope images obtained by observing the surface of the coating layer, the binarized image obtained from the images, and the alloy exposure rate. 図5は、Sn部の厚さに対して、合金露出率および端子挿入力をプロットした図である。FIG. 5 is a diagram in which the alloy exposure rate and the terminal insertion force are plotted against the thickness of the Sn portion. 図6は、Sn部を厚く形成した端子材料の構成を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the structure of a terminal material in which the Sn portion is formed thick.
[本開示の実施形態の説明]
 最初に本開示の実施形態を列記して説明する。
 本開示の端子材料は、基材と、前記基材の表面を被覆する被覆層と、を有し、前記被覆層は、Cu-Sn合金より構成される合金部と、Snより構成されるSn部と、を有し、前記被覆層の表面には、前記合金部と前記Sn部の両方が露出され、前記被覆層の表面において前記合金部が占める面積率を示す合金露出率が、30%以上である。
[Description of embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described.
The terminal material of the present disclosure includes a base material and a coating layer that covers the surface of the base material, and the coating layer includes an alloy portion made of a Cu-Sn alloy and a Sn , both the alloy part and the Sn part are exposed on the surface of the coating layer, and the alloy exposure rate indicating the area ratio occupied by the alloy part on the surface of the coating layer is 30%. That's all.
 上記端子材料においては、被覆層の表面に、Snだけでなく、Cu-Sn合金が露出している。そのため、被覆層の表面において、Cu-Sn合金が直接、相手方の端子等、相手方導電部材と接触することになる。また、被覆層の表面におけるSn部の存在量が少なくなることにより、Sn部の掘り起こしや凝着による摩耗が起こりにくくなる。それらの結果として、被覆層の表面の摩擦が低く抑えられる。特に、被覆層の表面における合金露出率が30%以上であることで、Cu-Sn合金による摩擦の低減効果が、十分に得られる。 In the above terminal material, not only Sn but also the Cu-Sn alloy is exposed on the surface of the coating layer. Therefore, on the surface of the coating layer, the Cu--Sn alloy comes into direct contact with the other party's conductive member, such as the other party's terminal. Furthermore, since the amount of Sn portions present on the surface of the coating layer is reduced, wear due to digging up or adhesion of the Sn portions becomes less likely to occur. As a result, the friction on the surface of the coating layer is kept low. In particular, when the alloy exposure rate on the surface of the coating layer is 30% or more, the friction reduction effect of the Cu--Sn alloy can be sufficiently obtained.
 ここで、前記合金露出率は、50%以下であるとよい。そのように、Cu-Sn合金とともにSnがある程度の露出率で露出した被覆層は、Cu層とSn層を積層して加熱する方法により、簡便に製造することができる。また、被覆層の表面に、Snも十分に露出されることにより、Cu-Sn合金の寄与による摩擦低減効果と、接触抵抗の低減等、Snの寄与による効果が両立される。 Here, the alloy exposure rate is preferably 50% or less. In this way, a coating layer in which Sn is exposed at a certain exposure rate along with the Cu--Sn alloy can be easily manufactured by a method of laminating and heating a Cu layer and a Sn layer. Further, by sufficiently exposing Sn to the surface of the coating layer, the friction reduction effect due to the contribution of the Cu--Sn alloy and the effect due to the contribution of Sn, such as reduction in contact resistance, are both achieved.
 前記Sn部の平均の厚さが、0.10μm以上0.35μm以下であるとよい。また、前記合金部の平均の厚さが、0.25μm以上0.48μm以下であるとよい。すると、Cu層とSn層を積層して加熱する方法により、高い合金露出率を有し、摩擦低減効果に優れた被覆層を製造することができる。 The average thickness of the Sn portion is preferably 0.10 μm or more and 0.35 μm or less. Further, the average thickness of the alloy portion is preferably 0.25 μm or more and 0.48 μm or less. Then, by a method of laminating and heating a Cu layer and a Sn layer, a coating layer having a high alloy exposure rate and an excellent friction reduction effect can be manufactured.
 前記基材は、CuまたはCu合金より構成され、前記基材と前記被覆層との間に、NiまたはNi合金より構成された拡散抑制層をさらに有するとよい。NiおよびNi合金よりなる拡散抑制層は、基材を構成するCu等の原子が被覆層に拡散するのを効果的に抑制するものとなる。それにより、基材からの原子の拡散の影響を低減して、所定の合金露出率を示し、摩擦の低減された被覆層を安定して得ることができる。 It is preferable that the base material is made of Cu or a Cu alloy, and further includes a diffusion suppressing layer made of Ni or a Ni alloy between the base material and the coating layer. The diffusion suppressing layer made of Ni and Ni alloy effectively suppresses atoms such as Cu constituting the base material from diffusing into the coating layer. Thereby, it is possible to reduce the influence of atomic diffusion from the base material, exhibit a predetermined alloy exposure rate, and stably obtain a coating layer with reduced friction.
 本開示の電気接続端子は、前記端子材料を含んで構成され、少なくとも、相手方導電部材と接触する接点部において、前記基材の表面に、前記被覆層が形成されている。本開示の端子材料は、接点部の表面において合金部とSn部の両方が露出され、かつ所定の合金露出率を有することで、接点部が、上記のように、表面の摩擦係数が低く抑えられたものとなる。その端子材料より電気接続端子を構成することで、接点部の摩擦が低減され、相手方端子等、相手方導電部材と接続する際の嵌合や挿入等、接点部の摺動を伴う操作に要する力を、小さく抑えることができる。 The electrical connection terminal of the present disclosure is configured to include the terminal material, and the coating layer is formed on the surface of the base material at least in the contact portion that contacts the other conductive member. In the terminal material of the present disclosure, both the alloy part and the Sn part are exposed on the surface of the contact part and have a predetermined alloy exposure ratio, so that the contact part can maintain a low surface friction coefficient as described above. It becomes what is given. By constructing the electrical connection terminal from this terminal material, the friction of the contact part is reduced, and the force required for operations that involve sliding of the contact part, such as fitting and insertion when connecting with a mating conductive member such as a mating terminal. can be kept small.
