JP2022118202A - Waste plug, field water management system, and field water management method - Google Patents

Waste plug, field water management system, and field water management method Download PDF

Info

Publication number
JP2022118202A
JP2022118202A JP2022100773A JP2022100773A JP2022118202A JP 2022118202 A JP2022118202 A JP 2022118202A JP 2022100773 A JP2022100773 A JP 2022100773A JP 2022100773 A JP2022100773 A JP 2022100773A JP 2022118202 A JP2022118202 A JP 2022118202A
Authority
JP
Japan
Prior art keywords
water level
water
field
drain
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022100773A
Other languages
Japanese (ja)
Other versions
JP7375121B2 (en
Inventor
和弘 平尾
Kazuhiro Hirao
伸一 谷川
Shinichi Tanigawa
友治 四元
Tomoji Yotsumoto
康則 末吉
Yasunori Sueyoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota ChemiX Co Ltd
Original Assignee
Kubota ChemiX Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota ChemiX Co Ltd filed Critical Kubota ChemiX Co Ltd
Priority to JP2022100773A priority Critical patent/JP7375121B2/en
Publication of JP2022118202A publication Critical patent/JP2022118202A/en
Application granted granted Critical
Publication of JP7375121B2 publication Critical patent/JP7375121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive waste plug capable of simplifying installing work or detected water level adjustment work and suppressing the repeat of frequent water supplying and water supply stopping from a water supply plug.
SOLUTION: This waste plug equipped with a waste water level adjustment unit capable of adjusting a height from a field surface for adjusting a stored water level of a field comprises: a first water level sensor that vertically moves interlockingly with the waste water level adjustment unit and measures a relative water level of the field with the waste water level adjustment unit as a reference; a second water level sensor that measures a water level lower than the relative water level; a water level control unit that calculates a stored water level of the field on the basis of the measuring result of the first or second water level sensor; and a communication unit that outputs the calculated water level to an external device. The water level control unit does not output reduction of a water surface to the external device via the communication unit until the second water level sensor detects the reduction of the water surface after the first water level sensor has detected the water surface, but outputs the reduction of the water level to the external device via the communication unit when a second water gauge detects the reduction of the water level.
SELECTED DRAWING: Figure 3
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、排水栓、圃場の水管理システム及び圃場の水管理方法に関する。 The present invention relates to a drain plug , a field water management system and a field water management method .

特許文献1には、圃場への給水または圃場からの排水を制御するための変位機構を作動させる圃場用電動アクチュエータを備えた給水栓や排水栓が開示されている。これらの給水栓や排水栓を用いることにより、圃場への給水や圃場からの排水をクラウドサーバなどを介して遠隔制御することが可能になる。 Patent Literature 1 discloses a water tap and a drain tap provided with an electric field actuator that operates a displacement mechanism for controlling water supply to or drainage from a field. By using these water taps and drain taps, it becomes possible to remotely control water supply to and drainage from fields via a cloud server or the like.

そのために、圃場には水位センサが設けられ、水位センサにより検出された水位に基づいて給水栓や排水栓が制御される。 For this reason, a water level sensor is provided in the field, and the water tap and the drain tap are controlled based on the water level detected by the water level sensor.

このような水位センサとして、無線通信機能を備え、所定の範囲内で任意の水位を検出可能な圧力式水位センサや、水深を示す目盛を備え田面に立設された支柱と、支柱に対してアタッチメントを介して取付位置を上下方向に調整可能なフロートスイッチと、信号線とを備えたフロート式水位センサが用いられている。 Such water level sensors include pressure-type water level sensors that are equipped with a wireless communication function and are capable of detecting any water level within a predetermined range. A float-type water level sensor is used that includes a float switch whose mounting position can be adjusted vertically via an attachment, and a signal line.

特開2017-193914号公報JP 2017-193914 A

しかし、上述した圧力式水位センサは、初期に圃場の所定位置に設置すると、その後は自動的に水位が計測され、計測された水位が無線通信により給水栓を含む外部装置に送信されるので、その後のメンテナンスから開放され、利便性が高いのであるが、非常に高価であるため多数の圃場に設置するための設備費が嵩むという問題があった。 However, when the pressure-type water level sensor described above is initially installed at a predetermined position in the field, the water level is automatically measured after that, and the measured water level is transmitted to an external device including a hydrant by wireless communication. Although it is free from subsequent maintenance and is highly convenient, there is a problem that the equipment cost increases for installing it in a large number of fields because it is very expensive.

また、上述したフロート式水位センサは、水面位置を検出するセンサであり非常に安価であるが、各圃場に支柱を立設し、水深を示す目盛が田面からの高さと整合するように位置調整する必要があり、設置後に圃場の水位を調整する必要がある度に、目標となる水深に対応した水面位置を検知できるように目盛に従ってフロートスイッチの上下位置を手動で調整する必要があるなど、煩雑な設置作業や調整作業が必要になるという問題があった。 The above-mentioned float-type water level sensor is a sensor that detects the position of the water surface and is very inexpensive. Every time it is necessary to adjust the water level in the field after installation, it is necessary to manually adjust the vertical position of the float switch according to the scale so that the water surface position corresponding to the target water depth can be detected. There was a problem that complicated installation work and adjustment work were required.

そのため、上述した圃場用電動アクチュエータを備えた給水栓や排水栓を用いて実施され、コスト負担の低減と同時にメンテナンスの手間を軽減可能な圃場の水管理方法が求められていた。 Therefore, there has been a demand for a field water management method that can be implemented using a water tap or a drain tap equipped with the above-described field electric actuator and that can reduce the cost burden and the maintenance effort.

また、圃場に湛水するような場合に、水位センサによって検出された水位で圃場への給水が停止された後に、圃場の水位が低下したことが水位センサによって検出されると、給水栓からの給水が再開されることになる。しかし、風などの影響うけて水面が波打つと、そのたびに水位センサの出力が切り替わり、給水栓からの給水と給水停止が頻繁に繰り返されるという好ましくない状況が生じる。Further, when the field is flooded, the water level sensor detects that the water level in the field has decreased after the water supply to the field is stopped at the water level detected by the water level sensor. Water supply will be resumed. However, when the water surface undulates under the influence of the wind, etc., the output of the water level sensor switches each time, causing an unfavorable situation in which the water supply from the hydrant is repeatedly switched on and off.

本発明の目的は、上述した問題に鑑み、設置作業や検出水位の調整作業が簡素化され、しかも安価に水位を検出可能で、給水栓からの頻繁な給水と給水停止の繰返しが抑制できる排水栓、圃場の水管理システム及び圃場の水管理方法を提供する点にある。 In view of the above-mentioned problems, the object of the present invention is to simplify the installation work and the adjustment work of the detected water level, to detect the water level at low cost, and to suppress the repetition of frequent water supply and water supply stop from the water tap. It is to provide a plug , a field water management system and a field water management method .

上述の目的を達成するため、本発明による排水栓の第一の特徴構成は、田面からの上下高さを調節可能な排水水位調節部を備え、圃場の貯水水位を調節する排水栓であって、
前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位を測定する第1の水位センサと、前記排水水位調節部と連動して上下し、前記相対水位より低い水位を測定する第2の水位センサと、前記第1または第2の水位センサの測定結果に基づいて相対水位または相対水位から算出した圃場の貯水水位を算出する水位制御部と、を備え、前記水位制御部は、前記第1の水位センサで水面が検出された後は、前記第2の水位センサで水面が低下したことが検知されるまでの間は水面の低下を出力せず、前記第2の水位計で水面が低下したことが検知されたときに水面の低下を出力するように構成されている点にある。
In order to achieve the above-mentioned object, the first characteristic configuration of the drain plug according to the present invention is a drain plug that is provided with a drainage water level adjustment part that can adjust the vertical height from the surface of the field, and adjusts the reservoir water level in the field. ,
a first water level sensor that moves up and down in conjunction with the drainage water level adjustment unit and measures the relative water level of the field with the drainage water level adjustment unit as a reference; a second water level sensor that measures a lower water level; and a water level controller that calculates the relative water level or the reservoir water level of the field calculated from the relative water level based on the measurement result of the first or second water level sensor. , the water level control unit does not output a drop in the water level until the second water level sensor detects that the water level has dropped after the water level is detected by the first water level sensor; It is characterized in that it is configured to output a drop in water level when the second water level gauge detects that the water level has dropped .

1の水位センサが当該排水水位調節部と連動して上下するように構成されるので、排水水位調節部を基準とする圃場の相対水位が第1の水位センサによって測定される。即ち、第1の水位センサによって測定された相対水位と排水水位調節部により調節された圃場の貯水水位とから圃場の水位が把握できる。排水水位調節部の田面からの上下高さの調整に伴って第1の水位センサの上下方向位置が自動調整されるため、第1の水位センサの水位検出位置を手動で調整する作業が不要になる。 Since the first water level sensor is configured to move up and down in conjunction with the drainage water level adjuster, the relative water level of the field with respect to the drainage water level adjuster is measured by the first water level sensor. That is, the water level of the field can be grasped from the relative water level measured by the first water level sensor and the stored water level of the field adjusted by the drainage water level adjusting section. Since the vertical position of the first water level sensor is automatically adjusted according to the adjustment of the vertical height from the paddy field of the drainage water level adjustment part, there is no need to manually adjust the water level detection position of the first water level sensor. Become.

