JP2022119919A - 受信機及び受信方法 - Google Patents

受信機及び受信方法 Download PDF

Info

Publication number
JP2022119919A
JP2022119919A JP2022087767A JP2022087767A JP2022119919A JP 2022119919 A JP2022119919 A JP 2022119919A JP 2022087767 A JP2022087767 A JP 2022087767A JP 2022087767 A JP2022087767 A JP 2022087767A JP 2022119919 A JP2022119919 A JP 2022119919A
Authority
JP
Japan
Prior art keywords
mapped
phase tracking
tracking reference
hopping
rss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022087767A
Other languages
English (en)
Other versions
JP7280414B2 (ja
Inventor
翔太郎 眞木
Shotaro Maki
秀俊 鈴木
Hidetoshi Suzuki
綾子 堀内
Ayako Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Corp of America
Original Assignee
Panasonic Intellectual Property Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Corp of America filed Critical Panasonic Intellectual Property Corp of America
Publication of JP2022119919A publication Critical patent/JP2022119919A/ja
Application granted granted Critical
Publication of JP7280414B2 publication Critical patent/JP7280414B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】複数の基地局又は移動局から送信されるPT-RSに対して適切に干渉を抑圧すること。【解決手段】送信機100において、信号割当部106は、位相トラッキング用参照信号(PT-RS:Phase Tracking Reference Signal)をサブキャリアにマッピングし、送信部107は、位相トラッキング用参照信号を含む信号を送信する。位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。【選択図】図4