 ここで、前記電気接続端子は、プリント回路基板用オス端子として構成されているとよい。プリント回路基板用のオス端子は、端子形状に基材を成形してから、金属被覆層を形成する後めっき品として構成される場合が多いが、後めっき品においては、一次電流分布の影響で、被覆層の厚さに不均一な分布が生じ、オス端子の先端部等、尖った箇所に、厚い金属被覆層が形成されやすい。すると、先端部において、摩擦が大きくなる可能性がある。しかし、上記端子接続材料においては、30%以上の合金露出率が確保されるため、被覆層が局所的に厚くなる箇所があっても、その箇所も含めて、表面の摩擦が効果的に低減され、低挿入力を達成することができる。 Here, the electrical connection terminal is preferably configured as a male terminal for a printed circuit board. Male terminals for printed circuit boards are often constructed as post-plated products in which a base material is formed into the terminal shape and then a metal coating layer is formed. , the thickness of the coating layer is unevenly distributed, and a thick metal coating layer is likely to be formed at sharp points such as the tips of male terminals. As a result, friction may increase at the tip. However, in the above terminal connection material, an alloy exposure rate of 30% or more is ensured, so even if there are areas where the coating layer is locally thick, surface friction is effectively reduced, including at those areas. low insertion force can be achieved.
[本開示の実施形態の詳細]
 以下に、本開示の実施形態について、図面を用いて詳細に説明する。本明細書において、単体金属には、不可避的不純物を含有する場合も含むものとする。また、合金には、特記しないかぎり、固溶体である場合も、金属間化合物を構成する場合も、含むものとする。さらに、ある金属を主成分とする合金とは、その金属元素が、組成中に50原子%以上含まれる合金を指すものとする。
[Details of embodiments of the present disclosure]
Embodiments of the present disclosure will be described in detail below using the drawings. In this specification, the term "elementary metal" includes cases where it contains unavoidable impurities. Furthermore, unless otherwise specified, the term "alloy" includes both a solid solution and an intermetallic compound. Furthermore, an alloy containing a certain metal as a main component refers to an alloy in which the metal element is contained in the composition in an amount of 50 atomic % or more.
<端子材料>
 以下、本開示の実施形態にかかる端子材料について説明する。本開示の一実施形態にかかる端子材料1の断面を、図1に模式的に示す。
<Terminal material>
Terminal materials according to embodiments of the present disclosure will be described below. A cross section of a terminal material 1 according to an embodiment of the present disclosure is schematically shown in FIG.
(端子材料の概略)
 端子材料1は、基材2と、基材2の表面を被覆する被覆層4と、を有する。また、任意ではあるが、基材2と被覆層4の間に、拡散抑制層3を有することが好ましい。被覆層4は、端子材料1の最表面に露出していることが好ましいが、被覆層4の特性に著しい影響を与えない限り、被覆層4の表面に、有機層等の薄膜(不図示)を設けてもよい。
(Outline of terminal material)
The terminal material 1 includes a base material 2 and a coating layer 4 that covers the surface of the base material 2. Although optional, it is preferable to provide a diffusion suppressing layer 3 between the base material 2 and the coating layer 4. The coating layer 4 is preferably exposed on the outermost surface of the terminal material 1, but a thin film (not shown) such as an organic layer may be added to the surface of the coating layer 4 unless it significantly affects the characteristics of the coating layer 4. may be provided.
 基材2を構成する材料は、特に限定されるものではない。基材2としては、電気接続部材の構成材料として多用されているCuまたはCu合金、AlまたはAl合金、FeまたはFe合金等を、好適に用いることができる。中でも、導電性や機械的特性に優れた金属であるCuまたはCu合金を、好適に用いることができる。 The material constituting the base material 2 is not particularly limited. As the base material 2, Cu or Cu alloy, Al or Al alloy, Fe or Fe alloy, etc., which are often used as constituent materials of electrical connection members, can be suitably used. Among these, Cu or Cu alloy, which is a metal with excellent conductivity and mechanical properties, can be suitably used.
 拡散抑制層3は、Cu等、基材2を構成する原子が、被覆層4へと拡散するのを抑制する層である。基材の構成原子が被覆層4の表面に拡散し、酸化を受けると、被覆層4の表面の接触抵抗を上昇させるものとなる。また、拡散した基材の構成原子の影響により、被覆層4において、所望の組成や材料分布が得られなくなる可能性がある。そこで、基材2と被覆層4の間に拡散抑制層3を設けておくことで、基材の構成原子が被覆層4に拡散した場合に起こりうるそれらの現象を抑制することができる。拡散抑制層3は、基材の構成原子の拡散を抑制することができるものであれば、その種類を限定されるものではないが、高い拡散抑制効果を示す金属として、NiまたはNi合金を好適に適用することができる。拡散抑制層3の厚さは、特に限定されるものではないが、十分な拡散抑制効果を得る等の観点から、0.5μm以上とするとよい。一方、加工性等の観点から、その厚さは、2μm以下とするとよい。拡散抑制層3と、基材2および被覆層4の間の界面においては、拡散抑制層3を構成する金属と、それぞれ基材2および被覆層4を構成する金属が合金を形成した領域を、有していてもよい。 The diffusion suppression layer 3 is a layer that suppresses atoms such as Cu that constitute the base material 2 from diffusing into the coating layer 4. When constituent atoms of the base material diffuse to the surface of the coating layer 4 and undergo oxidation, the contact resistance of the surface of the coating layer 4 increases. Further, due to the influence of the diffused constituent atoms of the base material, there is a possibility that the desired composition and material distribution cannot be obtained in the coating layer 4. Therefore, by providing the diffusion suppressing layer 3 between the base material 2 and the coating layer 4, it is possible to suppress those phenomena that may occur when constituent atoms of the base material diffuse into the coating layer 4. The type of diffusion suppressing layer 3 is not limited as long as it can suppress the diffusion of constituent atoms of the base material, but Ni or Ni alloy is preferably used as a metal that exhibits a high diffusion suppressing effect. It can be applied to Although the thickness of the diffusion suppressing layer 3 is not particularly limited, it is preferably 0.5 μm or more from the viewpoint of obtaining a sufficient diffusion suppressing effect. On the other hand, from the viewpoint of workability, etc., the thickness is preferably 2 μm or less. At the interface between the diffusion suppressing layer 3, the base material 2, and the coating layer 4, a region where the metal forming the diffusion suppressing layer 3 and the metal forming the base material 2 and the coating layer 4, respectively, formed an alloy is formed. may have.