圃場に湛水するような場合に、第1の水位センサによって検出された水位で圃場への給水が停止された後に、圃場の水位が低下したことが第1の水位センサによって検出されると、給水栓からの給水が再開されることになる。風などの影響うけて水面が波打つと、そのたびに第1の水位センサの出力が切り替わり、給水栓からの給水と給水停止が頻繁に繰り返されるという好ましくない状況が生じる。そのような場合でも、第2の水位センサを備えることにより、水面位置が第1の水位センサより低下しても第2の水位センサで水面位置が検知されている場合には給水栓を閉止しておき、第2の水位センサで水面位置が検知されなくなった場合に給水栓からの給水を再開することで、給水栓からの頻繁な給水と給水停止の繰返しが抑制できる。When the field is flooded and the first water level sensor detects that the water level of the field has decreased after the water supply to the field is stopped at the water level detected by the first water level sensor, The water supply from the water tap will be resumed. When the water surface undulates under the influence of wind or the like, the output of the first water level sensor switches each time, causing an unfavorable situation in which the water supply from the hydrant is repeatedly switched on and off. Even in such a case, by providing the second water level sensor, the faucet is closed when the water level is detected by the second water level sensor even if the water level is lower than that of the first water level sensor. By restarting water supply from the water tap when the second water level sensor no longer detects the water surface position, frequent repetition of water supply from the water tap and water supply stop can be suppressed.

同第二の特徴構成は、上述の第一の特徴構成に加えて、前記水位制御部は、外部装置からの指令に基づき、前記排水水位調節部の上下高さを自動調整する点にある。The second characteristic configuration is that, in addition to the first characteristic configuration described above, the water level control section automatically adjusts the vertical height of the drain water level adjustment section based on a command from an external device.

外部装置からの指令に基づき、水位制御部によって排水水位調節部の田面からの上下高さが自動調整されることにより給水栓による圃場の貯水水位が自動調整される。Based on a command from an external device, the water level control unit automatically adjusts the vertical height of the drainage water level adjustment unit from the paddy surface, thereby automatically adjusting the reservoir water level of the field by the water tap.

同第三の特徴構成は、上述の第一または第二の特徴構成に加えて、前記水位制御部は、前記排水水位調節部の上下高さを、水面の波打ちによる高さ変動を加味した上下高さに自動調整する点にある。In the third characteristic configuration, in addition to the above-described first or second characteristic configuration, the water level control unit adjusts the vertical height of the drainage water level adjustment unit by taking into account height fluctuations due to waving of the water surface. The point is that it automatically adjusts to the height.

例えば、水面の波打に備えて、排水水位調節部の上下高さを目標水位より高く設定するとともに、第1の水位センサで目標水位を検出するように構成すれば、第1の水位センサで貯水水位が目標水位に達したことを適切に検出することができ、水面が波打った場合でも排水水位調節部から無駄に排水されることがなくなる。For example, in preparation for waving of the water surface, if the vertical height of the drainage water level adjustment unit is set higher than the target water level and the target water level is detected by the first water level sensor, the first water level sensor can detect the target water level. To appropriately detect that a stored water level reaches a target water level, and to eliminate wasteful drainage from a drainage water level adjusting part even when the water surface is undulated.

同第四の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記水位センサは、圃場の水位に応じて上下するフロートスイッチで構成されている点にある。 The fourth characteristic configuration is that, in addition to any one of the first to third characteristic configurations, the water level sensor is composed of a float switch that moves up and down according to the water level in the field.

圃場内で上下する水面に応じてフロートが上下する。フロートが近接すると作動するスイッチの位置が水位検出位置に調整されていれば、水面の上昇に伴って上昇するフロートが当該スイッチに近接したときにスイッチが作動して水面が水位検出位置に達したことが検知される。 The float moves up and down according to the water surface that rises and falls in the field. If the position of the switch that activates when the float approaches is adjusted to the water level detection position, the switch activates when the float, which rises as the water surface rises, approaches the switch, and the water surface reaches the water level detection position. is detected.

同第五の特徴構成は、上述の第一から第四の何れかの特徴構成に加えて、前記排水水位調節部は堰板または排水筒で構成され、前記水位センサは前記堰板または排水筒に取付けられている点にある。 The fifth characteristic configuration is, in addition to any one of the above-described first to fourth characteristic configurations, the drainage water level adjustment unit is composed of a dam plate or a drainage pipe, and the water level sensor is the dam plate or the drainage pipe. at the point where it is installed.

排水水位調節部として堰板または排水筒が好適に用いられ、堰板または排水筒を排水水位に合わせて上下位置調整する際に、堰板または排水筒に取付けられた水位センサが堰板または排水筒に連動して上下することで検出水位が調整されるようになる。 A dam plate or a drainage pipe is preferably used as the drainage water level adjustment unit, and when the vertical position of the dam plate or the drainage pipe is adjusted according to the drainage water level, the water level sensor attached to the dam plate or the drainage pipe is adjusted to the dam plate or the drainage pipe. The detection water level is adjusted by moving up and down in conjunction with the cylinder.

本発明による圃場の水管理システムの特徴構成は、用水を圃場に導く給水弁を備えた給水栓と、上述した第一から第五の何れかの特徴構成を備えた排水栓と、前記給水栓及び前記排水栓と通信して前記圃場の水位を管理する外部装置と、を備えた圃場の水管理システムであって、前記外部装置からの排水水位調整指令を受信した前記排水栓は、前記排水水位調節部を介して圃場の貯水水位を調節するとともに、前記水位制御部を介して目標の貯水水位に達したことを前記第1の水位センサによる水面の検出により判定すると、前記外部装置に目標の貯水水位に達した旨を送信し、その後前記水位制御部を介して目標の貯水水位より水面が低下したことを前記第2の水位計による水面の低下検出により判定すると、前記外部装置に目標の貯水水位から低下した旨を送信するように構成され、前記外部装置からの給水指令を受信した前記給水栓は、給水停止指令を受信するまでの間、給水弁を開放して圃場に用水を導くように構成され、前記外部装置は、前記排水栓に前記排水水位調整指令を送信するとともに前記給水栓に給水指令を送信し、その後前記排水栓から目標の貯水水位に達した旨を受信すると前記給水栓に給水停止指令を出力するとともに前記排水栓から目標の貯水水位より水面が低下した旨を受信すると前記給水栓に給水指令を出力するように構成されている点にある。The characteristic configuration of the field water management system according to the present invention includes a water faucet having a water supply valve for guiding water to the field, a drain faucet having any one of the first to fifth characteristic configurations described above, and the water faucet. and an external device that communicates with the drain plug to manage the water level of the farm field, wherein the drain plug receives a drainage water level adjustment command from the external device, the drain When the reservoir water level of the farm field is adjusted via the water level adjustment unit, and when it is determined by the detection of the water surface by the first water level sensor that the target reservoir water level has been reached via the water level control unit, the target After that, when it is determined by the second water level gauge that the water level has fallen below the target water level via the water level control unit, the target water level is sent to the external device The water faucet, which has received a water supply command from the external device, opens the water supply valve to supply water to the field until the water supply stop command is received. The external device sends the drain water level adjustment command to the drain plug and the water supply command to the water tap, and then receives from the drain plug that the target reservoir water level has been reached. A water supply stop command is output to the water tap, and a water supply command is output to the water tap when it is received from the drain tap that the water level has fallen below a target water level.

本発明による圃場の水管理方法の特徴構成は、用水を圃場に導く給水弁を備えた給水栓と、上述した第一から第五の何れかの特徴構成を備えた排水栓と、前記給水栓及び前記排水栓と通信して前記圃場の水位を管理する外部装置と、を備えた圃場の水管理方法であって、前記外部装置は、圃場の水位を目標水位に調節するために、前記排水栓に排水水位調整指令を出力するとともに前記給水栓に給水指令を出力し、前記排水栓から目標の貯水水位に達した旨を受信すると、前記排水栓から目標の貯水水位より水面が低下した旨を受信するまでの間、前記給水栓に給水停止指令を出力し、前記排水栓から目標の貯水水位より水面が低下した旨を受信すると前記給水栓に再度給水指令を出力するように動作し、前記排水栓は、前記排水水位調整指令を受信すると、前記排水水位調節部を介して圃場の貯水水位を調節し、前記水位制御部を介して目標の貯水水位に達したことを前記第1の水位センサによる水面の検出により判定すると、前記外部装置に目標の貯水水位に達した旨を送信し、その後前記水位制御部を介して目標の貯水水位より水面が低下したことを前記第2の水位計による水面の低下検出により判定すると、前記外部装置に目標の貯水水位から低下した旨を送信する処理を繰返すように動作し、前記給水栓は、前記給水指令を受信すると前記給水弁を開放して圃場に用水を導き、前記給水停止指令を受信すると給水弁を閉止して給水を停止する処理を繰返すように動作する、ように構成されている点にある。 The characteristic configuration of the agricultural field water management method according to the present invention is a water faucet having a water supply valve for guiding water to the agricultural field, a drainage faucet having any one of the first to fifth characteristic configurations described above, and the water faucet. and an external device that communicates with the drain plug to manage the water level of the farm field, wherein the external device controls the water level of the farm field to adjust the water level of the farm field to a target water level. Outputting a drainage water level adjustment command to the plug and outputting a water supply command to the water tap, and receiving a notification from the drain plug to the effect that the target water level has been reached, from the drain plug to the effect that the water surface has fallen below the target water level. is received, a water supply stop command is output to the water tap, and when it is received from the water tap that the water level has fallen below the target water level, the water supply command is output again to the water tap, Upon receiving the drainage water level adjustment command, the drainage plug adjusts the reservoir water level of the field via the drainage water level adjustment unit, and detects that the target reservoir water level has been reached via the water level control unit. When determined by detection of the water surface by the water level sensor, the effect that the target water level has been reached is sent to the external device, and then the second water level is notified via the water level control unit that the water level has fallen below the target water level. If it is determined by detecting a drop in the water level by the meter, it operates so as to repeat the process of transmitting to the external device a notification that the water level has dropped from the target level, and the water tap opens the water supply valve upon receiving the water supply command. It is constructed such that the water supply valve is closed to stop the water supply when the water supply stop command is received.

