JP2022122352A - Inner surface processing device - Google Patents

Inner surface processing device Download PDF

Info

Publication number
JP2022122352A
JP2022122352A JP2021019510A JP2021019510A JP2022122352A JP 2022122352 A JP2022122352 A JP 2022122352A JP 2021019510 A JP2021019510 A JP 2021019510A JP 2021019510 A JP2021019510 A JP 2021019510A JP 2022122352 A JP2022122352 A JP 2022122352A
Authority
JP
Japan
Prior art keywords
laser beam
processing
cylindrical inner
inspection
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021019510A
Other languages
Japanese (ja)
Inventor
泰史 江崎
Yasushi Ezaki
靖大 石倉
Yasuhiro Ishikura
紀之 大年
Noriyuki Otoshi
博史 世良
Hiroshi Sera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2021019510A priority Critical patent/JP2022122352A/en
Publication of JP2022122352A publication Critical patent/JP2022122352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Laser Beam Processing (AREA)

Abstract

To provide an inner surface processing device capable of simultaneously performing processing, defect inspection, and inner diameter measurement of a cylindrical inner surface of a processed body in a short time.SOLUTION: An inner surface processing device 100 includes: processing means 10 for processing a cylindrical inner surface 51 of a processed body 50 by irradiating it with a processing laser beam; defect inspection means 30 for performing defect inspection on the cylindrical inner surface 51 of the processed body 50 by irradiating the cylindrical inner surface 51 with an inspection laser beam; inner diameter measurement means 40 for performing inner diameter measurement on the cylindrical inner surface 51 of the processed body 50 by irradiating the cylindrical inner surface 51 with a measurement laser beam; and a probe 20 for irradiating the cylindrical inner surface 51 with the processing laser beam, the inspection laser beam, and the measurement laser beam while moving along a cylinder axis direction of the processed body 50, and acquiring reflection light of the inspection laser beam and the measurement laser beam.SELECTED DRAWING: Figure 3

Description

本発明は、被加工体の円筒状内面の加工、欠陥検査及び内径測定を行う内面加工装置に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner surface processing apparatus for processing the cylindrical inner surface of a workpiece, inspecting for defects, and measuring the inner diameter.

従来、エンジン部品等の被加工体の円筒状内面に存在する鋳巣、傷、バリなどの欠陥部位の検査の多くは、検査員の目視検査に頼っている。目視検査は多くの人手がかかるためコスト増の要因となり、品質のバラツキにも問題がある。 Conventionally, most inspections for defects such as blowholes, scratches, and burrs existing on the cylindrical inner surface of a workpiece such as an engine part rely on visual inspection by an inspector. Since visual inspection requires a lot of manpower, it causes an increase in cost, and there is also a problem of variation in quality.

これに対して、欠陥部位の検査を自動化した装置として、被加工体の内面に当てたレーザ光の反射光量を測定しながら内面全体を走査して測定した反射光量によって画像を形成し、得られた画像から欠陥部位の有無を判定する内面検査装置が提案されている。例えば、特許文献1には、判定対象部位からまず欠陥部位候補を検出し、検出した欠陥部位候補の中から、形状、大きさ、位置関係といった絞り込み条件に基づいて、欠陥部位を絞り込むようにして、欠陥部位の判定精度を高めるようにした内面検査装置に関する発明が記載されている。 On the other hand, as an apparatus that automates the inspection of defective parts, the entire inner surface is scanned while measuring the reflected light amount of the laser beam applied to the inner surface of the workpiece, and an image is formed from the measured reflected light amount. An inner surface inspection apparatus has been proposed that determines the presence or absence of a defective portion from the image obtained. For example, in Japanese Unexamined Patent Application Publication No. 2002-100000, defective portion candidates are first detected from a determination target portion, and then from the detected defective portion candidates, based on narrowing conditions such as shape, size, and positional relationship, defective portions are narrowed down. , describes an invention relating to an inner surface inspection apparatus designed to improve the accuracy of determining a defective portion.

一方、エンジン部品等の被加工体の円筒状内面について、内径測定や真円度測定を行う場合がある。内径測定には、検査員が測定用の治具を使用して手動で検査する方法や、エアマイクロ装置等により自動で検査する方法がある。また、真円度測定には、検査員が栓ゲージを使用して手動で検査する方法や、真円度測定器により自動で検査する方法がある。 On the other hand, there are cases where inner diameter measurement and roundness measurement are performed on the cylindrical inner surface of a workpiece such as an engine part. The inner diameter can be measured manually by an inspector using a measuring jig, or automatically by an air micro device or the like. Roundness measurement includes a manual inspection method using a plug gauge by an inspector and an automatic inspection method using a roundness measuring instrument.

