WO2021176650A1 - Method and device for inspecting borehole condition - Google Patents

Method and device for inspecting borehole condition Download PDF

Info

Publication number
WO2021176650A1
WO2021176650A1 PCT/JP2020/009419 JP2020009419W WO2021176650A1 WO 2021176650 A1 WO2021176650 A1 WO 2021176650A1 JP 2020009419 W JP2020009419 W JP 2020009419W WO 2021176650 A1 WO2021176650 A1 WO 2021176650A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
inspected
laser light
work
state
Prior art date
Application number
PCT/JP2020/009419
Other languages
French (fr)
Japanese (ja)
Inventor
義浩 瀧口
博 稲田
英教 稲田
Original Assignee
株式会社ハイタック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハイタック filed Critical 株式会社ハイタック
Priority to PCT/JP2020/009419 priority Critical patent/WO2021176650A1/en
Publication of WO2021176650A1 publication Critical patent/WO2021176650A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Definitions

  • the present invention relates to a method and an apparatus for inspecting the internal state of a hole formed in a work, which is a variety of mechanical parts, as a hole to be inspected.
  • a contact-type roughness meter using a fine metal needle can also measure with high accuracy, but it is difficult to evaluate at high speed, and the hole to be inspected has a small diameter of several millimeters or less. Difficult to apply in some cases.
  • such an internal inspection method is required to have performance such as low cost, high accuracy, and short-time evaluation. If possible, the evaluation is performed in a short time at the processing site, and additional processing is performed again. It has been desired to realize an inspection method having high-speed processing property so that it can be determined whether or not to perform such a method.
  • the present invention has been made in consideration of such a request, and the technical subject is the development of a novel in-hole condition inspection method and device capable of inspecting the condition of the hole to be inspected formed in the work in an extremely short time. It was done.
  • the method for inspecting the state of the inside of the hole according to claim 1 is a method for inspecting the state of the hole to be inspected formed in the work as the object to be inspected, and this method is one of the holes to be inspected formed in the work.
  • Laser light is applied to the hole to be inspected from the end side of the hole so that the laser light is emitted from the other end side of the hole to be inspected while being reflected and scattered on the inner peripheral surface of the hole to be inspected.
  • the state of formation of the hole to be inspected is inspected.
  • the hole condition inspection method according to claim 2 is characterized in that, in addition to the requirement according to claim 1, an optical system lens is provided between the laser light source and the work.
  • the optical system lens includes an axicon lens that emits incident light in an annular cone shape. It is a feature.
  • the method for inspecting the state of the inside of the hole according to claim 4 is characterized in that the laser light is visible light laser light in addition to the above requirements.
  • the state of the emitted laser light observed is one or both of the scattered state and the attenuated state of the laser light. It is characterized by that.
  • the observed emitted laser light has an emission pattern projected on a screen provided on the exit side or an image received by a CCD camera on a display. It is characterized in that it can be visually observed by one or both of the displayed emission patterns.
  • any or all of the laser beam irradiation position, the work installation position, and the position for observing the emitted laser light can be relatively changed. It is characterized by the fact that it was made.
  • the in-hole condition inspection device is a device for inspecting the state of the hole to be inspected formed in the work as the inspected body, and this device is a work holder that supports the work in a predetermined position.
  • a laser light irradiation device provided on the side of one end of the hole to be inspected formed in the work supported by the work holder, and a laser light irradiation device provided on the side of the other end of the hole to be inspected to receive laser light. It is characterized by having an observation device.
  • the hole condition inspection device is characterized in that, in addition to the requirements according to claim 8, an optical system lens is provided between the laser light irradiation device and the work.
  • the hole condition inspection device includes an axicon lens that emits incident light in an annular cone shape. It is a feature.
  • the laser light from the laser light irradiation device is visible light laser light, and the observation device. It is characterized in that the emitted laser light is displayed on a screen or a display so that it can be visually observed.
  • the hole condition inspection device in addition to the requirement according to any one of claims 8, 9, 10 or 11, the observation device analyzes the image state of the emitted laser light. It is characterized in that it includes an analysis device and is configured so that the suitability of the hole to be inspected of the work can be determined.
  • the hole condition inspection device sets the laser beam irradiation position, the work installation position, and the emitted laser light. It is characterized by being able to change any or all of the observed positions relatively. Then, the above-mentioned problems can be solved by using the constitution of the invention described in each of these claims as a means.
  • the hole to be inspected can be inspected by an external device without inserting a sensor probe or the like into the hole to be inspected, and high-precision inspection can be performed in a short time. can.
  • the shape of the laser light can be adjusted to a shape more suitable for the purpose. ..
  • the optical system lens interposed between the light source of the laser light and the work is an axicon lens, and an annular laser light is introduced into the hole to be inspected. It is possible to judge the quality of the hole to be inspected by observing the annular state of the laser beam emitted correspondingly.
  • the state of the emitted laser light can be visually observed, and a determination that naturally matches the sense of the inspector is made.
  • the introduction of the laser light into the hole to be inspected and the laser light emitted from the laser light can be introduced.
  • the light receiving position and the like can be set appropriately.
  • the embodiment of the present invention is based on the examples described below, but it is also possible to appropriately modify the examples within the scope of the technical idea of the present invention.
  • the in-hole condition inspection device according to the present invention will be described first, and then the operating state of the in-hole condition inspection device will be described to substantially describe the in-hole condition inspection method of the present invention. I will explain.
  • the present invention will be specifically described with reference to the illustrated examples.
  • the outline of the present invention will be briefly described.
  • This is a method of irradiating a laser beam toward the other end and observing the emission state to know the state of the hole H to be inspected.
  • the internal state of the hole H to be inspected can be quickly and accurately inspected simply by placing the work W at a predetermined position of the in-hole condition inspection device 1 without inserting an inspection probe or the like into the hole H to be inspected. can do.
  • the work W as the inspected object will be described prior to the description of the device configuration of the hole condition inspection device 1.
  • the work W has pores of about several millimeters formed in the center of a metal round bar material or the like by a gun drill machine or the like, and these pores are formed in the holes H to be inspected (example).
  • the inner diameter is 3 mm and the length is 200 mm).
  • the finished state of the inner peripheral surface of the hole H to be inspected is inspected.
  • a work holder 2 that supports the work W at a predetermined position with respect to the fixing jig 20 and a hole H to be inspected in the work W supported by the work holder 2 are provided.
  • a laser irradiation device 3 provided on one end side and an observation device 4 provided on the other end side of the hole H to be inspected are provided.
  • the work holder 2 is for accurately installing the work W in the hole condition inspection device 1, and is most basically a portion that directly supports the work W.
  • a work cradle 21 is formed as a V-pillow 21A having a V-block shape in a cross-sectional view as shown in FIG. 2A.
  • the work cradle 21 may be a roller pillow 21B on which the work W is placed on a pair of rollers R as shown in FIG. 2B.
  • the work pedestal 21 is installed on a work pedestal support portion 22 provided so as to be fixed at arbitrary positions along the longitudinal direction, the width direction, and the vertical direction of the base member 20B, and the work pedestal 21 is installed on the work pedestal support portion 22.
  • the position of the table support portion 22 can be set with high accuracy on the order of microns.
  • the work holder 2 shown in the figure is only skeletally or symbolically expressed, and its specific shape can be various.
  • block-shaped sliding stages 23 and 24, for example, are positioned on both sides of the work cradle support portion 22 at arbitrary positions along the longitudinal direction of the base member 20B with high accuracy on the order of microns. It is provided so that it can be set. Further, above the sliding stages 23 and 24, the irradiation device support portion 33 and the observation device support portion 45 are provided so as to be fixed at arbitrary positions in the vertical direction with high accuracy on the order of microns. By adopting such a configuration, in the hole condition inspection device 1, as shown in FIG. 3, the positions of the work cradle 21, the sliding stage 23, and the sliding stage 24 are set to be longitudinal on the base member 20B.
  • the vertical positions of the irradiation device support portion 33 and the observation device support portion 45 can also be set at an arbitrary position with high accuracy.
  • the work cradle 21 can be fixed at an arbitrary position even along the width direction of the base member 20B. Then, once the work W is set according to the shape of the work W, the work W having the same shape can be replaced to easily observe the inner peripheral surface of the hole H to be inspected. At this time, the work W can be easily observed.
  • the position reproducibility of is optically sufficient to be achieved.
  • a laser oscillator 31 provided with an appropriate gas, solid, or semiconductor laser medium and an optical system lens 32 are placed on the irradiation device support 33 at appropriate intervals. It is provided and configured.
  • the laser light L is an electromagnetic wave having a substantially single wavelength having excellent directivity and convergence, and in this embodiment, visible light laser light is used to facilitate visual observation.
  • visible light laser light is used to facilitate visual observation.
  • even invisible laser light can be applied as long as it can be displayed on the display 44 through a CCD camera 42 or the like, or it can be received by various sensors and processed by an analysis device 43 described later. Is.
  • the parallel laser light L emitted from the laser oscillator 31 is focused by the convex lens 32A, which is an example of the optical system lens 32, at one point at the entrance of the hole H to be inspected in the work W.
  • the laser beam L2 emitted from the other end of the hole H to be inspected is emitted from the other end of the hole H to be inspected while repeating reflection and scattering on the inner peripheral surface of the hole H to be inspected.
  • the optical system lens 32 in addition to the convex lens 32A, an axicon lens 32B, which will be described later, a concave lens, or the like can be used. Further, in addition to directing the laser beam L according to the purpose by using the optical system lens 32 in this way, the laser beam L may be directly irradiated to the hole H to be inspected.
  • the observation device 4 will be described. As the simplest form, this can be realized only by the screen 41 that receives the irradiation of the emitted laser beam L2. Further, in order to record, discriminate, and store the light receiving state of the screen 41, it is preferable to include a CCD camera 42, an analysis device 43, a display 44, and the like. Of these, the screen 41 and the CCD camera 42 are provided on the observation device support portion 45.
  • the emission laser beam L2 is projected onto the screen 41 to project the emission pattern P, and the shape of the emission pattern P can be visually observed to determine the state of the hole H to be inspected in the work W.
  • the screen 41 may be used as a transmissive screen, the emission pattern P may be photographed by the CCD camera 42, and the image may be displayed on the display 44 connected to a personal computer, which is an example of the analysis device 43.
  • the emitted laser light L2 may be projected directly onto the image sensor of the CCD camera 42 without providing the screen 41.
  • an optical element similar to the optical lens 32 may be provided between the work W and the screen 41 or the CCD camera 42.
  • the size of the emission pattern P of the emission laser beam L2 projected on the image sensor of the screen 41 or the CCD camera 42 can be reduced, and the distance between the work W and the screen 41 or the CCD camera 42 can be reduced. It is possible to deal with cases where there are restrictions on the settings.
  • the imaging data of the emission pattern P by the CCD camera 42 may be analyzed by a so-called AI (artificial intelligence) incorporated in the analysis device 43 to determine the quality, and the determination result may be displayed on the display 44. ..
  • AI artificial intelligence
  • the operator can also visually observe the screen 41 even if the screen 41 is configured in a concealed state.
  • the in-hole condition inspection device 1 of the present invention includes the basic configuration described above as an example, and the method of the present invention will be described below while explaining the operation mode thereof.
  • the incident laser beam L0 is incident on the hole H to be inspected of the work W from the left side in the drawing.
  • the incident incident laser light L0 that has been incident passes through the hole H to be inspected as the passing laser light L1, and at that time, multiple reflection and multiple scattering are repeated on the inner peripheral surface of the hole H to be inspected, and eventually the incident side It is emitted as emitted laser light L2 from the opening on the opposite side of the light, and is projected onto the screen 41 of the observation device 4.
  • the emission pattern P of the projected emission laser beam L2 reflects the state of the inner peripheral surface of the hole H to be inspected, which has been repeatedly reflected and scattered, and this emission pattern P is visually determined and analyzed. This makes it possible to observe the internal state of the hole H to be inspected.
  • the presence / absence of the optical system lens 32 and examples with different configurations will be described.
  • FIGS. The observation results are shown in FIGS. , "Scratch exit vertical", “Spiral scratch"), and the emission patterns P6 to P8 of the test sample with no scratches but different surface roughness (“Smooth”, “Slightly rough”, “Rough” in order from the left side of FIG. ”)showed that. Further, in FIG. 4, the imaging F1 to F8 in the hole H to be inspected using the fiberscope are also shown above the respective emission patterns P1 to P8.
  • the emission pattern P In the visual observation of the emission pattern P using such a test sample, it is possible to discriminate the difference due to scratches, roughness, etc. inside the hole H to be inspected by the sharpness of the light spreading concentrically on the screen 41. Within the range of visual observation, it was confirmed that although the operator requires a certain amount of experience and skill, it is possible to judge whether it is good or bad. That is, the emission pattern P6 of a non-defective test sample having no scratches and smooth surface roughness has strong light concentrated in the center, while the emission pattern P when there are scratches is irregular and complicated. It was confirmed that the emission pattern P having high roughness was a dark image in which circular lines were conspicuous.
  • a convolutional neural network (hereinafter referred to as CNN) widely used in the field of image recognition was used.
  • the applied CNN repeats a convolutional layer that is responsible for local feature extraction of the image and a pooling layer that compresses the features for each locality, and finally outputs a fully connected layer according to the number of identifications (a fully connected layer). Full It has a structure with Connection). In the fully connected layer, weighting is also performed to obtain the correct output. Then, using CNN, the roughness of the inner surface of the hole was classified into three levels from the measured image, and the surface texture was evaluated.
  • FIG. 6 shows the relationship between the number of learnings when learning with the basic configuration CNN and the classification correct answer rate of the test data.
  • the correct answer rate of the optical measurement image was about 99%. From this, it was confirmed that it is effective to apply machine learning to the optical measurement image in order to evaluate the state of the surface roughness of the inner peripheral surface of the hole H to be inspected.
  • the accuracy rate of the endoscopic image was about 92%, which was lower than that of the optical measurement image. This is because the roughness of the inner peripheral surface of the hole H to be inspected of the sample used is partially uneven at the inlet, middle, and exit of the hole H to be inspected, and learning / testing cannot be performed accurately. Conceivable.
  • the convex lens 32A is applied as the optical system lens 32
  • the parallel beam-shaped laser light L emitted from the laser oscillator 31 is used as the incident laser light L0 that is focused on a point near the opening of the hole H to be inspected by the convex lens 32A.
  • the incident laser light L0 incident on the hole H to be inspected contains all the angular components within the angle ⁇ , unlike the case where the axicon lens 32B described later is used. .. Therefore, the passing laser light L1 in the hole H to be inspected repeats multiple reflection and multiple scattering at various sites at different times. Therefore, the emission pattern P projected on the screen 41 is a pattern of light in which all these components are superimposed.
  • the scattering component increases, and the emission pattern P is the hole to be inspected as shown in FIG. 7B. It is projected at a position deviated from the concentric circles of H, and has a distorted and complicated shape.
  • the inner peripheral surface in the hole H to be inspected is successfully processed and approaches the mirror surface, the passing laser light L1 is reflected without being disturbed and the multiple scattering component disappears, as shown in FIG. 7A. , A clean annular emission pattern P is obtained on the concentric circles of the holes H to be inspected.
  • a small-diameter emission pattern P' is shown by a virtual line inside the emission pattern P, which is a component reflected twice by the axicon lens, and a non-reflective coating is applied to the axicon lens.
  • a non-reflective coating is applied to the axicon lens.
  • the angle of the incident laser beam L0 (annular cone-shaped beam) that has passed through the convex lens 32A and the axicon lens 32B is ⁇ 1, and there are three in the hole H to be inspected. Reflection is generated at the points, and the passing laser light L1 emits while picking up the internal information of the reflected points (three points). Then, by moving the work W along the longitudinal direction while maintaining the state of the passing laser beam L1, it is possible to observe the internal information of the necessary position in the work W with the observation device 4.
  • Such movement of the work W can be performed by changing the relative positions of the sliding stages 23 and 24 and the work pedestal support portion 22 by a mechanism or the like in which a ball bearing and a stepping motor are combined.
  • annular cone-shaped beam having various angles ⁇ according to the setting of the apex angle of the axicon lens 32B, and when the angle ⁇ is shallow, the inside of the hole H to be inspected Since it is incident on the peripheral surface at a shallow angle, the number of multiple reflections is reduced, and conversely, when ⁇ is a deep angle, a large number of multiple reflections are performed on the inner peripheral surface of the hole H to be inspected.
  • the convex lens 32A is thinned to adjust the focal length, the apex angle of the axicon lens 32B is widened, and the incident laser passing through the convex lens 32A and the axicon lens 32B is formed.
  • the angle ⁇ 2 of the light L0 is adjusted to be narrower than ⁇ 1 so that only one reflection occurs on the inner peripheral surface of the hole H to be inspected.
  • the hole H to be inspected is obtained by changing the relative positions of the work W and the laser irradiation device 3 and the observation device 4 and scanning so that the reflection portion moves in the longitudinal direction. It is possible to observe the inner peripheral surface of the surface in sequence by separating it. Therefore, with the spatial resolution determined by the beam size in the hole H to be inspected, the internal roughness can be accurately observed together with the position of the work, and the position of the scratch inside the hole H to be inspected can be accurately observed. You will be able to analyze well.