以上説明した通り、本発明によれば、設置作業や検出水位の調整作業が簡素化され、しかも安価に水位を検出可能で、給水栓からの頻繁な給水と給水停止の繰返しが抑制できる排水栓、圃場の水管理システム及び圃場の水管理方法を提供することができるようになった。 As described above, according to the present invention, the installation work and the adjustment work of the detected water level are simplified, the water level can be detected at low cost, and the frequent repetition of water supply and water supply stop from the water tap can be suppressed. , can provide a field water management system and a field water management method .

圃場及び圃場の水管理システムの説明図Illustration of field and field water management system (a)は排水栓の側面視の説明図、(b)は排水制御機構の説明図(a) is an explanatory diagram of the side view of the drain plug, (b) is an explanatory diagram of the drainage control mechanism (a)は排水機構22Aに取付けられた水位センサの説明図、(b),(c)は圃場水位と水位センサの動作の説明図(a) is an explanatory diagram of the water level sensor attached to the drainage mechanism 22A, and (b) and (c) are explanatory diagrams of the field water level and the operation of the water level sensor. 給水栓の説明図Explanatory drawing of hydrant

以下に、排水栓及び給水栓排水栓を備えた圃場管理装置及び圃場管理方法を説明する。
[圃場の水管理システムの構成]
図1に示すように、稲作が行なわれている各圃場1には、給水管10に流れる用水を、導水路11を介して圃場1に導く給水栓12と、放水路21を介して圃場1の水を排水路20に排水する排水栓22が設けられ、圃場1の近傍にはインターネット30との接続を中継するWi-Fiルータなどの中継器32が設置されている。さらに、排水栓22には圃場1の水位を計測する水位センサ2が設けられている。
A farm field management device and a farm field management method provided with a drain plug and a hydrant drain plug will be described below.
[Configuration of field water management system]
As shown in FIG. 1, in each field 1 where rice is being cultivated, there are water taps 12 that lead irrigation water flowing through a water supply pipe 10 to the field 1 through a water conduit 11, and A drain plug 22 is provided for draining water from the farm to a drainage channel 20 , and a repeater 32 such as a Wi-Fi router for relaying connection with the Internet 30 is installed near the field 1 . Furthermore, the drain plug 22 is provided with a water level sensor 2 for measuring the water level of the field 1 .

各給水栓12及び排水栓22がインターネット30を介してクラウドサーバ34と接続可能に構成され、圃場1の管理者が所有するスマートフォンなどの携帯端末36がインターネット30を介してクラウドサーバ34と接続可能に構成されている。即ち、各給水栓12及び排水栓22、携帯端末36、クラウドサーバ34と、それらを通信可能に接続するインターネット30により圃場の水管理システム100が構成されている。 Each water tap 12 and drain tap 22 is configured to be connectable to a cloud server 34 via the Internet 30, and a mobile terminal 36 such as a smartphone owned by an administrator of the field 1 can be connected to the cloud server 34 via the Internet 30. is configured to That is, the water management system 100 of the farm field is composed of the water taps 12, the drain taps 22, the portable terminal 36, the cloud server 34, and the Internet 30 that communicably connects them.

稲作を例に説明すると、稲作の各工程、例えば、代掻き、田植え、活着期、分げつ期(前期、後期)、幼穂形成期~出穂開花期、登熟期など、各時期に応じて圃場の貯水水位を調整する必要がある。特に代掻き時期には複数の圃場が一斉に導水することになるため、湛水のために効率的に給水管理する必要がある。 Taking rice cultivation as an example, each process of rice cultivation, such as puddling, rice planting, rooting stage, tillering stage (early stage, late stage), young panicle formation stage, ear emergence flowering stage, ripening stage, etc. It is necessary to adjust the reservoir water level of In particular, during the puddling season, water is conveyed to multiple fields at the same time, so it is necessary to manage the water supply efficiently for flooding.

そのため、クラウドサーバ34は、各管理者により携帯端末36を介して要求された各圃場1に対する給水要求に基づいて各圃場1に対する給水スケジュールを生成するように構成されている。 Therefore, the cloud server 34 is configured to generate a water supply schedule for each farm field 1 based on a water supply request for each farm field 1 requested by each manager via the mobile terminal 36 .

携帯端末36から送信される給水要求には、給水対象となる圃場を特定する圃場ID、給水日時、給水水位が含まれる。クラウドサーバ34は、予め登録された圃場マップに従って、給水要求があった各圃場に対する給水スケジュールを生成して記憶部に記憶するように構成されている。 The water supply request transmitted from the mobile terminal 36 includes a field ID that identifies the field to be watered, the date and time of water supply, and the water level. The cloud server 34 is configured to generate a water supply schedule for each field for which a water supply request has been made according to a pre-registered field map, and store the water supply schedule in the storage unit.

圃場マップとは各圃場の位置を示す圃場地図であり、クラウドサーバ34には当該圃場マップとともに、圃場マップで特定される圃場毎に圃場IDが付され、各圃場に設置された給水栓12及び排水栓22を特定する給水栓ID及び排水栓ID、並びに管理者IDが圃場IDと関連付けられた圃場データベースを備えている。 The field map is a field map indicating the position of each field, and the cloud server 34 is provided with a field ID for each field specified by the field map together with the field map. It has a farm field database in which a water plug ID and a drain plug ID that specify the drain plug 22 and an administrator ID are associated with the farm field ID.

クラウドサーバ34は、記憶部に記憶された給水スケジュールに定められた給水日時に、該当する圃場1の排水栓22に対して排水水位調整指令を出力するとともに、該当する圃場1の給水栓12に給水指令を出力する。排水水位とは目標とする圃場の貯水水位を意味する。 The cloud server 34 outputs a drainage water level adjustment command to the drain plug 22 of the relevant field 1 at the water supply date and time specified in the water supply schedule stored in the storage unit, Output the water supply command. Drainage water level means the target reservoir water level of the field.

排水水位調整指令を受信した排水栓12は排水水位を調整し、給水指令を受信した給水栓12は給水弁を開放して圃場に用水を導く。水位センサ2の信号線が接続された排水栓12は、水位センサ2により圃場水位が所定の貯水水位に達したことが検知されると、クラウドサーバ34に水位情報を送信し、クラウドサーバ34は当該水位情報を受信すると給水栓12に対して給水停止指令を送信する。給水停止指令を受信した給水栓12は水バルブを制御して給水を停止する。 The drain plug 12 that receives the drain water level adjustment command adjusts the drain water level, and the feed plug 12 that receives the water supply command opens the water supply valve to guide water to the field. The drain plug 12 to which the signal line of the water level sensor 2 is connected transmits water level information to the cloud server 34 when the water level sensor 2 detects that the water level in the field has reached a predetermined reservoir water level, and the cloud server 34 When the water level information is received, a water supply stop command is transmitted to the water tap 12 . Upon receiving the water supply stop command, the water tap 12 controls the water supply valve to stop water supply.

[排水栓及び水位センサの構成]
以下、圃場の貯水水位を調節する排水栓22及び排水栓2に配された水位センサ2について詳述する。
図2(a),(b)に示すように、排水栓22は、圃場に設けられた排水桝201に収容される排水機構22Aと、排水桝201の上面に着脱自在に取り付けられ、排水機構22Aを制御して排水水位(貯水水位)を調整する排水制御機構22Bを備えている。
[Configuration of drain plug and water level sensor]
The drain plug 22 for adjusting the water level in the field and the water level sensor 2 provided on the drain plug 2 will be described in detail below.
As shown in FIGS. 2(a) and 2(b), the drain plug 22 is detachably attached to a drainage mechanism 22A housed in a drainage basin 201 provided in the field, and to the upper surface of the drainage basin 201. A drainage control mechanism 22B is provided to control the drainage water level (storage water level) by controlling the drainage water level 22A.

排水機構22Aは、排水桝201の底部に設置された受枠部材211と、受枠部材211によって上下移動可能に支持される円筒状の排水筒である堰体212と、堰体212を上下移動する昇降機構220を備えている。堰体212の上端開口が排水口212aとして機能し、圃場1に給水された余剰の用水が当該排水口212aから溢流して放水路21に流出する。 The drainage mechanism 22A includes a receiving frame member 211 installed at the bottom of the drainage basin 201, a weir body 212 which is a cylindrical drainage pipe supported by the receiving frame member 211 so as to be vertically movable, and an elevating mechanism for moving the weir body 212 up and down. A mechanism 220 is provided. The upper end opening of the weir body 212 functions as a drain port 212a, and surplus water supplied to the field 1 overflows from the drain port 212a and flows out to the discharge channel 21.