 被覆層4は、SnとCuを含む金属層として構成されている。被覆層4は、均一な組成を有するものではなく、Cu-Sn合金より構成される合金部41と、Snより構成されるSn部42と、をともに含んでいる。被覆層4は、不可避的不純物や、不可避的に基材2や拡散抑制層3から拡散する原子を除いて、SnとCuのみより構成されることが好ましい。合金部41およびSn部42は、それぞれ、不可避的不純物を除いて、それぞれ、Cu-Sn合金およびSnのみより構成されることが好ましいが、Cu-Sn合金およびSn以外の不純物や添加元素を少量(例えば10質量%以下)含有するものであってもよい。合金部41を構成するCu-Sn合金の組成は特に限定されるものではないが、CuSnなる金属間化合物を主成分として構成されていることが好ましい。以下に、被覆層4の構成の詳細について説明する。 The covering layer 4 is configured as a metal layer containing Sn and Cu. The coating layer 4 does not have a uniform composition and includes both an alloy part 41 made of a Cu--Sn alloy and an Sn part 42 made of Sn. It is preferable that the coating layer 4 is composed only of Sn and Cu, excluding unavoidable impurities and atoms that unavoidably diffuse from the base material 2 and the diffusion suppressing layer 3. It is preferable that the alloy part 41 and the Sn part 42 be composed of only a Cu-Sn alloy and Sn, respectively, excluding unavoidable impurities, but a small amount of impurities or additive elements other than the Cu-Sn alloy and Sn may be added. (for example, 10% by mass or less). Although the composition of the Cu--Sn alloy constituting the alloy portion 41 is not particularly limited, it is preferably composed of an intermetallic compound of Cu 6 Sn 5 as a main component. The details of the structure of the coating layer 4 will be explained below.
(被覆層の構成)
 図1に示すように、被覆層4は、Cu-Sn合金より構成される合金部41と、Snより構成されるSn部42と、を有しており、合金部41とSn部42の両方が、被覆層4の表面に露出している。被覆層4において、合金部41は、山状に突出した凹凸構造を有する層として構成されている。そして、Sn部42は、その凹凸構造の凹凸を埋めるようにして、合金部41を被覆して形成されている。このように、凹凸構造を有するCu-Sn合金よりなる合金部41と、その表面を被覆するSn部42を備えた被覆層4は、後に説明するように、Cu層5とSn層6をこの順に積層し、加熱することで、簡便に製造することができる。
(Composition of coating layer)
As shown in FIG. 1, the coating layer 4 has an alloy part 41 made of a Cu-Sn alloy and an Sn part 42 made of Sn, and both the alloy part 41 and the Sn part 42 is exposed on the surface of the coating layer 4. In the coating layer 4, the alloy portion 41 is configured as a layer having an uneven structure projecting like a mountain. The Sn portion 42 is formed by covering the alloy portion 41 so as to fill the unevenness of the uneven structure. As described above, the coating layer 4, which includes the alloy part 41 made of a Cu-Sn alloy having an uneven structure and the Sn part 42 covering the surface thereof, is formed by combining the Cu layer 5 and the Sn layer 6 as described later. It can be easily manufactured by sequentially laminating the layers and heating them.
 本実施形態においては、上記のように、被覆層4の最表面に、合金部41と、Sn部42がともに露出している。つまり、合金部41の凹凸構造の凸部の頂上付近には、Sn部42に被覆されておらず、Cu-Sn合金が露出した合金露出部41aが存在する。そして、被覆層4の表面において、合金部41が占める面積率、つまり、表面全体の面積のうち、合金露出部41aが占める面積の割合として表される合金露出率が、30%以上となっている。 In this embodiment, as described above, both the alloy part 41 and the Sn part 42 are exposed on the outermost surface of the coating layer 4. That is, near the top of the convex portion of the uneven structure of the alloy portion 41, there is an exposed alloy portion 41a where the Cu—Sn alloy is exposed and is not covered with the Sn portion 42. Then, on the surface of the coating layer 4, the area ratio occupied by the alloy part 41, that is, the alloy exposure ratio expressed as the ratio of the area occupied by the exposed alloy part 41a to the entire surface area is 30% or more. There is.
 Sn部42は、低い接触抵抗を示し、端子材料1の表面において、相手方導電部材との間に、良好な電気接続特性を与えるものとなる。一方、合金部41は、Cu-Sn合金が高硬度等の特性を有することにより、被覆層4において、摩擦を低く抑える(摩擦係数を低減する)役割を果たす。Sn部42の下層に合金部41が存在することで、Sn部42の表面において、摩擦低減効果が得られる。そして、合金部41が最表面に露出し、相手方導電部材と直接接触することで、摩擦の低減にさらに高い効果が得られる。本実施形態にかかる端子材料1においては、被覆層4の表面に、Sn部42と、Cu-Snよりなる合金部41とがともに露出していることにより、接触抵抗の低減等、Sn部42による効果と、摩擦の低減等、合金部41による効果とを、ともに享受することができる。 The Sn portion 42 exhibits low contact resistance and provides good electrical connection characteristics between the surface of the terminal material 1 and the other conductive member. On the other hand, the alloy portion 41 plays a role in keeping the friction low (reducing the coefficient of friction) in the coating layer 4 because the Cu--Sn alloy has characteristics such as high hardness. The presence of the alloy portion 41 in the lower layer of the Sn portion 42 provides a friction reduction effect on the surface of the Sn portion 42 . Further, since the alloy portion 41 is exposed on the outermost surface and comes into direct contact with the other conductive member, an even higher effect in reducing friction can be obtained. In the terminal material 1 according to the present embodiment, both the Sn portion 42 and the alloy portion 41 made of Cu-Sn are exposed on the surface of the coating layer 4, so that contact resistance can be reduced, etc. It is possible to enjoy both the effects of the alloy portion 41 and the effects of the alloy portion 41, such as reduction of friction.
 図6に示すように、合金部41の表面の全体が、Sn部42に被覆されているとすれば、合金部41による摩擦低減効果が、十分に得られない。さらに、Snが軟らかく、凝着しやすい性質を有する金属であるため、図6のようにSn部42が厚く形成され、特に合金部41の凹凸構造の谷に相当する箇所において、Sn部42が大きな体積を占めることにより、相手方導電部材との間で摺動が行われた際に、Sn部42が、掘り起こしや凝着を起こし、摩擦係数を上昇させるものとなる。 As shown in FIG. 6, if the entire surface of the alloy part 41 is covered with the Sn part 42, the friction reduction effect of the alloy part 41 cannot be sufficiently obtained. Furthermore, since Sn is a metal that is soft and easily adheres, the Sn portion 42 is formed thickly as shown in FIG. By occupying a large volume, when sliding is performed between the Sn portions 42 and the other conductive member, the Sn portions 42 cause digging and adhesion, thereby increasing the coefficient of friction.