Description

本開示は、送信機、受信機、送信方法及び受信方法に関する。
第5世代移動通信システム(5G)と呼ばれる通信システムが検討されている。5Gでは、通信トラフィックの増大、接続する端末数の増大、高信頼性、低遅延などが必要とされる様々なユースケース毎に機能を柔軟に提供することが検討されている。代表的なユースケースとして、拡張モバイルブロードバンド(eMBB:enhanced Mobile Broadband)、大規模コミュニケーション/多数接続(mMTC:massive Machin Type Communications)、超信頼性・低遅延コミュニケーション(URLLC:Ultra Reliable and Low Latency Communicant)の3つがある。国際標準化団体である3GPP(3rd Generation Partnership Project)では、LTEシステムの高度化と、New RAT(Radio Access Technology)(例えば、非特許文献1を参照)の両面から、通信システムの高度化を検討している。
RP-161596, "Revision of SI: Study on New Radio Access Technology", NTT DOCOMO, September 2016 R1-1612335, "On phase noise effects", Ericsson, November 2016
New RATでは、LTE/LTE-Advancedと比較して、例えば、6GHz以上の高い周波数の信号が搬送波として利用される。特に、高い周波数帯かつ高次の変調多値数(Modulation order)を使用する場合、送信機の局部発振器の位相雑音(Phase Noise)によって発生するCPE(Common Phase Error、共通位相誤差)又はICI(Inter-carrier Interference、キャリア間干渉)によって、誤り率特性が劣化する(例えば、非特許文献2を参照)。そこで、New RATでは、受信機が、チャネル等化(Channel Equalization)に加えて、位相トラッキング用参照信号(PT-RS:Phase Tracking Reference Signal)を用いたCPE補正(CPE Correction)又はICI補正(ICI Correction)(以下、「CPE/ICI補正」と呼ぶこともある)を行うことが検討されている。
しかしながら、複数の基地局(BS(Base station)、gNBと呼ばれることもある)又は複数の移動局(端末、UE(User Equipment)と呼ばれることもある)からそれぞれ送信されるPT-RSに対して干渉を抑圧する方法について十分な検討がなされていない。
本開示の一態様は、複数の基地局又は移動局から送信されるPT-RSに対して適切に干渉を抑圧することができる送信機、受信機、送信方法及び受信方法の提供に資する。
本開示の一態様に係る送信機は、位相トラッキング用参照信号をサブキャリアにマッピングする割当回路と、前記位相トラッキング用参照信号を含む信号を送信する送信回路と、を具備し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
本開示の一態様に係る受信機は、位相トラッキング用参照信号を含む信号を受信する受信回路と、前記位相トラッキング用参照信号を用いて算出される位相雑音推定値を用いて、データ信号を復調する復調回路と、を具備し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
本開示の一態様に係る送信方法は、位相トラッキング用参照信号をサブキャリアにマッピングし、前記位相トラッキング用参照信号を含む信号を送信し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
本開示の一態様に係る受信方法は、位相トラッキング用参照信号を含む信号を受信し、前記位相トラッキング用参照信号を用いて算出される位相雑音推定値を用いて、データ信号を復調し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本開示の一態様によれば、複数の基地局又は移動局から送信されるPT-RSに対して適切に干渉を抑圧することができる。
本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
図1は、DMRS及びPT-RSのマッピング例を示す。 図2は、実施の形態1に係る送信機の一部の構成を示す。 図3は、実施の形態1に係る受信機の一部の構成を示す。 図4は、実施の形態1に係る送信機の構成を示す。 図5は、実施の形態1に係る受信機の構成を示す。 図6は、実施の形態1に係る送信機の処理を示す。 図7は、実施の形態1に係る受信機の処理を示す。 図8は、実施の形態1の動作例に係るPT-RSのマッピング例を示す。 図9は、実施の形態2の動作例1に係るPT-RSのマッピング例を示す。 図10は、実施の形態2の動作例2に係るPT-RSのマッピング例を示す。 図11は、実施の形態3の動作例1に係るPT-RSのマッピング例を示す。 図12は、実施の形態3の動作例2に係るPT-RSのマッピング例を示す。 図13は、実施の形態3の動作例3に係るPT-RSのマッピング例を示す。
以下、本開示の実施の形態について図面を参照して詳細に説明する。
信号が割り当てられる周波数帯が高いほど、又は、信号に使用される変調多値数が高いほど、CPE/ICIが誤り率特性に与える影響は大きい。そこで、上述したように、高い周波数帯・高次の変調多値数を使用する場合には、受信機では、チャネル等化に加えて、PT-RSを用いたCPE/ICI補正を行うことが検討されている。
PT-RSは、時間的にランダムに変動するCPE/ICIをトラッキングするために、チャネル推定用(復調用)の参照信号(DMRS:Demodulation Reference Signal)と比較して時間軸上に高密度にマッピングされる。具体的には、シンボル毎、隣接する2シンボルのうち1シンボル、又は、隣接する4シンボルのうち1シンボル等のように、PT-RSがマッピングされる時間領域での配置密度を設定することが想定されている。また、CPE/ICIのサブキャリア間での変動は少ないという特性から、PT-RSは、周波数領域では比較的低密度にマッピングされる。具体的には、RB(Resource Block)毎に1サブキャリア、隣接する2RBのうち1サブキャリア、又は、隣接する4RBのうち1サブキャリア等のように、PT-RSがマッピングされる周波数領域での配置密度を設定することが想定される。
3GPP RAN1#88でのPT-RSに関する合意事項によると、PT-RSは、基地局(BS、eNB、gNB)と、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング)によって基地局から通知された移動局(端末、UE)との間で使用される。また、PT-RSの時間領域及び周波数領域での配置密度は、当該基地局と移動局との間で使用される変調多値数又は帯域幅等によって柔軟に変化することが想定されている。
また、移動局が、PT-RSの配置密度を判断する方法について検討されている。一つの方法としては、PT-RSの配置密度が、基地局からPT-RS専用の制御信号によって通知されるという方法である(明示的通知/explicit)。他の方法としては、PT-RSの配置密度と他のパラメータ(例えば、変調多値数又は帯域幅等)との対応関係を決めておき、移動局が、通信時にDCI(Downlink Control Information)で通知される当該他のパラメータとその対応関係とを照合してPT-RSの配置密度を判断するという方法である(暗黙的通知/implicit)。なお、これらの方法以外の方法が使用される可能性もある。
一方、チャネル推定に用いられるDMRSは、チャネル特性の周波数領域の変化が大きく、また、時間領域の変化が位相雑音ほど大きくないことから、PT-RSと比較して周波数領域には高密度に、時間領域には低密度にマッピングされる。さらに、New RATでは、データ復調のタイミングを早めるため、スロットの前方に配置されるfront-loaded DMRSの導入が想定されている。
また、New RATでは、MIMO(Multiple Input Multiple Output)が使用されることが想定されている。すなわち、基地局、および、当該基地局が構成するセル内の1つ又は複数の移動局は、同じ時間・周波数リソースを用いる異なるビーム(プリコーディング)に対応する複数のアンテナポートを用いて送受信することができる。基地局及び移動局の各々には最大送信電力に制限があるので、データ送信に利用する複数のアンテナポートの送信電力の合計が送信電力の最大値を超えないように運用されることが想定されている。従って、1つのアンテナポートを用いて送信する場合の方が、複数のアンテナポートを用いて送信する場合よりも、アンテナポート1つあたりの送信電力は大きくできる。
PT-RSには、DMRSを送信するアンテナポート(DMRSポートと呼ぶこともある)と同じプリコーディングが適用されることが検討されており、PT-RSはDMRSの一部として定義されることも考えられる。この場合、PT-RSとして使用されるDMRSは、他のDMRSよりも時間領域では高密度にマッピングされ、周波数領域では低密度にマッピングされる。また、位相雑音により発生するCPE/ICIの補正に使用する参照信号は、「PT-RS」とは異なる名称で呼ばれる可能性もある。
また、PT-RSは、基地局と、当該基地局が構成するセル内のそれぞれの移動局との間で送受信される。ここで、送信機(下りリンクでは基地局、上りリンクでは移動局)の局部発振器を共有するアンテナポートのグループでは、CPE/ICIの値が同じであるため、PT-RSは、グループ内の何れかのアンテナポートから送信されればよく、グループ内の全てのアンテナポートから送信される必要は無い。よって、データを送受信するアンテナポート数よりも、PT-RSを送受信するアンテナポート数が少なくなることもある。
さらに、1つの移動局に対して送受信されるPT-RSは、データに対して直交多重されることが考えられている。また、PT-RS同士もFDM(Frequency Division Multiplexing)されることが考えられている。よって、1つのRE(Resource Element)において1つのアンテナポートのPT-RSが送信される場合、同じREでは、データ又は他のアンテナポートのPT-RSは送信されない。
以上より、PT-RSの1アンテナポートのREあたりの送信電力は、データの1アンテナポートのREあたりの送信電力よりも大きくなることが考えられる。上述したように、PT-RSは複数のセルを構成する基地局(下りリンク)、又は、複数の移動局(上りリンク)から送信されるので互いに干渉を与える。この際、あるアンテナポートから送信されるPT-RSが他セルに与える干渉の大きさは、あるアンテナポートから送信されるデータが他セルに与える干渉よりも大きい。
図1は、MIMOにおけるDMRS及びPT-RSのマッピング例を示す。DMRS及びPT-RSがマッピングされたRE内の数字はポート番号を表す。すなわち、図1において同じ番号のDMRS及びPT-RSはプリコーディングを共有している。
また、NR(New Radio)では、下りリンク(基地局から移動局への方向、downlink)においてCP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)方式の使用が想定されている。一方、上りリンク(移動局から基地局への方向、uplink)においてCP-OFDM方式及びDFT-S-OFDM(Discrete Fourier Transform - Spread OFDM)方式の両方が検討されており、通信環境に合わせて通信方式を切り替えるなどして使用されることが想定されている。
例えば、下りリンクの場合、移動局が接続している基地局から送信されるPT-RSが、他の基地局から送信されるPT-RSと同じREに存在すると、PT-RS同士が衝突してしまう。このとき、1アンテナポートのREあたりのPT-RSの送信電力がデータの送信電力と比較して高い場合には、データとPT-RSとが衝突した場合と比較して、PT-RS同士の干渉量が大きくなってしまう。同様に、上りリンクの場合、ある基地局が接続している移動局から送信されるPT-RSが、他の基地局と接続している他の移動局から送信されるPT-RSと衝突すると、データとPT-RSとが衝突した場合と比較して、PT-RS同士の干渉量が大きくなってしまう。
本開示の各実施の形態では、PT-RS同士の衝突を抑え、干渉量が大きくなることを防ぐ方法について説明する。
(実施の形態1)
[通信システムの概要]
本実施の形態に係る通信システムは、送信機100及び受信機200を備える。すなわち、下りリンクでは、送信機は基地局であり、受信機は移動局である。また、上りリンクでは、送信機は移動局であり、受信機は基地局である。
図2は、本実施の形態に係る送信機100の一部の構成を示すブロック図である。図2に示す送信機100において、信号割当部106(割当回路)は、位相トラッキング用参照信号(PT-RS)をサブキャリアにマッピングする。送信部107(送信回路)は、PT-RSを含む信号を送信する。
図3は、本実施の形態に係る受信機200の一部の構成を示すブロック図である。図3に示す受信機200において、受信部202(受信回路)は、PT-RSを含む信号を受信する。データ復調部207は、位相トラッキング用参照信号(PT-RS)を用いて算出される位相雑音推定値(CPE/ICI推定値)を用いて、データ信号を復調する。
ここで、PT-RSがマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
[送信機の構成]
図4は、本実施の形態に係る送信機100の構成を示すブロック図である。図4において、送信機100は、PT-RS生成部101と、ホッピングパターン生成部102と、周波数ホッピング部103と、誤り訂正符号化部104と、変調部105と、信号割当部106と、送信部107と、アンテナ108と、を有する。
PT-RS生成部101は、PT-RSを生成し、生成したPT-RSを周波数ホッピング部103に出力する。
ホッピングパターン生成部102は、例えば、セルID、グループID、UE ID(移動局ID)、及び、スロット番号等の少なくとも1つを用いて、ホッピングパターン(例えば、PT-RSの初期位置及びホッピングオフセット)を決定する。ホッピングパターンは、例えば、規定されたホッピングパターン生成式から算出されてもよい。ホッピングパターン生成部102は、決定したホッピングパターンを周波数ホッピング部103に出力する。
例えば、セルIDは移動局が接続している基地局に対応するセルIDであり、グループIDは、移動局が属しているグループのIDであり、UE IDは移動局のIDである。
周波数ホッピング部103は、ホッピングパターン生成部102から入力されるホッピングパターンに従って、単位時間(例えば、シンボル、スロット、ミニスロット、サブフレーム又はフレーム等)毎に、PT-RS生成部101から入力されるPT-RSの位置をホッピングさせ、ホッピング後のPT-RSを信号割当部106に出力する。なお、周波数ホッピング部103は、PT-RSに対して周波数ホッピングを行わずに、PT-RSを信号割当部106に出力してもよい。
誤り訂正符号化部104は、入力される送信データ信号を誤り訂正符号化し、誤り訂正符号化後の信号を変調部105に出力する。
変調部105は、誤り訂正符号化部104から入力される信号に対して変調処理を施し、変調後のデータ信号を信号割当部106に出力する。
信号割当部106は、DMRS、変調部105から入力されるデータ信号、及び、周波数ホッピング部103から入力されるPT-RSを、時間・周波数領域にマッピングし、マッピング後の信号を送信部107に出力する。
送信部107は、信号割当部106から入力される信号に対して、搬送波を用いた周波数変換などの無線送信処理を行い、無線送信処理後の信号をアンテナ108に出力する。
アンテナ108は、送信部107から入力される信号を受信機200に向けて放射する。
[受信機の構成]