Abstract

[Problem] The present invention addresses the problem of developing a novel method and a novel device for inspecting borehole condition, with which it is possible to inspect in a very short time the condition of a to-be-inspected borehole formed in a workpiece. [Solution] This method for inspecting the state of a to-be-inspected borehole H formed in a workpiece W subject to inspection, is characterized in that inspection on the formation state of the to-be-inspected borehole H is performed by irradiating the borehole H with a laser beam L from a one-end side of the borehole H formed in the workpiece W such that the laser beam L ends up being emitted from the other-end side of the borehole H after having been reflected/scattered on the inner circumferential surface of the borehole H, and observing the state of the emitted laser beam L.

Description

孔内状況検査方法並びに装置Hole condition inspection method and equipment
 本発明は、各種機械部品であるワークに形成された孔を被検査孔として、その内部状況を検査するための方法並びに装置に関するものである。 The present invention relates to a method and an apparatus for inspecting the internal state of a hole formed in a work, which is a variety of mechanical parts, as a hole to be inspected.
 多くの機械材料において、ドリルやレーザーなどの開孔技術を用いた穿孔が行われている。このような穿孔加工が行われた機械部品等のワークにおいては、その開孔を被検査孔として内部の状態を簡便に観測したいという要求が非常に高い。現在は、被検査孔の状況を知るために、部材を光源にかざして内部を目視したり、いわゆるファイバースコープを具えた画像転送機器と光源を組み合わせて、内部を観測する装置により検査することが行われている(例えば特許文献1参照)。
 これらの方法では、観測者の観察熟練度に応じて、観測する者ごとに精度評価が変わることは否めない。また、金属の細い針を用いた接触式の粗さ計も高い精度での計測は可能であるが、高速での評価は困難であるし、被検査孔が数ミリメートル以下のような細径の場合には適用が難しい。
 一方、このような内部検査手法に対しては、低価格、高精度、短時間評価が可能であるといった性能が求められ、できれば、加工の現場で短時間にて評価を行い、再度の追加加工などを行うかどうかを判断できるような、高速処理性を具えた検査手法の実現が望まれていた。
In many mechanical materials, drilling is performed using a drilling technique such as a drill or a laser. In workpieces such as machine parts that have been drilled in this way, there is a great demand for easy observation of the internal state by using the holes as the holes to be inspected. Currently, in order to know the condition of the hole to be inspected, it is possible to visually inspect the inside by holding a member over the light source, or to inspect with a device that observes the inside by combining an image transfer device equipped with a so-called fiberscope and the light source. It is done (see, for example, Patent Document 1).
With these methods, it is undeniable that the accuracy evaluation changes for each observer according to the observation skill level of the observer. A contact-type roughness meter using a fine metal needle can also measure with high accuracy, but it is difficult to evaluate at high speed, and the hole to be inspected has a small diameter of several millimeters or less. Difficult to apply in some cases.
On the other hand, such an internal inspection method is required to have performance such as low cost, high accuracy, and short-time evaluation. If possible, the evaluation is performed in a short time at the processing site, and additional processing is performed again. It has been desired to realize an inspection method having high-speed processing property so that it can be determined whether or not to perform such a method.
特開2011-8020公報Japanese Unexamined Patent Publication No. 2011-8020
 本発明はこのような要請を考慮してなされたものであって、ワークに形成された被検査孔の状況を極めて短時間で検査できる新規な孔内状況検査方法並びに装置の開発を技術課題としたものである。 The present invention has been made in consideration of such a request, and the technical subject is the development of a novel in-hole condition inspection method and device capable of inspecting the condition of the hole to be inspected formed in the work in an extremely short time. It was done.
 すなわち請求項1記載の孔内状況検査方法は、被検査体たるワークに形成されている被検査孔の状態を検査する方法であって、この方法は、ワークに形成された被検査孔の一方の端部の側から、レーザー光を被検査孔に対し照射し、レーザー光が被検査孔の内周面で反射・散乱しながら被検査孔の他の端部の側から出射されるようにし、この出射されたレーザー光の状態を観測することにより、被検査孔の形成状態を検査するようにしたことを特徴として成るものである。 That is, the method for inspecting the state of the inside of the hole according to claim 1 is a method for inspecting the state of the hole to be inspected formed in the work as the object to be inspected, and this method is one of the holes to be inspected formed in the work. Laser light is applied to the hole to be inspected from the end side of the hole so that the laser light is emitted from the other end side of the hole to be inspected while being reflected and scattered on the inner peripheral surface of the hole to be inspected. By observing the state of the emitted laser light, the state of formation of the hole to be inspected is inspected.
 また請求項2記載の孔内状況検査方法は、前記請求項1記載の要件に加え、前記レーザー光の光源と、ワークとの間に光学系レンズを設けたことを特徴として成るものである。 The hole condition inspection method according to claim 2 is characterized in that, in addition to the requirement according to claim 1, an optical system lens is provided between the laser light source and the work.
 また請求項3記載の孔内状況検査方法は、前記請求項2記載の要件に加え、前記光学系レンズは、入射光を円環錐状に出射するアキシコンレンズを具えるものであることを特徴として成るものである。 Further, in the method for inspecting the state of the inside of a hole according to claim 3, in addition to the requirement according to claim 2, the optical system lens includes an axicon lens that emits incident light in an annular cone shape. It is a feature.
 また請求項4記載の孔内状況検査方法は、前記要件に加え、前記レーザー光は可視光レーザー光であることを特徴として成るものである。 Further, the method for inspecting the state of the inside of the hole according to claim 4 is characterized in that the laser light is visible light laser light in addition to the above requirements.
 更にまた請求項5載の孔内状況検査方法は、前記要件に加え、前記観測される出射されたレーザー光の状態は、レーザー光の散乱状態と減衰状態とのいすれか一方または双方であることを特徴として成るものである。 Furthermore, in the method for inspecting the state of the inside of the hole according to claim 5, in addition to the above-mentioned requirements, the state of the emitted laser light observed is one or both of the scattered state and the attenuated state of the laser light. It is characterized by that.
 また請求項6記載の孔内状況検査方法は、前記要件に加え、前記観測される出射されたレーザー光は、出射する側に設けたスクリーンに投影される出射パターンまたはCCDカメラによる受像をディスプレイに表示した出射パターンのいすれか一方または双方により、視覚的に観察できるものであることを特徴として成るものである。 Further, in the method for inspecting the state of the inside of the hole according to claim 6, in addition to the above-mentioned requirements, the observed emitted laser light has an emission pattern projected on a screen provided on the exit side or an image received by a CCD camera on a display. It is characterized in that it can be visually observed by one or both of the displayed emission patterns.
 また請求項7記載の孔内状況検査方法は、前記要件に加え、前記レーザー光の照射位置、ワーク設置位置、出射されたレーザー光を観測する位置のいずれかまたは全てを相対的に変更できるようにしたことを特徴として成るものである。 Further, in the method for inspecting the inside of a hole according to claim 7, in addition to the above requirements, any or all of the laser beam irradiation position, the work installation position, and the position for observing the emitted laser light can be relatively changed. It is characterized by the fact that it was made.
 また請求項8記載の孔内状況検査装置は、被検査体たるワークに形成されている被検査孔の状態を検査する装置であって、この装置は、ワークを所定位置に支持するワークホルダと、ワークホルダに支持されたワークに形成された被検査孔の一方の端部の側に設けられるレーザー光照射装置と、前記被検査孔の他の端部の側に設けられ、レーザー光を受光する観測装置とを具えていることを特徴として成るものである。 The in-hole condition inspection device according to claim 8 is a device for inspecting the state of the hole to be inspected formed in the work as the inspected body, and this device is a work holder that supports the work in a predetermined position. , A laser light irradiation device provided on the side of one end of the hole to be inspected formed in the work supported by the work holder, and a laser light irradiation device provided on the side of the other end of the hole to be inspected to receive laser light. It is characterized by having an observation device.
 また請求項9記載の孔内状況検査装置は、前記請求項8記載の要件に加え、前記レーザー光照射装置と、ワークとの間に光学系レンズを設けたことを特徴として成るものである。 The hole condition inspection device according to claim 9 is characterized in that, in addition to the requirements according to claim 8, an optical system lens is provided between the laser light irradiation device and the work.
 また請求項10記載の孔内状況検査装置は、前記請求項9記載の要件に加え、前記光学系レンズは、入射光を円環錐状に出射するアキシコンレンズを具えるものであることを特徴として成るものである。 In addition to the requirements of claim 9, the hole condition inspection device according to claim 10 includes an axicon lens that emits incident light in an annular cone shape. It is a feature.