 本実施形態にかかる端子材料1においては、上記のように、被覆層4の表面に、Sn部42だけでなく合金部41が露出しており、さらに合金露出率が30%以上となっていることにより、特に摩擦低減効果に優れたものとなる。合金部41が被覆層4の表面の30%以上を占め、相手方導電部材と接触して、摺動時の摩擦現象に直接関与することで、合金部41による摩擦低減の効果が高く発揮されるからである。また、合金部41の露出率が高くなっていることは、合金部41を被覆するSn部42の厚さが小さく抑えられており、被覆層4におけるSn部42の存在量が少なくなっていることを意味する。すると、Sn部42の掘り起こしや凝着による摩擦の増大が起こりにくい。それらの結果、本実施形態にかかる端子材料1は、被覆層4の表面における摩擦の低減効果に優れたものとなる。この摩擦の低減は、被覆層4における合金部41とSn部42の分布状態の結果として得られるものである。摩擦低減の効果をさらに高める観点から、合金露出率は、35%以上、さらには40%以上、45%以上であると、より好ましい。 In the terminal material 1 according to the present embodiment, as described above, not only the Sn portion 42 but also the alloy portion 41 are exposed on the surface of the coating layer 4, and the alloy exposure rate is 30% or more. This results in a particularly excellent friction reduction effect. The alloy part 41 occupies 30% or more of the surface of the coating layer 4, comes into contact with the other conductive member, and is directly involved in the friction phenomenon during sliding, so that the friction reduction effect of the alloy part 41 is highly exhibited. It is from. Moreover, the fact that the exposure rate of the alloy part 41 is high means that the thickness of the Sn part 42 covering the alloy part 41 is kept small, and the amount of Sn part 42 present in the coating layer 4 is reduced. It means that. This makes it difficult for friction to increase due to digging up or adhesion of the Sn portion 42. As a result, the terminal material 1 according to the present embodiment has an excellent effect of reducing friction on the surface of the coating layer 4. This reduction in friction is obtained as a result of the distribution of the alloy portions 41 and Sn portions 42 in the coating layer 4. From the viewpoint of further enhancing the effect of reducing friction, the alloy exposure rate is more preferably 35% or more, more preferably 40% or more, or 45% or more.
 合金露出率の上限は、特に定められるものではないが、50%以下、さらには48%以下程度に抑えておくとよい。30%以上かつそれらの上限以下の合金露出率は、凹凸構造を有する合金部41の表面をSn部42が被覆する被覆層4の構造において、実現しやすく、下に説明するCu層5とSn層6を積層して加熱する方法により、簡便に得ることができる。また、合金露出率が上記上限以下に収まっていれば、Sn部42の露出率も十分に大きく確保されることになるので、合金部41による摩擦低減効果とともに、接触抵抗の低減等、Sn部42によってもたらされる効果も、十分に得ることができる。 The upper limit of the alloy exposure rate is not particularly determined, but it is preferably kept at about 50% or less, and even 48% or less. An alloy exposure rate of 30% or more and below these upper limits can be easily achieved in the structure of the coating layer 4 in which the Sn part 42 covers the surface of the alloy part 41 having an uneven structure. It can be easily obtained by a method of laminating layers 6 and heating them. In addition, if the alloy exposure rate is below the above upper limit, the exposure rate of the Sn portion 42 will be ensured sufficiently large, so that in addition to the friction reduction effect of the alloy portion 41, the Sn portion The effects brought about by 42 can also be fully obtained.
 被覆層4においては、上記の合金露出率が与えられれば、Sn部42および合金部41の厚さや分布状態の詳細は、特に限定されるものではない。しかし、30%以上、そして好ましくは50%以下の合金露出率を有する被覆層4を与えやすく、またCu層5とSn層6を積層して加熱する方法で形成しやすいなどの点から、被覆層4は、以下のような構成を有することが好ましい。 In the coating layer 4, the details of the thickness and distribution of the Sn portion 42 and the alloy portion 41 are not particularly limited as long as the above alloy exposure rate is given. However, since it is easy to provide the coating layer 4 having an alloy exposure rate of 30% or more and preferably 50% or less, and it is easy to form the coating layer 4 by laminating and heating the Cu layer 5 and the Sn layer 6, the coating It is preferable that layer 4 has the following configuration.
 まず、被覆層4において、Sn部42の厚さは、合金部41の厚さ(平均値;以下においても同様)よりも小さいことが好ましい。Sn部42および合金部41の厚さそのものは、特に限定されるものではない。しかし、Sn部42の厚さ(平均値)は、0.35μm以下、さらには0.25μm以下、0.20μm以下であるとよい。すると、高い合金露出率を確保しやすいとともに、Sn部42の掘り起こしや凝着による摩擦の増大を効果的に抑制することができる。一方、Sn部42の厚さ(平均値)は、0.10μm以上、さらには0.12μm以上であるとよい。すると、Sn部42による接触抵抗低減等の効果も、十分に得やすくなる。合金部41の厚さ(平均値)としては、十分な合金露出率を確保し、摩擦低減の効果を得やすくする観点から、0.25μm以上、さらには0.30μm以上、0.35μm以上であることが好ましい。一方、合金露出率を高めすぎないようにする観点から、合金部41の厚さは、0.48μm以下、さらには0.45μm以下であるとよい。 First, in the coating layer 4, the thickness of the Sn portion 42 is preferably smaller than the thickness (average value; the same applies below) of the alloy portion 41. The thicknesses of the Sn portion 42 and the alloy portion 41 are not particularly limited. However, the thickness (average value) of the Sn portion 42 is preferably 0.35 μm or less, more preferably 0.25 μm or less, or 0.20 μm or less. This makes it easy to ensure a high alloy exposure rate, and it is also possible to effectively suppress an increase in friction due to digging up or adhesion of the Sn portion 42. On the other hand, the thickness (average value) of the Sn portion 42 is preferably 0.10 μm or more, more preferably 0.12 μm or more. Then, effects such as contact resistance reduction by the Sn portion 42 can be sufficiently easily obtained. The thickness (average value) of the alloy portion 41 should be 0.25 μm or more, further 0.30 μm or more, or 0.35 μm or more, from the viewpoint of ensuring a sufficient alloy exposure rate and making it easier to obtain the effect of reducing friction. It is preferable that there be. On the other hand, from the viewpoint of not increasing the alloy exposure rate too much, the thickness of the alloy portion 41 is preferably 0.48 μm or less, and more preferably 0.45 μm or less.
 被覆層4の表面に露出した合金部41およびSn部42の具体的な分布形状は、特に限定されるものではないが、合金部41とSn部42の両方の特性を有効に利用する観点から、端子における接点部等、相手方導電部材と接触する箇所に、合金部41とSn部42が両方とも、ある程度の面積を占めて共存するように、分布していればよい。 The specific distribution shape of the alloy part 41 and the Sn part 42 exposed on the surface of the coating layer 4 is not particularly limited, but from the viewpoint of effectively utilizing the characteristics of both the alloy part 41 and the Sn part 42. It is only necessary that the alloy portion 41 and the Sn portion 42 are distributed so that they both occupy a certain amount of area and coexist at a location that contacts the other conductive member, such as a contact portion of a terminal.