図5は、本実施の形態に係る受信機200の構成を示すブロック図である。図5において、受信機200は、アンテナ201と、受信部202と、ホッピングパターン生成部203と、信号分離部204と、チャネル推定部205と、CPE/ICI推定部206と、データ復調部207と、誤り訂正復号部208と、を有する。
アンテナ201は、送信機100(図4を参照)から送信される信号を受信し、受信信号を受信部202に出力する。
受信部202は、アンテナ201から入力される受信信号に対して、周波数変換などの無線受信処理を行い、無線受信処理後の信号を信号分離部204に出力する。
ホッピングパターン生成部203は、送信機100(ホッピングパターン生成部102)と同様、例えば、セルID、グループID、UE ID、及び、スロット番号等の少なくとも1つを用いて、PT-RSの送信に使用されたホッピングパターン(例えば、PT-RSの初期位置及びホッピングオフセット)を決定する。ホッピングパターンは、例えば、送信機100が使用するホッピングパターン生成式と同一のホッピングパターン生成式から算出されてもよい。ホッピングパターン生成部203は、決定したホッピングパターンを信号分離部204に出力する。
信号分離部204は、ホッピングパターン生成部203から入力されるホッピングパターンを用いて、受信部202から入力される信号の中から、データ、DMRS、及び、PT-RSがそれぞれマッピングされた時間・周波数領域の位置を特定し、各信号を分離する。信号分離部204は、分離した信号のうち、データをデータ復調部207に出力し、DMRSをチャネル推定部205及びCPE/ICI推定部206に出力し、PT-RSをCPE/ICI推定部206に出力する。
チャネル推定部205は、信号分離部204から入力されるDMRSを用いてチャネル情報を推定し、チャネル推定情報(チャネル情報)をデータ復調部207に出力する。
CPE/ICI推定部は、信号分離部204から入力されるPT-RS及びDMRSを用いてCPE/ICIを推定し、CPE/ICI推定値をデータ復調部207に出力する。
データ復調部207は、チャネル推定部205から入力されるチャネル推定情報及びCPE/ICI推定部206から入力されるCPE/ICI推定値を用いて、信号分離部204から入力されるデータ信号を復調する。データ復調部207は、復調信号を誤り訂正復号部208に出力する。
誤り訂正復号部208は、復調部207から入力される復調信号を復号し、得られた受信データ信号を出力する。
[送信機100及び受信機200の動作]
次に、送信機100及び受信機200の動作について詳細に説明する。
図6は送信機100の処理のフローの一例を示し、図7は受信機200の処理のフローの一例を示す。
図6において、送信機100は、PT-RSをマッピングする周波数リソース(サブキャリア)を決定する(ST101)。また、送信機100は、PT-RSに対して周波数ホッピングを行ってもよい。
次に、送信機100は、ST101で決定した周波数リソースにPT-RSをマッピングする(ST102)。そして、送信機100は、PT-RSを含む信号を受信機200へ送信する(ST103)。
一方、受信機200は、送信機100(ST101)と同様にして、PT-RSがマッピングされる周波数リソース(サブキャリア、ホッピングパターン)を決定する(ST201)。次に、受信機200は、ST201で決定した周波数リソースに基づいて、送信機100から送信された信号からPT-RS(及び、DMRS、データ)を分離する(ST202)。次に、受信機200は、PT-RS(及びDMRS)を用いて、CPE/ICI推定を行う(ST203)。そして、受信機200は、CPE/ICI推定値を用いて、データを復調する(ST204)。
この際、送信機100から送信されるPT-RSがマッピングされるサブキャリアは、異なるセル、異なるグループ又は異なる移動局の間で異なる。これにより、送信機100が送信するPT-RSが、他のセル/グループ/移動局のPT-RSと同一サブキャリアで送信されることを防ぎ、PT-RS間の衝突を低減することができる。すなわち、送信機100が送信するPT-RSが、他のセル/グループ/移動局のPT-RSから干渉を受ける可能性を低減することができる。
なお、PT-RSがマッピングされるサブキャリアは、例えば、セルID、グループID又はUE ID毎に対応付けられてもよく、上位レイヤのシグナリングによって基地局から移動局へ通知されてもよい。
次に、送信機100及び受信機200におけるPT-RSをマッピングする周波数リソース(サブキャリア)の決定方法(図6に示すST101及び図7に示すST201の処理)について説明する。
なお、以下では、PT-RSがスロット毎に周波数ホッピングされる場合について説明する。
[動作例]
動作例では、フレームにおいて最初にPT-RSがマッピングされるスロットでは、周波数領域で一様に分散して等間隔にPT-RSがマッピングされる。また、フレームの後続するスロットでは、移動局の割当帯域内の全てのPT-RSに対して同一のホッピングオフセットが適用される。
すなわち、本実施の形態に係る動作例では、送信機100は、各スロットにおいてPT-RSがマッピングされるサブキャリアが一様に分散されて等間隔になるように、PT-RSに対して周波数ホッピングを行う。換言すると、送信機100(信号割当部106)は、各スロット(同一時間)で送信される複数のPT-RSを周波数領域で等間隔にマッピングする。
例えば、送信機100(ホッピングパターン生成部102)及び受信機200(ホッピングパターン生成部203)は、以下の方法でPT-RSの初期位置、及び、ホッピングオフセットを決定する。
以下、移動局の割当帯域の大きさを「NUE_BW[RB]」とし、移動局にマッピングされるPT-RSの周波数領域における配置密度を「Ndensity[RB]に1つ」とする。
まず、フレームにおいてPT-RSが最初に配置されるスロットでのPT-RSの周波数位置(つまり、PT-RSの初期位置)の決定方法について説明する。
送信機100は、移動局に割り当てられたNUE_BW個のRB(ここでは、1RB=12サブキャリア)の中から1つのサブキャリアを初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。初期位置(サブキャリア)の選択の際、送信機100は、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つとを用いる。これにより、異なるセル、異なるグループ又は異なる移動局において、可能な限り異なるサブキャリアが選択される。
次に、送信機100は、上記PT-RSが配置されたRBからNdensity個離れたRBにおいて、上記PT-RSがマッピングされたRBのサブキャリアと同一サブキャリアにPT-RSをマッピングする。送信機100は、NUE_BW/Ndensity個のサブキャリアにPT-RSがマッピングされるまで(つまり、PT-RSがマッピングされる全てのRBに対して)、この処理を繰り返す。
このように、割当帯域内のPT-RSがマッピングされるRBにおけるPT-RSの初期位置(サブキャリア)が各RBで同一であるので、最初のスロットにおけるPT-RSは、周波数領域で一様に等間隔にマッピングされる。
次に、2番目のスロット以降のPT-RSに対するホッピングオフセットの決定方法について説明する。
送信機100は、ホッピングオフセットを[0,1,2・・・12Ndensity-1]の中から1つ選択し、選択した値を「fHOP」とする。なお、送信機100は、ホッピングオフセットの選択の際、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、スロット番号とを用いる。これにより、異なるセル、異なるグループ、異なる移動局、又は、異なるスロットにおいて、可能な限り異なるホッピングオフセットが選択される。
送信機100は、各スロットにおいて、当該スロットの前のスロットでNUE_BW/Ndensity個のPT-RSがマッピングされた全てのサブキャリアからfHOP個離れたサブキャリアにPT-RSをマッピングする。送信機100は、この処理を、フレームが終わるまでスロット毎に繰り返す。
また、受信機200は、上述した送信機100と同様の処理により、ホッピングパターン(初期位置及びホッピングオフセット)を特定し、送信機100から送信されるPT-RSがマッピングされるサブキャリア位置を特定する。
図8は、本実施の形態に係る動作例におけるPT-RSのマッピング例を示す。
図8では、PT-RSの周波数領域の配置密度は「1RBに1つ」(図8では12サブキャリアに1つ)である。すなわちNdensity=1である。よって、図8では、どのスロットでも、移動局の割当帯域の全てのRBにおいて1つのサブキャリアにPT-RSがマッピングされている。また、PT-RSの周波数ホッピングは、スロットの境界で行われる。
図8に示すように、スロット#0におけるPT-RSの初期位置は、各RB(図8では2RBを示す)において同一のサブキャリア(各RBの4番目のサブキャリア)である。また、図8に示すように、ホッピングオフセットfHOPは7サブキャリアである。よって、スロット#1では、スロット#0の各RBでPT-RSがマッピングされたサブキャリアからfHOP=7サブキャリア離れたサブキャリア(各RBの11番目のサブキャリア)にPT-RSがマッピングされる。
つまり、図8に示すように、最初のスロット及び後続するスロットを含む各スロットにおいて、PT-RSの周波数間隔は一様に同じ(図8では1RB(12サブキャリア))である。
以上、本実施の形態に係る動作例について説明した。
このように、本実施の形態では、PT-RSがマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。例えば、送信機100は、「セルID、グループID又はUE ID」、又は、上位レイヤのシグナリングに応じて、PT-RSをマッピングするサブキャリアを決定する。これにより、セル/グループ/移動局毎に異なるサブキャリアにPT-RSがマッピングされる。
こうすることで、異なるセル、異なるグループ又は異なる移動局にそれぞれ対応する複数の送信機100は、同一時間領域(例えば同一スロット)において異なる周波数リソース(サブキャリア)を用いてPT-RSを送信する可能性が高くなる。
これにより、例えば、下りリンクでは、移動局(受信機200)が接続している基地局(送信機100)から送信されるPT-RSと、他の基地局(他の送信機100)から送信されるPT-RSとの衝突を低減することができる。同様に、上りリンクでは、基地局(受信機200)が接続している移動局(送信機100)から送信されるPT-RSと、他の基地局に接続している他の移動局(他の送信機100)から送信されるPT-RSとの衝突を低減することができる。
よって、本実施の形態によれば、複数の基地局又は移動局から送信されるPT-RSに対して、PT-RS同士の衝突を抑え、適切に干渉を抑圧することができる。
また、送信機100は、PT-RSに対して周波数ホッピングを適用する。この際、PT-RSのホッピングパターンを「セルID、グループID又はUE ID」及び時間領域のインデックス(例えば、スロット番号)に基づいて決定する。これにより、異なるセル/グループ/移動局の間で異なるホッピングパターンが使用される可能性が高くなるので、送信機100が送信するPT-RSが、他のセル/グループ/移動局のPT-RSから干渉を受ける可能性を低下させることができる。すなわち、異なるセル/グループ/移動局の間でのPT-RS同士の衝突による干渉がランダマイズされる。また、「セルID、グループID又はUE ID」に加え、時間領域のインデックスによってホッピングパターンを異ならせることで、例えば、「セルID、グループID又はUE ID」によって或るスロットで同一サブキャリアに複数のPT-RSがマッピングされ、PT-RS同士の衝突が発生した場合でも、複数のスロットに渡ってPT-RSが衝突し続けることを防ぐことができる。
また、送信機100は、フレームで最初にPT-RSがマッピングされるスロットではPT-RSを周波数領域で一様に分散し、等間隔にマッピングし、後続するスロットでは移動局の割当帯域内の全てのPT-RSに対して同一のホッピングオフセットを適用する。これにより、各スロットではPT-RSがマッピングされるサブキャリアが一様に分散され、等間隔になるので、PT-RSがチャネルの周波数選択性に対してロバストとなる。
また、「PT-RSの周波数領域での配置密度はn(整数)個のRBに対して1個」と設定することで、移動局の割当帯域に含まれる各RB内のPT-RSがマッピングされるサブキャリア位置はRB間で同一となる。これにより、受信機200は、PT-RSがマッピングされるサブキャリア位置をRB毎に特定する必要が無いため、受信機200の計算量を低減することができる。
(実施の形態1の変形例1)
なお、実施の形態1では、PT-RSのアンテナポート数が1個の場合(例えば、図8を参照)について説明したが、PT-RSのアンテナポート数は2個以上でもよい。PT-RSのアンテナポート数が複数である場合、送信機100は、例えば、「セルID、グループID又はUE ID」に加え、アンテナポート番号によって異なるサブキャリアにマッピングされるように、PT-RSの初期位置を選択してもよい。ただし、複数のアンテナポートからそれぞれ送信されるPT-RSに対するホッピングオフセットは同一値を用いる。これは、周波数ホッピングによってPT-RSポート間の衝突が発生することを避けるためである。
(実施の形態1の変形例2)
また、セル間のコーディネーションがあり、各セルでPT-RSがどのようにマッピングされているかについての情報がセル間で共有されている場合、これらのセルに対して実施の形態1のように、PT-RSを周波数領域で一様にマッピングしてもよい。例えば、セル間のコーディネーションがある場合、PT-RSを送信するサブキャリアの情報は、基地局間のインタフェース(例えば、X2インタフェース)を用いて互いに通知されてもよい。
こうすることで、セル間でPT-RSを送信するサブキャリアの情報が共有されていない場合にはセル間でのPT-RSの衝突の可能性が高まるのに対して、セル間のコーディネーションがある場合には、PT-RSをマッピングするサブキャリアをセル間で確実に異ならせることができるので、セル間でのPT-RSの衝突を回避することができる。
特に、実施の形態1では、PT-RSの周波数領域での間隔がセル間で同一又は整数倍となる可能性が高く、各セルでPT-RSのマッピングを個別に決定した場合には各スロットにおいてPT-RSが複数のサブキャリアで同時に衝突する可能性が高くなる。よって、コーディネーションがあるセル間において実施の形態1の動作を適用することで、PT-RSが複数サブキャリアで同時に衝突する可能性を抑えつつ、上述したように、受信機200での計算量を減らすことができる。
(実施の形態2)
本実施の形態に係る送信機及び受信機は、実施の形態1に係る送信機100及び受信機200と基本構成が共通するので、図4及び図5を援用して説明する。
本実施の形態では、移動局の割当帯域内にマッピングされる各PT-RSに対して、同一又は異なるホッピングオフセットが適用される。すなわち、実施の形態1では、各スロットにおいてPT-RSがマッピングされるサブキャリアが等間隔であったのに対して、本実施の形態では、各スロットにおいてPT-RSがマッピングされるサブキャリアは必ずしも等間隔ではない(不等間隔である)。
以下、本実施の形態に係る動作例1及び動作例2についてそれぞれ説明する。
[動作例1]
本実施の形態に係る動作例1では、PT-RSのホッピング先のサブキャリアの候補は、移動局の割当帯域全体である。すなわち、動作例1では、送信機100は、移動局の割当帯域全体において周波数ホッピングを行い、割当帯域内の何れかのサブキャリアに複数のPT-RSをそれぞれマッピングする。
例えば、送信機100(ホッピングパターン生成部102)及び受信機200(ホッピングパターン生成部203)は、以下の方法でPT-RSの初期位置、及び、ホッピングオフセットを決定する。
以下、移動局の割当帯域の大きさを「NUE_BW[RB]」とし、移動局にマッピングされるPT-RSの周波数領域における配置密度を「Ndensity[RB]に1つ」とする。この場合、各スロットでは、NUE_BW/Ndensity個のPT-RSが配置される。ここでは、NUE_BW/Ndensity個のPT-RSの全てに[0,1,2…NUE_BW/Ndensity-1]のインデックスiを付加する。