内径測定や真円度測定のための装置として、例えば、特許文献2及び特許文献3には、円筒状内面にレーザ光を照射して距離情報を収集し、内径、真円度や直角度などを算出する測定装置に関する発明が記載されている。 As a device for measuring the inner diameter and roundness, for example, Patent Documents 2 and 3 disclose distance information by irradiating the inner surface of a cylindrical shape with a laser beam, and measure the inner diameter, roundness, squareness, etc. An invention relating to a measuring device for calculating is described.

また、エンジン部品等の非検査体の円筒状内面には、クロスハッチやディンプルなどの表面加工や、溶射エンジンにおける円筒状内面への硬質層(溶射膜)を固着させるための微細な凹凸加工などが行われている。そして、円筒状内面の加工後には、表面に傷やバリが残るなどの欠陥検査や、加工深さの確認のための内径測定を行う必要がある。 In addition, for the cylindrical inner surface of non-inspected objects such as engine parts, surface processing such as cross hatching and dimples, and fine uneven processing for fixing the hard layer (thermal spray film) to the cylindrical inner surface of the thermal spray engine. is being done. After machining the cylindrical inner surface, it is necessary to inspect for defects such as scratches and burrs remaining on the surface, and to measure the inner diameter to confirm the machining depth.

特開2017-101938号公報JP 2017-101938 A 特開2020-148632号公報JP 2020-148632 A 特開2020-187052号公報JP 2020-187052 A

従来、円筒状内面の加工、欠陥検査及び内径測定度測定を行うためには、各々の装置を別々に使用しなければならず、検査時間、測定時間の短縮化には限界があった。 Conventionally, in order to machine the inner surface of a cylindrical shape, inspect defects, and measure the degree of inner diameter measurement, each device must be used separately, and there is a limit to shortening the inspection time and measurement time.

本発明は、上記従来の課題を解決するものであり、被加工体の円筒状内面の加工、欠陥検査及び内径測定を同時に短時間で行うことができる内面加工装置を提供するものである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an inner surface processing apparatus capable of simultaneously processing the cylindrical inner surface of a workpiece, inspecting for defects, and measuring the inner diameter in a short time.

上記課題を解決するため、本発明の内面加工装置は、被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工する加工手段と、前記被加工体の円筒状内面に検査用レーザ光を照射して円筒状内面の欠陥検査を行う欠陥検査手段と、前記被加工体の円筒状内面に測定用レーザ光を照射して円筒状内面の内径測定を行う内径測定手段と、前記被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光、検査用レーザ光及び測定用レーザ光を照射するとともに前記検査用レーザ光の反射光及び前記測定用レーザ光の反射光を取得するプローブとを有することを特徴とする。 In order to solve the above-mentioned problems, the inner surface processing apparatus of the present invention comprises: processing means for irradiating the cylindrical inner surface of a workpiece with a processing laser beam to process the cylindrical inner surface; Defect inspection means for irradiating an inspection laser beam to inspect the cylindrical inner surface for defects, and inner diameter measuring means for irradiating the cylindrical inner surface of the workpiece with a measurement laser beam to measure the inner diameter of the cylindrical inner surface. and irradiating the inner surface of the cylindrical body with a processing laser beam, an inspection laser beam, and a measurement laser beam, and reflecting light of the inspection laser beam and the measurement laser beam. and a probe that acquires the reflected light of the

また、本発明の内面加工装置は、被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工する加工手段と、前記被加工体の円筒状内面に検査用レーザ光を照射して円筒状内面の欠陥検査を行う欠陥検査手段と、前記被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光及び検査用レーザ光を照射するとともに前記検査用レーザ光の反射光を取得するプローブとを有することを特徴とする。 Further, the inner surface processing apparatus of the present invention comprises: processing means for irradiating the cylindrical inner surface of the workpiece with a laser beam for processing to process the cylindrical inner surface; Defect inspection means for inspecting the inner surface of the cylindrical shape by irradiating a defect, and moving along the axial direction of the cylinder of the object to be processed to irradiate the inner surface of the cylindrical shape with the processing laser beam and the inspection laser beam, and the inspection laser beam. and a probe that acquires reflected light.

また、本発明の内面加工装置は、被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工する加工手段と、前記被加工体の円筒状内面に測定用レーザ光を照射して円筒状内面の内径測定を行う内径測定手段と、前記被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光及び測定用レーザ光を照射するとともに前記測定用レーザ光の反射光を取得するプローブとを有することを特徴とする。 Further, the inner surface processing apparatus of the present invention comprises: processing means for irradiating the cylindrical inner surface of a workpiece with a laser beam for processing to process the cylindrical inner surface; inner diameter measuring means for measuring the inner diameter of the cylindrical inner surface by irradiating, and moving along the cylindrical axis direction of the workpiece, irradiating the cylindrical inner surface with the processing laser beam and the measuring laser beam, and the measuring laser beam. and a probe that acquires reflected light.