 また請求項11記載の孔内状況検査装置は、前記請求項8、9または10いずれか記載の要件に加え、前記レーザー光照射装置からのレーザー光は可視光レーザー光であり、前記観測装置において、出射されたレーザー光がスクリーンまたはディスプレイにより、視覚観察できるように表示されることを特徴として成るものである。 Further, in the hole condition inspection device according to claim 11, in addition to the requirement according to any one of claims 8, 9 or 10, the laser light from the laser light irradiation device is visible light laser light, and the observation device. It is characterized in that the emitted laser light is displayed on a screen or a display so that it can be visually observed.
 更にまた請求項12記載の孔内状況検査装置は、前記請求項8、9、10または11いずれか記載の要件に加え、前記観測装置には、出射されたレーザー光の像影状態を解析する解析装置を含み、ワークの被検査孔の適否を判断することができるように構成されていることを特徴として成るものである。 Furthermore, the hole condition inspection device according to claim 12, in addition to the requirement according to any one of claims 8, 9, 10 or 11, the observation device analyzes the image state of the emitted laser light. It is characterized in that it includes an analysis device and is configured so that the suitability of the hole to be inspected of the work can be determined.
 また請求項13記載の孔内状況検査装置は、前記請求項8、9、10、11または12いずれか記載の要件に加え、前記レーザー光の照射位置、ワーク設置位置、出射されたレーザー光を観測する位置のいずれかまたは全てを相対的に変更できるようにしたことを特徴として成るものである。
 そしてこれら各請求項記載の発明の構成を手段として前記課題の解決が図られる。
In addition to the requirements according to any one of claims 8, 9, 10, 11 or 12, the hole condition inspection device according to claim 13 sets the laser beam irradiation position, the work installation position, and the emitted laser light. It is characterized by being able to change any or all of the observed positions relatively.
Then, the above-mentioned problems can be solved by using the constitution of the invention described in each of these claims as a means.
 まず請求項1または8記載の発明によれば、被検査孔にセンサプローブ等を挿入することなく、被検査孔を外部機材により検査できるものであり、高精度の検査を短時間で行うことができる。 First, according to the invention of claim 1 or 8, the hole to be inspected can be inspected by an external device without inserting a sensor probe or the like into the hole to be inspected, and high-precision inspection can be performed in a short time. can.
 また請求項2または9記載の発明によれば、レーザー光の光源とワークとの間に光学系レンズを介在させるものであるから、レーザー光の形態をより目的に沿った形態に整えることができる。 Further, according to the invention of claim 2 or 9, since the optical system lens is interposed between the light source of the laser light and the work, the shape of the laser light can be adjusted to a shape more suitable for the purpose. ..
 また請求項3または10記載の発明によれば、レーザー光の光源とワークとの間に介在させる光学系レンズは、アキシコンレンズであり、被検査孔内に円環状のレーザー光を導入するから、対応して出射するレーザー光の円環状の状態を観察して被検査孔の良否を判断することができる。 Further, according to the invention of claim 3 or 10, the optical system lens interposed between the light source of the laser light and the work is an axicon lens, and an annular laser light is introduced into the hole to be inspected. It is possible to judge the quality of the hole to be inspected by observing the annular state of the laser beam emitted correspondingly.
 また請求項4、5、6または11記載の発明によれば、出射したレーザー光の状態を視覚的に観察できるものであり、検査者の感覚に自然に合致した判定がなされる。 Further, according to the invention of claim 4, 5, 6 or 11, the state of the emitted laser light can be visually observed, and a determination that naturally matches the sense of the inspector is made.
 また請求項7または13記載の発明によれば、レーザー照射装置、ワークホルダ、観測装置の相互の位置関係を変更できるから、被検査孔へのレーザー光の導入や、そこから出射するレーザー光の受光位置等を適切なものに設定できる。 Further, according to the invention of claim 7 or 13, since the positional relationship between the laser irradiation device, the work holder, and the observation device can be changed, the introduction of the laser light into the hole to be inspected and the laser light emitted from the laser light can be introduced. The light receiving position and the like can be set appropriately.
 また請求項12記載の発明によれば、同一形状のワークを、人力によらずに多量に検査することが可能となる。 Further, according to the invention of claim 12, it is possible to inspect a large amount of workpieces having the same shape without manpower.
本発明の孔内状況検査装置を一部拡大破断して示す側面図並びに被検査孔が形成された丸棒状のワークを示す斜視図である。It is a side view which shows the in-hole state inspection apparatus of this invention by partially magnifying and breaking, and the perspective view which shows the round bar-shaped work which formed the hole to be inspected. ワークが設置されたワーク受台を示す正面図である。It is a front view which shows the work cradle where the work is installed. 光学系レンズを用いない形態の孔内状況検査装置を示す側面図である。It is a side view which shows the form in the hole condition inspection apparatus which does not use an optical system lens. 各種の態様の傷を設けた試験サンプルの被検査孔内に応じたスクリーンに映し出された出射パターン及びファイバースコープによる被検査孔内の写像である。It is an emission pattern projected on a screen corresponding to the inside of a hole to be inspected of a test sample provided with scratches of various aspects, and a mapping in the hole to be inspected by a fiberscope. 傷は無いが表面粗度を異ならせた試験サンプルの被検査孔内に応じたスクリーンに映し出された出射パターン及びファイバースコープによる被検査孔内の写像である。It is the emission pattern projected on the screen corresponding to the inside of the hole to be inspected of the test sample having no scratches but different surface roughness, and the mapping in the hole to be inspected by the fiberscope. CNN学習結果を示すグラフである。It is a graph which shows the CNN learning result. 光学系レンズとして凸レンズを用いた形態の孔内状況検査装置における被検査孔内のレーザー光の反射の様子を示す縦断側目図及びスクリーンに映し出された出射パターンを示す正面図である。It is a longitudinal side view which shows the state of the reflection of the laser light in the hole to be inspected in the hole | hole condition inspection apparatus in the form which used the convex lens as an optical system lens, and is the front view which shows the emission pattern projected on the screen. 光学系レンズとして凸レンズ及びアキシコンレンズを用いた形態の孔内状況検査装置における被検査孔内のレーザー光の反射の様子を示す縦断側面図及びスクリーンに映し出された出射パターンを示す正面図である。It is a longitudinal side view which shows the state of the reflection of the laser light in the hole to be inspected in the hole | hole condition inspection apparatus in the form which used the convex lens and the axicon lens as an optical system lens, and is the front view which shows the emission pattern projected on the screen. ..
 本発明の形態は以下述べる実施例を基本的な実施例とするものであるが、この実施例に対して、本発明の技術的思想の範囲内において適宜変更を加えることも可能である。
 なお以下の実施例の説明においては、先ず本発明に係る孔内状況検査装置を説明し、その後、孔内状況検査装置の作動状態の説明により、実質的に本発明の孔内状況検査方法の説明をする。
The embodiment of the present invention is based on the examples described below, but it is also possible to appropriately modify the examples within the scope of the technical idea of the present invention.
In the description of the following examples, the in-hole condition inspection device according to the present invention will be described first, and then the operating state of the in-hole condition inspection device will be described to substantially describe the in-hole condition inspection method of the present invention. I will explain.
 以下、本発明を図示の実施例に基づいて具体的に説明する。まず本発明の概要を端的に説明すると、例えば機械部品等の被検査体たるワークWに形成された被検査孔Hの状態を検査するために、被検査孔Hの一方の端部の側から他方の端部の側へ向けてレーザー光を照射し、その出射状態を観察して被検査孔Hの状態を知る手法である。
 この手法によれば、被検査孔Hに検査プローブ等を挿入せずに、ワークWを孔内状況検査装置1の所定の位置に置くだけで被検査孔Hの内部状態を迅速且つ正確に検査することができる。
Hereinafter, the present invention will be specifically described with reference to the illustrated examples. First, the outline of the present invention will be briefly described. For example, in order to inspect the state of the hole H to be inspected formed in the work W which is the object to be inspected such as a mechanical part, from the side of one end of the hole H to be inspected. This is a method of irradiating a laser beam toward the other end and observing the emission state to know the state of the hole H to be inspected.
According to this method, the internal state of the hole H to be inspected can be quickly and accurately inspected simply by placing the work W at a predetermined position of the in-hole condition inspection device 1 without inserting an inspection probe or the like into the hole H to be inspected. can do.
 以下、基本的な実施例を図1に基づいて説明する。先ず孔内状況検査装置1の装置構成の説明に先立ち、被検査体たるワークWについて説明する。ワークWは例えば図1(b)に示すように金属丸棒素材等の中心に、数ミリメートル程度の細孔がガンドリルマシン等により穿たれたものであり、この細孔を被検査孔H(一例として内径3mm、長さ200mm)とする。そして本発明の手法により、被検査孔Hの内周面の仕上げ状態等が検査される。 Hereinafter, a basic embodiment will be described with reference to FIG. First, the work W as the inspected object will be described prior to the description of the device configuration of the hole condition inspection device 1. As shown in FIG. 1B, for example, the work W has pores of about several millimeters formed in the center of a metal round bar material or the like by a gun drill machine or the like, and these pores are formed in the holes H to be inspected (example). The inner diameter is 3 mm and the length is 200 mm). Then, according to the method of the present invention, the finished state of the inner peripheral surface of the hole H to be inspected is inspected.