まず、フレームにおいてPT-RSが最初に配置されるスロットでのPT-RSの周波数位置(つまり、PT-RSの初期位置)の決定方法について説明する。
送信機100は、移動局に割り当てられたNUE_BW個のRB(ここでは、1RB=12サブキャリア)の中から1つのサブキャリアを初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。初期位置(サブキャリア)の選択の際、送信機100は、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RSのインデックスiとを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RS(インデックスi)において、可能な限り異なるサブキャリアが選択される。
次に、送信機100は、移動局に割り当てられたNUE_BW個のRBの中から、同様の方法に基づいて他のサブキャリアを初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。送信機100は、NUE_BW/Ndensity個のサブキャリアにPT-RSがマッピングされるまで同様の処理を繰り返す。
このように、本実施の形態の動作例1では、移動局の割当帯域内において複数のPT-RSの初期位置(サブキャリア)は、等間隔であるとは限らず、不規則である。すなわち、PT-RSがマッピングされる初期位置は、不等間隔となる場合がある。
次に、2番目のスロット以降のPT-RSに対するホッピングオフセットの決定方法について説明する。
送信機100は、1つのスロット内に配置されるNUE_BW/Ndensity個のPT-RSに対して、ホッピングオフセットを[0,1,2・・・12NUE_BW-1]の中からそれぞれ1つずつ選択し、選択した値を用いて、各PT-RSをそれぞれホッピングさせる。なお、送信機100は、ホッピングオフセットの選択の際、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RSのインデックスiと、スロット番号とを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RS、又は、異なるスロットにおいて、可能な限り異なるホッピングオフセットが選択される。
また、受信機200は、上述した送信機100と同様の処理により、ホッピングパターン(初期位置及びホッピングオフセット)を特定し、送信機100から送信されるPT-RSがマッピングされるサブキャリア位置を特定する。
図9は、本実施の形態の動作例1におけるPT-RSのマッピング例を示す。
図9では、PT-RSの周波数領域の配置密度は「1RBに1つ」である(すなわち、Ndensity=1)。また、移動局の割当帯域(=NUE_BW)は2RBである。よって、各スロットでは、2つのサブキャリアにPT-RSがマッピングされる。また、PT-RSの周波数ホッピングは、スロットの境界で行われる。
図9では、スロット#0におけるPT-RSの初期位置は、割当帯域内の2個のRBにおいて同一のサブキャリア(各RBの9番目のサブキャリア)である。なお、PT-RSの初期位置は、割当帯域内の各RBにおいて同一のサブキャリア位置とは限らない。
また、図9に示すように、一方のPT-RSに対するホッピングオフセットは2サブキャリアであり、他方のPT-RSに対するホッピングオフセットは10サブキャリアである。つまり、各PT-RSに対して異なるホッピングオフセットが設定されている。これにより、図9では、スロット#1において、スロット#0の各RBでPT-RSがマッピングされたサブキャリアから2サブキャリア及び10サブキャリア離れたサブキャリアにPT-RSがマッピングされる。図9では、スロット#1において、移動局の割当帯域のうち、一方のRBに2つのPT-RSがマッピングされ、他方のRBにはPT-RSがマッピングされていない。このように、各PT-RSは、周波数領域において不規則にマッピングされる。
動作例1では、各スロットにマッピングされる複数のPT-RS(図9では2つのPT-RS)に対してホッピングオフセットがそれぞれ設定される。このため、動作例1では、実施の形態1(図8)と異なり、ホッピングオフセットは、全てのPT-RSにおいて同一とは限らない。これにより、図9に示すように、一部のRBにPT-RSが集中してマッピングされ、他のRBにはPT-RSがマッピングされないという場合もある。ただし、この場合でも、割当帯域全体としてのPT-RSの密度は「1RBに1つ」のままである。
このように、動作例1では、PT-RSの各々に対してホッピングパターン(初期位置、ホッピングオフセット)がそれぞれ決定されるので、各PT-RSのホッピングの自由度が高く、干渉のランダム性が高くなる。
なお、動作例1(図9)では、PT-RSのアンテナポート数が1個の場合について説明したが、PT-RSのアンテナポート数は2個以上でもよい。PT-RSのアンテナポート数が複数である場合、送信機100は、例えば、「セルID、グループID又はUE ID」、PT-RSのインデックスiに加え、アンテナポート番号によって異なるサブキャリアにマッピングされるように、PT-RSの初期位置を選択してもよい。ただし、複数のアンテナポートからそれぞれ送信されるPT-RSに対するホッピングオフセットは同一値を用いる。これは、周波数ホッピングによってPT-RSポート間の衝突が発生することを避けるためである。
[動作例2]
本実施の形態に係る動作例2では、PT-RSのホッピング先のサブキャリアの候補は、限られた帯域に限定される。以下では、この限られた帯域を「PT-RS sub-band」と呼ぶ。PT-RS sub-bandの帯域幅は、PT-RSの周波数領域の配置密度の設定に応じて、PT-RS sub-bandの中にPT-RSが1サブキャリアしかマッピングされないように設定されてもよい。
例えば、送信機100(ホッピングパターン生成部102)及び受信機200(ホッピングパターン生成部203)は、以下の方法でPT-RSの初期位置、及び、ホッピングオフセットを決定する。
以下、移動局の割当帯域の大きさを「NUE_BW[RB]」とし、移動局にマッピングされるPT-RSの周波数領域における配置密度を「Ndensity[RB]に1つ」とする。この場合、各スロットでは、NUE_BW/Ndensity個のPT-RSが配置される。
また、送信機100は、NUE_BW個のRBを、隣接するNdensity個のRBずつのグループに分ける。1つのグループを「PT-RS sub-band」と呼ぶ。
まず、フレームにおいてPT-RSが最初に配置されるスロットでのPT-RSの周波数位置(つまり、PT-RSの初期位置)の決定方法について説明する。
送信機100は、最初のスロットの或るPT-RS sub-bandの中の1つのサブキャリアを初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。初期位置(サブキャリア)の選択の際、送信機100は、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RS sub-bandのインデックスとを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RS sub-bandにおいて、可能な限り異なるサブキャリアが選択される。
送信機100は、全てのPT-RS sub-bandに対して上記初期位置の設定処理を繰り返す。
次に、2番目のスロット以降のPT-RSに対するホッピングオフセットの決定方法について説明する。
送信機100は、各PT-RS sub-bandについて、当該PT-RS sub-band内のサブキャリアをホッピング先のサブキャリアとして1つ選択する。例えば、送信機100は、サブキャリア選択の際、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RS sub-bandのインデックスと、スロット番号とを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RS sub-band、又は、異なるスロットにおいて、可能な限り異なるホッピングオフセットが選択される。すなわち、各PT-RS sub-bandでは、現スロットで選択されたサブキャリアのインデックスと、前のスロットでPT-RSがマッピングされたサブキャリアのインデックスとの差がホッピングオフセットとなる。
送信機100は、全てのPT-RS sub-bandに対して、同様のサブキャリア選択処理を繰り返す。
また、受信機200は、上述した送信機100と同様の処理により、各スロットでPT-RSがマッピングされるサブキャリア位置をPT-RS sub-band毎に特定する。
図10は、本実施の形態の動作例2におけるPT-RSのマッピング例を示す。
図10では、PT-RSの周波数領域の配置密度は「1RBに1つ」である(すなわち、Ndensity=1)。また、図10では、移動局の割当帯域は、1RB毎にPT-RS sub-band(PT-RS sub-band#0,#1を含む)として分けられている。また、PT-RSの周波数ホッピングは、スロットの境界で行われる。
図10では、スロット#0におけるPT-RSの初期位置は、各PT-RS sub-bandでそれぞれ選択されている。また、図10では、スロット#1におけるPT-RSのマッピング位置として、各PT-RS sub-band内の何れか1つのサブキャリアが選択される。つまり、図10に示すように、PT-RS sub-band#0においてスロット#0にマッピングされたPT-RSは、スロット#1では、PT-RS sub-band#1にはホッピングされず、PT-RS sub-band#0内のサブキャリアにホッピングされる。PT-RS sub-band#1内のPT-RSについても同様である。
また、図10では、実施の形態1(図8)と異なり、ホッピングオフセットは、全てのPT-RSにおいて同一とは限らず、PT-RSの周波数間隔は一様ではない。
このように、動作例2では、送信機100は、複数のPT-RS sub-band(部分帯域)の各々に複数のPT-RSの何れか1つをそれぞれマッピングし、各PT-RSに対して、対応するPT-RS sub-band内において周波数ホッピングを行う。これにより、PT-RSの各々に対してホッピングパターン(初期位置、ホッピングオフセット)がそれぞれ決定されるので、各PT-RSのホッピングの自由度が高く、干渉のランダム性が高くなる。
また、動作例2では、各PT-RSは、PT-RS sub-band内でそれぞれホッピングされる。すなわち、動作例2では、PT-RSの周波数ホッピングは、PT-RS sub-band内に限定され、何れのスロットにおいても、各PT-RS sub-band内にPT-RSがマッピングされる。このため、動作例2では、全てのPT-RSが近接したサブキャリアにマッピングされることが回避され、周波数選択性に対してロバストとなる。
なお、動作例2(図10)では、PT-RSのアンテナポート数が1個の場合について説明したが、PT-RSのアンテナポート数は2個以上でもよい。PT-RSのアンテナポート数が複数である場合、送信機100は、例えば、「セルID、グループID又はUE ID」、PT-RS sub-bandのインデックスに加え、アンテナポート番号によって異なるサブキャリアにマッピングされるように、PT-RSの初期位置を選択してもよい。ただし、複数のアンテナポートからそれぞれ送信されるPT-RSに対するホッピングオフセットは同一値を用いる。これは、周波数ホッピングによってPT-RSポート間の衝突が発生することを避けるためである。
以上、本実施の形態の動作例1及び動作例2について説明した。
このように、本実施の形態では、PT-RSの各々は、周波数領域に不規則に配置されるので、同一の時間(例えば、同一スロット)で送信される複数のPT-RSがそれぞれマッピングされる複数のサブキャリアの組み合わせは、異なるセル/グループ/移動局の間で異なる可能性が高くなる。よって、異なるセル/グループ/移動局の間において、複数のサブキャリアにマッピングされたPT-RSが同時に衝突する可能性を低下させることができる。
また、本実施の形態によれば、例えば、或るスロット(例えば、フレーム内の最初にPT-RSがマッピングされるスロット)において、異なるセル/グループ/移動局の間で同一サブキャリアにPT-RSがマッピングされたとしても、他のスロットでは、異なるセル/グループ/移動局の間で異なるサブキャリアにPT-RSがそれぞれマッピングされる可能性が高くなる。よって、異なるセル/グループ/移動局の間において、複数のスロットに渡ってPT-RSが衝突する可能性を低下させることができる。
(実施の形態2の変形例)
なお、セル間のコーディネーションがなく、各セルでPT-RSがどのようにマッピングされているかについての情報がセル間で共有されていない場合、これらのセルに対して実施の形態2のように、PT-RSを周波数領域で不規則にマッピングしてもよい。
こうすることで、セル間でPT-RSを送信するサブキャリアの情報が共有されていない場合にはセル間でのPT-RSの衝突の可能性が高まるのに対して、実施の形態2のように、PT-RSを周波数領域で不規則にマッピングすることで、各セルにおいてPT-RSがマッピングされるサブキャリアのランダマイズ性が高くなり、セル間で同時に複数のサブキャリアにマッピングされたPT-RSが衝突する可能性を低下することができる。
(実施の形態1,2の変形例)
また、セル間のコーディネーションがある場合には実施の形態1のように同一時間(例えば、スロット)で送信される複数のPT-RSを周波数領域で一様にマッピングし、セル間のコーディネーションがない場合には実施の形態2のように同一時間で送信される複数のPT-RSを周波数領域で不規則(不等間隔)にマッピングしてもよい。また、送信機100は、セル間のコーディネーションの有無に応じて、実施の形態1のPT-RSマッピングと、実施の形態2のPT-RSマッピングとを切り替えてもよい。
なお、セル間のコーディネーションがある場合は、PT-RSを送信するサブキャリアの情報は、基地局間のインタフェース(例えば、X2インタフェース)を用いて互いに通知されてもよい。
このように、セル間のコーディネーション状況に応じてPT-RSのマッピング方法を柔軟に切り替えることで、それぞれの状況に対して最適な方法でPT-RSをマッピングすることができる。これにより、セル間のコーディネーションがあり、実施の形態1のマッピング方法を適用する場合には受信機200の計算量を減少させることができる。また、セル間のコーディネーションがなく、実施の形態2のマッピング方法を適用する場合には、同時に複数のサブキャリアのPT-RSが衝突する可能性を低下することができる。
(実施の形態3)
本実施の形態に係る送信機及び受信機は、実施の形態1に係る送信機100及び受信機200と基本構成が共通するので、図4及び図5を援用して説明する。
本実施の形態では、送信機100は、PT-RSを、当該PT-RSと同一プリコーディングを使用するDMRSがマッピングされたサブキャリアの何れかにマッピングする。つまり、PT-RSのホッピング先は、プリコーディングを共有するDMRSと同じサブキャリアに限定される。すなわち、PT-RSは、同じアンテナポートで送信されるDMRSが存在するサブキャリアに存在する。
以下、本実施の形態に係る動作例1~3についてそれぞれ説明する。なお、本実施の形態に係る動作例1~3のPT-RSのマッピング方法は、実施の形態1の動作例(図8を参照)、実施の形態2の動作例1(図9を参照)、及び、実施の形態2の動作例2(図10を参照)にそれぞれ対応し、PT-RSがマッピングされるサブキャリアが同一プリコーディングのDMRSがマッピングされたサブキャリアに限定される点が異なる。
[動作例1]
動作例1では、実施の形態1の動作例1と同様、フレームにおいて最初にPT-RSがマッピングされるスロットでは、周波数領域で一様に分散して等間隔にPT-RSがマッピングされる。また、フレームの後続するスロットでは、移動局の割当帯域内の全てのPT-RSに対して同一のホッピングオフセットが適用される。すなわち、送信機100は、各スロットにおいてPT-RSがマッピングされるサブキャリアが一様に分散されて等間隔になるように、PT-RSに対して周波数ホッピングを行う。