本発明の内面加工装置は、加工手段、欠陥検査手段、内径測定手段及びプローブを有している。そして、加工手段が被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工し、欠陥検査手段が被加工体の円筒状内面に検査用レーザ光を照射して円筒状内面の欠陥検査を行い、内径測定手段が被加工体の円筒状内面に測定用レーザ光を照射して円筒状内面の内径測定を行うようになっている。また、プローブが被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光、検査用レーザ光及び測定用レーザ光を照射するとともに、検査用レーザ光の反射光及び測定用レーザ光の反射光を取得するようになっている。従って、プローブを移動させながら加工、欠陥検査及び内径測定を同時に行うことができ、加工時間、検査時間及び測定時間を短縮することができる。 The inner surface processing apparatus of the present invention has processing means, defect inspection means, inner diameter measurement means, and probes. Then, the processing means irradiates the cylindrical inner surface of the object to be processed with a processing laser beam to process the cylindrical inner surface, and the defect inspection means irradiates the cylindrical inner surface of the object to be processed with an inspection laser beam to form a cylindrical shape. The inner surface is inspected for defects, and the inner diameter measuring means irradiates the cylindrical inner surface of the workpiece with a measuring laser beam to measure the inner diameter of the cylindrical inner surface. In addition, the probe moves along the axial direction of the cylinder of the object to be processed, irradiates the inner surface of the cylinder with the processing laser beam, the inspection laser beam, and the measurement laser beam, and reflects the inspection laser beam and the measurement laser beam. It is designed to acquire the reflected light of light. Therefore, machining, defect inspection, and inner diameter measurement can be performed simultaneously while moving the probe, and machining time, inspection time, and measurement time can be shortened.

また、本発明の内面加工装置は、加工手段、欠陥検査手段及びプローブを有している。そして、加工手段が被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工し、欠陥検査手段が被加工体の円筒状内面に検査用レーザ光を照射して円筒状内面の欠陥検査を行うようになっている。また、プローブが被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光及び検査用レーザ光を照射するとともに、検査用レーザ光の反射光を取得するようになっている。従って、プローブを移動させながら加工及び欠陥検査を同時に行うことができ、加工時間及び検査時間を短縮することができる。 Further, the inner surface processing apparatus of the present invention has processing means, defect inspection means and probes. Then, the processing means irradiates the cylindrical inner surface of the object to be processed with a processing laser beam to process the cylindrical inner surface, and the defect inspection means irradiates the cylindrical inner surface of the object to be processed with an inspection laser beam to form a cylindrical shape. The inner surface is inspected for defects. Further, the probe moves along the axial direction of the cylinder of the object to be processed, irradiates the inner surface of the cylinder with the processing laser beam and the inspection laser beam, and acquires the reflected light of the inspection laser beam. Therefore, processing and defect inspection can be performed simultaneously while moving the probe, and processing time and inspection time can be shortened.

また、本発明の内面加工装置は、加工手段、内径測定手段及びプローブを有している。そして、加工手段が被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工し、内径測定手段が被加工体の円筒状内面に測定用レーザ光を照射して円筒状内面の内径測定を行うようになっている。また、プローブが被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光及び測定用レーザ光を照射するとともに、測定用レーザ光の反射光を取得するようになっている。従って、プローブを移動させながら加工及び内径測定を同時に行うことができ、加工時間及び測定時間を短縮することができる。 Further, the inner surface processing apparatus of the present invention has processing means, inner diameter measuring means, and a probe. Then, the processing means irradiates the cylindrical inner surface of the object to be processed with a processing laser beam to process the cylindrical inner surface, and the inner diameter measuring means irradiates the cylindrical inner surface of the object to be processed with the measuring laser beam to form a cylindrical shape. It is designed to measure the inner diameter of the inner surface. Further, the probe moves along the axial direction of the cylinder of the object to be processed, irradiates the inner surface of the cylinder with the processing laser beam and the measurement laser beam, and acquires the reflected light of the measurement laser beam. Therefore, machining and inner diameter measurement can be performed simultaneously while moving the probe, and machining time and measurement time can be shortened.

このように、本発明の内面加工装置によれば、被加工体の円筒状内面の加工、欠陥検査及び内径測定を同時に短時間で行うことができる。 As described above, according to the inner surface processing apparatus of the present invention, the processing of the cylindrical inner surface of the workpiece, defect inspection, and inner diameter measurement can be performed simultaneously in a short time.

本発明の実施形態に係る内面加工装置を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the inner surface processing apparatus which concerns on embodiment of this invention. プローブを示す構成図である。It is a block diagram which shows a probe. 内面加工装置の加工、欠陥検査及び内径測定の概略図である。It is the schematic of the processing of an inner surface processing apparatus, defect inspection, and inner diameter measurement. 内面加工装置の機能構成図である。It is a functional block diagram of an inner surface processing apparatus.

次に、図1乃至図4を参照して、本発明の実施形態に係る内面加工装置について説明する。本実施形態に係る内面加工装置100は、例えば、自動車のエンジン部品等の被加工体の円筒状内面の加工、欠陥検査及び内径測定を行うためのものである。 Next, an inner surface processing apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4. FIG. An inner surface processing apparatus 100 according to the present embodiment is for processing, inspecting for defects, and measuring the inner diameter of a cylindrical inner surface of a workpiece such as an automobile engine part.