堰体212の上端開口に側面視コの字状の支持部213が固定され、当該支持部213に昇降機構220が取り付けられている。昇降機構220は、支持部213の上面に固定され、内周面に雌ネジが形成された円筒状の可動部221と、外周面に雄ネジが形成され、可動部221の雌ネジと螺合する回転軸222と、可動部221が回転軸222と連れ回りすることを防止する一対の棒状体223を備えている。 A U-shaped support portion 213 in a side view is fixed to the upper end opening of the dam body 212 , and an elevating mechanism 220 is attached to the support portion 213 . The lifting mechanism 220 has a cylindrical movable portion 221 fixed to the upper surface of the support portion 213 and having a female screw formed on the inner peripheral surface, and a male screw formed on the outer peripheral surface and screwed with the female screw of the movable portion 221 . and a pair of rod-shaped bodies 223 that prevent the movable portion 221 from rotating together with the rotating shaft 222 .

つまり、回転軸222が一方向に回転することにより、支持部213を介して可動部221に取付けられた堰体212が可動部221とともに上昇し、回転軸222が反対方向に回転することにより、支持部213を介して可動部221に取付けられた堰体212が可動部221とともに降下する。上述した堰体212と昇降機構220によって排水水位調節部210が構成されている。 That is, when the rotating shaft 222 rotates in one direction, the gate body 212 attached to the movable portion 221 via the support portion 213 rises together with the movable portion 221, and when the rotating shaft 222 rotates in the opposite direction, The gate body 212 attached to the movable portion 221 via the support portion 213 descends together with the movable portion 221 . The drain water level adjusting section 210 is configured by the gate body 212 and the elevating mechanism 220 described above.

排水制御機構22Bは、排水桝201の上面に台座202を介して着脱自在に取り付けられた水密性のケーシング231と、ケーシング231の天面に太陽を臨むように傾斜姿勢で取り付けられたソーラーパネル232と、ケーシング231に収容された駆動機構240と、蓄電池233と、アンテナ234と、制御盤235などを備えて構成されている。制御盤235には、水位制御部236と無線通信部237などが組み込まれている。 The drainage control mechanism 22B includes a watertight casing 231 detachably attached to the upper surface of the drainage basin 201 via a pedestal 202, and a solar panel 232 attached to the top surface of the casing 231 in an inclined posture so as to face the sun. , a drive mechanism 240 housed in a casing 231, a storage battery 233, an antenna 234, a control panel 235, and the like. The control panel 235 incorporates a water level control section 236, a wireless communication section 237, and the like.

水位制御部236及び無線通信部237はCPU、メモリ、入出力回路や通信回路などの周辺回路を備えて構成され、メモリに格納された制御プログラムがCPUで実行されることにより所定の機能、ここでは排水水位調節部210に対する制御機能が実現される。 The water level control unit 236 and the wireless communication unit 237 are configured to include peripheral circuits such as a CPU, a memory, an input/output circuit, and a communication circuit. , the control function for the drain water level control unit 210 is implemented.

水位制御部236は、無線通信部237を介してクラウドサーバ34から指示された排水水位となるように駆動機構240を介して排水水位調節部210を制御し、後述の水位センサ2を介して圃場の貯水水位が目標水位となったことを検知すると無線通信部237を介してクラウドサーバ34に貯水水位に達した旨を報告する。 The water level control unit 236 controls the drainage water level adjustment unit 210 via the drive mechanism 240 so as to achieve the drainage water level instructed by the cloud server 34 via the wireless communication unit 237, and controls the agricultural field via the water level sensor 2 described later. reaches the target water level, it reports to the cloud server 34 via the wireless communication unit 237 that the water level has reached the target water level.

ソーラーパネル232による発電電力が蓄電池233に充電され、蓄電池233の充電電力が水位制御部236及び無線通信部237の制御電力として消費される。 Electric power generated by the solar panel 232 is charged to the storage battery 233 , and the charged electric power of the storage battery 233 is consumed as control electric power for the water level control section 236 and the wireless communication section 237 .

駆動機構240は、エンコーダが内蔵されたDCモータ241と、DCモータ241の出力軸に設けられたギア242と噛合する中空のメインギア243と、メインギア243の中空部に挿通された駆動軸246などを備えて構成され、排水水位調節部210を昇降駆動するアクチュエータとして機能する。 The drive mechanism 240 includes a DC motor 241 with a built-in encoder, a hollow main gear 243 that meshes with a gear 242 provided on the output shaft of the DC motor 241, and a drive shaft 246 inserted through the hollow portion of the main gear 243. etc., and functions as an actuator for driving the drain water level adjusting unit 210 up and down.

メインギア243は、上下方向に延びる円筒状のボス部244と、ボス部244の上下方向中央部に延出形成された円盤状のギア部245とを備えた両ボス型のギアで、ボス部244の上下が軸受で回転可能に支持されている。ボス部244の内周面に形成されたキー溝に駆動軸246の外周面に突出形成されたキー246kが勘合して、メインギア243と駆動軸246とが一体回転するように構成されている。 The main gear 243 is a double-boss gear having a vertically extending cylindrical boss portion 244 and a disk-shaped gear portion 245 extending from the vertically central portion of the boss portion 244. The top and bottom of 244 are rotatably supported by bearings. A key groove formed on the inner peripheral surface of the boss portion 244 is fitted with a key 246k protruding from the outer peripheral surface of the drive shaft 246, so that the main gear 243 and the drive shaft 246 are configured to rotate integrally. .

駆動軸246の下端と回転軸222の上端がカップリング247(図2(a)参照。)を介して駆動連結され、DCモータ241が一方向に回転駆動すると堰体212が上昇して排水水位(貯水水位)が上昇し、DCモータ241が反対方向に回転駆動すると堰体212が降下して排水水位(貯水水位)が下降する。 The lower end of the drive shaft 246 and the upper end of the rotary shaft 222 are drivingly connected via a coupling 247 (see FIG. 2(a)). When the (storage water level) rises and the DC motor 241 rotates in the opposite direction, the gate body 212 descends and the drain water level (storage water level) descends.

堰体212の上端開口位置が田面レベルとなる位置を基準位置に設定し、DCモータ241の駆動時に検出されるエンコーダのパルス数に基づいて、堰体212の上端開口位置を管理することにより、堰体212の上端開口位置を所望の高さに制御することができる。 By setting the position where the upper end opening position of the weir body 212 is at the level of the paddy field as a reference position and managing the upper end opening position of the weir body 212 based on the number of encoder pulses detected when the DC motor 241 is driven, The upper end opening position of the weir body 212 can be controlled to a desired height.

図3(a)から(c)に示すように、堰体212の上端開口に取付けられた支持部213に、水平姿勢で先端が排水桝201の開口201aから圃場1側に突出する長さに設定されたアーム部材250が取り付けられ、アーム部材250の先端側の垂下部251に上下高さを異ならせた一対のフロートスイッチ方式の水位計252,253が取り付けられている。一対のフロートスイッチ方式の水位計252が第1の水位センサ、水位計253が第2の水位センサとなる。なお、アーム部材250は支持部213以外に取付けられていてもよく、堰体212と一体に上下するように配置されていればよい。 As shown in FIGS. 3(a) to 3(c), a supporting portion 213 attached to the upper end opening of the weir body 212 is provided with a length that protrudes toward the farm field 1 from the opening 201a of the drainage basin 201 in a horizontal posture. A set arm member 250 is attached, and a pair of float switch type water gauges 252 and 253 with different vertical heights are attached to a drooping portion 251 on the tip side of the arm member 250 . A pair of float switch type water level gauges 252 serve as a first water level sensor, and a water level gauge 253 serves as a second water level sensor. It should be noted that the arm member 250 may be attached to a portion other than the support portion 213 as long as it is arranged so as to move up and down integrally with the gate body 212 .

フロートスイッチ方式の水位計は、例えば磁性体が内蔵されたフロートfと、フロートfを上下移動可能に保持する支軸aと、支軸aの上部位置に設けられたリードスイッチsなどで構成され、圃場1の貯水水位の上昇に伴ってフロートfが支軸aに沿って上昇してリードスイッチsに達すると、リードスイッチsの接点が閉じることにより、水位が所定水位に達したことを検知するスイッチである。 A float switch type water level gauge is composed of, for example, a float f containing a magnetic material, a spindle a holding the float f so as to be vertically movable, and a reed switch s provided above the spindle a. When the float f rises along the support shaft a and reaches the reed switch s as the water level in the field 1 rises, the contact of the reed switch s is closed to detect that the water level has reached a predetermined level. It is a switch that

従って、フロートスイッチ方式の水位計は、圧力式の水位計とは異なり、田面からの水位を直接検出できないのであるが、リードスイッチなどの接点が位置する高さに水位が達したことをフロートの上昇により検知することができる。本実施形態では、排水水位調節部210と連動して上下し、排水水位調節部210を基準とする圃場の相対水位が測定される。 Therefore, unlike the pressure-type water level gauge, the float switch type water level gauge cannot directly detect the water level from the paddy field. It can be detected by rising. In the present embodiment, it moves up and down in conjunction with the drainage water level adjustment unit 210, and the relative water level of the field with the drainage water level adjustment unit 210 as a reference is measured.