ただし、本実施の形態に係る動作例1では、PT-RSがマッピングされるサブキャリア(ホッピング先のサブキャリアを含む)は、当該PT-RSと同一プリコーディングが適用されるDMRSが存在するサブキャリアの何れかである。
例えば、送信機100(ホッピングパターン生成部102)及び受信機200(ホッピングパターン生成部203)は、以下の方法でPT-RSの初期位置、及び、ホッピングオフセットを決定する。
以下、移動局の割当帯域の大きさを「NUE_BW[RB]」とし、移動局にマッピングされるPT-RSの周波数領域における配置密度を「Ndensity[RB]に1つ」とする。
また、PT-RSがDMRSポート番号1~Nportと同じプリコーディングで送信されるとする。すなわち、Nport個のアンテナポートでPT-RSが送信される。
まず、フレームにおいてPT-RSが最初に配置されるスロットでのPT-RSの周波数位置(つまり、PT-RSの初期位置)の決定方法について説明する。
送信機100は、例えば、DMRSポート番号1と同一プリコーディングが適用されるPT-RSをサブキャリアにマッピングする。この際、送信機100は、移動局に割り当てられたNUE_BW個のRB(ここでは、1RB=12サブキャリア)の中のDMRSポート番号1のDMRSが送信されるサブキャリアのうち1つのサブキャリアを初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。初期位置(サブキャリア)の選択の際、送信機100は、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つとを用いる。これにより、異なるセル、異なるグループ又は異なる移動局において可能な限り異なるサブキャリアが選択される。
次に、送信機100は、上記PT-RSが配置されたRBからNdensity個離れたRBにおいて、上記PT-RSがマッピングされたRBのサブキャリアと同一サブキャリア(つまり、DMRSポート番号1のDMRSが送信されるサブキャリア)にPT-RSをマッピングする。送信機100は、NUE_BW/Ndensity個のサブキャリアにPT-RSがマッピングされるまで(つまり、PT-RSがマッピングされる全てのRBに対して)、この処理を繰り返す。
また、送信機100は、DMRSポート番号1に対応するPT-RSのマッピングが完了すると、他のDMRSポート番号2~DMRSポート番号NportまでのPT-RSを同様にしてサブキャリアにマッピングする。
次に、2番目のスロット以降のPT-RSに対するホッピングオフセットの決定方法について説明する。
ここでは、1つのDMRSポートにおけるDMRSがNDMRS_Space個のサブキャリア毎にマッピングされているとする。
送信機100は、アンテナポート番号1のNUE_BW/Ndensity個のPT-RSに対して、ホッピングオフセットを[0, NDMRS_Space, 2NDMRS_Space, …]の中から1つ選択し、選択した値(ホッピングオフセット)を用いて、全てのPT-RSの周波数ホッピングを行う。なお、送信機100は、ホッピングオフセットの選択の際、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、スロット番号とを用いる。これにより、異なるセル、異なるグループ、異なる移動局、又は、異なるスロットにおいて、可能な限り異なるホッピングオフセットが選択される。
送信機100は、アンテナポート番号1に対応するPT-RSの周波数ホッピングが完了すると、他のアンテナポート番号2~アンテナポート番号NportまでのPT-RSについて、アンテナポート番号1で用いたホッピングオフセットを用いて、PT-RSに対して周波数ホッピングを行う。
また、受信機200は、上述した送信機100と同様の処理により、ホッピングパターン(初期位置及びホッピングオフセット)を特定し、送信機100から送信されるPT-RSがマッピングされるサブキャリア位置を特定する。
図11は、本実施の形態に係る動作例1におけるPT-RSのマッピング例を示す。
図11では、PT-RSの周波数領域の配置密度は「1RBに1つ」である(すなわち、Ndensity=1)。よって、図11では、どのスロットでも、移動局の割当帯域の全てのRBにおいて1つのサブキャリアにPT-RSがマッピングされている。また、NDMRS_Spaceは4サブキャリアである。また、PT-RSの周波数ホッピングは、スロットの境界で行われる。
また、図11では、一例として、アンテナポート番号1のPT-RSのマッピング例を示すが、他のアンテナポート番号についても同様にしてPT-RSがマッピングされればよい。
図11に示すように、スロット#0におけるアンテナポート番号1のPT-RSの初期位置は、DMRSポート番号1に対応するサブキャリアのうちの1つのサブキャリア(各RBの4番目のサブキャリア)である。また、図11に示すように、ホッピングオフセットは4サブキャリアである。よって、スロット#1では、スロット#0の各RBでPT-RSがマッピングされたサブキャリアから4サブキャリア離れたサブキャリア(各RBの8番目のサブキャリア)にPT-RSがマッピングされる。なお、ホッピングオフセットは、図11に示す4サブキャリアに限らず、NDMRS_Spaceの整数倍である、0、4、8、…の中から選択されればよい。
つまり、図11に示すように、最初のスロット及び後続するスロットを含む各スロットにおいて、PT-RSの周波数間隔は一様に同じ(図11では1RB(12サブキャリア))である。これにより、各スロットではPT-RSがマッピングされるサブキャリアが一様に分散され、等間隔になるので、PT-RSがチャネルの周波数選択性に対してロバストとなる。
また、図11では、実施の形態1(図8)と異なり、アンテナポート番号1のPT-RSは、同一ポートのDMRS(DMRSポート番号1)が存在するサブキャリアにマッピングされる。すなわち、アンテナポート番号1(ポート1)のPT-RSは、アンテナポート番号1のDMRSが存在するサブキャリアのREに配置可能となる(図11を参照)。
[動作例2]
本実施の形態に係る動作例2では、実施の形態2の動作例1と同様、PT-RSのホッピング先のサブキャリアの候補は、移動局の割当帯域全体である。すなわち、動作例2では、送信機100は、移動局の割当帯域全体において周波数ホッピングを行い、割当帯域内の何れかのサブキャリアに複数のPT-RSをそれぞれマッピングする。
ただし、本実施の形態に係る動作例2では、PT-RSがマッピングされるサブキャリア(ホッピング先のサブキャリアを含む)は、当該PT-RSと同一プリコーディングが適用されるDMRSが存在するサブキャリアの何れかである。
例えば、送信機100(ホッピングパターン生成部102)及び受信機200(ホッピングパターン生成部203)は、以下の方法でPT-RSの初期位置、及び、ホッピングオフセットを決定する。
以下、移動局の割当帯域の大きさを「NUE_BW[RB]」とし、移動局にマッピングされるPT-RSの周波数領域における配置密度を「Ndensity[RB]に1つ」とする。この場合、各スロットでは、NUE_BW/Ndensity個のPT-RSが配置される。ここでは、NUE_BW/Ndensity個のPT-RSの全てに[0,1,2…NUE_BW/Ndensity-1]のインデックスiを付加する。
また、PT-RSがDMRSポート番号1~Nportと同じプリコーディングで送信されるとする。すなわち、Nport個のアンテナポートでPT-RSが送信される。
まず、フレームにおいてPT-RSが最初に配置されるスロットでのPT-RSの周波数位置(つまり、PT-RSの初期位置)の決定方法について説明する。
送信機100は、例えば、DMRSポート番号1と同一プリコーディングが適用されるPT-RSをサブキャリアにマッピングする。この際、送信機100は、移動局に割り当てられたNUE_BW個のRB(ここでは、1RB=12サブキャリア)の中のDMRSポート番号1のDMRSが送信されるサブキャリアのうち1つのサブキャリアを初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。初期位置(サブキャリア)の選択の際、送信機100は、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RSのインデックスiとを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RSにおいて、可能な限り異なるサブキャリアが選択される。
次に、送信機100は、移動局に割り当てられたNUE_BW個のRBの中から、同様の方法に基づいて他のサブキャリアをアンテナポート番号1のPT-RSの初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。送信機100は、NUE_BW/Ndensity個のサブキャリアにPT-RSがマッピングされるまで同様の処理を繰り返す。
また、送信機100は、DMRSポート番号1に対応するPT-RSのマッピングが完了すると、他のDMRSポート番号2~DMRSポート番号NportまでのPT-RSを同様にしてサブキャリアにマッピングする。
このように、動作例2では、移動局の割当帯域内において複数のPT-RSの初期位置(サブキャリア)は、等間隔であるとは限らず、不規則である。すなわち、PT-RSがマッピングされる初期位置は、不等間隔となる場合がある。
次に、2番目のスロット以降のPT-RSに対するホッピングオフセットの決定方法について説明する。
ここでは、1つのDMRSポートにおけるDMRSがNDMRS_Space個のサブキャリア毎にマッピングされているとする。
送信機100は、1つのスロット内にマッピングされるアンテナポート番号1のNUE_BW/Ndensity個のPT-RSに対して、ホッピングオフセットを[0, NDMRS_Space, 2NDMRS_Space, …]の中からそれぞれ1つずつ選択し、選択した値(ホッピングオフセット)を用いて各PT-RSをホッピングさせる。なお、各PT-RSに対して選択されるホッピングオフセットは異なる値でもよい。また、送信機100は、ホッピングオフセットの選択の際、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RSのインデックスiと、スロット番号とを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RS、又は、異なるスロットにおいて、可能な限り異なるホッピングオフセットが選択される。
送信機100は、アンテナポート番号1に対応するPT-RSの周波数ホッピングが完了すると、他のアンテナポート番号2~アンテナポート番号NportまでのPT-RSについて、アンテナポート番号1で用いたホッピングオフセットを用いて、PT-RSに対して周波数ホッピングを行う。
また、受信機200は、上述した送信機100と同様の処理により、ホッピングパターン(初期位置及びホッピングオフセット)を特定し、送信機100から送信されるPT-RSがマッピングされるサブキャリア位置を特定する。
図12は、本実施の形態に係る動作例2におけるPT-RSのマッピング例を示す。
図12では、PT-RSの周波数領域の配置密度は「1RBに1つ」である(すなわち、Ndensity=1)。また、移動局の割当帯域(=NUE_BW)は2RBである。よって、各スロットでは、2つのサブキャリアにPT-RSがマッピングされる。また、PT-RSの周波数ホッピングは、スロットの境界で行われる。
また、図12では、一例として、アンテナポート番号1のPT-RSのマッピング例を示すが、他のアンテナポート番号についても同様にしてPT-RSがマッピングされればよい。
図12では、スロット#0におけるアンテナポート番号1のPT-RSの初期位置は、DMRSポート番号1に対応するサブキャリアのうちの1つのサブキャリアである。すなわち、図12に示すアンテナポート番号1(ポート1)のPT-RSは、アンテナポート番号1のDMRSが存在するサブキャリアのREに配置可能となる。なお、図12では、スロット#0では、割当帯域内の2個のRBにおいて同一のサブキャリア(各RBの8番目のサブキャリア)にPT-RSがそれぞれマッピングされるが、PT-RSの初期位置は、割当帯域内の各RBにおいて同一のサブキャリア位置とは限らず、異なってもよい。
また、図12に示すように、一方のPT-RSに対するホッピングオフセットは、DMRSポート番号1のサブキャリア間隔NDMRS_Spaceの整数倍(1倍)である4サブキャリアであり、他方のPT-RSに対するホッピングオフセットはサブキャリア間隔NDMRS_Spaceの整数倍(2倍)である8サブキャリアである。つまり、各PT-RSに対して異なるホッピングオフセットが設定される。図12では、スロット#1において、移動局の割当帯域のうち、一方のRBに2つのPT-RSがマッピングされ、他方のRBにはPT-RSがマッピングされていない。このように、各PT-RSは、周波数領域において不規則にマッピングされる。
このように、動作例2では、PT-RSの各々に対してホッピングパターン(初期位置、ホッピングオフセット)がそれぞれ決定されるので、各PT-RSのホッピングの自由度が高く、干渉のランダム性が高くなる。
[動作例3]
本実施の形態に係る動作例3では、実施の形態2の動作例2と同様、PT-RSのホッピング先のサブキャリアの候補は、限られた帯域(PT-RS sub-band)に限定される。PT-RS sub-bandの帯域幅は、PT-RSの周波数領域の配置密度の設定に応じて、PT-RS sub-bandの中にPT-RSが1サブキャリアしかマッピングされないように設定されてもよい。
ただし、本実施の形態に係る動作例3では、PT-RSがマッピングされるサブキャリア(ホッピング先のサブキャリアを含む)は、当該PT-RSと同一プリコーディングが適用されるDMRSが存在するサブキャリアの何れかである。
例えば、送信機100(ホッピングパターン生成部102)及び受信機200(ホッピングパターン生成部203)は、以下の方法でPT-RSの初期位置、及び、ホッピングオフセットを決定する。
以下、移動局の割当帯域の大きさを「NUE_BW[RB]」とし、移動局にマッピングされるPT-RSの周波数領域における配置密度を「Ndensity[RB]に1つ」とする。この場合、各スロットでは、NUE_BW/Ndensity個のPT-RSが配置される。
また、PT-RSがDMRSポート番号1~Nportと同じプリコーディングで送信されるとする。すなわち、Nport個のアンテナポートでPT-RSが送信される。また、1つのDMRSポートにおけるDMRSがNDMRS_Space個のサブキャリア毎にマッピングされているとする。
また、送信機100は、NUE_BW個のRBを、隣接するNdensity個のRBずつのグループ(PT-RS sub-band)に分ける。
まず、フレームにおいてPT-RSが最初に配置されるスロットでのPT-RSの周波数位置(つまり、PT-RSの初期位置)の決定方法について説明する。
送信機100は、最初のスロットの或るPT-RS sub-bandの中のDMRSポート番号1のDMRSが送信されるサブキャリアのうち1つのサブキャリアを初期位置として選択し、選択した初期位置のサブキャリアにPT-RSをマッピングする。初期位置(サブキャリア)の選択の際、送信機100は、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RS sub-bandのインデックスと、アンテナポート番号とを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RS sub-band、異なるアンテナポートにおいて、可能な限り異なるサブキャリアが選択される。
送信機100は、全てのPT-RS sub-bandに対して上記初期位置の設定処理を繰り返す。
また、送信機100は、DMRSポート番号1に対応するPT-RSのマッピングが完了すると、他のDMRSポート番号2~DMRSポート番号NportまでのPT-RSを同様にしてサブキャリアにマッピングする。