 前記孔内状況検査装置1の基本形態としては、固定治具20に対して、ワークWを所定位置に支持するワークホルダ2と、このワークホルダ2に支持されたワークWにおける被検査孔Hの一方の端部の側に設けられるレーザー照射装置3と、被検査孔Hの他方の端部の側に設けられる観測装置4とが具えられる。 As a basic form of the hole inside condition inspection device 1, a work holder 2 that supports the work W at a predetermined position with respect to the fixing jig 20 and a hole H to be inspected in the work W supported by the work holder 2 are provided. A laser irradiation device 3 provided on one end side and an observation device 4 provided on the other end side of the hole H to be inspected are provided.
 以下、これら各部材について説明すると、先ず前記ワークホルダ2は、ワークWを孔内状況検査装置1に正確に設置するためのものであって、最も基本的にはワークWを直接支持する部位であるワーク受台21が、図2(a)に示すように断面視Vブロック状としたVピロー21Aとして形成される。もちろん前記ワーク受台21はこのような固定支持のほか、図2(b)に示すような一対のローラRにワークWを載置するローラピロー21Bとしてもよい。
 そして前記ワーク受台21は、ベース部材20Bの長手方向、幅方向及び上下方向に沿った任意の位置で固定できるように設けられるワーク受台支持部22上に設置されるものであり、ワーク受台支持部22の位置設定は、ミクロン単位の高精度での設定が可能となるようにする。
 なお図示のワークホルダ2は、あくまで骨格的に乃至はシンボリックに表現されたものであって、その具体的形状は種々取り得る。
Hereinafter, each of these members will be described. First, the work holder 2 is for accurately installing the work W in the hole condition inspection device 1, and is most basically a portion that directly supports the work W. A work cradle 21 is formed as a V-pillow 21A having a V-block shape in a cross-sectional view as shown in FIG. 2A. Of course, in addition to such fixed support, the work cradle 21 may be a roller pillow 21B on which the work W is placed on a pair of rollers R as shown in FIG. 2B.
The work pedestal 21 is installed on a work pedestal support portion 22 provided so as to be fixed at arbitrary positions along the longitudinal direction, the width direction, and the vertical direction of the base member 20B, and the work pedestal 21 is installed on the work pedestal support portion 22. The position of the table support portion 22 can be set with high accuracy on the order of microns.
The work holder 2 shown in the figure is only skeletally or symbolically expressed, and its specific shape can be various.
 更にこの実施例では、ワーク受台支持部22の両側に、一例としてブロック状の摺動ステージ23、24が、ベース部材20Bの長手方向に沿った任意の位置に、ミクロン単位の高精度で位置設定可能に設けられる。更に摺動ステージ23、24の上方部位には、それぞれ照射装置支持部33、観測装置支持部45が上下方向の任意の位置に、ミクロン単位の高精度で固定できるように設けられる。
 このような構成が採られることにより、孔内状況検査装置1においては、図3に示すように、ワーク受台21、摺動ステージ23、摺動ステージ24の位置は、ベース部材20B上の長手方向に沿った任意の位置に高精度で設定できるものであり、更に照射装置支持部33、観測装置支持部45の上下位置も任意の位置に高精度で設定できるようになっている。なお前述のようにワーク受台21については、ベース部材20Bの幅方向に沿っても任意の位置で固定できるようにした。
 そしていったんワークWの形状に合わせて設定した後は、同一形状のワークWを載せ替えて、被検査孔Hの内周面の観測を容易に実施することが可能であり、この際、ワークWの位置再現性は、光学的に十分な精度を達成することができる。
Further, in this embodiment, block-shaped sliding stages 23 and 24, for example, are positioned on both sides of the work cradle support portion 22 at arbitrary positions along the longitudinal direction of the base member 20B with high accuracy on the order of microns. It is provided so that it can be set. Further, above the sliding stages 23 and 24, the irradiation device support portion 33 and the observation device support portion 45 are provided so as to be fixed at arbitrary positions in the vertical direction with high accuracy on the order of microns.
By adopting such a configuration, in the hole condition inspection device 1, as shown in FIG. 3, the positions of the work cradle 21, the sliding stage 23, and the sliding stage 24 are set to be longitudinal on the base member 20B. It can be set at an arbitrary position along the direction with high accuracy, and the vertical positions of the irradiation device support portion 33 and the observation device support portion 45 can also be set at an arbitrary position with high accuracy. As described above, the work cradle 21 can be fixed at an arbitrary position even along the width direction of the base member 20B.
Then, once the work W is set according to the shape of the work W, the work W having the same shape can be replaced to easily observe the inner peripheral surface of the hole H to be inspected. At this time, the work W can be easily observed. The position reproducibility of is optically sufficient to be achieved.
 次に前記レーザー照射装置3について説明すると、適宜の気体、固体、半導体のレーザー媒質を具えたレーザー発振器31と、光学系レンズ32とが、適宜の間隔をあけて前記照射装置支持部33上に設けられて構成される。
 周知の通りレーザー光Lは、指向性と収束性に優れたほぼ単一波長の電磁波であって、この実施例では、目視観察を容易にするため可視光レーザー光を用いる。
 もちろん非可視光レーザー光であっても、CCDカメラ42等を通じてディスプレイ44に表示し得るものであったり、各種センサで受光し、後述する解析装置43により処理することができるものあれば適用が可能である。
Next, the laser irradiation device 3 will be described. A laser oscillator 31 provided with an appropriate gas, solid, or semiconductor laser medium and an optical system lens 32 are placed on the irradiation device support 33 at appropriate intervals. It is provided and configured.
As is well known, the laser light L is an electromagnetic wave having a substantially single wavelength having excellent directivity and convergence, and in this embodiment, visible light laser light is used to facilitate visual observation.
Of course, even invisible laser light can be applied as long as it can be displayed on the display 44 through a CCD camera 42 or the like, or it can be received by various sensors and processed by an analysis device 43 described later. Is.
 なお図1に示す実施例では、レーザー発振器31から出射される平行のレーザー光Lを、光学系レンズ32の一例である凸レンズ32Aにより、ワークWにおける被検査孔Hの入口の一点に集光し、被検査孔Hの内周面で反射・散乱を繰り返しながら被検査孔Hの他端から出射レーザー光L2として出射されるようにした。
 もちろん光学系レンズ32としては、前記凸レンズ32Aの他、後述するアキシコンレンズ32Bや、凹レンズ等を用いることができる。
 またこのように光学系レンズ32を用いてレーザー光Lを目的に応じて指向させる他、レーザー光Lを被検査孔Hに直接照射してももとより差し支えない。
In the embodiment shown in FIG. 1, the parallel laser light L emitted from the laser oscillator 31 is focused by the convex lens 32A, which is an example of the optical system lens 32, at one point at the entrance of the hole H to be inspected in the work W. The laser beam L2 emitted from the other end of the hole H to be inspected is emitted from the other end of the hole H to be inspected while repeating reflection and scattering on the inner peripheral surface of the hole H to be inspected.
Of course, as the optical system lens 32, in addition to the convex lens 32A, an axicon lens 32B, which will be described later, a concave lens, or the like can be used.
Further, in addition to directing the laser beam L according to the purpose by using the optical system lens 32 in this way, the laser beam L may be directly irradiated to the hole H to be inspected.
 次に前記観測装置4について説明するとこのものは、最もシンプルな形態として出射レーザー光L2の照射を受けるスクリーン41のみでも成立する。更にスクリーン41の受光状態を記録、判別、保存するには、CCDカメラ42、解析装置43、ディスプレイ44等を具えることが好ましい。そしてこのうちスクリーン41及びCCDカメラ42が、前記観測装置支持部45上に設けられる。 Next, the observation device 4 will be described. As the simplest form, this can be realized only by the screen 41 that receives the irradiation of the emitted laser beam L2. Further, in order to record, discriminate, and store the light receiving state of the screen 41, it is preferable to include a CCD camera 42, an analysis device 43, a display 44, and the like. Of these, the screen 41 and the CCD camera 42 are provided on the observation device support portion 45.
 前記スクリーン41には、出射レーザー光L2が投影されて出射パターンPが映し出されるものであり、その形状を目視観察してワークWにおける被検査孔Hの状態を判別することができる。
 更にスクリーン41を透過スクリーンとして、出射パターンPをCCDカメラ42により撮影し、その撮像を解析装置43の一例であるパソコンに接続されたディスプレイ44に表示してもよい。またスクリーン41を設けること無く、CCDカメラ42の撮像素子に直接出射レーザー光L2が投影されるようにしてもよい。
 なお図示は省略するが、ワークWと、スクリーン41またはCCDカメラ42との間に光学系レンズ32と同様の光学素子を設けるようにしてもよい。この場合、スクリーン41またはCCDカメラ42の撮像素子に投影される出射レーザー光L2の出射パターンPの大きさを小さくすること等ができ、ワークWと、スクリーン41またはCCDカメラ42との間の距離設定に制限がある場合等に対応することが可能となる。
The emission laser beam L2 is projected onto the screen 41 to project the emission pattern P, and the shape of the emission pattern P can be visually observed to determine the state of the hole H to be inspected in the work W.
Further, the screen 41 may be used as a transmissive screen, the emission pattern P may be photographed by the CCD camera 42, and the image may be displayed on the display 44 connected to a personal computer, which is an example of the analysis device 43. Further, the emitted laser light L2 may be projected directly onto the image sensor of the CCD camera 42 without providing the screen 41.