具体的に、アーム部材250の先端側の垂下部251のうち、田面1sを基準に排水水位調節部210を構成する堰体212の上端開口の高さh1に相当する位置に第1の水位センサとなる水位計252のリードスイッチが設けられ、堰体212の上端開口の高さh2(=h1-Δh)に相当する位置に第2の水位センサとなる水位計253のリードスイッチが設けられている。 Specifically, a first water level sensor is placed at a position corresponding to the height h1 of the upper end opening of the weir body 212 that constitutes the drainage water level adjustment part 210 with reference to the paddy field 1s in the drooping part 251 on the tip side of the arm member 250. A reed switch for the water level gauge 252 is provided, and a reed switch for the water gauge 253 as the second water level sensor is provided at a position corresponding to the height h2 (= h1 - Δh) of the upper end opening of the weir body 212. there is

図3(b)は、水位が所定のh3に設定され、図3(c)は水位がh4(<h3)に設定された例を示している。それぞれ圃場1の水位がh3、h4になった時に水位計252により水面が目標水位に達したことが検知される。この場合、何れも第二の水位センサである水位計253は既にオンしていることはいうまでもない。 FIG. 3(b) shows an example in which the water level is set to a predetermined h3, and FIG. 3(c) shows an example in which the water level is set to h4 (<h3). When the water level of the field 1 reaches h3 and h4 respectively, the water level gauge 252 detects that the water surface has reached the target water level. In this case, it goes without saying that the water gauge 253, which is the second water level sensor, is already turned on.

圃場1への給水開始後に第1の水位センサとなる水位計252で水位が検知されると、排水栓22に備えた水位制御部236は目標の貯水水位に達したと判断して、無線通信部237を介してクラウドサーバ34に目標貯水水位に達したことを報告する。クラウドサーバ34は、これに応答して対応する圃場1の給水栓12に止水指令を送信する。 After the start of water supply to the field 1, when the water level is detected by the water level gauge 252 serving as the first water level sensor, the water level control unit 236 provided in the drain plug 22 determines that the target water level has been reached, and performs wireless communication. It reports to the cloud server 34 via the part 237 that the target water level has been reached. The cloud server 34 transmits a water stop command to the water tap 12 of the corresponding field 1 in response to this.

水面が波打っているような場合に、第1の水位センサとなる一方の水位計252のフロートが水面の波打ちに伴って上下するリードスイッチの接点が断続するチャターが生じ、これに応答してクラウドサーバ34に水位の上下変動が報告されると、給水栓12に対して給水指令と止水指令が交互に送信されるような不都合な事態が生じる。 When the water surface is undulating, the float of one of the water level gauges 252, which is the first water level sensor, moves up and down with the undulations of the water surface. If the cloud server 34 is notified of the up-and-down fluctuation of the water level, an inconvenient situation occurs in which a water supply command and a water stop command are alternately sent to the hydrant 12 .

そのような場合に備えて、水位制御部236は、第1の水位センサとなる一方の水位計252で水面が検出された後は、第2の水位センサとなる他方の水位計253で水面が低下したことが検知されるまでの間はクラウドサーバ34に水位変動を報告せず、他方の水位計253で水面が低下したことが検知されて初めてクラウドサーバ34に水位低下を報告するように構成されている。水位計252,253の検出水位差は数十mm(例えば20mm程度)に設定されている。 In preparation for such a case, the water level control unit 236 detects the water level by the other water level gauge 253, which is the second water level sensor, after the water level is detected by one of the water level gauges 252, which is the first water level sensor. The water level fluctuation is not reported to the cloud server 34 until the drop is detected, and the water level drop is reported to the cloud server 34 only after the other water level gauge 253 detects that the water level has dropped. It is The detected water level difference of the water level gauges 252 and 253 is set to several tens mm (for example, about 20 mm).

なお、水面の波打に備えて、堰体212の上端開口の高さをh3(=h1+Δh)に設定するとともに、田面を基準に堰体212の上端開口の高さよりΔh低い位置に一方の水位計252のリードスイッチが設けられていてもよい。この様に設定すると、一方の水位計252により貯水水位が目標水位に達したことを適切に検出することができ、水面が波打った場合でも堰体212の上端開口から無駄に排水されることがなくなる。 In addition, in preparation for waving of the water surface, the height of the upper end opening of the weir body 212 is set to h3 (=h1 + Δh), and one water level A total of 252 reed switches may be provided. By setting in this manner, one of the water level gauges 252 can appropriately detect that the stored water level has reached the target water level, and even if the water surface is undulating, waste water will be drained from the upper end opening of the weir body 212. disappears.

上述した実施形態では、水位センサとして、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位を測定する第1の水位センサと、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位より低い相対水位を測定する第2の水位センサを備えた例を説明したが、第1の水位センサのみ備えた構成であってもよい。 In the above-described embodiment, the water level sensor is a first water level sensor that moves up and down in conjunction with the drainage water level adjustment unit to measure the relative water level of the field with respect to the drainage water level adjustment unit, and the drainage water level adjustment unit. Although the example provided with the second water level sensor for measuring the relative water level lower than the relative water level of the field based on the drainage water level adjustment unit has been described, even if the configuration includes only the first water level sensor good.

また、第1の水位センサにより検出される圃場の相対水位と、第2の水位センサにより検出される圃場の相対水位との中間の相対水位を検出する第3の水位センサを備えてもよい。 Further, a third water level sensor may be provided to detect an intermediate relative water level between the relative water level of the field detected by the first water level sensor and the relative water level of the field detected by the second water level sensor.

上述した実施形態では、排水水位調節部210が排水筒(堰体212)で構成され、水位センサ2が排水筒と連動して上下する例を説明したが、排水水位調節部210が圃場1と放水路21を仕切る堰板で構成され、水位センサ2が堰板と連動して上下するように構成してもよい。圃場と放水路を仕切る堰板の上下高さを調整することにより圃場からの溢流水位が調整され、調整された溢流水位を検出するように堰板に上述したアーム部材が圃場に延びるように配置されていればよい。 In the above-described embodiment, the drainage water level adjustment unit 210 is composed of a drainage pipe (weir body 212), and the water level sensor 2 moves up and down in conjunction with the drainage pipe. The water level sensor 2 may be configured to move up and down in conjunction with the barrier plate that partitions the discharge channel 21 . The overflow water level from the field is adjusted by adjusting the vertical height of the dam plate that partitions the field and the drainage channel, and the above-mentioned arm member extends to the field on the dam plate so as to detect the adjusted overflow water level. should be placed in

即ち、排水栓22は、田面1sからの上下高さを調節可能な排水水位調節部と、アクチュエータを介して排水水位調節部の上下高さを自動調整する水位制御部と、水位制御部と外部装置であるクラウドサーバ34とを接続する無線通信部とを備えて構成されている。 That is, the drain plug 22 includes a drainage water level adjustment section that can adjust the vertical height from the paddy field 1s, a water level control section that automatically adjusts the vertical height of the drainage water level adjustment section via an actuator, a water level control section, and an external It is configured with a wireless communication unit that connects with the cloud server 34, which is a device.

そして、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位を測定する水位センサと、同様に排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位より低い下限水位を検出する下限水位センサを備えている。 Then, a water level sensor that moves up and down in conjunction with the drainage water level adjustment unit and measures the relative water level of the field with the drainage water level adjustment unit as a reference, and similarly moves up and down in conjunction with the drainage water level adjustment unit to control the drainage water level adjustment unit. It is equipped with a lower limit water level sensor that detects a lower limit water level lower than the relative water level of the field used as a reference.

排水水位調節部は堰板または排水筒で構成され、水位センサ及び下限水位センサは、圃場の水位に応じて上下するフロートスイッチで構成され、排水筒に取付けられている。 The drainage water level adjusting unit is composed of a dam plate or a drainage cylinder, and the water level sensor and the lower limit water level sensor are composed of float switches that move up and down according to the water level in the field, and are attached to the drainage cylinder.

なお、水位センサとしてフロートスイッチ以外のセンサ、例えば電気接点式のセンサなどを用いてもよい。例えば、一方の接点を目標水位に対応付けてアーム部材の垂下部に取り付け、他方の接点を田面近傍位置に設置し、両電極間に流れる電流の有無を検出するような構成であってもよい。 As the water level sensor, a sensor other than the float switch, such as an electric contact type sensor, may be used. For example, one contact may be associated with the target water level and attached to the drooping portion of the arm member, the other contact may be installed near the paddy field, and the presence or absence of current flowing between the two electrodes may be detected. .

上述した例では、給水栓12及び排水栓22がWi-Fiルータなどの中継器32を介してインターネットに接続される態様を説明したが、給水栓12及び排水栓22に備えた無線通信部を携帯電話回線に接続可能な端末で構成し、ゲートウェイを介してインターネットに接続可能に構成してもよい。 In the above example, the water tap 12 and the drain tap 22 are connected to the Internet via a repeater 32 such as a Wi-Fi router. It may be composed of a terminal connectable to a mobile phone line and configured to be connectable to the Internet via a gateway.