以下、PT-RSの初期位置の具体的な計算例を示す。ここでは、PT-RSがマッピングされる最初のスロットの番号をt0とする。スロットt0におけるs番目のPT-RS sub-bandにアンテナポートpのPT-RSがマッピングされる。このPT-RS sub-bandのうち、PT-RSをマッピング可能なサブキャリアの個数は12 Ndensity/ NDMRS_Spaceである。これらのサブキャリアのインデックスのうち、最も若い番号をk0 p,sとする。PT-RSをマッピングするサブキャリアのインデックスFinit(s,p,t0)は次式(1)に従って得てもよい。
Figure 2022119919000002
なお、擬似乱数関数c(k)は3GPP規格36.211“7.2 Pseudo-random sequence generation”に記載されている関数を用いてもよい。この関数は、cinit=100NID+pによって初期化されてもよい。ここでNIDはセルID、グループID、UEのID、またはそれらを組み合わせて得た値でもよい。
次に、2番目のスロット以降のPT-RSに対するホッピングオフセットの決定方法について説明する。
送信機100は、各PT-RS sub-bandについて、当該PT-RS sub-band内のDMRSポート番号1のDMRSが送信されるサブキャリアをホッピング先のサブキャリアとして1つ選択する。例えば、送信機100は、サブキャリア選択の際、擬似乱数関数と、「セルID、グループID、UE ID」の少なくとも1つと、PT-RS sub-bandのインデックスと、スロット番号と、アンテナポート番号とを用いる。これにより、異なるセル、異なるグループ、異なる移動局、異なるPT-RS sub-band、異なるスロット、異なるアンテナポートにおいて、可能な限り異なるホッピングオフセットが選択される。すなわち、各PT-RS sub-bandでは、現スロットで選択されたサブキャリアのインデックスと、前のスロットでPT-RSがマッピングされたサブキャリアのインデックスとの差がホッピングオフセットとなる。
送信機100は、全てのPT-RS sub-bandに対して、同様のサブキャリア選択処理を繰り返す。
以下、PT-RSのホッピングオフセットの具体的な計算例を示す。最初のスロットt0より後のスロットtにおいてPT-RSがマッピングされるサブキャリアのインデックスF(s,p,t)は、次式(2)に従って得てもよい。
Figure 2022119919000003
また、擬似乱数関数c(k)はcinit=10000NID+100s-+pによって初期化されてもよい。ここで、NIDはセルID、グループID、UEのID、またはそれらを組み合わせて得た値でもよい。よって、スロットt-1からスロットtへのホッピングオフセットFhop(s,p,t)は次式(3)で求まる。
Figure 2022119919000004
また、受信機200は、上述した送信機100と同様の処理により、各スロットでPT-RSがマッピングされるサブキャリア位置をPT-RS sub-band毎に特定する。
図13は、本実施の形態の動作例3におけるPT-RSのマッピング例を示す。
図13では、PT-RSの周波数領域の配置密度は「1RBに1つ」である(すなわち、Ndensity=1)。また、図13では、移動局の割当帯域は、1RB毎にPT-RS sub-band(PT-RS sub-band#0,#1を含む)として分けられている。また、同一アンテナポート番号のDMRS同士の間隔(=NDMRS_Space)は4サブキャリアである。また、PT-RSの周波数ホッピングは、スロットの境界で行われる。
また、図13では、一例として、アンテナポート番号1のPT-RSのマッピング例を示すが、他のアンテナポート番号についても同様にしてPT-RSがマッピングされればよい。図13に示すアンテナポート番号1(ポート1)のPT-RSは、アンテナポート番号1のDMRSが存在するサブキャリアのREに配置可能となる。
図13では、スロット#0におけるPT-RSの初期位置は、各PT-RS sub-band#0,#1(つまり、s=0,1)において、アンテナポート番号p=1のPT-RSをマッピング可能なサブキャリアのインデックスのうち、最も若い番号k0 p,s(k0 1,0、k0 1,1)と、式(1)とに従って算出される。また、図13では、スロット#1におけるPT-RSのマッピング位置として、各PT-RS sub-band内の何れか1つのサブキャリアが選択される。例えば、各PT-RS sub-band#0,#1(つまり、s=0,1)内のスロット#1(t=1)におけるアンテナポート番号1(p=1)のPT-RSのマッピング位置F(s,1,1)は、式(2)に従って算出されてもよい。
つまり、図13に示すように、PT-RS sub-band#0においてスロット#0にマッピングされたPT-RSは、スロット#1では、PT-RS sub-band#1にはホッピングされず、PT-RS sub-band#0内のサブキャリアにホッピングされる。PT-RS sub-band#1内のPT-RSについても同様である。
また、図13では、実施の形態1(図8)と異なり、ホッピングオフセットは、全てのPT-RSにおいて同一とは限らず、PT-RSの周波数間隔は一様ではない。
このように、動作例3では、送信機100は、複数のPT-RS sub-band(部分帯域)の各々に複数のPT-RSの何れか1つをそれぞれマッピングし、各PT-RSに対して、対応するPT-RS sub-band内において周波数ホッピングを行う。これによりPT-RSの各々に対してホッピングパターン(初期位置、ホッピングオフセット)がそれぞれ決定されるので、各PT-RSのホッピングの自由度が高く、干渉のランダム性が高くなる。また、動作例3では、各PT-RSは、PT-RS sub-band内でそれぞれホッピングされるので、全てのPT-RSが近接したサブキャリアにマッピングされることが回避され、周波数選択性に対してロバストとなる。
以上、本実施の形態の動作例1~3について説明した。
このように、本実施の形態では、PT-RSがマッピングされるサブキャリアを、当該PT-RSと同一のプリコーディングを使用するDMRSが存在するサブキャリアに限定する。これにより、DMRS及びPT-RSに使用される空間チャネルが同じであると仮定する場合、CPE/ICI補正の精度を向上させることができる。また、PT-RSのマッピング可能なサブキャリアをアンテナポートに応じて異ならせることで、異なるアンテナポートのPT-RSが同一サブキャリアにマッピングされることを回避することができる。
実施の形態3では、PT-RSが存在できるサブキャリアがアンテナポートによって異なる場合、異なるアンテナポートで送信されるPT-RSが同一サブキャリアにマッピングされないので、異なるアンテナポート間で同一のホッピングオフセットを有する必要は無い。ただし、図13に示すアンテナポート1と5のようにPT-RSがマッピング可能なサブキャリアが重複する場合でも、PT-RSポート1と5は同じサブキャリアには多重せず、異なるサブキャリアにマッピングしてもよい。
以上、本開示の各実施の形態について説明した。
なお、上記実施の形態において、最初のスロットにおけるPT-RSの初期位置、及び、ホッピングオフセットの決定には、「セルID、グループID、UE ID」の少なくとも1つとスロット番号とを組み合わせて用いてもよい。
また、PT-RSのホッピングオフセットの決定に使用する時間領域のインデックスはシンボル番号ではなくスロット番号、ミニスロット番号、サブフレーム番号、フレーム番号、またはそれらを組み合わせて得た値でもよい。
また、周波数ホッピングさせる時間的周期(インターバル)は、1シンボル毎、2シンボル毎、規定するシンボル数毎、1スロット毎、1ミニスロット毎、1サブフレーム毎、等に設定されてもよい。例えば、周波数ホッピングさせるインターバルが短い場合にはPT-RSの衝突による干渉のランダマイズ性が高くなり、周波数ホッピングさせるインターバルが長い場合には受信機200がPT-RSの位置を特定(計算)する頻度を低減することができる。また、周波数ホッピングさせるタイミングは、スロット境界に限定されるものではない。
また、データの割当単位と合わせて、PT-RSのホッピングの時間周期を設定してもよい。データの割り当て単位がスロットであれば、PT-RSのホッピングもスロット単位で設定され、データの割り当て単位がミニスロットであれば、PT-RSのホッピングもミニスロット単位で設定されてもよい。
また、データの割り当て単位がミニスロットであっても、PT-RSのホッピングはスロット単位で設定されてもよい。これは、セル毎にデータの割り当て単位が異なることが考えられるためであり、PT-RSのホッピングの周期をセル間で揃えるために、データの割り当て単位にかかわらず、PT-RSのホッピング単位を設定する。
また、上記実施の形態(図8~図13)ではスロットの長さを14シンボルと想定しているが、スロットの長さは14シンボルに限定されず、例えば、スロットの長さが7シンボルであるときにも同様の周波数ホッピングを適用してもよい。また、各図面に示されている、各アンテナポートにマッピングされるDMRSのREの位置は一例であり、これに限定されない。また、異なるアンテナポートどうしのDMRSはCDM(Code Division Multiplexing)されてもよい。
また、制御チャネル(PDCCH(Physical Downlink Control CHannel)、PUCCH(Physical Uplink Control CHannel))とデータのチャネル(PDSCH(Physical Downlink Shared CHannel)、PUSCH(Physical Uplink Shared CHannel))とが周波数多重される場合には、そのシンボルにPT-RSがマッピングされてもよい。
また、上記実施の形態において用いた「CPE/ICI補正」とは、「CPEを補正」すること、「ICIを補正」すること、又は、「CPE及びICIの双方を補正」することを意味する。
また、上記実施の形態において、位相雑音は、送信機の局部発振器のみでなく、受信機の局部発生器から発生することもある。
また、上記実施の形態の各動作例において用いたPT-RSの初期位置、ホッピングオフセット、割当帯域NUE_BW[RB]、周波数領域における配置密度「Ndensity[RB]に1つ」、DMRSポートの周波数間隔NDMRS_Space及び他のパラメータは一例であり、これらの値に限定されるものではない。
また、上記実施の形態の各動作例においては、PT-RSの周波数的位置の設定の方法は、サブキャリア単位でなく、RB単位でもよい。たとえば、PT-RSの初期位置をRB単位で表現してもよく、このRBの位置は、擬似乱数関数および各種インデックス等を用いて計算、選択されてもよい。このとき、PT-RSがマッピングされるRBの間隔は、等間隔または不等間隔でもよい。さらに、ホッピングオフセットをRB単位で設定してもよく、この値は、擬似乱数関数および各種インデックス等を用いて計算、選択されてもよい。PT-RSがマッピングされる各RB内において、PT-RSがマッピングされる相対的なサブキャリア位置は、既定の値、もしくは上位レイヤ等から通知された値、または擬似乱数関数および各種インデックス等を用いて計算された値でもよい。
また、本開示はソフトウェア、ハードウェア、又は、ハードウェアと連携したソフトウェアで実現することが可能である。上記実施の形態の説明に用いた各機能ブロックは、部分的に又は全体的に、集積回路であるLSIとして実現され、上記実施の形態で説明した各プロセスは、部分的に又は全体的に、一つのLSI又はLSIの組み合わせによって制御されてもよい。LSIは個々のチップから構成されてもよいし、機能ブロックの一部または全てを含むように一つのチップから構成されてもよい。LSIはデータの入力と出力を備えてもよい。LSIは、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。集積回路化の手法はLSIに限るものではなく、専用回路、汎用プロセッサ又は専用プロセッサで実現してもよい。また、LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。本開示は、デジタル処理又はアナログ処理として実現されてもよい。さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
本開示の送信機は、位相トラッキング用参照信号をサブキャリアにマッピングする割当回路と、前記位相トラッキング用参照信号を含む信号を送信する送信回路と、を具備し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
本開示の送信機において、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、前記セル、グループ又は移動局を識別するインデックス、又は、上位レイヤシグナリングを用いて決定される。
本開示の送信機において、前記位相トラッキング用参照信号は、単位時間毎に周波数ホッピングされる。
本開示の送信機において、前記位相トラッキング用参照信号に対するホッピングオフセットは、前記セル、グループ又は移動局を識別するインデックス又は時間領域のインデックスを用いて決定される。
本開示の送信機において、前記時間領域のインデックスは、シンボル番号、スロット番号、ミニスロット番号、サブフレーム番号又はフレーム番号である。
本開示の送信機において、複数のアンテナポートからそれぞれ送信される前記位相トラッキング用参照信号に対する前記ホッピングオフセットは同一である。
本開示の送信機において、前記割当回路は、同一時間で送信される複数の前記位相トラッキング用参照信号を周波数領域で等間隔にマッピングする。
本開示の送信機において、前記割当回路は、同一時間で送信される複数の前記位相トラッキング用参照信号を周波数領域で不等間隔にマッピングする。
本開示の送信機において、前記割当回路は、移動局に割り当てられた帯域全体において周波数ホッピングを行い、前記帯域内の何れかのサブキャリアに前記複数の位相トラッキング用参照信号をマッピングする。
本開示の送信機において、移動局に割り当てられた帯域は複数の部分帯域に分けられ、前記割当回路は、前記複数の部分帯域の各々に、前記複数の位相トラッキング用参照信号の何れか1つをそれぞれマッピングし、前記1つの位相トラッキング用参照信号に対して対応する部分帯域内において周波数ホッピングを行う。
本開示の送信機において、前記割当回路は、セル間のコーディネーションが有る場合、同一時間で送信される複数の前記位相トラッキング用参照信号を周波数領域で等間隔にマッピングし、前記セル間のコーディネーションが無い場合、前記複数の位相トラッキング用参照信号を周波数領域で不等間隔にマッピングする。
本開示の送信機において、前記割当回路は、前記位相トラッキング用参照信号を、当該位相トラッキング用参照信号と同一プリコーディングを使用する復調用参照信号がマッピングされたサブキャリアの何れかにマッピングする。
本開示の受信機は、位相トラッキング用参照信号を含む信号を受信する受信回路と、前記位相トラッキング用参照信号を用いて算出される位相雑音推定値を用いて、データ信号を復調する復調回路と、を具備し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
本開示の送信方法は、位相トラッキング用参照信号をサブキャリアにマッピングし、前記位相トラッキング用参照信号を含む信号を送信し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
本開示の受信方法は、位相トラッキング用参照信号を含む信号を受信し、前記位相トラッキング用参照信号を用いて算出される位相雑音推定値を用いて、データ信号を復調し、前記位相トラッキング用参照信号がマッピングされるサブキャリアは、セル、グループ又は移動局の間で異なる。
本開示の一態様は、移動通信システムに有用である。
100 送信機
101 PT-RS生成部
102,203 ホッピングパターン生成部
103 周波数ホッピング部
104 誤り訂正符号化部
105 変調部
106 信号割当部
107 送信部
108,201 アンテナ
200 受信機
202 受信部
204 信号分離部
205 チャネル推定部
206 CPE/ICI推定部
207 データ復調部
208 誤り訂正復号部