Although not shown, an optical element similar to the optical lens 32 may be provided between the work W and the screen 41 or the CCD camera 42. In this case, the size of the emission pattern P of the emission laser beam L2 projected on the image sensor of the screen 41 or the CCD camera 42 can be reduced, and the distance between the work W and the screen 41 or the CCD camera 42 can be reduced. It is possible to deal with cases where there are restrictions on the settings.
 加えてCCDカメラ42による出射パターンPの撮像データを、解析装置43に組み込まれたいわゆるAI(人工知能)によって分析させ、良否を判定し、その判定結果をディスプレイ44に表示させるようにしてもよい。このとき併せて撮像した出射パターンPをディスプレイ44に表示すると、前記スクリーン41が隠蔽状態に構成されていても、作業者が目視観察も併せてできる点で好ましい。
 なお上述のように出射パターンPを解析することにより、被検査孔Hの内周面の状態を検査する他、要求される検査精度によっては、減衰状態(透過強度)のみを解析して、被検査孔Hの内周面の状態を検査することも可能である。
In addition, the imaging data of the emission pattern P by the CCD camera 42 may be analyzed by a so-called AI (artificial intelligence) incorporated in the analysis device 43 to determine the quality, and the determination result may be displayed on the display 44. .. When the emission pattern P imaged at this time is displayed on the display 44, it is preferable that the operator can also visually observe the screen 41 even if the screen 41 is configured in a concealed state.
By analyzing the emission pattern P as described above, the state of the inner peripheral surface of the hole H to be inspected is inspected, and depending on the required inspection accuracy, only the attenuation state (transmission intensity) is analyzed to be inspected. It is also possible to inspect the state of the inner peripheral surface of the inspection hole H.
 本発明の孔内状況検査装置1は、一例として以上述べた基本構成を具えるものであり、以下、その作動態様を説明しながら本発明の方法を説明する。
 図1に示すように、ワークWの被検査孔Hに対して、図中左側より入射レーザー光L0を入射させる。この入射された入射レーザー光L0は、通過レーザー光L1として被検査孔H内を通過するものであり、その際、被検査孔Hの内周面で多重反射と多重散乱を繰り返し、やがて入射側と反対側の開口から出射レーザー光L2として出射され、観測装置4におけるスクリーン41に投影される。
 この投影された出射レーザー光L2の出射パターンPは、反射、散乱を繰り返した被検査孔Hの内周面の状態を反映したものとなっており、この出射パターンPを目視判定や解析処理することによって、被検査孔Hの内部の状態を観測することができるものである。
 以下、光学系レンズ32の有無、構成を異ならせた実施例毎に説明する。
The in-hole condition inspection device 1 of the present invention includes the basic configuration described above as an example, and the method of the present invention will be described below while explaining the operation mode thereof.
As shown in FIG. 1, the incident laser beam L0 is incident on the hole H to be inspected of the work W from the left side in the drawing. The incident incident laser light L0 that has been incident passes through the hole H to be inspected as the passing laser light L1, and at that time, multiple reflection and multiple scattering are repeated on the inner peripheral surface of the hole H to be inspected, and eventually the incident side It is emitted as emitted laser light L2 from the opening on the opposite side of the light, and is projected onto the screen 41 of the observation device 4.
The emission pattern P of the projected emission laser beam L2 reflects the state of the inner peripheral surface of the hole H to be inspected, which has been repeatedly reflected and scattered, and this emission pattern P is visually determined and analyzed. This makes it possible to observe the internal state of the hole H to be inspected.
Hereinafter, the presence / absence of the optical system lens 32 and examples with different configurations will be described.
〔光学系レンズを用いない実施例〕
 まず図3に示した光学系レンズ32を用いない孔内状況検査装置1を用い、レーザー発振器31から出射された平行ビーム状のレーザー光Lを入射レーザー光L0として用いた実施例について説明する。
 なおこの実施例では、ワークWにおける出射側の部と、スクリーン41とを遮光フード46により覆うようにした。
[Example without using an optical lens]
First, an example will be described in which the in-hole condition inspection device 1 that does not use the optical system lens 32 shown in FIG. 3 is used, and the parallel beam-shaped laser light L emitted from the laser oscillator 31 is used as the incident laser light L0.
In this embodiment, the exit side portion of the work W and the screen 41 are covered with the light-shielding hood 46.
 観測結果を図4、5に示すものであり、あえて各種の態様の傷を設けた試験サンプルの出射パターンP1~P5(図4左側から順に「段差傷」、「縦傷」、「円弧傷」、「傷出口縦」、「螺旋傷」)と、傷は無いが表面粗度を異ならせた試験サンプルの出射パターンP6~P8(図5左側から順に「滑らか」、「少し粗い」、「粗い」)を示した。また図4中には併せてファイバースコープを用いた被検査孔H内の撮像F1~F8を、各出射パターンP1~P8の上に示した。 The observation results are shown in FIGS. , "Scratch exit vertical", "Spiral scratch"), and the emission patterns P6 to P8 of the test sample with no scratches but different surface roughness ("Smooth", "Slightly rough", "Rough" in order from the left side of FIG. ")showed that. Further, in FIG. 4, the imaging F1 to F8 in the hole H to be inspected using the fiberscope are also shown above the respective emission patterns P1 to P8.
 このような試験サンプルを用いた出射パターンPの目視観察では、スクリーン41における同心円状に広がる光の鮮明さ等で、被検査孔H内部の傷、粗度等による違いを判別することができ、目視観察の範囲では、作業者に一定の経験と熟練を要するものの、良、不良の判断をすることができることが確認された。
 すなわち傷が無く、表面粗度が滑らかな良品の試験サンプルの出射パターンP6は、中央に強い光が集まったものとなる一方、傷がある場合の出射パターンPは不規則且つ複雑なものとなり、粗度が高い出射パターンPは円形の線が目立つ暗い画像となることが確認された。これは表面粗度が滑らかな良品ほど、通過レーザー光L1の散乱、減衰が少ないことによるものである。
 このため観測者が多くの加工例を事前に観測しておくことで、良い加工内部と悪い加工内部との差を認識できるようになり、その結果、再加工等の要否の判断が可能となる。
 このように、出射パターンPを目視するのみでも、ある程度の内部の加工状態の判断が可能となり、更に出射パターンPをCCDカメラ42で撮影し、そのデータをコンピューターなどの解析装置43に取り込み、以下に示すように画像解析を用いて数値化して評価することも可能となる。
In the visual observation of the emission pattern P using such a test sample, it is possible to discriminate the difference due to scratches, roughness, etc. inside the hole H to be inspected by the sharpness of the light spreading concentrically on the screen 41. Within the range of visual observation, it was confirmed that although the operator requires a certain amount of experience and skill, it is possible to judge whether it is good or bad.
That is, the emission pattern P6 of a non-defective test sample having no scratches and smooth surface roughness has strong light concentrated in the center, while the emission pattern P when there are scratches is irregular and complicated. It was confirmed that the emission pattern P having high roughness was a dark image in which circular lines were conspicuous. This is because the smoother the surface roughness of a good product, the less the scattering and attenuation of the passing laser light L1.
Therefore, by observing many machining examples in advance, the observer can recognize the difference between the inside of good machining and the inside of bad machining, and as a result, it is possible to judge the necessity of reworking. Become.
In this way, it is possible to determine the internal processing state to some extent just by visually observing the emission pattern P. Further, the emission pattern P is photographed by the CCD camera 42, and the data is taken into an analysis device 43 such as a computer. As shown in, it is also possible to quantify and evaluate using image analysis.
 この実施例では、画像認識の分野で広く使われている畳み込みニューラルネットワーク( 以下、CNNと記す)を使用した。適用したCNNは、画像の局所的な特徴抽出を担う畳み込み層(Convolution)、局所ごとに特徴をまとめ圧縮するプーリング層(Pooling) を繰り返し、最終的に識別数に応じた出力する全結合層(Full
Connection)を持つ構造となっている。なお全結合層では正しい出力にする重み付けも行う。
 そしてCNNを使って計測画像から穴内面の粗さを3つのレベルに分類して表面性状評価を行った。
 ワークWたる丸棒のサンプルを36本用意し、被検査孔Hの内面が滑らかなもの(Ra0.15以下)、少し粗いもの(Ra0.15~0.9)、粗いもの(Ra0.9以上)の3つのクラスに分け、光計測手法(スクリーン41に投影さ出射パターンP)と内視鏡とにより動画撮影し、計測画像を収集した。
 またCNNで学習・テストするために、光計測画像を約5400枚、内視鏡画像を約16000枚用意し、共に7割を訓練データ、残り3割をテストデータとした。
In this embodiment, a convolutional neural network (hereinafter referred to as CNN) widely used in the field of image recognition was used. The applied CNN repeats a convolutional layer that is responsible for local feature extraction of the image and a pooling layer that compresses the features for each locality, and finally outputs a fully connected layer according to the number of identifications (a fully connected layer). Full
It has a structure with Connection). In the fully connected layer, weighting is also performed to obtain the correct output.
Then, using CNN, the roughness of the inner surface of the hole was classified into three levels from the measured image, and the surface texture was evaluated.
36 samples of work W barrel round bar are prepared, and the inner surface of the hole H to be inspected is smooth (Ra 0.15 or less), slightly rough (Ra 0.15 to 0.9), and rough (Ra 0.9 or more). ) Was divided into three classes, and moving images were taken by an optical measurement method (projection emission pattern P projected on the screen 41) and an endoscope, and measurement images were collected.