(被覆層の形成方法)
 被覆層4の形成方法は、特に限定されるものではないが、CuとSnの合金化による方法を、好適に用いることができる。つまり、図2に示したように、適宜、拡散抑制層3を形成した基材2の表面に、Cu層5とSn層6をこの順に積層した原料材1’を準備する。Cu層5およびSn層6は、電解めっきによって形成することが好ましい。次に、この原料材1’をSnの融点以上の温度で加熱する(リフロー処理)。加熱により、CuとSnの合金化が起こり、Cu-Sn合金よりなる合金部41が形成される。そして、合金化に費やされなかったSnが、Sn部42となる。このように、Cu層5とSn層6を積層して加熱することで、特別な操作を行わなくても、合金部41が凹凸構造を有する層として形成され、その凹凸を埋めるようにSn部42が合金部41を被覆した被覆層4を形成することができる。
(Method for forming coating layer)
The method of forming the coating layer 4 is not particularly limited, but a method of alloying Cu and Sn can be suitably used. That is, as shown in FIG. 2, a raw material 1' is prepared in which a Cu layer 5 and a Sn layer 6 are laminated in this order on the surface of a base material 2 on which a diffusion suppressing layer 3 is appropriately formed. The Cu layer 5 and the Sn layer 6 are preferably formed by electrolytic plating. Next, this raw material 1' is heated at a temperature equal to or higher than the melting point of Sn (reflow treatment). By heating, alloying of Cu and Sn occurs, and an alloy portion 41 made of a Cu--Sn alloy is formed. Then, the Sn that was not spent on alloying becomes the Sn portion 42. In this way, by laminating and heating the Cu layer 5 and the Sn layer 6, the alloy portion 41 is formed as a layer having an uneven structure without any special operation, and the Sn layer is formed to fill the unevenness. 42 can form a coating layer 4 that covers the alloy part 41.
 被覆層4における合金露出率は、例えば、原料材1’におけるCu層5およびSn層6の厚さによって制御することができる。合金露出率を十分に高める観点から、Sn層6の厚さは、Cu層5の厚さに対して、6.0倍以下、さらには5.0倍以下、4.0倍以下に留めておくことが好ましい。また、Sn層6の厚さを、0.60μm以下、0.50μm以下、0.40μm以下としておくとよい。一方で、SnとCuの合金化を十分に進めるとともに、合金化に費やされないSn部42を十分に残す観点から、Sn層6の厚さは、Cu層5の厚さに対して、1.0倍以上、さらには2.0倍以上、3.0倍以上としておくとよい。また、Sn層6の厚さを、0.10μm以上、0.20μm以上、0.30μm以上としておくとよい。Cu層5の厚さは、0.05μm以上、また0.10μm以上としておくとよく、一方で0.20μm以下としておくとよい。なお、原料材1’におけるSn層6とCu層5の厚さの比率は、合金形成後の被覆層4において、被覆層4全体に含まれるSn原子とCu原子の原子数比を、SnとCuの体積比に換算した値として、端子材料1の構成から確認することができる。 The alloy exposure rate in the coating layer 4 can be controlled, for example, by the thicknesses of the Cu layer 5 and the Sn layer 6 in the raw material 1'. From the viewpoint of sufficiently increasing the alloy exposure rate, the thickness of the Sn layer 6 should be kept at 6.0 times or less, further 5.0 times or less, and 4.0 times or less than the Cu layer 5. It is preferable to leave it there. Further, the thickness of the Sn layer 6 is preferably set to 0.60 μm or less, 0.50 μm or less, or 0.40 μm or less. On the other hand, from the viewpoint of sufficiently advancing the alloying of Sn and Cu and leaving enough Sn portion 42 that is not spent on alloying, the thickness of the Sn layer 6 is set to 1 It is preferable to set it to .0 times or more, further 2.0 times or more, or 3.0 times or more. Further, the thickness of the Sn layer 6 is preferably set to 0.10 μm or more, 0.20 μm or more, or 0.30 μm or more. The thickness of the Cu layer 5 is preferably 0.05 μm or more, or 0.10 μm or more, and preferably 0.20 μm or less. In addition, the ratio of the thickness of the Sn layer 6 and the Cu layer 5 in the raw material 1' is the atomic ratio of Sn atoms and Cu atoms contained in the entire coating layer 4 in the coating layer 4 after alloy formation. The value converted to the volume ratio of Cu can be confirmed from the configuration of the terminal material 1.
<電気接続端子>
 本開示の一実施形態にかかる電気接続端子は、上記で説明した本開示の実施形態にかかる端子材料1を含んで構成される。電気接続端子において、被覆層4は、少なくとも、相手方端子等、相手方導電部材と接触する接点部に形成されている。被覆層4(および拡散抑制層3)は、少なくとも接点部に形成されていれば、電気接続端子の表面の全域に形成されていても、一部の領域のみに形成されていてもよい。
<Electrical connection terminal>
An electrical connection terminal according to an embodiment of the present disclosure is configured to include the terminal material 1 according to the embodiment of the present disclosure described above. In the electrical connection terminal, the coating layer 4 is formed at least on a contact portion such as a mating terminal that comes into contact with a mating conductive member. The covering layer 4 (and the diffusion suppressing layer 3) may be formed on the entire surface of the electrical connection terminal or only on a part of the surface as long as it is formed on at least the contact portion.
 電気接続端子の具体的な種類および形状は、特に限定されるものではないが、プリント回路基板(PCB)用オス端子である形態を、好適に例示することができる。図3に、PCB用オス端子10の構造を例示する。PCB用オス端子10は、長尺状の電気接続端子であり、一端に、プリント回路基板のスルーホールに挿入して接続される基板接続部11を有し、他端に、相手方接続端子と挿入等によって接続される嵌合型オス端子の形状をとった端子接続部12を有している。このPCB用オス端子10において、接点部となる基板接続部11および端子接続部12を少なくとも含む箇所において、基材2の表面に被覆層4が設けられる。好ましくは、表面全域に被覆層4が形成されているとよい。 The specific type and shape of the electrical connection terminal are not particularly limited, but a preferred example is a male terminal for a printed circuit board (PCB). FIG. 3 illustrates the structure of the PCB male terminal 10. The PCB male terminal 10 is a long electrical connection terminal, and has a board connection part 11 at one end that is inserted into a through hole of a printed circuit board and connected, and the other end is inserted into a mating connection terminal. It has a terminal connection part 12 in the shape of a fitting type male terminal that is connected by a connector or the like. In this PCB male terminal 10, a coating layer 4 is provided on the surface of the base material 2 at a location that includes at least the board connection portion 11 and the terminal connection portion 12, which serve as contact portions. Preferably, the coating layer 4 is formed over the entire surface.