Claims (11)

  1. 移動局から、サブキャリアにマッピングされた位相トラッキング用参照信号を受信する受信回路と、
    前記位相トラッキング用参照信号を用いてデータを復調する復調回路と、
    を具備し、
    前記位相トラッキング用参照信号がマッピングされるサブキャリアは、前記移動局を識別するインデックスから決定され、前記位相トラッキング用参照信号と同一のプリコーディングを使用する復調用参照信号がマッピングされるサブキャリアである、
    受信機。
  2. 前記位相トラッキング用参照信号は、単位時間毎に周波数ホッピングされる、
    請求項1に記載の受信機。
  3. 前記位相トラッキング用参照信号に対するホッピングオフセットは、前記移動局を識別するインデックス又は時間領域のインデックスを用いて決定される、
    請求項2に記載の受信機。
  4. 前記時間領域のインデックスは、シンボル番号、スロット番号、ミニスロット番号、サブフレーム番号又はフレーム番号である、
    請求項3に記載の受信機。
  5. 複数のアンテナポートからそれぞれ送信される前記位相トラッキング用参照信号に対する前記ホッピングオフセットは同一である、
    請求項3に記載の受信機。
  6. 同一時間で送信される複数の前記位相トラッキング用参照信号は、周波数領域で等間隔にマッピングされる、
    請求項1に記載の受信機。
  7. 同一時間で送信される複数の前記位相トラッキング用参照信号は、周波数領域で不等間隔にマッピングされる、
    請求項1に記載の受信機。
  8. 前記移動局に割り当てられた帯域全体において周波数ホッピングが行われ、前記帯域内の何れかのサブキャリアに前記複数の位相トラッキング用参照信号がマッピングされる、
    請求項7に記載の受信機。
  9. 前記移動局に割り当てられた帯域は複数の部分帯域に分けられ、
    前記複数の部分帯域の各々に前記複数の位相トラッキング用参照信号の何れか1つがそれぞれマッピングされ、前記1つの位相トラッキング用参照信号に対して対応する部分帯域内で周波数ホッピングが行われる、
    請求項7に記載の受信機。
  10. セル間のコーディネーションが有る場合、同一時間で送信される複数の前記位相トラッキング用参照信号は周波数領域で等間隔にマッピングされ、前記セル間のコーディネーションが無い場合、前記複数の位相トラッキング用参照信号は周波数領域で不等間隔にマッピングされる、
    請求項1に記載の受信機。
  11. 移動局から、サブキャリアにマッピングされた位相トラッキング用参照信号を受信する工程と、
    前記位相トラッキング用参照信号を用いてデータを復調する工程と、
    を具備し、
    前記位相トラッキング用参照信号がマッピングされるサブキャリアは、前記移動局を識別するインデックスから決定され、前記位相トラッキング用参照信号と同一のプリコーディングを使用する復調用参照信号がマッピングされるサブキャリアである、
    受信方法。
JP2022087767A 2017-06-12 2022-05-30 受信機及び受信方法 Active JP7280414B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017115103 2017-06-12
JP2017115103 2017-06-12
PCT/JP2018/015668 WO2018230133A1 (ja) 2017-06-12 2018-04-16 送信機、受信機、送信方法及び受信方法
JP2019525148A JP7123924B2 (ja) 2017-06-12 2018-04-16 送信機及び送信方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019525148A Division JP7123924B2 (ja) 2017-06-12 2018-04-16 送信機及び送信方法