図1は、内面加工装置100を示す構成図である。内面加工装置100は、プローブ1、プローブ送り機構2、モータ・ドライバ3、コントロール・ユニット4、パソコン5及び端子台6から構成されている。プローブ1は、被加工体の円筒状内面に挿入されてレーザ光を照射し、円筒状内面を加工するとともに、反射光のデータを取得するためのセンサであり、プローブ送り機構2により搬送されるとともに、モータ・ドライバ3により回転制御されるようになっている。コントロール・ユニット4は、装置全体の制御を行うものであり、プローブ1から送信されてきたデータと軸位置を整合させてパソコン5に送信するようになっている。パソコン5は、加工の指示、欠陥部位の判定、内径や真円度の算出、データの保存を行う。端子台6は、外部機器との通信用である。 FIG. 1 is a configuration diagram showing an inner surface processing apparatus 100. As shown in FIG. The inner surface processing apparatus 100 comprises a probe 1 , a probe feed mechanism 2 , a motor driver 3 , a control unit 4 , a personal computer 5 and a terminal block 6 . The probe 1 is a sensor that is inserted into the cylindrical inner surface of the object to be processed, irradiates it with a laser beam, processes the cylindrical inner surface, and acquires reflected light data. At the same time, the rotation is controlled by the motor driver 3 . The control unit 4 controls the entire apparatus, matches the data transmitted from the probe 1 with the axis position, and transmits the data to the personal computer 5 . The personal computer 5 performs processing instructions, determination of defective portions, calculation of the inner diameter and roundness, and storage of data. The terminal block 6 is for communication with an external device.

図2は、プローブ1を示す構成図である。プローブ1の先端部には、レーザ出入部11が設けられており、ミラーを介してレーザケーブル15によって出力制御されたレーザが出るとともに、被加工体の円筒状内面からの反射光が入るようになっている。スピンドルシャフト12は、高速回転してレーザ出入部11を被加工体の円筒状内面の円周上に沿って回転させる。そして、回転エンコーダ・センサ13が1回転データを、データケーブル14を介してコントロール・ユニット4に送信する。これにより円周方向に沿った1回転分の反射光のデータが得られ、被加工体の円筒状内面の入口から底に向けて測定を繰り返すことにより、内面全体の反射光のデータを取得することができる。なお、被検査体の円筒状内面に照射されるレーザ光は、可視光線、赤外線、紫外線のいずれであってもよい。 FIG. 2 is a configuration diagram showing the probe 1. As shown in FIG. A laser entrance/exit part 11 is provided at the tip of the probe 1. A laser whose output is controlled by a laser cable 15 is emitted through a mirror, and reflected light from the cylindrical inner surface of the object to be processed enters. It's becoming The spindle shaft 12 rotates at high speed to rotate the laser entrance/exit part 11 along the circumference of the cylindrical inner surface of the workpiece. The rotary encoder sensor 13 then transmits the single revolution data to the control unit 4 via the data cable 14 . As a result, reflected light data for one rotation along the circumferential direction is obtained, and by repeating the measurement from the entrance to the bottom of the cylindrical inner surface of the workpiece, the reflected light data for the entire inner surface is obtained. be able to. Note that the laser light that is irradiated onto the cylindrical inner surface of the object to be inspected may be any of visible light, infrared light, and ultraviolet light.

図3は、内面加工装置100の加工、欠陥検査及び内径測定の概略図である。また、図4は、内面加工装置100の機能構成図である。なお、図3及び図4において、白抜き矢印は照射されるレーザ光を示し、黒矢印は受光される反射光を示している。 FIG. 3 is a schematic diagram of processing, defect inspection, and inner diameter measurement of the inner surface processing apparatus 100. FIG. 4 is a functional configuration diagram of the inner surface processing apparatus 100. As shown in FIG. In FIGS. 3 and 4, the white arrows indicate the irradiated laser light, and the black arrows indicate the received reflected light.

内面加工装置100は、被加工体50の円筒状内面51にレーザ光を当てて加工するとともに、レーザ光の反射光を円周方向に沿って測定し、円筒状内面51の欠陥検査及び内径測定を行うものであり、主として加工手段10、プローブ20、欠陥検査手段30及び内径測定手段40から構成されている。すなわち、プローブ20を移動させながら加工、欠陥検査及び内径測定を同時に行うことができるものである。 The inner surface processing apparatus 100 applies a laser beam to the cylindrical inner surface 51 of the workpiece 50 to process it, measures the reflected light of the laser beam along the circumferential direction, inspects the cylindrical inner surface 51 for defects, and measures the inner diameter. It is mainly composed of a processing means 10, a probe 20, a defect inspection means 30 and an inner diameter measuring means 40. In other words, machining, defect inspection, and inner diameter measurement can be performed simultaneously while moving the probe 20 .