In addition, about 5,400 optical measurement images and about 16,000 endoscopic images were prepared for learning and testing on CNN, 70% of which was training data and the remaining 30% was test data.
 基本構成のCNNで学習したときの学習回数とテストデータの分類正解率の関係を図6に示す。光計測画像の正解率は約99%となった。これにより、被検査孔H内周面の表面粗さの状態を評価するために、光計測画像に機械学習を適用することが有効であると確認できた。
 一方、内視鏡画像の正解率は約92%となり、光計測画像に比べ低い結果となった。これは、使用したサンプルの被検査孔Hの内周面の粗さが被検査孔Hの入口、中間、出口で部分的に不均一であり、学習・テストが正確に実行できないことが原因として考えられる。
FIG. 6 shows the relationship between the number of learnings when learning with the basic configuration CNN and the classification correct answer rate of the test data. The correct answer rate of the optical measurement image was about 99%. From this, it was confirmed that it is effective to apply machine learning to the optical measurement image in order to evaluate the state of the surface roughness of the inner peripheral surface of the hole H to be inspected.
On the other hand, the accuracy rate of the endoscopic image was about 92%, which was lower than that of the optical measurement image. This is because the roughness of the inner peripheral surface of the hole H to be inspected of the sample used is partially uneven at the inlet, middle, and exit of the hole H to be inspected, and learning / testing cannot be performed accurately. Conceivable.
〔光学系レンズとして凸レンズを用いた実施例〕
 次に図1、7に示すように、光学系レンズ32として凸レンズ32Aを適用する場合について説明する。この実施例では、レーザー発振器31から出射された平行ビーム状のレーザー光Lを、凸レンズ32Aにより被検査孔Hの開口部付近の一点に集光する入射レーザー光L0とするものである。
 図1、7に示す系においては、被検査孔Hに入射する入射レーザー光L0は、後述するアキシコンレンズ32Bを用いた場合と異なり、角度θ内のすべての角度成分を内在するものである。このため、被検査孔H内における通過レーザー光L1は、さまざまな部位にて異なる回数で多重反射や多重散乱を繰り返すこととなる。
 このため、スクリーン41に映し出される出射パターンPは、これらのすべての成分を重畳させた光のパターンとなる。
[Example using a convex lens as an optical system lens]
Next, as shown in FIGS. 1 and 7, a case where the convex lens 32A is applied as the optical system lens 32 will be described. In this embodiment, the parallel beam-shaped laser light L emitted from the laser oscillator 31 is used as the incident laser light L0 that is focused on a point near the opening of the hole H to be inspected by the convex lens 32A.
In the system shown in FIGS. 1 and 7, the incident laser light L0 incident on the hole H to be inspected contains all the angular components within the angle θ, unlike the case where the axicon lens 32B described later is used. .. Therefore, the passing laser light L1 in the hole H to be inspected repeats multiple reflection and multiple scattering at various sites at different times.
Therefore, the emission pattern P projected on the screen 41 is a pattern of light in which all these components are superimposed.
 この結果、被検査孔H内に複雑な傷が付いていたり、あるいは粗度が高い場合には、散乱成分が増えることとなり、出射パターンPは図7(b)に示すように、被検査孔Hの同心円からずれた位置に投影されるものであり、歪んだ複雑な形状のものとなる。
 一方、被検査孔H内の内周面の加工がうまく成されて鏡面に近づくと、通過レーザー光L1は乱れることなく反射して多重散乱成分がなくなり、図7(a)に示したような、被検査孔Hの同心円上にきれいな円環状の出射パターンPが得られている。
As a result, when the hole H to be inspected has a complicated scratch or the roughness is high, the scattering component increases, and the emission pattern P is the hole to be inspected as shown in FIG. 7B. It is projected at a position deviated from the concentric circles of H, and has a distorted and complicated shape.
On the other hand, when the inner peripheral surface in the hole H to be inspected is successfully processed and approaches the mirror surface, the passing laser light L1 is reflected without being disturbed and the multiple scattering component disappears, as shown in FIG. 7A. , A clean annular emission pattern P is obtained on the concentric circles of the holes H to be inspected.
〔光学系レンズとして凸レンズ及びアキシコンレンズを用いた実施例〕
 次に光学系レンズ32として凸レンズ32Aとアキシコンレンズ32Bとを組み合わせた実施例について説明する。
 図8に示すように、光学系レンズ32として凸レンズ32Aとアキシコンレンズ32Bとを用いて、平行ビーム状のレーザー光Lを凸レンズ32Aにより集光し、更に円環錐状の入射レーザー光L0とするものである。この場合には、図8中に矢視するように、θの角度成分のみを有するビームが被検査孔H内部を伝搬し、スクリーン41に出射パターンPとして投影されることになる。
 なお図8においては、出射パターンPの内側に小径の出射パターンP′を仮想線で示してあるが、これはアキシコンレンズで2回反射した成分であり、アキシコンレンズに無反射コーティングを施すことにより、2回反射が起こらないようにしてスクリーン41上に投影されないようにすることができるものである。
[Examples in which a convex lens and an axicon lens are used as optical lenses]
Next, an example in which the convex lens 32A and the axicon lens 32B are combined as the optical system lens 32 will be described.
As shown in FIG. 8, a convex lens 32A and an axicon lens 32B are used as the optical system lens 32, and the parallel beam-shaped laser light L is focused by the convex lens 32A, and further combined with the annular cone-shaped incident laser light L0. Is what you do. In this case, as seen in FIG. 8, a beam having only an angular component of θ propagates inside the hole H to be inspected and is projected onto the screen 41 as an emission pattern P.
In FIG. 8, a small-diameter emission pattern P'is shown by a virtual line inside the emission pattern P, which is a component reflected twice by the axicon lens, and a non-reflective coating is applied to the axicon lens. As a result, it is possible to prevent the reflection from occurring twice so that the image is not projected on the screen 41.
 なお図8(a)に示す実施例では、凸レンズ32A及びアキシコンレンズ32Bを通過した入射レーザー光L0(円環錐状ビーム)の角度をθ1とするものであり、被検査孔H内において三個所で反射が発生しており、通過レーザー光L1は、この反射個所(三個所)の内部情報を拾いながら、出射することになる。
 そしてこのような通過レーザー光L1の状態を維持したまま、ワークWを長手方向に沿って移動させることにより、ワークW内の必要な位置の内部情報を観測装置4で観測することが可能なる。このようなワークWの移動は、ボールベアリングとステッピングモータを組みわせた機構等により、前記摺動ステージ23、24、ワーク受台支持部22の相対位置を変化させて行うことができる。
In the embodiment shown in FIG. 8A, the angle of the incident laser beam L0 (annular cone-shaped beam) that has passed through the convex lens 32A and the axicon lens 32B is θ1, and there are three in the hole H to be inspected. Reflection is generated at the points, and the passing laser light L1 emits while picking up the internal information of the reflected points (three points).
Then, by moving the work W along the longitudinal direction while maintaining the state of the passing laser beam L1, it is possible to observe the internal information of the necessary position in the work W with the observation device 4. Such movement of the work W can be performed by changing the relative positions of the sliding stages 23 and 24 and the work pedestal support portion 22 by a mechanism or the like in which a ball bearing and a stepping motor are combined.
 また、アキシコンレンズ32Bの頂角の角度の設定に応じて、さまざまな角度θの円環錐状ビームを得ることができるものであり、角度θが浅い場合には、被検査孔Hの内周面に対して浅い角度で入射するため、多重反射の回数が少なくなり、逆にθが深い角度の場合には、被検査孔Hの内周面でたくさんの多重反射をすることになる。
 図8(b)に示した形態は、凸レンズ32Aを薄くして焦点距離を調整するとともに、アキシコンレンズ32Bの頂角の角度を広いものとし、凸レンズ32A及びアキシコンレンズ32Bを通過した入射レーザー光L0(円環錐状ビーム)の角度θ2が、θ1よりも狭くなるようにして、被検査孔Hの内周面で1回の反射しか起こらないように調整したものである。
 このような形態が採られた場合には、ワークWとレーザー照射装置3及び観測装置4との相対位置を変化せ、反射個所が長手方向に移動するように走査することにより、被検査孔Hの内周面を順次、分離して観測することが可能となる。このため、被検査孔H内のビームサイズによって決まる空間分解能にて、内部の粗さなどを、ワークの位置と合わせて正確に観測できるようになり、被検査孔H内部の傷の位置を精度よく解析できるようになる。
Further, it is possible to obtain an annular cone-shaped beam having various angles θ according to the setting of the apex angle of the axicon lens 32B, and when the angle θ is shallow, the inside of the hole H to be inspected Since it is incident on the peripheral surface at a shallow angle, the number of multiple reflections is reduced, and conversely, when θ is a deep angle, a large number of multiple reflections are performed on the inner peripheral surface of the hole H to be inspected.
In the form shown in FIG. 8B, the convex lens 32A is thinned to adjust the focal length, the apex angle of the axicon lens 32B is widened, and the incident laser passing through the convex lens 32A and the axicon lens 32B is formed. The angle θ2 of the light L0 (annular cone-shaped beam) is adjusted to be narrower than θ1 so that only one reflection occurs on the inner peripheral surface of the hole H to be inspected.
When such a form is adopted, the hole H to be inspected is obtained by changing the relative positions of the work W and the laser irradiation device 3 and the observation device 4 and scanning so that the reflection portion moves in the longitudinal direction. It is possible to observe the inner peripheral surface of the surface in sequence by separating it. Therefore, with the spatial resolution determined by the beam size in the hole H to be inspected, the internal roughness can be accurately observed together with the position of the work, and the position of the scratch inside the hole H to be inspected can be accurately observed. You will be able to analyze well.
 1   孔内状況検査装置