 上記で説明したように、本開示の実施形態にかかる端子材料1は、合金部41とSn部42をともに被覆層4の表面に露出させ、30%以上の合金露出率を有することにより、摩擦低減効果に優れたものであり、PCB用オス端子10をはじめ、本開示の実施形態にかかる端子材料1より構成された電気接続端子は、接点部において、その摩擦低減効果を享受することができる。つまり、例えば端子接続部11を挿入されるメス端子のような相手方導電部材と、摺動を伴って挿入・嵌合させる際に要する力である挿入力(または嵌合力;本明細書において同じ)を、小さく抑えることができる。PCB用オス端子10は、複数をコネクタハウジングに固定したコネクタの状態で、一括して挿入・嵌合を行う場合も多く、各端子10の挿入力の低減が、コネクタ全体として大きな挿入力低減効果につながる。 As explained above, in the terminal material 1 according to the embodiment of the present disclosure, both the alloy part 41 and the Sn part 42 are exposed on the surface of the coating layer 4, and by having an alloy exposure rate of 30% or more, friction is reduced. It has an excellent friction reduction effect, and electrical connection terminals made of the terminal material 1 according to the embodiment of the present disclosure, including the male terminal 10 for PCB, can enjoy the friction reduction effect at the contact portion. . That is, for example, insertion force (or fitting force; the same in this specification) is the force required when inserting and fitting the terminal connecting part 11 with a mating conductive member such as a female terminal with sliding movement. can be kept small. A plurality of male PCB terminals 10 are often inserted and mated all at once in the state of a connector fixed to a connector housing, and reducing the insertion force of each terminal 10 has a large insertion force reduction effect for the connector as a whole. Leads to.
 一般に、PCB用オス端子は、打ち抜き加工等により、基材を所定の端子形状に成形したうえで、基材の表面にめっきによって金属被覆層を形成する場合が多い(後めっき)。このように、後めっきによって形成される電気接続端子においては、めっき時の一次電流分布の影響により、基板接続部11や端子接続部12の先端のように、尖った箇所の金属被覆層の厚さが他の箇所よりも大きくなった不均一な分布が、金属被覆層に生じやすい。Sn層等、凝着や掘り起こしを起こしやすい金属被覆層が接点部に厚く形成されると、端子挿入力の上昇につながる。しかし、本開示の実施形態にかかる端子材料1より構成された電気接続端子においては、被覆層4の表面に、Sn部42とともに合金部41が露出し、かつ合金露出率が30%以上とされていることにより、接点部を含む箇所に厚い被覆層4が形成されたとしても、合金部41の寄与により、挿入力低減の効果が得られる。 In general, male terminals for PCBs are often formed by forming a base material into a predetermined terminal shape by punching or the like, and then forming a metal coating layer on the surface of the base material by plating (post-plating). In this way, in electrical connection terminals formed by post-plating, the thickness of the metal coating layer at sharp points such as the tips of the board connection part 11 and the terminal connection part 12 is affected by the primary current distribution during plating. A non-uniform distribution in which the thickness is larger than other parts is likely to occur in the metal coating layer. If a metal coating layer such as a Sn layer that is prone to adhesion or digging is formed thickly at the contact portion, the terminal insertion force will increase. However, in the electrical connection terminal made of the terminal material 1 according to the embodiment of the present disclosure, the alloy portion 41 is exposed together with the Sn portion 42 on the surface of the coating layer 4, and the alloy exposure rate is 30% or more. As a result, even if a thick coating layer 4 is formed at a portion including the contact portion, the effect of reducing the insertion force can be obtained due to the contribution of the alloy portion 41.
 以下、実施例を示す。なお、本発明はこれら実施例によって限定されるものではない。ここでは、合金露出率と端子挿入力の関係について検証した。以下では、特記しない限り、試料の作製および評価は、大気中、室温にて行っている。 Examples are shown below. Note that the present invention is not limited to these Examples. Here, we verified the relationship between alloy exposure rate and terminal insertion force. In the following, unless otherwise specified, samples were prepared and evaluated in the atmosphere at room temperature.
<試料の作製>
 構造評価用の試料として、平板状の銅合金基材の表面に、厚さ1μmのNiの拡散抑制層を形成したうえで、Cu層とSn層をこの順に形成し、原料材を得た。各金属層の形成は、電解めっき法によって行った。Cu層5の厚さは、0.1μmとし、Sn層の厚さは、下の表1に示したとおりとした。続いて、この原料材を加熱してリフロー処理を行い、CuとSnの合金化によって、合金部とSn部を含む被覆層を形成した。
<Preparation of sample>
As a sample for structural evaluation, a Ni diffusion suppressing layer with a thickness of 1 μm was formed on the surface of a flat copper alloy base material, and then a Cu layer and a Sn layer were formed in this order to obtain a raw material. Each metal layer was formed by electrolytic plating. The thickness of the Cu layer 5 was 0.1 μm, and the thickness of the Sn layer was as shown in Table 1 below. Subsequently, this raw material was heated and subjected to a reflow treatment to form a coating layer including an alloy part and a Sn part by alloying Cu and Sn.
 別途、端子挿入力を評価するための試料として、銅合金基材を、図3に示したPCB用オス端子の形状に打ち抜き加工したものの表面に、上記と同様に、Ni層、Cu層、Sn層の形成とリフロー処理を行うことで、端子表面に被覆層を形成した。端子としては、0.64mm角のものを用いた。この作製した端子をコネクタハウジングにセットして、PCB用の多極コネクタを模した40極の試験用のモデルコネクタを作製した。 Separately, as a sample for evaluating the terminal insertion force, a copper alloy base material was punched into the shape of the male terminal for PCB shown in Fig. 3, and the surface was coated with a Ni layer, a Cu layer, and a Sn layer in the same manner as above. A coating layer was formed on the terminal surface by layer formation and reflow treatment. A 0.64 mm square terminal was used as the terminal. The produced terminals were set in a connector housing to produce a 40-pole test model connector imitating a multi-pole connector for PCB.