Publications (2)

Publication Number Publication Date
JP2022119919A true JP2022119919A (ja) 2022-08-17
JP7280414B2 JP7280414B2 (ja) 2023-05-23

Family

ID=64658712

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019525148A Active JP7123924B2 (ja) 2017-06-12 2018-04-16 送信機及び送信方法
JP2022087767A Active JP7280414B2 (ja) 2017-06-12 2022-05-30 受信機及び受信方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019525148A Active JP7123924B2 (ja) 2017-06-12 2018-04-16 送信機及び送信方法

Country Status (6)

Country Link
US (3) US11258558B2 (ja)
EP (3) EP4319078A3 (ja)
JP (2) JP7123924B2 (ja)
CN (2) CN110663237B (ja)
ES (1) ES2929533T3 (ja)
WO (1) WO2018230133A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039965B (zh) * 2017-06-16 2019-09-20 华为技术有限公司 参考信号的传输方法和传输装置
GB2566306B (en) * 2017-09-08 2021-06-16 Samsung Electronics Co Ltd Phase tracking reference signal
CN108923900B (zh) * 2017-11-17 2019-10-22 华为技术有限公司 参考信号的传输方法、装置和计算机可读介质
GB201719569D0 (en) 2017-11-24 2018-01-10 Samsung Electronics Co Ltd Resource element offsetting in a telecommunication system
WO2019235756A1 (ko) * 2018-06-07 2019-12-12 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 위상 트래킹 참조 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022080613A1 (en) * 2020-10-16 2022-04-21 Lg Electronics Inc. Method and apparatus for transmitting/receiving phase tracking reference signal in wireless communication system
US11637726B2 (en) * 2021-03-25 2023-04-25 Telefonaktiebolaget Lm Ericsson (Publ) Receiver for a wireless communication network
US11824691B2 (en) * 2021-03-25 2023-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Receiver for a wireless communication network
KR20220147449A (ko) * 2021-04-27 2022-11-03 삼성전자주식회사 운반파 묶음을 지원하는 무선 통신 장치 및 이의 동작 방법
JP7471265B2 (ja) 2021-09-22 2024-04-19 フクシマガリレイ株式会社 ショーケース
US20230132509A1 (en) * 2021-11-01 2023-05-04 Qualcomm Incorporated Decoding reliability for demodulation reference signal (dmrs) bundled transmission using phase tracking reference signal (ptrs) hopping
CN116723576A (zh) * 2022-02-28 2023-09-08 展讯通信(上海)有限公司 一种频域密度确定方法、装置、芯片及模组设备
WO2023201643A1 (zh) * 2022-04-21 2023-10-26 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081844A1 (en) * 2016-04-25 2019-03-14 Lg Electronics Inc. Signal transmission method for estimating phase noise in wireless communication system
JP2019537373A (ja) * 2016-12-28 2019-12-19 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 参照信号伝送方法、送信機および受信機
JP2020109882A (ja) * 2017-04-27 2020-07-16 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610101B (zh) * 2008-06-16 2013-02-27 中兴通讯股份有限公司 一种下行专用导频的跳频方法
EP2234446B1 (en) 2008-06-23 2013-01-23 Ntt Docomo, Inc. Base station device, user equipment, and communication control method
US9374131B2 (en) * 2009-01-28 2016-06-21 Qualcomm Incorporated Frequency hopping in a wireless communication network
WO2015135217A1 (zh) * 2014-03-14 2015-09-17 华为技术有限公司 无线局域网的导频处理方法、装置和通信系统
JP6153575B2 (ja) * 2015-08-13 2017-06-28 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
CN105471798B (zh) * 2015-11-26 2019-02-19 中科威发半导体(苏州)有限公司 基于sig字段和数据字段导频加权的ofdm系统相位跟踪方法
WO2017200315A1 (ko) 2016-05-18 2017-11-23 엘지전자(주) 무선 통신 시스템에서 위상 잡음을 추정하기 위한 방법 및 이를 위한 장치
EP3429145A4 (en) * 2016-06-05 2019-10-30 LG Electronics Inc. -1- SIGNAL TRANSMISSION METHOD FOR ESTIMATING PHASE NOISE IN A WIRELESS COMMUNICATION SYSTEM
KR102034306B1 (ko) * 2016-06-09 2019-11-08 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 보상 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
US11102789B2 (en) * 2016-08-05 2021-08-24 Apple Inc. Transmission of phase tracking reference signals (PT-RS)
CN110024322A (zh) * 2016-09-28 2019-07-16 Idac控股公司 用于无线通信系统的参考信号设计
AU2017337964B2 (en) * 2016-09-30 2020-03-05 Lg Electronics Inc. Method for receiving control information for reference signal related to phase noise estimation and user equipment therefor
US10998994B2 (en) * 2016-10-11 2021-05-04 Lg Electronics Inc. Signal transmission method for removing phase noise in wireless communication system and device therefor
CN106534029B (zh) * 2016-11-07 2020-02-21 中山大学 一种ofdm接收机相位补偿与解映射方法
CN109478974B (zh) * 2016-11-09 2022-03-29 Lg 电子株式会社 在无线通信系统中用于无线通信的方法及其装置
CN108259401B (zh) * 2016-12-28 2020-09-15 电信科学技术研究院 参考信号发送方法和相位噪声确定方法及相关装置
US10560243B2 (en) * 2017-01-13 2020-02-11 Qualcomm Incorporated Systems and methods to select or transmitting frequency domain patterns for phase tracking reference signals
JP2020057827A (ja) * 2017-02-02 2020-04-09 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
WO2018143537A1 (ko) * 2017-02-03 2018-08-09 엘지전자(주) 무선 통신 시스템에서 위상 잡음을 추정하기 위한 방법 및 이를 위한 장치
RU2725704C1 (ru) * 2017-03-25 2020-07-03 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ приема ptrs для подавления фазового шума в системе беспроводной связи и устройство для него
WO2018203650A1 (ko) * 2017-05-01 2018-11-08 엘지전자 주식회사 무선 통신 시스템에서 자원을 할당하는 방법 및 장치
US11121743B2 (en) * 2017-05-04 2021-09-14 Apple Inc. System and method for phase noise compensation
US11418379B2 (en) 2017-06-09 2022-08-16 Lg Electronics Inc. Method for transmitting/receiving reference signal in wireless communication system, and device therefor
CN114285714B (zh) 2017-06-16 2024-05-14 华为技术有限公司 相位跟踪参考信号处理方法与装置
CN109039965B (zh) 2017-06-16 2019-09-20 华为技术有限公司 参考信号的传输方法和传输装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081844A1 (en) * 2016-04-25 2019-03-14 Lg Electronics Inc. Signal transmission method for estimating phase noise in wireless communication system
JP2019537373A (ja) * 2016-12-28 2019-12-19 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー 参照信号伝送方法、送信機および受信機
JP2020109882A (ja) * 2017-04-27 2020-07-16 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Further details for PT-RS design[online]", 3GPP TSG RAN WG1 ADHOC_NR_AH_1701 R1-1700073, JPN6023018275, 9 January 2017 (2017-01-09), ISSN: 0005054618 *
NATIONAL INSTRUMENTS: "Discussion on Signaling for PT-RS[online]", 3GPP TSG RAN WG1 MEETING #88BIS R1-1705253, JPN6018022809, 7 April 2017 (2017-04-07), ISSN: 0005054616 *
NTT DOCOMO,INC.: "Resource allocation for PUCCH[online]", 3GPP TSG-RAN WG1#92B R1-1805054, JPN6018022801, 20 April 2018 (2018-04-20), ISSN: 0005054617 *
PANASONIC: "PT-RS design[online]", 3GPP TSG RAN WG1 ADHOC_NR_AH_1706 R1-1710359, JPN6023018274, 16 June 2017 (2017-06-16), ISSN: 0005054619 *

Also Published As

Publication number Publication date
US20200295893A1 (en) 2020-09-17
EP4075711C0 (en) 2024-03-06
EP4319078A3 (en) 2024-04-17
JPWO2018230133A1 (ja) 2020-04-16
US20240048314A1 (en) 2024-02-08
EP4319078A2 (en) 2024-02-07
US20220140974A1 (en) 2022-05-05
EP3641256A1 (en) 2020-04-22
ES2929533T3 (es) 2022-11-30
EP3641256A4 (en) 2020-06-17
WO2018230133A1 (ja) 2018-12-20
EP3641256B1 (en) 2022-08-10
JP7280414B2 (ja) 2023-05-23
CN115865291A (zh) 2023-03-28
EP4075711B1 (en) 2024-03-06
US11258558B2 (en) 2022-02-22
CN110663237A (zh) 2020-01-07
CN110663237B (zh) 2022-10-04
US11824805B2 (en) 2023-11-21
EP4075711A1 (en) 2022-10-19
JP7123924B2 (ja) 2022-08-23

Similar Documents

Publication Publication Date Title
JP7280414B2 (ja) 受信機及び受信方法
CN114285714B (zh) 相位跟踪参考信号处理方法与装置
US11864204B2 (en) Terminal and communication method
AU2018257334B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
EP3618536B1 (en) Base station device, terminal apparatus, communication method, and integrated circuit
EP3618490B1 (en) Base station device, terminal device, communication method, and integrated circuit
US11323917B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
US11489709B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
AU2017387480B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
EP3681224A1 (en) Terminal device and communication method
JPWO2018203440A1 (ja) 端末及び通信方法
WO2019031096A1 (ja) 送信機、受信機、送信方法、受信方法及び通信方法
US20230164014A1 (en) Method and device for reducing peak-to-average power ratio in orthogonal frequency division multiplexing modulation system
US10917221B2 (en) Base station apparatus, terminal apparatus, and communication method
CN116391337A (zh) 一种信号发送、信号检测方法及装置
US10944495B2 (en) Anti-interference method and system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230511

R150 Certificate of patent or registration of utility model

Ref document number: 7280414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150