また、複数の圃場をグループ化して給水栓12及び排水栓22に備えた無線通信部を特定小電力無線に基づく通信を行なう通信機で構成し、親機となる1台の通信機と子機となる他の通信機が互いに無線通信し、親機となる通信機に備えたインターネット接続可能な通信機が、子機から集信した水位情報などを含めて一括してクラウドサーバに送信するような構成であってもよい。 In addition, a plurality of farm fields are grouped, and the wireless communication units provided in the water tap 12 and the drain tap 22 are configured with a communication device that performs communication based on the specified low-power radio, and one communication device serving as a parent device and a child device. Other communication devices will communicate wirelessly with each other, and the communication device that can connect to the Internet provided in the communication device that will be the parent device will send all the information including the water level information collected from the child device to the cloud server. configuration.

[給水栓の構成]
以下、給水栓12について詳述する。
図4に示すように、給水栓12は、圃場に設けられた給水桝101に収容される給水機構12Aと、給水機構12Aの上面に着脱自在に取り付けられ、給水機構12Aを制御して給水または止水の何れかに切り替える給水制御機構12Bを備えている。
[Configuration of hydrant]
The water tap 12 will be described in detail below.
As shown in FIG. 4, the water tap 12 is detachably attached to a water supply mechanism 12A housed in a water supply pit 101 provided in a field, and to the upper surface of the water supply mechanism 12A, and controls the water supply mechanism 12A to supply or supply water. It has a water supply control mechanism 12B that switches to either stop water.

給水機構12Aは、円筒状の弁箱120と、弁箱120の上下方向中央部に内周側に突出形成された弁座121と、弁座121に対向配置され、下面にゴム製のシール部材123が取り付けられた円盤状の弁体124を備えている。弁箱120の下端が給水管10から分岐した導水路11に接続されている。 The water supply mechanism 12A includes a cylindrical valve box 120, a valve seat 121 protruding inwardly from the center of the valve box 120 in the vertical direction, and a rubber seal member on the bottom surface. It has a disk-shaped valve body 124 to which 123 is attached. A lower end of the valve box 120 is connected to the water conduit 11 branched from the water supply pipe 10 .

弁箱120の上端部には、内周面に雌ネジが形成された軸受126が取り付けられ、軸受126には外周面に雄ネジが形成された弁軸125が螺合されている。そして弁軸125の下端が弁体124に固定されている。 A bearing 126 having a female thread formed on its inner peripheral surface is attached to the upper end of the valve box 120 , and a valve shaft 125 having a male thread formed on its outer peripheral surface is screwed into the bearing 126 . A lower end of the valve shaft 125 is fixed to the valve body 124 .

弁座121の中央部には通水孔122が形成され、弁箱120の側壁上部には、複数の出水窓127が周方向に並ぶように形成されている。弁軸125に回転力が付与されると、軸受126に沿って弁軸125が上下移動し、弁軸125の上下移動に伴って弁体124が上下する。即ち、弁座121と弁体124と弁座121と弁体124との間に設けられたシール部材123などで弁機構が構成されている。 A water passage hole 122 is formed in the central portion of the valve seat 121, and a plurality of water outlet windows 127 are formed in the upper portion of the side wall of the valve box 120 so as to be arranged in the circumferential direction. When a rotational force is applied to the valve shaft 125, the valve shaft 125 moves up and down along the bearing 126, and the valve body 124 moves up and down as the valve shaft 125 moves up and down. That is, the valve mechanism is composed of the valve seat 121, the valve body 124, and the seal member 123 provided between the valve seat 121 and the valve body 124, and the like.

給水制御機構12Bは、上述した排水栓22に備えた排水制御機構22Bと同様に、水密性のケーシング131と、ケーシング131の天面に太陽を臨むように傾斜姿勢で取り付けられたソーラーパネル132と、ケーシング131に収容された駆動機構140と、蓄電池133と、アンテナ134と、制御盤135などを備えて構成されている。制御盤135には、弁の開閉制御部136と無線通信部137などが組み込まれている。 The water supply control mechanism 12B includes a watertight casing 131 and a solar panel 132 attached to the top surface of the casing 131 in an inclined posture so as to face the sun, in the same manner as the drainage control mechanism 22B provided in the drain plug 22 described above. , a drive mechanism 140 housed in a casing 131, a storage battery 133, an antenna 134, a control panel 135, and the like. The control panel 135 incorporates a valve opening/closing control unit 136, a wireless communication unit 137, and the like.

開閉制御部136及び無線通信部137はCPU、メモリ、入出力回路や通信回路などの周辺回路を備えて構成され、メモリに格納された制御プログラムがCPUで実行されることにより所定の機能、ここでは給水機構12Aに備えた弁機構に対する開閉制御機能が実現される。 The opening/closing control unit 136 and the wireless communication unit 137 are configured to include peripheral circuits such as a CPU, a memory, an input/output circuit, and a communication circuit. , the opening/closing control function for the valve mechanism provided in the water supply mechanism 12A is realized.

開閉制御部136は、無線通信部137を介してクラウドサーバ34から給水指示されると予め設定された弁開度まで開弁するべく駆動機構140を介して弁機構を制御し、クラウドサーバ34から圃場の貯水水位が目標水位となったことが送信されると弁機構を閉止する。 When a water supply instruction is received from the cloud server 34 via the wireless communication unit 137, the opening/closing control unit 136 controls the valve mechanism via the drive mechanism 140 to open the valve to a preset valve opening degree. When it is transmitted that the water level in the field has reached the target water level, the valve mechanism is closed.

ソーラーパネル132による発電電力が蓄電池133に充電され、蓄電池133の充電電力が開閉制御部136及び無線通信部137の制御電力として消費される。 Electric power generated by the solar panel 132 is charged to the storage battery 133 , and the charged electric power of the storage battery 133 is consumed as control electric power for the opening/closing control section 136 and the wireless communication section 137 .

駆動機構140は、エンコーダが内蔵されたDCモータ141と、DCモータ141の出力軸に設けられたギア142と噛合する中空のメインギア143と、メインギア143の中空部に挿通された駆動軸146などを備えて構成され、弁体124を昇降駆動するアクチュエータとして機能する。 The drive mechanism 140 includes a DC motor 141 with a built-in encoder, a hollow main gear 143 that meshes with a gear 142 provided on the output shaft of the DC motor 141, and a drive shaft 146 inserted through the hollow portion of the main gear 143. etc., and functions as an actuator for driving the valve body 124 up and down.

メインギア143は、上下方向に延びる円筒状のボス部144と、ボス部144の上下方向中央部に延出形成された円盤状のギア部145とを備えた両ボス型のギアで、ボス部144の上下が軸受で回転可能に支持されている。ボス部144の内周面に形成されたキー溝に駆動軸146の外周面に突出形成されたキーが嵌合して、メインギア143と駆動軸146とが一体回転するように構成されている。 The main gear 143 is a double-boss gear having a vertically extending cylindrical boss portion 144 and a disc-shaped gear portion 145 extending from the vertically central portion of the boss portion 144. The top and bottom of 144 are rotatably supported by bearings. A key protruding from the outer peripheral surface of the drive shaft 146 is fitted into a key groove formed on the inner peripheral surface of the boss portion 144, so that the main gear 143 and the drive shaft 146 rotate integrally. .

駆動軸146の下端と弁軸125の上端がカップリング147を介して駆動連結され、DCモータ141が一方向に回転駆動すると弁体124が上昇して給水状態となり、DCモータ141が反対方向に回転駆動すると弁体124が降下して止水状態になる。 The lower end of the drive shaft 146 and the upper end of the valve shaft 125 are drivably connected through a coupling 147, and when the DC motor 141 rotates in one direction, the valve body 124 rises and enters the water supply state, and the DC motor 141 rotates in the opposite direction. When rotationally driven, the valve body 124 descends to stop water.

[圃場の水管理方法]
上述した圃場の水管理システム100により、無線通信部を介して外部装置(クラウドサーバ)から圃場の貯水水位を送信する貯水水位指令ステップと、水位制御部によりアクチュエータを介して排水水位調節部を貯水水位に対応した上下高さに調整する排水水位調節ステップと、水位センサにより水位が検出されると、相対水位または相対水位から算出した圃場の貯水水位を、無線通信部を介して外部装置(クラウドサーバ)に送信する圃場水位送信ステップと、を備えた圃場の水管理方法が実行される。
[Field water management method]
By the above-described farm field water management system 100, the water level command step of transmitting the water level of the farm field from an external device (cloud server) via the wireless communication unit, and the water level control unit through the actuator to store the drainage water level adjustment unit When the water level is detected by the water level sensor, the relative water level or the reservoir water level in the field calculated from the relative water level is sent to an external device (cloud) via the wireless communication unit. and a field water level transmission step of transmitting to a server).