<評価方法>
(1)被覆層の構造の評価
 構造評価用の板状の試料の断面に対して、走査電子顕微鏡(SEM)観察を行い、凹凸構造を有する合金部と、その合金部を被覆するSn部とを含んだ構造が被覆層に形成されていることを確認した。そして、Sn部および合金部の厚さ(それぞれ平均値)を、断面のSEM観察像において計測した。
<Evaluation method>
(1) Evaluation of the structure of the coating layer Scanning electron microscopy (SEM) observation was performed on the cross section of a plate-shaped sample for structural evaluation. It was confirmed that a structure containing the following was formed in the coating layer. Then, the thicknesses (each average value) of the Sn part and the alloy part were measured in the SEM observation image of the cross section.
 さらに、試料の表面に対してもSEM観察を行い、合金露出率を評価した。この際、得られたSEM観察像を2値化したうえで、合金部に相当する箇所が観察像全体において占める箇所の面積率を見積もり、合金露出率とした。 Furthermore, SEM observation was performed on the surface of the sample to evaluate the alloy exposure rate. At this time, the obtained SEM observation image was binarized, and the area ratio of the area corresponding to the alloy portion in the entire observation image was estimated and determined as the alloy exposure rate.
(2)挿入力の評価
 オス型コネクタのモデルとして上記で作製したモデルコネクタについて、対応するメス端子がコネクタハウジングにセットされたメス型コネクタと嵌合させて、コネクタ嵌合力を計測した。この際、コネクタ嵌合力は、モデルコネクタを摺動させながらメス型コネクタと嵌合させるのに要する力の最大値として計測した。
(2) Evaluation of insertion force For the model connector produced above as a male connector model, the corresponding female terminal was fitted into a female connector set in the connector housing, and the connector fitting force was measured. At this time, the connector fitting force was measured as the maximum value of the force required to fit the model connector to the female connector while sliding it.
<評価結果>
 図4に、原料材のSn層の厚さを異ならせた複数の試料について、表面を観察したSEM像を、2値化像および合金露出率の値とともに示す。SEM像中のスケールバーは、50μmを示している。
<Evaluation results>
FIG. 4 shows SEM images of the surfaces of a plurality of samples in which the thickness of the Sn layer of the raw material was varied, together with the binarized image and the value of the alloy exposure rate. The scale bar in the SEM image indicates 50 μm.
 SEM像において、暗く観察されている領域がCu-Sn合金よりなる合金部、明るく観察されている領域がSn部にあたる。SEM像より、各試料の表面に、合金部とSn部の両方が混在して露出していることが確認される。合金露出率は、試料によって異なっており、原料材のSn層の膜厚が比較的小さい領域で、合金露出率が高くなっている傾向がある。 In the SEM image, the region observed darkly corresponds to the alloy part made of a Cu-Sn alloy, and the region observed brightly corresponds to the Sn part. From the SEM images, it is confirmed that both the alloy part and the Sn part are mixed and exposed on the surface of each sample. The alloy exposure rate varies depending on the sample, and the alloy exposure rate tends to be high in regions where the Sn layer of the raw material has a relatively small thickness.
 次に、下の表1に、各試料について、原料材のSn層の厚さとともに、合金露出率および各部の厚さ、およびコネクタ嵌合力の測定値をまとめる。なお、表1および後述する図5に表示している合金露出率の値は、複数の観察箇所において得た図4と同様の計測結果を平均したものである。 Next, Table 1 below summarizes the thickness of the Sn layer of the raw material, the alloy exposure rate, the thickness of each part, and the measured values of the connector fitting force for each sample. The alloy exposure rate values shown in Table 1 and FIG. 5, which will be described later, are the average of the same measurement results as in FIG. 4 obtained at a plurality of observation points.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によると、おおむね、原料材のSn層を厚くするほど、得られる被覆層において、Sn部および合金部の厚さがともに大きくなっているが、合金部に対するSn部の厚さの比率([Sn部の厚さ]/[合金部の厚さ]×100%)も大きくなっている。合金露出率は、図4にも示したとおり、原料材のSn層が厚くなるほど、小さくなる傾向がある。コネクタ嵌合力は、試料1~4のSn層の厚さが比較的小さい領域ではあまり変化していないが、Sn層の厚さがそれらよりも大きい試料5,6では、Sn層の厚さの増大に伴って、大きくなっている。 According to Table 1, as the Sn layer of the raw material becomes thicker, both the Sn part and the alloy part become thicker in the resulting coating layer, but the ratio of the thickness of the Sn part to the alloy part ( [Thickness of Sn portion]/[Thickness of alloy portion]×100%) is also increased. As shown in FIG. 4, the alloy exposure rate tends to decrease as the Sn layer of the raw material becomes thicker. The connector fitting force does not change much in the areas where the Sn layer thickness is relatively small in Samples 1 to 4, but in Samples 5 and 6 where the Sn layer thickness is larger than those, As it grows, it becomes larger.
 さらに、図5に、表1に示したデータについて、合金露出率およびコネクタ嵌合力の値を、被覆層におけるSn部の平均の厚さに対してプロットしている。合金露出率はダイヤ印にて表示しており、その値を左軸に示している。コネクタ嵌合力は丸印にて表示しており、その値を右軸に示している。 Further, in FIG. 5, the values of the alloy exposure rate and the connector fitting force are plotted against the average thickness of the Sn portion in the coating layer for the data shown in Table 1. The alloy exposure rate is indicated by a diamond, and its value is shown on the left axis. The connector fitting force is indicated by a circle, and its value is shown on the right axis.
 図5によると、表1で見られた傾向が、明確に確認される。つまり、Sn部の厚さが大きくなるほど、合金露出率は、ほぼ単調減少の形態をとって、減少している。これに対し、コネクタ嵌合力は、Sn部の厚さが0.40μm未満の領域では、ほぼ平坦に推移しているのに対し、それよりもSn部の厚さが大きい領域では、Sn部の厚さの増大に伴って、上昇している。合金露出率とコネクタ嵌合力を対照すると、おおむね、合金露出率が30%以下の領域で、コネクタ嵌合力が平坦に低値を推移している。このことから、合金露出率を30%以下に抑えておけば、被覆層の表面における摩擦を低減し、電気接続端子において、端子挿入力を小さく抑えることができると言える。 According to Figure 5, the trends seen in Table 1 are clearly confirmed. In other words, as the thickness of the Sn portion increases, the alloy exposure rate decreases almost monotonically. On the other hand, the connector mating force remains almost flat in the region where the thickness of the Sn part is less than 0.40 μm, but in the region where the thickness of the Sn part is larger than that, It increases as the thickness increases. Comparing the alloy exposure rate and the connector fitting force, the connector fitting force remains flat and low in the region where the alloy exposure rate is 30% or less. From this, it can be said that by suppressing the alloy exposure rate to 30% or less, the friction on the surface of the coating layer can be reduced and the terminal insertion force in the electrical connection terminal can be suppressed to a small level.