プローブ20(図1のプローブ1に相当)は、被加工体50の円筒軸方向に沿って移動し、先端に設けられたスピンドルシャフト21(図2のスピンドルシャフト12に相当)が高速回転しながら円筒状内面51に加工用レーザ光、検査用レーザ光及び測定用レーザ光を照射するとともに、検査用レーザ光の反射光及び測定用レーザ光の反射光を取得するようになっている。また、プローブ20の内部には、照射されるレーザ光及び受光される反射光の方向を変えるためのダイクロイックプリズム22及びプリズム23(又はミラー)が配置されている。以下、「スピンドルシャフト」を単に「シャフト」と表記する。 The probe 20 (corresponding to the probe 1 in FIG. 1) moves along the cylindrical axis direction of the workpiece 50, and the spindle shaft 21 (corresponding to the spindle shaft 12 in FIG. 2) provided at the tip rotates at high speed. The cylindrical inner surface 51 is irradiated with processing laser light, inspection laser light, and measurement laser light, and reflected light of the inspection laser light and reflected light of the measurement laser light are acquired. A dichroic prism 22 and a prism 23 (or a mirror) are arranged inside the probe 20 for changing the directions of the irradiated laser light and the received reflected light. Hereinafter, the "spindle shaft" is simply referred to as "shaft".

加工手段10は、加工光源16を有しており、被加工体50の円筒状内面51に加工用レーザ光を照射して円筒状内面51を加工するものである。加工光源16から照射された加工用レーザ光は、プローブ20のダイクロイックプリズム22、プリズム23を経由して円筒状内面51に照射されて加工が行われる。加工の種類としては、クロスハッチやディンプルなどの表面加工や、溶射エンジンにおける円筒状内面への硬質層(溶射膜)を固着させるための微細な凹凸加工などがある。レーザ光による加工は自由度が高く、細かい加工も可能である。 The processing means 10 has a processing light source 16 and irradiates a processing laser beam to the cylindrical inner surface 51 of the workpiece 50 to process the cylindrical inner surface 51 . The processing laser light emitted from the processing light source 16 passes through the dichroic prisms 22 and 23 of the probe 20 and is irradiated onto the cylindrical inner surface 51 for processing. Types of processing include surface processing such as cross hatching and dimples, and fine uneven processing for fixing a hard layer (thermal spray film) to the cylindrical inner surface of a thermal spray engine. Processing by laser light has a high degree of freedom, and fine processing is also possible.

欠陥検査手段30は、取得された反射光の強度情報に基づいて欠陥検査を行うようになっており、光源31から照射された検査用レーザ光がダイクロイックプリズム22、プリズム23を経由して円筒状内面51に照射され、その反射光がプリズム23、ダイクロイックプリズム22を経由してPDセンサ32で受光され取得される。取得された反射光の強度情報に基づいて欠陥検査を行う方法としては、強度情報によって画像を形成し、得られた画像から欠陥部位の有無を判定する方法が挙げられる。例えば、前述した特許文献1に記載された発明のように、判定対象部位からまず欠陥部位候補を検出し、検出した欠陥部位候補の中から、形状、大きさ、位置関係といった絞り込み条件に基づいて、欠陥部位を絞り込むようにして、欠陥部位の判定精度を高める方法が好ましい。なお図4では、プリズム23、ダイクロイックプリズム22を経由してPDセンサ32で受光するようになっているが、ダイクロイックプリズム22を経由せずに、別のミラーを設けるなどして別の経路で受光するようにしてもよい。 The defect inspection means 30 performs defect inspection based on the acquired intensity information of the reflected light, and the inspection laser light emitted from the light source 31 passes through the dichroic prism 22 and the prism 23 to form a cylindrical shape. The inner surface 51 is irradiated with the light, and the reflected light passes through the prism 23 and the dichroic prism 22 and is received by the PD sensor 32 and acquired. As a method of performing defect inspection based on the acquired intensity information of the reflected light, there is a method of forming an image based on the intensity information and determining the presence or absence of a defective portion from the obtained image. For example, as in the invention described in the above-mentioned Patent Document 1, defect site candidates are first detected from the determination target site, and from among the detected defect site candidates, based on narrowing conditions such as shape, size, and positional relationship, , a method of narrowing down the defective portion to improve the determination accuracy of the defective portion is preferable. In FIG. 4, the light is received by the PD sensor 32 via the prism 23 and the dichroic prism 22, but the light is received by another path such as by providing another mirror without passing through the dichroic prism 22. You may make it

内径測定手段40は、取得された反射光の距離情報に基づいて内径測定を行うようになっている。本実施形態における内径測定手段40は、干渉法による内径測定を行うようになっている。干渉法は、測定面からの反射光と基準面からの反射光とを合成した干渉光を解析して測定面と基準面との距離の差を算出する公知の方法である。例えば、医療分野では、眼底検査や内視鏡検査において断面画像を撮影する手法として用いられている。 The inner diameter measuring means 40 measures the inner diameter based on the acquired distance information of the reflected light. The inner diameter measuring means 40 in this embodiment is designed to measure the inner diameter by interferometry. The interferometry is a known method of analyzing interference light obtained by synthesizing reflected light from a measurement surface and reflected light from a reference surface to calculate the difference in distance between the measurement surface and the reference surface. For example, in the medical field, it is used as a technique for capturing cross-sectional images in fundus examination and endoscopy.