貯水水位指令ステップで外部装置(クラウドサーバ)から圃場の貯水水位が送信されると、排水水位調節ステップでアクチュエータを介して排水水位調節部が貯水水位に対応した上下高さに調整され、排水水位調節部に連動して水位センサの上下高さが自動で調整される。給水栓からの用水の給水が開始され、圃場水位送信ステップで水位センサにより検出された相対水位または相対水位から算出した圃場の貯水水位が外部装置(クラウドサーバ)に送信される。例えば外部装置が給水栓であれば、圃場水位送信ステップで圃場の貯水水位が所定水位に達したことを判定して給水を停止することができ、例えば外部装置がクラウドサーバであれば、圃場への貯水制御が遠隔で行なうことができる。 When the storage water level of the field is sent from the external device (cloud server) in the storage water level command step, the drainage water level adjustment unit is adjusted to the vertical height corresponding to the storage water level via the actuator in the drainage water level adjustment step, and the drainage water level is adjusted. The vertical height of the water level sensor is automatically adjusted in conjunction with the adjustment unit. The supply of water from the hydrant is started, and the relative water level detected by the water level sensor or the stored water level of the field calculated from the relative water level is transmitted to the external device (cloud server) in the field water level transmission step. For example, if the external device is a water faucet, it is possible to stop the water supply by judging that the reservoir water level in the field has reached a predetermined water level in the field water level transmission step. water storage control can be performed remotely.

以下、排水栓及び排水栓に配された水位センサの別実施形態を説明する。
上述した実施形態では、水位制御部によりアクチュエータを介して排水水位調節部の上下高さが自動調整される例を説明したが、排水水位調節部の上下高さが手動調整可能に構成されていてもよい。
Another embodiment of the drain plug and the water level sensor arranged on the drain plug will be described below.
In the above-described embodiment, the water level controller automatically adjusts the vertical height of the drainage water level adjustment unit via the actuator. However, the vertical height of the drainage water level adjustment unit can be manually adjusted. good too.

つまり、田面からの上下高さを手動により調整可能な排水水位調節部を備え、圃場の貯水水位を調節する排水栓であって、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位を測定する水位センサを備えていればよい。 In other words, it is a drain plug that is provided with a drainage water level adjustment part that can manually adjust the vertical height from the field surface and adjusts the water level in the field. A water level sensor that measures the relative water level of the reference field is sufficient.

例えば、上述した排水制御機構22Bに替えて、回転軸222を手動回転させるハンドルを排水桝201の上面に設けてもよいし、堰体212の上端開口に取付けた支持部213を直接手動で上下操作するように構成してもよい。 For example, instead of the drainage control mechanism 22B described above, a handle for manually rotating the rotary shaft 222 may be provided on the upper surface of the drainage basin 201, or the support portion 213 attached to the upper end opening of the weir body 212 may be manually moved up and down. may be configured to operate.

手動で調節される排水水位調節部と連動して水位センサが上下するため、排水水位調節部の上下高さを調節する度に手動で水位センサの上下位置を調節する作業が不要になる。 Since the water level sensor moves up and down interlocking with the manually adjusted drain water level adjusting part, there is no need to manually adjust the vertical position of the water level sensor each time the vertical height of the drain water level adjusting part is adjusted.

また、排水水位調節部の上下高さが手動調整され、排水水位調節部に連動して水位センサが上下調整される場合でも、排水水位調節部に対する水位センサの相対水位または相対水位から算出した圃場の貯水水位を外部装置に送信する無線通信部を備えていることが好ましく、水位センサにより検出された相対水位または相対水位から算出した圃場の貯水水位が通信部を介して上述したクラウドサーバのような外部装置に送信されると、当該水位に基づいて外部装置で適切な処理、例えば給水栓の遠隔制御などが可能になる。 In addition, even if the vertical height of the drainage water level adjustment unit is manually adjusted and the water level sensor is adjusted vertically in conjunction with the drainage water level adjustment unit, the relative water level of the water level sensor with respect to the drainage water level adjustment unit or the relative water level of the agricultural field calculated from the relative water level It is preferable to have a wireless communication unit that transmits the stored water level to an external device. When sent to a suitable external device, the water level allows the external device to take appropriate action, such as remote control of a hydrant.

この様な手動で調節される排水水位調節部を備えた排水栓では、水位センサにより水位が検出されると、相対水位または相対水位から算出した圃場の貯水水位を、無線通信部を介してクラウドサーバなどの外部装置に送信する圃場水位送信ステップと、圃場の貯水水位を調整するために、無線通信部を介して、当該外部装置より給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、を備えることにより圃場の水管理方法が実行される。 When the water level is detected by the water level sensor, the drain valve equipped with such a manually adjusted drain water level adjuster transmits the relative water level or the reservoir water level of the field calculated from the relative water level to the cloud via the wireless communication unit. A farm field water level transmission step of transmitting data to an external device such as a server; A field water management method is executed by comprising the steps of:

水位センサの相対水位または相対水位から算出した圃場の貯水水位を外部装置に送信するために無線通信部に替えて有線の通信部、具体的には水位センサの接点状態を出力する信号線を備えていてもよい。当該信号線を介して外部装置である無線通信機能を備えた給水栓12に接点状態を出力することで、給水栓12からクラウドサーバに水位情報を報告することができる。 In order to transmit the relative water level of the water level sensor or the reservoir water level of the field calculated from the relative water level to an external device, instead of the wireless communication part, a wired communication part, specifically a signal line that outputs the contact state of the water level sensor is provided. may be By outputting the contact state to the water faucet 12 equipped with a wireless communication function, which is an external device, via the signal line, the water level information can be reported from the water faucet 12 to the cloud server.

このような排水栓では、水位センサにより水位が検出されると、相対水位または相対水位から算出した圃場の貯水水位を、通信部を介して給水栓に送信する圃場水位送信ステップと、圃場の貯水水位を調整するために、給水栓と通信したクラウドサーバなどの外部装置が給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、を備えることにより圃場の水管理方法が実行される。 In such a drain valve, when the water level is detected by the water level sensor, a field water level transmission step of transmitting the relative water level or the stored water level of the field calculated from the relative water level to the water tap via the communication unit; a water tap opening/closing command step in which an external device such as a cloud server communicating with the water tap transmits a command to open/close the water tap to adjust the water level. .

以上説明した実施形態は本発明の一例に過ぎず、該記載により本発明の技術的範囲が限定されることを意図するものではなく、排水栓、圃場の水管理方法の具体的な構成は本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。 The embodiment described above is merely an example of the present invention, and is not intended to limit the technical scope of the present invention. Needless to say, the design can be changed as appropriate within the scope of the effects of the invention.

100:圃場の水管理システム
1:圃場
1s:田面
2,252,253:水位センサ
10:給水管
12:給水栓
20:排水路
22:排水栓
30:インターネット
32:中継器
34:圃場管理サーバ(外部装置)
210:排水水位調節部
236:水位制御部
240:駆動機構(アクチュエータ)
100: Field water management system 1: Field 1s: Field surface 2, 252, 253: Water level sensor 10: Water supply pipe 12: Water tap 20: Drainage channel 22: Drain valve 30: Internet 32: Repeater 34: Field management server ( external device)
210: Drainage water level adjustment unit 236: Water level control unit 240: Drive mechanism (actuator)

Claims (7)