 以上、本開示の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。 Although the embodiments of the present disclosure have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention.
1    端子材料
1’   原料材
10   PCB用オス端子
11   基板接続部
12   端子接続部
2    基材
3    拡散抑制層
4    被覆層
41   合金部
41a  合金露出部
42   Sn部
5    Cu層
6    Sn層
9    Sn部が厚く形成された端子材料
1 Terminal material 1' Raw material 10 Male terminal for PCB 11 Board connection part 12 Terminal connection part 2 Base material 3 Diffusion suppression layer 4 Covering layer 41 Alloy part 41a Alloy exposed part 42 Sn part 5 Cu layer 6 Sn layer 9 Sn part Thick terminal material

Claims (7)

  1.  基材と、
     前記基材の表面を被覆する被覆層と、を有し、
     前記被覆層は、
     Cu-Sn合金より構成される合金部と、
     Snより構成されるSn部と、を有し、
     前記被覆層の表面には、前記合金部と前記Sn部の両方が露出され、
     前記被覆層の表面において前記合金部が占める面積率を示す合金露出率が、30%以上である、端子材料。
    base material and
    a coating layer that covers the surface of the base material,
    The coating layer is
    An alloy part made of a Cu-Sn alloy,
    and an Sn portion composed of Sn,
    Both the alloy part and the Sn part are exposed on the surface of the coating layer,
    The terminal material has an alloy exposure ratio, which indicates the area ratio occupied by the alloy portion on the surface of the coating layer, of 30% or more.
  2.  前記合金露出率は、50%以下である、請求項1に記載の端子材料。 The terminal material according to claim 1, wherein the alloy exposure rate is 50% or less.
  3.  前記Sn部の平均の厚さが、0.10μm以上0.35μm以下である、請求項1または請求項2に記載の端子材料。 The terminal material according to claim 1 or 2, wherein the average thickness of the Sn portion is 0.10 μm or more and 0.35 μm or less.
  4.  前記合金部の平均の厚さが、0.25μm以上0.48μm以下である、請求項3に記載の端子材料。 The terminal material according to claim 3, wherein the average thickness of the alloy portion is 0.25 μm or more and 0.48 μm or less.
  5.  前記基材は、CuまたはCu合金より構成され、
     前記基材と前記被覆層との間に、NiまたはNi合金より構成された拡散抑制層をさらに有する、請求項1から請求項4のいずれか1項に記載の端子材料。
    The base material is made of Cu or a Cu alloy,
    The terminal material according to any one of claims 1 to 4, further comprising a diffusion suppressing layer made of Ni or a Ni alloy between the base material and the coating layer.
  6.  請求項1から請求項5のいずれか1項に記載の端子材料を含んで構成され、少なくとも、相手方導電部材と接触する接点部において、前記基材の表面に、前記被覆層が形成されている、電気接続端子。 The base material is configured to include the terminal material according to any one of claims 1 to 5, and the coating layer is formed on the surface of the base material at least in the contact portion that comes into contact with the other conductive member. , electrical connection terminals.
  7.  プリント回路基板用オス端子として構成されている、請求項6に記載の電気接続端子。 The electrical connection terminal according to claim 6, configured as a male terminal for a printed circuit board.
PCT/JP2023/010836 2022-03-22 2023-03-20 Terminal material and electrical connection terminal WO2023182259A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045824 2022-03-22
JP2022-045824 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182259A1 true WO2023182259A1 (en) 2023-09-28

Family

ID=88100944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010836 WO2023182259A1 (en) 2022-03-22 2023-03-20 Terminal material and electrical connection terminal

Country Status (1)

Country Link
WO (1) WO2023182259A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005041A1 (en) * 2007-06-29 2009-01-08 The Furukawa Electric Co., Ltd. Fretting-resistant connector and process for manufacturing the same
JP2016211031A (en) * 2015-05-07 2016-12-15 Dowaメタルテック株式会社 Sn-PLATED MATERIAL AND METHOD OF PRODUCING THE SAME
WO2018074256A1 (en) * 2016-10-17 2018-04-26 古河電気工業株式会社 Conductive bar material
JP2020105574A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Anticorrosive terminal material, terminal and wire terminal structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005041A1 (en) * 2007-06-29 2009-01-08 The Furukawa Electric Co., Ltd. Fretting-resistant connector and process for manufacturing the same
JP2016211031A (en) * 2015-05-07 2016-12-15 Dowaメタルテック株式会社 Sn-PLATED MATERIAL AND METHOD OF PRODUCING THE SAME
WO2018074256A1 (en) * 2016-10-17 2018-04-26 古河電気工業株式会社 Conductive bar material
JP2020105574A (en) * 2018-12-27 2020-07-09 三菱マテリアル株式会社 Anticorrosive terminal material, terminal and wire terminal structure

Similar Documents

Publication Publication Date Title
JP5192878B2 (en) Connectors and metal materials for connectors
US7824776B2 (en) Plated material and electric and electronic parts using the plated material
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
JP6183543B2 (en) Terminal pair and connector pair with terminal pair
TWI794263B (en) Terminal material with silver film and terminal with silver film
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JP2004006065A (en) Fitting type connector terminal for electrical connection
JP2009007668A (en) Metal material for electrical electronic component
JP2012036436A (en) Sn ALLOY PLATED CONDUCTIVE MATERIAL AND METHOD FOR PRODUCING THE SAME
JP2007277715A (en) Plated material and electric/electronic component using the same
JP2010267418A (en) Connector
JP4111522B2 (en) Sn coated copper material and terminal
WO2017110859A1 (en) Conductive material for connection component
CN113597480B (en) Metal material and connection terminal
US10804632B2 (en) Connection terminal and method for producing connection terminal
WO2023182259A1 (en) Terminal material and electrical connection terminal
US10804633B2 (en) Electrical contact point, connector terminal pair and connector pair
JP2004225070A (en) Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP2021046595A (en) Pin terminal, connector, wire harness having connector and control unit
JP7080942B2 (en) Plating materials for electronic components and electronic components
WO2019031549A1 (en) Terminal material with silver coating film, and terminal with silver coating film
JP7155312B2 (en) Plating materials for electronic parts and electronic parts
JP5748019B1 (en) Pin terminals and terminal materials
JP2015042771A (en) Metal material for electronic component, connector terminal using the same, connector, and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774854

Country of ref document: EP

Kind code of ref document: A1