以下、本実施形態における干渉法について説明する。内径測定手段40は、主として光源41、アイソレータ42、カプラ43、偏波コントローラ44、ディレイライン(基準面)45、偏波コントローラ46、スペクトロメータ47及びPC48から構成されている。 The interferometry in this embodiment will be described below. The inner diameter measuring means 40 mainly comprises a light source 41, an isolator 42, a coupler 43, a polarization controller 44, a delay line (reference plane) 45, a polarization controller 46, a spectrometer 47 and a PC48.

光源41から発せられた測定用レーザ光は、アイソレータ42を経由してカプラ43に導光され、カプラ43で分岐される。分岐された測定用レーザ光のうち一方は偏波コントローラ44を経由してディレイライン(基準面)45に照射される。ディレイライン(基準面)45までの距離(基準距離)は既知である。また、分岐された測定用レーザ光のうち他方は偏波コントローラ46を経由してプローブ20内に導かれ、ダイクロイックプリズム22、プリズム23を経由して円筒状内面51に照射される。 A measurement laser beam emitted from a light source 41 is guided to a coupler 43 via an isolator 42 and branched by the coupler 43 . One of the branched measurement laser beams is applied to a delay line (reference plane) 45 via a polarization controller 44 . The distance (reference distance) to the delay line (reference plane) 45 is known. The other of the split measurement laser beams is guided into the probe 20 via the polarization controller 46 and is irradiated to the cylindrical inner surface 51 via the dichroic prisms 22 and 23 .

ディレイライン(基準面)45に照射された測定用レーザ光の反射光は、偏波コントローラ44を経由してカプラ43に導光される。また、円筒状内面51に照射された測定用レーザ光の反射光は、プリズム23、ダイクロイックプリズム22及び偏波コントローラ46を経由してカプラ43に導光される。導光された2つの反射光は、カプラ43で合流し合成され、合成された反射光に対してスペクトロメータ47による測定及びPC48による分析がなされる。 Reflected light of the measurement laser light applied to the delay line (reference plane) 45 is guided to the coupler 43 via the polarization controller 44 . Reflected light of the measurement laser light irradiated to the cylindrical inner surface 51 is guided to the coupler 43 via the prism 23 , the dichroic prism 22 and the polarization controller 46 . The two guided reflected lights are combined and synthesized by the coupler 43 , and the combined reflected light is measured by the spectrometer 47 and analyzed by the PC 48 .

ディレイライン45からの反射光と円筒状内面51からの反射光とを合成すると、相互作用による干渉縞が発生する。基準距離と計測距離(計測したい距離)との差Lの大きさにより干渉縞の幅などが変化するため、干渉光を解析することにより、基準距離と計測距離(計測したい距離)との差Lが求まる。これにより計測距離を算出することができる。なお、干渉光を解析して差Lを算出するためには、反射光の強度情報に対してフーリエ変換などを含む情報処理が必要である。 When the reflected light from the delay line 45 and the reflected light from the cylindrical inner surface 51 are combined, interference fringes are generated due to interaction. Since the width of the interference fringes changes depending on the size of the difference L between the reference distance and the measurement distance (distance to be measured), by analyzing the interference light, the difference L between the reference distance and the measurement distance (distance to be measured) is sought. Thereby, the measured distance can be calculated. In order to analyze the interference light and calculate the difference L, it is necessary to perform information processing including Fourier transform on the intensity information of the reflected light.

このように、内径測定手段40が、測定面からの反射光と基準面からの反射光とを合成した干渉光を解析して測定面と基準面との距離の差Lを算出することで、干渉法により距離情報を算出することができる。 In this way, the inner diameter measuring means 40 analyzes the interference light obtained by synthesizing the reflected light from the measurement surface and the reflected light from the reference surface, and calculates the difference L in the distance between the measurement surface and the reference surface. Distance information can be calculated by interferometry.

また、円筒状内面51の複数の部位における距離情報から中心位置補正を行い、さらに真円度測定を行う方法としては、例えば最小二乗中心法が挙げられるが、その他に最小領域中心法、最大内接円中心法及び最小外接円中心法などであってもよい。 Further, as a method of correcting the center position from the distance information at a plurality of parts of the cylindrical inner surface 51 and further measuring the roundness, for example, the least squares center method can be mentioned. A tangent circle center method, a minimum circumscribed circle center method, or the like may be used.

本実施形態に係る内面加工装置100は、加工手段10、欠陥検査手段30、内径測定手段40及びプローブ20を有している。そして、加工手段10が被加工体50の円筒状内面51に加工用レーザ光を照射して円筒状内面51を加工し、欠陥検査手段30が被加工体50の円筒状内面51に検査用レーザ光を照射して円筒状内面51の欠陥検査を行い、内径測定手段40が被加工体50の円筒状内面51に測定用レーザ光を照射して円筒状内面51の内径測定を行うようになっている。また、プローブ20が被加工体50の円筒軸方向に沿って移動し円筒状内面51に加工用レーザ光、検査用レーザ光及び測定用レーザ光を照射するとともに、検査用レーザ光の反射光及び測定用レーザ光の反射光を取得するようになっている。従って、プローブ20を移動させながら加工、欠陥検査及び内径測定を同時に行うことができ、加工時間、検査時間及び測定時間を短縮することができる。 An inner surface processing apparatus 100 according to this embodiment has processing means 10 , defect inspection means 30 , inner diameter measurement means 40 and probes 20 . Then, the processing means 10 irradiates the cylindrical inner surface 51 of the workpiece 50 with the processing laser beam to process the cylindrical inner surface 51, and the defect inspection means 30 irradiates the cylindrical inner surface 51 of the workpiece 50 with the inspection laser beam. The inner diameter measuring means 40 irradiates the cylindrical inner surface 51 of the workpiece 50 with the measuring laser beam to measure the inner diameter of the cylindrical inner surface 51. ing. Further, the probe 20 moves along the cylindrical axis direction of the workpiece 50 and irradiates the cylindrical inner surface 51 with the processing laser beam, the inspection laser beam, and the measurement laser beam, and the reflected light of the inspection laser beam and the measurement laser beam. The reflected light of the measurement laser light is acquired. Therefore, machining, defect inspection, and inner diameter measurement can be performed simultaneously while moving the probe 20, and machining time, inspection time, and measurement time can be shortened.

以上、本発明の実施形態に係る内面加工装置について説明したが、本発明は上述した実施の形態に限定されるわけではなく、その他種々の変更が可能である。 Although the inner surface processing apparatus according to the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various other modifications are possible.

例えば、内径測定手段40は干渉法による測定を行うものに限定されるものではない。また、検査用レーザ光及び測定用レーザ光の光源を同一としてもよい。 For example, the inner diameter measuring means 40 is not limited to one that performs measurement by interferometry. Moreover, the same light source may be used for the inspection laser light and the measurement laser light.

また、上記実施形態では、加工、欠陥検査及び内径測定のすべてを同時に行うようにしたが、加工手段10、欠陥検査手段30及びプローブ20のみで構成して、加工及び欠陥検査を同時に行う構成とすることもできる。また、加工手段10、内径測定手段40及びプローブ20のみで構成して、加工及び内径測定を同時に行う構成とすることもできる。 In the above embodiment, machining, defect inspection, and inner diameter measurement are all performed at the same time. You can also Further, it is also possible to configure the apparatus only by the processing means 10, the inner diameter measuring means 40 and the probe 20, and to perform the processing and the inner diameter measurement at the same time.

1 プローブ
2 プローブ送り機構
3 モータ・ドライバ
4 コントロール・ユニット
5 パソコン
6 端子台
7 収容手段(収容BOX)
10 加工手段
11 レーザ出入部
12 スピンドルシャフト(シャフト)
13 回転エンコーダ・センサ
14 データケーブル
15 レーザケーブル
16 加工光源
20 プローブ
21 スピンドルシャフト(シャフト)
22 ダイクロイックプリズム
23 プリズム
30 欠陥検査手段
31 光源
32 PDセンサ
40 内径計測手段
41 光源
42 アイソレータ
43 カプラ
44 偏波コントローラ
45 ディレイライン(基準面)
46 偏波コントローラ
47 スペクトロメータ
48 PC
50 被加工体
51 円筒状内面
100 内面加工装置
1 probe 2 probe feeding mechanism 3 motor driver 4 control unit 5 personal computer 6 terminal block 7 housing means (housing box)
10 processing means 11 laser entrance/exit portion 12 spindle shaft (shaft)
13 rotary encoder/sensor 14 data cable 15 laser cable 16 processing light source 20 probe 21 spindle shaft (shaft)
22 dichroic prism 23 prism 30 defect inspection means 31 light source 32 PD sensor 40 inner diameter measuring means 41 light source 42 isolator 43 coupler 44 polarization controller 45 delay line (reference plane)
46 polarization controller 47 spectrometer 48 PC
50 Object to be processed 51 Cylindrical inner surface 100 Inner surface processing device

Claims (3)