田面からの上下高さを調節可能な排水水位調節部を備え、圃場の貯水水位を調節する排水栓であって、
前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位を測定する第1の水位センサと、
前記排水水位調節部と連動して上下し、前記相対水位より低い水位を測定する第2の水位センサと、
前記第1または第2の水位センサの測定結果に基づいて相対水位または相対水位から算出した圃場の貯水水位を算出する水位制御部と、
を備え、
前記水位制御部は、前記第1の水位センサで水面が検出された後は、前記第2の水位センサで水面が低下したことが検知されるまでの間は水面の低下を出力せず、前記第2の水位計で水面が低下したことが検知されたときに水面の低下を出力するように構成されている排水栓。
A drain plug that includes a drain water level adjustment part that can adjust the vertical height from the field surface and adjusts the reservoir water level in the field,
a first water level sensor that moves up and down in conjunction with the drainage water level adjustment unit and measures the relative water level of the field with respect to the drainage water level adjustment unit;
a second water level sensor that moves up and down in conjunction with the drain water level adjusting unit and measures a water level lower than the relative water level;
a water level control unit that calculates the relative water level or the stored water level of the field calculated from the relative water level based on the measurement result of the first or second water level sensor;
with
After the water level is detected by the first water level sensor, the water level control unit does not output a decrease in the water level until the second water level sensor detects that the water level has decreased. A drain plug configured to output a low water level when a low water level is detected by the second water gauge.
前記水位制御部は、外部装置からの指令に基づき、前記排水水位調節部の上下高さを自動調整する請求項1記載の排水栓。2. The drain plug according to claim 1, wherein said water level controller automatically adjusts the vertical height of said drain water level adjuster based on a command from an external device. 前記水位制御部は、前記排水水位調節部の上下高さを、水面の波打ちによる高さ変動を加味した上下高さに自動調整する請求項2記載の排水栓。3. The drain plug according to claim 2, wherein the water level control unit automatically adjusts the vertical height of the drain water level adjusting unit to a vertical height in consideration of height fluctuations due to waving of the water surface. 前記水位センサは、圃場の水位に応じて上下するフロートスイッチで構成されている請求項1から3の何れかに記載の排水栓。 The drain plug according to any one of claims 1 to 3, wherein the water level sensor comprises a float switch that moves up and down according to the water level in the field. 前記排水水位調節部は堰板または排水筒で構成され、前記水位センサは前記堰板または排水筒に取付けられている請求項1からの何れかに記載の排水栓。 5. The drain plug according to any one of claims 1 to 4 , wherein the drain water level adjusting portion is composed of a dam plate or a drain pipe, and the water level sensor is attached to the dam plate or the drain pipe. 用水を圃場に導く給水弁を備えた給水栓と、請求項1から5の何れかに記載の排水栓と、前記給水栓及び前記排水栓と通信して前記圃場の水位を管理する外部装置と、を備えた圃場の水管理システムであって、A water tap provided with a water supply valve for guiding water to a field, a drain tap according to any one of claims 1 to 5, and an external device communicating with the water tap and the drain tap to manage the water level of the field. A field water management system comprising:
前記外部装置からの排水水位調整指令を受信した前記排水栓は、前記排水水位調節部を介して圃場の貯水水位を調節するとともに、前記水位制御部を介して目標の貯水水位に達したことを前記第1の水位センサによる水面の検出により判定すると、前記外部装置に目標の貯水水位に達した旨を送信し、その後前記水位制御部を介して目標の貯水水位より水面が低下したことを前記第2の水位計による水面の低下検出により判定すると、前記外部装置に目標の貯水水位から低下した旨を送信するように構成され、Upon receiving the drainage water level adjustment command from the external device, the drainage plug adjusts the storage water level of the field via the drainage water level adjustment unit, and detects that the target storage water level has been reached via the water level control unit. When determined by the detection of the water surface by the first water level sensor, the effect that the target water level has been reached is transmitted to the external device, and then the water level control unit detects that the water level has fallen below the target water level. When determined by detection of a decrease in the water surface by the second water level gauge, it is configured to transmit to the external device that the water level has decreased from the target water level,
前記外部装置からの給水指令を受信した前記給水栓は、給水停止指令を受信するまでの間、給水弁を開放して圃場に用水を導くように構成され、The water tap that receives a water supply command from the external device is configured to open a water supply valve and guide water to the field until a water supply stop command is received,
前記外部装置は、前記排水栓に前記排水水位調整指令を送信するとともに前記給水栓に給水指令を送信し、その後前記排水栓から目標の貯水水位に達した旨を受信すると前記給水栓に給水停止指令を出力するとともに前記排水栓から目標の貯水水位より水面が低下した旨を受信すると前記給水栓に給水指令を出力するように構成されている圃場の水管理システム。The external device transmits the drain water level adjustment command to the drain plug, transmits the water supply command to the water plug, and then stops the water supply to the water plug when it receives from the drain plug that the target water level has been reached. A field water management system configured to output a command and to output a water supply command to the water tap when receiving from the drain plug that the water surface has fallen below a target water level.
用水を圃場に導く給水弁を備えた給水栓と、請求項1から5の何れかに記載の排水栓と、前記給水栓及び前記排水栓と通信して前記圃場の水位を管理する外部装置と、を備えた圃場の水管理方法であって、
前記外部装置は、圃場の水位を目標水位に調節するために、前記排水栓に排水水位調整指令を出力するとともに前記給水栓に給水指令を出力し、前記排水栓から目標の貯水水位に達した旨を受信すると、前記排水栓から目標の貯水水位より水面が低下した旨を受信するまでの間、前記給水栓に給水停止指令を出力し、前記排水栓から目標の貯水水位より水面が低下した旨を受信すると前記給水栓に再度給水指令を出力するように動作し、
前記排水栓は、前記排水水位調整指令を受信すると、前記排水水位調節部を介して圃場の貯水水位を調節し、前記水位制御部を介して目標の貯水水位に達したことを前記第1の水位センサによる水面の検出により判定すると、前記外部装置に目標の貯水水位に達した旨を送信し、その後前記水位制御部を介して目標の貯水水位より水面が低下したことを前記第2の水位計による水面の低下検出により判定すると、前記外部装置に目標の貯水水位から低下した旨を送信する処理を繰返すように動作し、
前記給水栓は、前記給水指令を受信すると前記給水弁を開放して圃場に用水を導き、前記給水停止指令を受信すると給水弁を閉止して給水を停止する処理を繰返すように動作する、
ように構成されている圃場の水管理方法。
A water tap provided with a water supply valve for guiding water to a field, a drain tap according to any one of claims 1 to 5, and an external device communicating with the water tap and the drain tap to manage the water level of the field. A field water management method comprising:
The external device outputs a drainage water level adjustment command to the drain plug and a water supply command to the water plug in order to adjust the water level of the field to the target water level, and the target water level is reached from the drain plug. When receiving the notification, a water supply stop command is output to the water tap until receiving from the drain plug to the effect that the water level has decreased from the target water level, and the water level has decreased from the target water level from the drain plug. When receiving the request, it operates to output a water supply command to the water tap again,
Upon receiving the drainage water level adjustment command, the drainage plug adjusts the reservoir water level of the field via the drainage water level adjustment unit, and detects that the target reservoir water level has been reached via the water level control unit. When determined by detection of the water surface by the water level sensor, the effect that the target water level has been reached is sent to the external device, and then the second water level is notified via the water level control unit that the water level has fallen below the target water level. when determined by detection of a decrease in the water level by the meter, repeat the process of transmitting to the external device that the water level has decreased from the target water level,
When the water supply command is received, the water supply valve opens the water supply valve to introduce water to the field, and when the water supply stop command is received, the water supply valve is closed to stop the water supply.
A field water management method configured as follows.
JP2022100773A 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods Active JP7375121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022100773A JP7375121B2 (en) 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241980A JP7096636B2 (en) 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs
JP2022100773A JP7375121B2 (en) 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018241980A Division JP7096636B2 (en) 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs

Publications (2)

Publication Number Publication Date
JP2022118202A true JP2022118202A (en) 2022-08-12
JP7375121B2 JP7375121B2 (en) 2023-11-07

Family

ID=71447504

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018241980A Active JP7096636B2 (en) 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs
JP2022100773A Active JP7375121B2 (en) 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018241980A Active JP7096636B2 (en) 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs

Country Status (1)

Country Link
JP (2) JP7096636B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280243A (en) * 1993-03-26 1994-10-04 Asahi Organic Chem Ind Co Ltd Automatic water supply device
US20020066484A1 (en) * 2000-12-06 2002-06-06 Stringam Blair Lewis Automated farm turnout
JP2006314249A (en) * 2005-05-12 2006-11-24 National Agriculture & Food Research Organization Automatic water tap
JP2009060883A (en) * 2007-09-05 2009-03-26 Amc:Kk Automatic water level regulator for paddy field
JP2011115059A (en) * 2009-12-01 2011-06-16 Yoshihiro Senda Automatic water supply device for rice field
JP2017193914A (en) * 2016-04-22 2017-10-26 株式会社クボタケミックス Electric actuator for farm field

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280243A (en) * 1993-03-26 1994-10-04 Asahi Organic Chem Ind Co Ltd Automatic water supply device
US20020066484A1 (en) * 2000-12-06 2002-06-06 Stringam Blair Lewis Automated farm turnout
JP2006314249A (en) * 2005-05-12 2006-11-24 National Agriculture & Food Research Organization Automatic water tap
JP2009060883A (en) * 2007-09-05 2009-03-26 Amc:Kk Automatic water level regulator for paddy field
JP2011115059A (en) * 2009-12-01 2011-06-16 Yoshihiro Senda Automatic water supply device for rice field
JP2017193914A (en) * 2016-04-22 2017-10-26 株式会社クボタケミックス Electric actuator for farm field

Also Published As

Publication number Publication date
JP7096636B2 (en) 2022-07-06
JP2020103044A (en) 2020-07-09
JP7375121B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
US10272014B2 (en) Systems and methods for providing network connectivity and remote monitoring, optimization, and control of pool/spa equipment
US20130269798A1 (en) Programmable intelligent control method of and system for irrigation system
CA2450151A1 (en) Irrigation gate system
US11781673B2 (en) Water level control system
WO2012123877A1 (en) An irrigation control device using an artificial neural network
JP2023115141A (en) Field water management system and hydrant control device
US20210329861A1 (en) Apparatus, systems and methods for irrigating lands
JP2024040464A (en) Field water management system and hydrant control device
JPH08275684A (en) System for controlling irrigation of paddy field
JP2022118202A (en) Waste plug, field water management system, and field water management method
CN104904514A (en) Intelligent flowerpot based on weight measurement
JP2011115056A (en) Automatic water supply apparatus for rice field
JP6806978B1 (en) Automatic water supply system, automatic water supply / drainage system and automatic drainage system
WO2020234701A1 (en) Irrigation control system
JP7293546B2 (en) Agricultural drainage system and its control method
JP2011115059A (en) Automatic water supply device for rice field
JP2019110832A (en) Field drainage faucet, field water storage management system, water storage management server and field water storage method
CN211423426U (en) Remote monitoring metering integrated valve
JP7187297B2 (en) Water tap, field water level control device and field management device
JP2021052646A (en) Switchgear
WO2020150632A1 (en) Water level control system
JP2021065170A (en) Farm field groundwater management system
CN111120670A (en) Remote monitoring metering integrated valve
JP7498341B2 (en) Field water management system and water hydrant control device
CN220568199U (en) Fixed-point radar wave online flow measurement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231025

R150 Certificate of patent or registration of utility model

Ref document number: 7375121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150