 2   ワークホルダ
 20  固定治具
 20B ベース部材
 21  ワーク受台
 21A Vピロー
 21B ローラピロー
 22  ワーク受台支持部
 23  摺動ステージ
 24  摺動ステージ

 3   レーザー照射装置
 31  レーザー発振器
 32  光学系レンズ
 32A 凸レンズ
 32B アキシコンレンズ
 33  照射装置支持部

 4   観測装置
 41  スクリーン
 42  CCDカメラ
 43  解析装置 
 44  ディスプレイ
 45  観測装置支持部
 46  遮光フード

 F   撮像
 L   レーザー光
 L0  入射レーザー光
 L1  通過レーザー光
 L2  出射レーザー光
 P   出射パターン
 R   ローラ
 S   試験サンプル
 H   被検査孔
 W   ワーク
1 Hole condition inspection device

2 Work holder 20 Fixing jig 20B Base member 21 Work cradle 21A V pillow 21B Roller pillow 22 Work cradle support 23 Sliding stage 24 Sliding stage

3 Laser irradiation device 31 Laser oscillator 32 Optical system lens 32A Convex lens 32B Axicon lens 33 Irradiation device support

4 Observation device 41 Screen 42 CCD camera 43 Analysis device
44 Display 45 Observation device support 46 Light-shielding hood

F Imaging L Laser light L0 Incident laser light L1 Passing laser light L2 Emission laser light P Emission pattern R Roller S Test sample H Inspected hole W Work

Claims (13)