被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工する加工手段と、前記被加工体の円筒状内面に検査用レーザ光を照射して円筒状内面の欠陥検査を行う欠陥検査手段と、前記被加工体の円筒状内面に測定用レーザ光を照射して円筒状内面の内径測定を行う内径測定手段と、前記被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光、検査用レーザ光及び測定用レーザ光を照射するとともに前記検査用レーザ光の反射光及び前記測定用レーザ光の反射光を取得するプローブとを有することを特徴とする内面加工装置。 Processing means for irradiating the cylindrical inner surface of a workpiece with a laser beam for processing to process the cylindrical inner surface, and defect inspection of the cylindrical inner surface by irradiating the cylindrical inner surface of the workpiece with an inspection laser beam. defect inspection means for measuring the inner diameter of the cylindrical inner surface of the workpiece by irradiating the cylindrical inner surface of the workpiece with a measurement laser beam; inner diameter measuring means for measuring the inner diameter of the cylindrical inner surface; and a probe for irradiating a processing laser beam, an inspection laser beam, and a measurement laser beam onto an inner surface of the shape and acquiring reflected light of the inspection laser beam and reflected light of the measurement laser beam. Inner surface processing equipment. 被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工する加工手段と、前記被加工体の円筒状内面に検査用レーザ光を照射して円筒状内面の欠陥検査を行う欠陥検査手段と、前記被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光及び検査用レーザ光を照射するとともに前記検査用レーザ光の反射光を取得するプローブとを有することを特徴とする内面加工装置。 Processing means for irradiating the cylindrical inner surface of a workpiece with a laser beam for processing to process the cylindrical inner surface, and defect inspection of the cylindrical inner surface by irradiating the cylindrical inner surface of the workpiece with an inspection laser beam. and a probe that moves along the axial direction of the cylinder of the workpiece and irradiates the inner surface of the cylinder with the processing laser beam and the inspection laser beam and obtains the reflected light of the inspection laser beam. An inner surface processing apparatus, comprising: 被加工体の円筒状内面に加工用レーザ光を照射して円筒状内面を加工する加工手段と、前記被加工体の円筒状内面に測定用レーザ光を照射して円筒状内面の内径測定を行う内径測定手段と、前記被加工体の円筒軸方向に沿って移動し円筒状内面に加工用レーザ光及び測定用レーザ光を照射するとともに前記測定用レーザ光の反射光を取得するプローブとを有することを特徴とする内面加工装置。 Processing means for irradiating a cylindrical inner surface of a workpiece with a laser beam for processing to machine the cylindrical inner surface, and measuring the inner diameter of the cylindrical inner surface by irradiating the cylindrical inner surface of the workpiece with a measuring laser beam. and a probe that moves along the axial direction of the cylinder of the workpiece to irradiate the inner surface of the cylinder with the machining laser beam and the measuring laser beam and acquires the reflected light of the measuring laser beam. An inner surface processing apparatus, comprising:
JP2021019510A 2021-02-10 2021-02-10 Inner surface processing device Pending JP2022122352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021019510A JP2022122352A (en) 2021-02-10 2021-02-10 Inner surface processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021019510A JP2022122352A (en) 2021-02-10 2021-02-10 Inner surface processing device

Publications (1)

Publication Number Publication Date
JP2022122352A true JP2022122352A (en) 2022-08-23

Family

ID=82939353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021019510A Pending JP2022122352A (en) 2021-02-10 2021-02-10 Inner surface processing device

Country Status (1)

Country Link
JP (1) JP2022122352A (en)

Similar Documents

Publication Publication Date Title
RU2620868C2 (en) System and method for controlling product quality
JP5373676B2 (en) Tire shape measuring method and shape measuring apparatus
JP6591537B2 (en) Inspection apparatus and method for inspecting inner wall of hollow body
JP6739780B2 (en) Optical inner surface measuring device
JP2016070934A (en) Cavity examination device
JP2009531690A (en) Apparatus and method for checking tires in particular using interferometry
US20110273702A1 (en) Optical measuring method and system
JP2007078593A (en) Light wave interference device
WO2018011981A1 (en) Optical inner surface measurement device
JP3914500B2 (en) Defect inspection equipment
RU2757474C2 (en) Scanning device and method for measuring and examining round holes in transparent liquids in medium with ionizing radiation
JP2022122352A (en) Inner surface processing device
JPH10160437A (en) Method and device for judging external shape of tire
JP2019060825A (en) Internal surface inspection device for tube
JP2022122351A (en) Inner surface inspection/measurement device
WO2021176650A1 (en) Method and device for inspecting borehole condition
JP2021128071A (en) Inner surface inspection device
JP2008157635A (en) Optical measurement apparatus and optical measurement method
JP6095438B2 (en) Inner surface inspection device and reference piece
KR101333349B1 (en) Bolt inspection device of the power generation facility
JP7058869B2 (en) Optical imaging probe and optical measuring device
JP2022064448A (en) Inspection method and inspection device of connecting rod
JP5880957B2 (en) A device that detects surface changes using laser light
JPH10281733A (en) Method and equipment for measuring thickness of built up part
JPH10170238A (en) Identifying method for abnormal outline of object and its device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20221107