  1.  被検査体たるワークに形成されている被検査孔の状態を検査する方法であって、
     この方法は、ワークに形成された被検査孔の一方の端部の側から、レーザー光を被検査孔に対し照射し、レーザー光が被検査孔の内周面で反射・散乱しながら被検査孔の他の端部の側から出射されるようにし、
     この出射されたレーザー光の状態を観測することにより、被検査孔の形成状態を検査するようにしたことを特徴とする孔内状況検査方法。
    It is a method of inspecting the state of the hole to be inspected formed in the work body to be inspected.
    In this method, a laser beam is applied to the hole to be inspected from the side of one end of the hole to be inspected formed in the work, and the laser beam is reflected and scattered on the inner peripheral surface of the hole to be inspected to be inspected. Allow it to exit from the side of the other end of the hole
    A method for inspecting the condition inside a hole, which comprises inspecting the state of formation of the hole to be inspected by observing the state of the emitted laser light.
  2.  前記レーザー光の光源と、ワークとの間に光学系レンズを設けたことを特徴とする請求項1記載の孔内状況検査方法。
    The method for inspecting a state in a hole according to claim 1, wherein an optical system lens is provided between the light source of the laser beam and the work.
  3.  前記光学系レンズは、入射光を円環錐状に出射するアキシコンレンズを具えるものであることを特徴とする請求項2記載の孔内状況検査方法。
    The method for inspecting a state in a hole according to claim 2, wherein the optical system lens includes an axicon lens that emits incident light in an annular cone shape.
  4.  前記レーザー光は可視光レーザー光であることを特徴とする請求項1、2または3いずれか記載の孔内状況検査方法。
    The method for inspecting a state inside a hole according to any one of claims 1, 2 or 3, wherein the laser light is visible light laser light.
  5.  前記観測される出射されたレーザー光の状態は、レーザー光の散乱状態と減衰状態とのいすれか一方または双方であることを特徴とする請求項1、2、3または4いずれか記載の孔内状況検査方法。
    The hole according to any one of claims 1, 2, 3 or 4, wherein the observed emitted laser light state is one or both of a scattered state and an attenuated state of the laser light. Internal condition inspection method.
  6.  前記観測される出射されたレーザー光は、出射する側に設けたスクリーンに投影される出射パターンまたはCCDカメラによる受像をディスプレイに表示した出射パターンのいすれか一方または双方により、視覚的に観察できるものであることを特徴とする請求項1、2、3、4または5いずれか記載の孔内状況検査方法。
    The observed emitted laser light can be visually observed by one or both of the emission pattern projected on the screen provided on the emission side or the emission pattern in which the image received by the CCD camera is displayed on the display. The method for inspecting a state in a hole according to any one of claims 1, 2, 3, 4 or 5, characterized in that the method is one.
  7.  前記レーザー光の照射位置、ワーク設置位置、出射されたレーザー光を観測する位置のいずれかまたは全てを相対的に変更できるようにしたことを特徴とする請求項1、2、3、4、5または6いずれか記載の孔内状況検査方法。
    Claims 1, 2, 3, 4, 5 characterized in that any or all of the laser light irradiation position, the work installation position, and the position where the emitted laser light is observed can be relatively changed. Alternatively, the method for inspecting the state of the inside of the hole according to any one of 6.
  8.  被検査体たるワークに形成されている被検査孔の状態を検査する装置であって、
     この装置は、ワークを所定位置に支持するワークホルダと、
     ワークホルダに支持されたワークに形成された被検査孔の一方の端部の側に設けられるレーザー光照射装置と、
     前記被検査孔の他の端部の側に設けられ、レーザー光を受光する観測装置とを具えていることを特徴とする孔内状況検査装置。
    A device that inspects the condition of the holes to be inspected formed in the work that is the body to be inspected.
    This device includes a work holder that supports the work in place and
    A laser beam irradiation device provided on the side of one end of the hole to be inspected formed in the work supported by the work holder, and
    An in-hole condition inspection device provided on the side of the other end of the hole to be inspected and provided with an observation device that receives laser light.
  9.  前記レーザー光照射装置と、ワークとの間に光学系レンズを設けたことを特徴とする請求項8記載の孔内状況検査装置。
    The hole condition inspection device according to claim 8, wherein an optical system lens is provided between the laser light irradiation device and the work.
  10.  前記光学系レンズは、入射光を円環錐状に出射するアキシコンレンズを具えるものであることを特徴とする請求項9記載の孔内状況検査装置。
    The hole condition inspection device according to claim 9, wherein the optical system lens includes an axicon lens that emits incident light in an annular cone shape.
  11.  前記レーザー光照射装置からのレーザー光は可視光レーザー光であり、前記観測装置において、出射されたレーザー光がスクリーンまたはディスプレイにより、視覚観察できるように表示されることを特徴とする請求項8、9または10いずれか記載の孔内状況検査装置。
    8. The laser light from the laser light irradiating device is visible light laser light, and the laser light emitted from the observation device is displayed on a screen or a display so as to be visually observed. The hole condition inspection device according to any one of 9 and 10.
  12.  前記観測装置には、出射されたレーザー光の像影状態を解析する解析装置を含み、ワークの被検査孔の適否を判断することができるように構成されていることを特徴とする請求項8、9、10または11いずれか記載の孔内状況検査装置。
    8. The observation device includes an analysis device that analyzes the image image state of the emitted laser light, and is configured to be able to determine the suitability of the hole to be inspected of the work. , 9, 10 or 11, wherein the hole condition inspection device.
  13.  前記レーザー光の照射位置、ワーク設置位置、出射されたレーザー光を観測する位置のいずれかまたは全てを相対的に変更できるようにしたことを特徴とする請求項8、9、10、11または12いずれか記載の孔内状況検査装置。 Claim 8, 9, 10, 11 or 12 characterized in that any or all of the laser light irradiation position, the work installation position, and the position where the emitted laser light is observed can be relatively changed. The hole condition inspection device according to any one.
PCT/JP2020/009419 2020-03-05 2020-03-05 Method and device for inspecting borehole condition WO2021176650A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009419 WO2021176650A1 (en) 2020-03-05 2020-03-05 Method and device for inspecting borehole condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009419 WO2021176650A1 (en) 2020-03-05 2020-03-05 Method and device for inspecting borehole condition

Publications (1)

Publication Number Publication Date
WO2021176650A1 true WO2021176650A1 (en) 2021-09-10

Family

ID=77613174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009419 WO2021176650A1 (en) 2020-03-05 2020-03-05 Method and device for inspecting borehole condition

Country Status (1)

Country Link
WO (1) WO2021176650A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707132A (en) * 1985-08-05 1987-11-17 Dutton G Wayne Process for sensing defects on a smooth cylindrical interior surface in tubing
JPH0682222A (en) * 1991-05-09 1994-03-22 Akira Shodoshima Apparatus for surface measurement with laser scattered light projected on screen
JPH10307010A (en) * 1997-05-02 1998-11-17 Kawaguchi Kogaku Sangyo:Kk Method and device for inspecting inside of pipe
US20130070240A1 (en) * 2011-09-15 2013-03-21 William J. Crann, JR. Apparatus and method for inspecting the inner surface of a tubular structure for contamination
JP2017129523A (en) * 2016-01-22 2017-07-27 リコーエレメックス株式会社 Inner surface inspection system, assembly, and light guide component
JP2017142219A (en) * 2016-02-13 2017-08-17 国立大学法人徳島大学 Image inspection device, image inspection program, recording medium readable by computer and recording apparatus
CN108680126A (en) * 2018-04-27 2018-10-19 上海集成电路研发中心有限公司 A kind of device and method of detection pipeline inner wall roughness

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707132A (en) * 1985-08-05 1987-11-17 Dutton G Wayne Process for sensing defects on a smooth cylindrical interior surface in tubing
JPH0682222A (en) * 1991-05-09 1994-03-22 Akira Shodoshima Apparatus for surface measurement with laser scattered light projected on screen
JPH10307010A (en) * 1997-05-02 1998-11-17 Kawaguchi Kogaku Sangyo:Kk Method and device for inspecting inside of pipe
US20130070240A1 (en) * 2011-09-15 2013-03-21 William J. Crann, JR. Apparatus and method for inspecting the inner surface of a tubular structure for contamination
JP2017129523A (en) * 2016-01-22 2017-07-27 リコーエレメックス株式会社 Inner surface inspection system, assembly, and light guide component
JP2017142219A (en) * 2016-02-13 2017-08-17 国立大学法人徳島大学 Image inspection device, image inspection program, recording medium readable by computer and recording apparatus
CN108680126A (en) * 2018-04-27 2018-10-19 上海集成电路研发中心有限公司 A kind of device and method of detection pipeline inner wall roughness

Similar Documents

Publication Publication Date Title
TWI663394B (en) Apparatus, method and computer program product for defect detection in work pieces
EP0174939B2 (en) Panel surface flaw inspection
US5355213A (en) Inspection system for detecting surface flaws
US5125741A (en) Method and apparatus for inspecting surface conditions
KR100923059B1 (en) Eccentric amount measuring method
JPS5965708A (en) Sonde for automatic surface inspection
US20210341353A1 (en) System and method for inspecting optical power and thickness of ophthalmic lenses immersed in a solution
US10761024B2 (en) Apparatus and method for extracting low intensity photonic signals
JP2008502929A (en) Inspection apparatus or inspection method for fine structure by reflected or transmitted infrared light
US8319978B2 (en) System and method for probe mark analysis
US4968892A (en) Fluorescent penetrant inspection sensor
JP2010528281A (en) Imaging optical inspection device with pinhole camera
JP2012515913A (en) Optical measurement method and system
DE4320845C1 (en) Arrangement for measuring scattered light in bores in work-pieces or in tubes
CN111855640A (en) Visual Raman probe, detector and system
JP2002139447A (en) Surface inspection apparatus and manufacturing method for steel plate without very small irregularity
JP2000298102A (en) Surface inspecting device
WO2021176650A1 (en) Method and device for inspecting borehole condition
TWI764801B (en) Method and system for measuring geometric parameters of through holes
JP4791338B2 (en) Optical measuring device
JP2002500771A (en) Lens inspection device
JP2005003691A (en) Surface inspection apparatus
US6930769B1 (en) Optical sensor module tester
KR102092463B1 (en) Specimen Inspection Device and Specimen Inspection Method
JP5325481B2 (en) Measuring method of optical element and manufacturing method of optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP