JP7096636B2 - Field water management method using drain plugs and drain plugs - Google Patents

Field water management method using drain plugs and drain plugs Download PDF

Info

Publication number
JP7096636B2
JP7096636B2 JP2018241980A JP2018241980A JP7096636B2 JP 7096636 B2 JP7096636 B2 JP 7096636B2 JP 2018241980 A JP2018241980 A JP 2018241980A JP 2018241980 A JP2018241980 A JP 2018241980A JP 7096636 B2 JP7096636 B2 JP 7096636B2
Authority
JP
Japan
Prior art keywords
water level
field
water
drainage
level sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018241980A
Other languages
Japanese (ja)
Other versions
JP2020103044A (en
Inventor
和弘 平尾
伸一 谷川
友治 四元
康則 末吉
Original Assignee
株式会社クボタケミックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタケミックス filed Critical 株式会社クボタケミックス
Priority to JP2018241980A priority Critical patent/JP7096636B2/en
Publication of JP2020103044A publication Critical patent/JP2020103044A/en
Priority to JP2022100773A priority patent/JP7375121B2/en
Application granted granted Critical
Publication of JP7096636B2 publication Critical patent/JP7096636B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Non-Electrical Variables (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

本発明は、排水栓及び排水栓を用いた圃場の水管理方法に関する。 The present invention relates to a drain plug and a method for managing water in a field using a drain plug.

特許文献1には、圃場への給水または圃場からの排水を制御するための変位機構を作動させる圃場用電動アクチュエータを備えた給水栓や排水栓が開示されている。これらの給水栓や排水栓を用いることにより、圃場への給水や圃場からの排水をクラウドサーバなどを介して遠隔制御することが可能になる。 Patent Document 1 discloses a water tap or a drain plug provided with an electric actuator for the field that operates a displacement mechanism for controlling water supply to the field or drainage from the field. By using these water taps and drain plugs, it becomes possible to remotely control the water supply to the field and the drainage from the field via a cloud server or the like.

そのために、圃場には水位センサが設けられ、水位センサにより検出された水位に基づいて給水栓や排水栓が制御される。 Therefore, a water level sensor is provided in the field, and the water tap and the drain plug are controlled based on the water level detected by the water level sensor.

このような水位センサとして、無線通信機能を備え、所定の範囲内で任意の水位を検出可能な圧力式水位センサや、水深を示す目盛を備え田面に立設された支柱と、支柱に対してアタッチメントを介して取付位置を上下方向に調整可能なフロートスイッチと、信号線とを備えたフロート式水位センサが用いられている。 As such a water level sensor, a pressure type water level sensor that has a wireless communication function and can detect an arbitrary water level within a predetermined range, a pillar that has a scale indicating the water depth and is erected on the rice field, and a pillar. A float type water level sensor equipped with a float switch whose mounting position can be adjusted in the vertical direction via an attachment and a signal line is used.

特開2017-193914号公報JP-A-2017-193914

しかし、上述した圧力式水位センサは、初期に圃場の所定位置に設置すると、その後は自動的に水位が計測され、計測された水位が無線通信により給水栓を含む外部装置に送信されるので、その後のメンテナンスから開放され、利便性が高いのであるが、非常に高価であるため多数の圃場に設置するための設備費が嵩むという問題があった。 However, when the pressure type water level sensor described above is initially installed at a predetermined position in the field, the water level is automatically measured thereafter, and the measured water level is transmitted to an external device including a faucet by wireless communication. Although it is free from subsequent maintenance and highly convenient, it has a problem that the equipment cost for installing it in a large number of fields is high because it is very expensive.

また、上述したフロート式水位センサは、水面位置を検出するセンサであり非常に安価であるが、各圃場に支柱を立設し、水深を示す目盛が田面からの高さと整合するように位置調整する必要があり、設置後に圃場の水位を調整する必要がある度に、目標となる水深に対応した水面位置を検知できるように目盛に従ってフロートスイッチの上下位置を手動で調整する必要があるなど、煩雑な設置作業や調整作業が必要になるという問題があった。 The float type water level sensor described above is a sensor that detects the water surface position and is very inexpensive. However, a support is erected in each field and the position is adjusted so that the scale indicating the water depth matches the height from the field surface. Every time it is necessary to adjust the water level of the field after installation, it is necessary to manually adjust the vertical position of the float switch according to the scale so that the water level position corresponding to the target water depth can be detected. There was a problem that complicated installation work and adjustment work were required.

そのため、上述した圃場用電動アクチュエータを備えた給水栓や排水栓を用いて実施され、コスト負担の低減と同時にメンテナンスの手間を軽減可能な圃場の水管理方法が求められていた。 Therefore, there has been a demand for a water management method in a field that can be carried out by using a water tap or a drain plug equipped with the above-mentioned electric actuator for the field, and can reduce the cost burden and the labor of maintenance at the same time.

本発明の目的は、上述した問題に鑑み、設置作業や検出水位の調整作業が簡素化され、しかも安価に水位を検出可能な排水栓及び排水栓を用いた圃場の水管理方法を提供する点にある。 An object of the present invention is to provide a drainage plug and a method for managing water in a field using a drainage plug, which simplifies the installation work and the adjustment work of the detected water level and can detect the water level at low cost in view of the above-mentioned problems. It is in.

上述の目的を達成するため、本発明による排水栓の第一の特徴構成は、田面からの上下高さを調節可能な排水水位調節部と、アクチュエータを介して前記排水水位調節部の上下高さを自動調整する水位制御部と、前記水位制御部と外部装置とを接続する無線通信部とを備えて構成され、圃場の貯水水位を調節する排水栓であって、前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位を測定する第1の水位センサを備えている点にある。 In order to achieve the above object, the first characteristic configuration of the drain plug according to the present invention is a drain water level adjusting portion capable of adjusting the vertical height from the rice field surface, and a vertical height of the drain water level adjusting portion via an actuator. A water level control unit that automatically adjusts the water level, and a wireless communication unit that connects the water level control unit and an external device. The point is that it is equipped with a first water level sensor that moves up and down to measure the relative water level of the field with respect to the drainage water level adjusting unit.

水位制御部によって排水水位調節部の田面からの上下高さがアクチュエータを介して自動調整されることにより給水栓による圃場の貯水水位が調整される。第1の水位センサが当該排水水位調節部と連動して上下するように構成されるので、排水水位調節部を基準とする圃場の相対水位が第1の水位センサによって測定される。即ち、第1の水位センサによって測定された相対水位と排水水位調節部により調節された圃場の貯水水位とから圃場の水位が把握できる。排水水位調節部の田面からの上下高さの調整に伴って第1の水位センサの上下方向位置が自動調整されるため、第1の水位センサの水位検出位置を手動で調整する作業が不要になる。 The water level control unit automatically adjusts the vertical height of the drainage water level adjustment unit from the field surface via an actuator to adjust the water storage level in the field by the faucet. Since the first water level sensor is configured to move up and down in conjunction with the drainage water level adjusting unit, the relative water level of the field with respect to the drainage water level adjusting unit is measured by the first water level sensor. That is, the water level of the field can be grasped from the relative water level measured by the first water level sensor and the stored water level of the field adjusted by the drainage water level adjusting unit. Since the vertical position of the first water level sensor is automatically adjusted according to the adjustment of the vertical height of the drainage water level adjustment unit from the field surface, there is no need to manually adjust the water level detection position of the first water level sensor. Become.

同第二の特徴構成は、上述の第一の特徴構成に加えて、前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位より低い相対水位を測定する第2の水位センサをさらに備え、前記第1の水位センサを上限水位センサとし、前記第2の水位センサを下限水位センサとし、前記水位センサは前記上限水位センサと前記下限水位センサで構成されている点にある。 In addition to the above-mentioned first characteristic configuration, the second characteristic configuration moves up and down in conjunction with the drainage water level adjusting unit to measure the relative water level lower than the relative water level of the field with respect to the drainage water level adjusting unit. A second water level sensor is further provided, the first water level sensor is used as an upper limit water level sensor, the second water level sensor is used as a lower limit water level sensor, and the water level sensor is composed of the upper limit water level sensor and the lower limit water level sensor. It is in the point of being.

例えば、圃場に湛水するような場合に、第1の水位センサによって検出された水位で圃場への給水が停止された後に、圃場の水位が低下したことが第2の水位センサによって検出されると、給水栓からの給水が再開されることになる。風などの影響うけて水面が波打つと、そのたびに第1の水位センサの出力が切り替わり、給水栓からの給水と給水停止が頻繁に繰り返されるという好ましくない状況が生じる。そのような場合でも、第2の水位センサを備えることにより、例えば水面位置が水位センサより低下しても第2の水位センサで水面位置が検知されている場合には給水栓を閉止しておき、第2の水位センサで水面位置が検知されなくなった場合に給水栓からの給水を再開するような制御が可能になる。 For example, in the case of flooding a field, the second water level sensor detects that the water level in the field has dropped after the water supply to the field is stopped at the water level detected by the first water level sensor. Then, the water supply from the faucet will be resumed. When the water surface undulates due to the influence of wind or the like, the output of the first water level sensor is switched each time, resulting in an unfavorable situation in which water supply from the water tap and water supply stop are frequently repeated. Even in such a case, by providing the second water level sensor, for example, even if the water level position is lower than the water level sensor, if the water level position is detected by the second water level sensor, the water tap is closed. When the water level position is no longer detected by the second water level sensor, it is possible to control the water supply from the faucet to be restarted.

同第三の特徴構成は、上述の第一または第二の特徴構成に加えて、前記水位センサは、圃場の水位に応じて上下するフロートスイッチで構成されている点にある。 The third feature configuration is that, in addition to the first or second feature configuration described above, the water level sensor is composed of a float switch that moves up and down according to the water level of the field.

圃場内で上下する水面に応じてフロートが上下する。フロートが近接すると作動するスイッチの位置が水位検出位置に調整されていれば、水面の上昇に伴って上昇するフロートが当該スイッチに近接したときにスイッチが作動して水面が水位検出位置に達したことが検知される。 The float moves up and down according to the water surface that moves up and down in the field. If the position of the switch that operates when the float is close is adjusted to the water level detection position, the switch operates when the float that rises with the rise of the water level approaches the switch and the water level reaches the water level detection position. Is detected.

同第四の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記排水水位調節部は堰板または排水筒で構成され、前記水位センサは前記堰板または排水筒に取付けられている点にある。 In the fourth characteristic configuration, in addition to any of the above-mentioned first to third characteristic configurations, the drainage water level adjusting portion is composed of a weir plate or a drainage cylinder, and the water level sensor is the weir plate or the drainage cylinder. It is at the point where it is attached to.

排水水位調節部として堰板または排水筒が好適に用いられ、堰板または排水筒を排水水位に合わせて上下位置調整する際に、堰板または排水筒に取付けられた水位センサが堰板または排水筒に連動して上下することで検出水位が調整されるようになる。 A weir plate or a drainage pipe is preferably used as a drainage water level adjusting unit, and when the weir plate or the drainage pipe is adjusted in the vertical position according to the drainage water level, the water level sensor attached to the weir plate or the drainage pipe is used as the weir plate or the drainage pipe. The detected water level can be adjusted by moving up and down in conjunction with the cylinder.

同第五の特徴構成は、田面からの上下高さを手動により調整可能な排水水位調節部を備え、圃場の貯水水位を調節する排水栓であって、前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位を測定する水位センサを備えている点にある。 The fifth feature configuration is a drain plug that adjusts the stored water level in the field with a drain water level adjustment unit that can manually adjust the vertical height from the field surface, and is up and down in conjunction with the drain water level adjustment unit. However, it is equipped with a water level sensor that measures the relative water level of the field with respect to the drainage water level adjusting unit.

手動で調節される排水水位調節部と連動して水位センサが上下するため、排水水位調節部の上下高さを調節する度に手動で水位センサの上下位置を調節する作業が不要になる。 Since the water level sensor moves up and down in conjunction with the manually adjusted drainage water level adjustment unit, it is not necessary to manually adjust the vertical position of the water level sensor each time the vertical height of the drainage water level adjustment unit is adjusted.

同第六の特徴構成は、上述した第五の特徴構成に加えて、前記相対水位または前記相対水位から算出した圃場の貯水水位を外部装置に送信する通信部を備えている点にある。 The sixth characteristic configuration is that, in addition to the fifth characteristic configuration described above, it is provided with a communication unit that transmits the relative water level or the stored water level of the field calculated from the relative water level to an external device.

水位センサにより検出された相対水位または相対水位から算出した圃場の貯水水位が通信部を介して外部装置に送信されると、当該水位に基づいて外部装置で適切な処理が可能になる。 When the relative water level detected by the water level sensor or the stored water level of the field calculated from the relative water level is transmitted to the external device via the communication unit, the external device can perform appropriate processing based on the water level.

同第七の特徴構成は、上述した第五の特徴構成に加えて、前記通信部が無線通信部である点にある。 The seventh feature configuration is that the communication unit is a wireless communication unit in addition to the fifth feature configuration described above.

水位センサにより検出された相対水位または相対水位から算出した圃場の貯水水位が無線通信部を介して外部装置に送信されると、当該水位に基づいて外部装置で適切な処理が可能になる。無線通信部を備えることにより、外部装置が遠隔に位置する場合でも容易に水位を送信することができる。 When the relative water level detected by the water level sensor or the stored water level of the field calculated from the relative water level is transmitted to the external device via the wireless communication unit, the external device can perform appropriate processing based on the water level. By providing the wireless communication unit, the water level can be easily transmitted even when the external device is located remotely.

本発明による圃場の水管理方法の第一の特徴構成は、上述した第一から第四の何れかの特徴構成を備えた排水栓を用いた圃場の水管理方法であって、前記無線通信部を介して外部装置から圃場の貯水水位を送信する貯水水位指令ステップと前記水位制御部により前記アクチュエータを介して前記排水水位調節部を前記貯水水位に対応した上下高さに調整する排水水位調節ステップと、前記水位センサにより水位が検出されると、前記相対水位または前記相対水位から算出した圃場の貯水水位を、前記無線通信部を介して前記外部装置に送信する圃場水位送信ステップと、を備えている点にある。 The first characteristic configuration of the field water management method according to the present invention is the field water management method using a drain plug having any of the above-mentioned first to fourth characteristic configurations, and the wireless communication unit. A drainage water level command step for transmitting the stored water level of the field from an external device via an external device and a drainage water level adjusting step for adjusting the drainage water level adjusting unit to a vertical height corresponding to the stored water level via the actuator by the water level control unit. And, when the water level is detected by the water level sensor, the field water level transmission step of transmitting the relative water level or the stored water level of the field calculated from the relative water level to the external device via the wireless communication unit is provided. There is a point.

貯水水位指令ステップで外部装置から圃場の貯水水位が送信されると、排水水位調節ステップでアクチュエータを介して排水水位調節部が貯水水位に対応した上下高さに調整され、排水水位調節部に連動して水位センサの上下高さが地同調性され、圃場水位送信ステップで水位センサにより検出された相対水位または相対水位から算出した圃場の貯水水位が外部装置に送信される。例えば外部装置が給水栓であれば、圃場水位送信ステップで圃場の貯水水位が所定水位に達したことを判定して給水を停止することができ、例えば外部装置がクラウドサーバであれば、圃場への貯水制御が遠隔で行なうことができる。 When the stored water level of the field is transmitted from the external device in the stored water level command step, the drained water level adjustment unit is adjusted to the vertical height corresponding to the stored water level via the actuator in the drainage water level adjustment step, and is linked to the drainage water level adjustment unit. Then, the vertical height of the water level sensor is synchronized with the ground, and the relative water level detected by the water level sensor in the field water level transmission step or the stored water level of the field calculated from the relative water level is transmitted to the external device. For example, if the external device is a water tap, the water supply can be stopped by determining that the stored water level in the field has reached a predetermined water level in the field water level transmission step. For example, if the external device is a cloud server, the field can be stopped. Water storage control can be performed remotely.

同第二の特徴構成は、上述の第六の特徴構成を備えた排水栓を用いた圃場の水管理方法であって、前記水位センサにより水位が検出されると、前記相対水位または前記相対水位から算出した圃場の貯水水位を、前記通信部を介して給水栓に送信する圃場水位送信ステップと、圃場の貯水水位を調整するために、前記給水栓と通信した外部装置が前記給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、を備えている点にある。 The second characteristic configuration is a method for managing water in a field using a drain plug having the sixth characteristic configuration described above, and when the water level is detected by the water level sensor, the relative water level or the relative water level The field water level transmission step of transmitting the water storage water level of the field calculated from The point is that it is equipped with a water tap opening / closing command step for transmitting a command to instruct.

圃場水位送信ステップにより排水栓から水位センサによって検出された水位が給水栓に送信され、給水栓開閉指令ステップにより給水栓から外部装置に当該水位が送信され、当該水位に基づいて外部装置から給水栓に開閉を指示する指令が送信される。 The water level detected by the water level sensor from the drain plug is transmitted from the drain plug by the field water level transmission step, the water level is transmitted from the water tap to the external device by the water tap opening / closing command step, and the water tap is transmitted from the external device based on the water level. A command to open and close is sent to.

同第三の特徴構成は、上述の第七の特徴構成を備えた排水栓を用いた圃場の水管理方法であって、前記水位センサにより水位が検出されると、前記相対水位または前記相対水位から算出した圃場の貯水水位を、前記無線通信部を介して前記外部装置に送信する圃場水位送信ステップと、圃場の貯水水位を調整するために、前記無線通信部を介して、前記外部装置より給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、を備えている点にある。 The third characteristic configuration is a method for managing water in a field using a drain plug having the seventh characteristic configuration described above, and when the water level is detected by the water level sensor, the relative water level or the relative water level The field water level transmission step of transmitting the water storage water level of the field calculated from the above to the external device via the wireless communication unit, and the external device via the wireless communication unit in order to adjust the water storage water level of the field. It is equipped with a water faucet opening / closing command step for transmitting a command to open / close the water faucet.

圃場水位送信ステップにより排水栓から水位センサによって検出された水位が外部装置に無線送信され、圃場水位送信ステップにより当該水位に基づいて外部装置から給水栓に開閉を指示する指令が無線送信される。 The water level detected by the water level sensor is wirelessly transmitted from the drain plug to the external device by the field water level transmission step, and a command to instruct the water tap to open / close is wirelessly transmitted from the external device based on the water level by the field water level transmission step.

以上説明した通り、本発明によれば、設置作業や検出水位の調整作業が簡素化され、しかも安価に水位を検出可能な排水栓及び排水栓を用いた圃場の水管理方法を提供することができるようになった。 As described above, according to the present invention, it is possible to provide a drainage plug and a method for managing water in a field using a drainage plug, which simplifies the installation work and the adjustment work of the detected water level and can detect the water level at low cost. I can now do it.

圃場及び圃場の水管理システムの説明図Explanatory drawing of the field and the water management system of the field (a)は排水栓の側面視の説明図、(b)は排水制御機構の説明図(A) is an explanatory diagram of the side view of the drain plug, and (b) is an explanatory diagram of the drainage control mechanism. (a)は排水機構22Aに取付けられた水位センサの説明図、(b),(c)は圃場水位と水位センサの動作の説明図(A) is an explanatory diagram of the water level sensor attached to the drainage mechanism 22A, and (b) and (c) are explanatory diagrams of the field water level and the operation of the water level sensor. 給水栓の説明図Explanatory drawing of water tap

以下に、排水栓及び給水栓排水栓を備えた圃場管理装置及び圃場管理方法を説明する。
[圃場の水管理システムの構成]
図1に示すように、稲作が行なわれている各圃場1には、給水管10に流れる用水を、導水路11を介して圃場1に導く給水栓12と、放水路21を介して圃場1の水を排水路20に排水する排水栓22が設けられ、圃場1の近傍にはインターネット30との接続を中継するWi-Fiルータなどの中継器32が設置されている。さらに、排水栓22には圃場1の水位を計測する水位センサ2が設けられている。
The field management device and the field management method provided with the drain plug and the water tap drain plug will be described below.
[Configuration of field water management system]
As shown in FIG. 1, in each field 1 where rice is cultivated, a water tap 12 that guides water flowing through the water supply pipe 10 to the field 1 via the headrace 11 and a field 1 via the floodway 21. A drain plug 22 for draining the water from the water canal 20 is provided, and a repeater 32 such as a Wi-Fi router for relaying the connection with the Internet 30 is installed in the vicinity of the field 1. Further, the drain plug 22 is provided with a water level sensor 2 for measuring the water level of the field 1.

各給水栓12及び排水栓22がインターネット30を介してクラウドサーバ34と接続可能に構成され、圃場1の管理者が所有するスマートフォンなどの携帯端末36がインターネット30を介してクラウドサーバ34と接続可能に構成されている。即ち、各給水栓12及び排水栓22、携帯端末36、クラウドサーバ34と、それらを通信可能に接続するインターネット30により圃場の水管理システム100が構成されている。 Each water tap 12 and drain plug 22 are configured to be connectable to the cloud server 34 via the Internet 30, and a mobile terminal 36 such as a smartphone owned by the administrator of the field 1 can be connected to the cloud server 34 via the Internet 30. It is configured in. That is, the water management system 100 in the field is configured by each water supply plug 12, drainage plug 22, mobile terminal 36, cloud server 34, and the Internet 30 that connects them in a communicable manner.

稲作を例に説明すると、稲作の各工程、例えば、代掻き、田植え、活着期、分げつ期(前期、後期)、幼穂形成期~出穂開花期、登熟期など、各時期に応じて圃場の貯水水位を調整する必要がある。特に代掻き時期には複数の圃場が一斉に導水することになるため、湛水のために効率的に給水管理する必要がある。 Taking rice cultivation as an example, each process of rice cultivation, for example, puddling, rice planting, survival period, tillering period (early and late), panicle formation period to heading flowering period, ripening period, etc. It is necessary to adjust the water level of the water storage. In particular, since multiple fields will be guided all at once during the puddling period, it is necessary to efficiently manage the water supply for flooding.

そのため、クラウドサーバ34は、各管理者により携帯端末36を介して要求された各圃場1に対する給水要求に基づいて各圃場1に対する給水スケジュールを生成するように構成されている。 Therefore, the cloud server 34 is configured to generate a water supply schedule for each field 1 based on the water supply request for each field 1 requested by each administrator via the mobile terminal 36.

携帯端末36から送信される給水要求には、給水対象となる圃場を特定する圃場ID、給水日時、給水水位が含まれる。クラウドサーバ34は、予め登録された圃場マップに従って、給水要求があった各圃場に対する給水スケジュールを生成して記憶部に記憶するように構成されている。 The water supply request transmitted from the mobile terminal 36 includes a field ID that identifies a field to be supplied, a water supply date and time, and a water supply water level. The cloud server 34 is configured to generate a water supply schedule for each field for which a water supply request has been made and store it in a storage unit according to a field map registered in advance.

圃場マップとは各圃場の位置を示す圃場地図であり、クラウドサーバ34には当該圃場マップとともに、圃場マップで特定される圃場毎に圃場IDが付され、各圃場に設置された給水栓12及び排水栓22を特定する給水栓ID及び排水栓ID、並びに管理者IDが圃場IDと関連付けられた圃場データベースを備えている。 The field map is a field map showing the position of each field, and the cloud server 34 is assigned a field ID for each field specified in the field map together with the field map, and the water faucet 12 installed in each field and the water tap 12 and the field map are attached. It has a water tap ID and a drain plug ID for specifying the drain plug 22, and a field database in which the manager ID is associated with the field ID.

クラウドサーバ34は、記憶部に記憶された給水スケジュールに定められた給水日時に、該当する圃場1の排水栓22に対して排水水位調整指令を出力するとともに、該当する圃場1の給水栓12に給水指令を出力する。排水水位とは目標とする圃場の貯水水位を意味する。 The cloud server 34 outputs a drainage water level adjustment command to the drainage plug 22 of the corresponding field 1 at the water supply date and time specified in the water supply schedule stored in the storage unit, and also outputs the drainage water level adjustment command to the water supply plug 12 of the corresponding field 1. Output a water supply command. The drainage water level means the water storage level of the target field.

排水水位調整指令を受信した排水栓12は排水水位を調整し、給水指令を受信した給水栓12は給水弁を開放して圃場に用水を導く。水位センサ2の信号線が接続された排水栓12は、水位センサ2により圃場水位が所定の貯水水位に達したことが検知されると、クラウドサーバ34に水位情報を送信し、クラウドサーバ34は当該水位情報を受信すると給水栓12に対して給水停止指令を送信する。給水停止指令を受信した給水栓12は吸水バルブを制御して給水を停止する。 The drain plug 12 that has received the drain water level adjustment command adjusts the drain water level, and the water tap 12 that has received the water supply command opens the water supply valve to guide water to the field. When the water level sensor 2 detects that the field water level has reached a predetermined water level, the drain plug 12 to which the signal line of the water level sensor 2 is connected transmits water level information to the cloud server 34, and the cloud server 34 sends the water level information. When the water level information is received, a water supply stop command is transmitted to the water faucet 12. Upon receiving the water supply stop command, the water tap 12 controls the water absorption valve to stop the water supply.

[排水栓及び水位センサの構成]
以下、圃場の貯水水位を調節する排水栓22及び排水栓2に配された水位センサ2について詳述する。
図2(a),(b)に示すように、排水栓22は、圃場に設けられた排水桝201に収容される排水機構22Aと、排水桝201の上面に着脱自在に取り付けられ、排水機構22Aを制御して排水水位(貯水水位)を調整する排水制御機構22Bを備えている。
[Configuration of drain plug and water level sensor]
Hereinafter, the drain plug 22 for adjusting the water storage water level in the field and the water level sensor 2 arranged on the drain plug 2 will be described in detail.
As shown in FIGS. 2A and 2B, the drainage plug 22 is detachably attached to the drainage mechanism 22A housed in the drainage basin 201 provided in the field and the upper surface of the drainage basin 201, and is a drainage mechanism. It is equipped with a drainage control mechanism 22B that controls 22A to adjust the drainage water level (reservoir water level).

排水機構22Aは、排水桝201の底部に設置された受枠部材211と、受枠部材211によって上下移動可能に支持される円筒状の排水筒である堰体212と、堰体212を上下移動する昇降機構220を備えている。堰体212の上端開口が排水口212aとして機能し、圃場1に給水された余剰の用水が当該排水口212aから溢流して放水路21に流出する。 The drainage mechanism 22A includes a receiving frame member 211 installed at the bottom of the drainage basin 201, a weir body 212 which is a cylindrical drainage cylinder supported by the receiving frame member 211 so as to be vertically movable, and an up-and-down moving body 212. It is equipped with a mechanism 220. The upper end opening of the weir body 212 functions as a drainage port 212a, and the surplus irrigation water supplied to the field 1 overflows from the drainage port 212a and flows out to the drainage channel 21.

堰体212の上端開口に側面視コの字状の支持部213が固定され、当該支持部213に昇降機構220が取り付けられている。昇降機構220は、支持部213の上面に固定され、内周面に雌ネジが形成された円筒状の可動部221と、外周面に雄ネジが形成され、可動部221の雌ネジと螺合する回転軸222と、可動部221が回転軸222と連れ回りすることを防止する一対の棒状体223を備えている。 A U-shaped support portion 213 in a side view is fixed to the upper end opening of the weir body 212, and an elevating mechanism 220 is attached to the support portion 213. The elevating mechanism 220 is fixed to the upper surface of the support portion 213 and has a cylindrical movable portion 221 having a female screw formed on the inner peripheral surface and a male screw formed on the outer peripheral surface and screwed with the female screw of the movable portion 221. It is provided with a rotating shaft 222 and a pair of rod-shaped bodies 223 for preventing the movable portion 221 from rotating with the rotating shaft 222.

つまり、回転軸222が一方向に回転することにより、支持部213を介して可動部221に取付けられた堰体212が可動部221とともに上昇し、回転軸222が反対方向に回転することにより、支持部213を介して可動部221に取付けられた堰体212が可動部221とともに降下する。上述した堰体212と昇降機構220によって排水水位調節部210が構成されている。 That is, when the rotating shaft 222 rotates in one direction, the weir body 212 attached to the movable portion 221 via the support portion 213 rises together with the movable portion 221, and the rotating shaft 222 rotates in the opposite direction. The weir body 212 attached to the movable portion 221 via the support portion 213 descends together with the movable portion 221. The drainage water level adjusting unit 210 is configured by the above-mentioned weir body 212 and the elevating mechanism 220.

排水制御機構22Bは、排水桝201の上面に台座202を介して着脱自在に取り付けられた水密性のケーシング231と、ケーシング231の天面に太陽を臨むように傾斜姿勢で取り付けられたソーラーパネル232と、ケーシング231に収容された駆動機構240と、蓄電池233と、アンテナ234と、制御盤235などを備えて構成されている。制御盤235には、水位制御部236と無線通信部237などが組み込まれている。 The drainage control mechanism 22B has a watertight casing 231 detachably attached to the upper surface of the drainage basin 201 via a pedestal 202, and a solar panel 232 attached to the top surface of the casing 231 in an inclined posture so as to face the sun. The drive mechanism 240 housed in the casing 231, the storage battery 233, the antenna 234, the control panel 235, and the like are provided. The control panel 235 incorporates a water level control unit 236, a wireless communication unit 237, and the like.

水位制御部236及び無線通信部237はCPU、メモリ、入出力回路や通信回路などの周辺回路を備えて構成され、メモリに格納された制御プログラムがCPUで実行されることにより所定の機能、ここでは排水水位調節部210に対する制御機能が実現される。 The water level control unit 236 and the wireless communication unit 237 are configured to include peripheral circuits such as a CPU, a memory, an input / output circuit, and a communication circuit, and a control program stored in the memory is executed by the CPU to perform a predetermined function. Then, the control function for the drainage water level adjusting unit 210 is realized.

水位制御部236は、無線通信部237を介してクラウドサーバ34から指示された排水水位となるように駆動機構240を介して排水水位調節部210を制御し、後述の水位センサ2を介して圃場の貯水水位が目標水位となったことを検知すると無線通信部237を介してクラウドサーバ34に貯水水位に達した旨を報告する。 The water level control unit 236 controls the drainage water level adjusting unit 210 via the drive mechanism 240 so as to be the drainage water level instructed from the cloud server 34 via the wireless communication unit 237, and the field via the water level sensor 2 described later. When it is detected that the water storage level has reached the target water level, it is reported to the cloud server 34 via the wireless communication unit 237 that the water storage level has been reached.

ソーラーパネル232による発電電力が蓄電池233に充電され、蓄電池233の充電電力が水位制御部236及び無線通信部237の制御電力として消費される。 The power generated by the solar panel 232 is charged to the storage battery 233, and the charging power of the storage battery 233 is consumed as the control power of the water level control unit 236 and the wireless communication unit 237.

駆動機構240は、エンコーダが内蔵されたDCモータ241と、DCモータ241の出力軸に設けられたギア242と噛合する中空のメインギア243と、メインギア243の中空部に挿通された駆動軸246などを備えて構成され、排水水位調節部210を昇降駆動するアクチュエータとして機能する。 The drive mechanism 240 includes a DC motor 241 having a built-in encoder, a hollow main gear 243 that meshes with a gear 242 provided on the output shaft of the DC motor 241 and a drive shaft 246 inserted into the hollow portion of the main gear 243. It is configured to be equipped with such as, and functions as an actuator for raising and lowering the drainage water level adjusting unit 210.

メインギア243は、上下方向に延びる円筒状のボス部244と、ボス部244の上下方向中央部に延出形成された円盤状のギア部245とを備えた両ボス型のギアで、ボス部244の上下が軸受で回転可能に支持されている。ボス部244の内周面に形成されたキー溝に駆動軸246の外周面に突出形成されたキー246kが勘合して、メインギア243と駆動軸246とが一体回転するように構成されている。 The main gear 243 is a double-boss type gear including a cylindrical boss portion 244 extending in the vertical direction and a disk-shaped gear portion 245 extending in the vertical central portion of the boss portion 244, and is a boss portion. The top and bottom of the 244 are rotatably supported by bearings. The key 246k protruding from the outer peripheral surface of the drive shaft 246 fits into the key groove formed on the inner peripheral surface of the boss portion 244, and the main gear 243 and the drive shaft 246 are configured to rotate integrally. ..

駆動軸246の下端と回転軸222の上端がカップリング247(図2(a)参照。)を介して駆動連結され、DCモータ241が一方向に回転駆動すると堰体212が上昇して排水水位(貯水水位)が上昇し、DCモータ241が反対方向に回転駆動すると堰体212が降下して排水水位(貯水水位)が下降する。 The lower end of the drive shaft 246 and the upper end of the rotary shaft 222 are driven and connected via a coupling 247 (see FIG. 2A), and when the DC motor 241 is rotationally driven in one direction, the dam body 212 rises and the drainage water level is reached. When the (reservoir water level) rises and the DC motor 241 is rotationally driven in the opposite direction, the dam body 212 descends and the drainage water level (reservoir water level) falls.

堰体212の上端開口位置が田面レベルとなる位置を基準位置に設定し、DCモータ241の駆動時に検出されるエンコーダのパルス数に基づいて、堰体212の上端開口位置を管理することにより、堰体212の上端開口位置を所望の高さに制御することができる。 By setting the position where the upper end opening position of the weir body 212 is at the field level as the reference position and managing the upper end opening position of the weir body 212 based on the number of pulses of the encoder detected when the DC motor 241 is driven. The upper end opening position of the weir body 212 can be controlled to a desired height.

図3(a)から(c)に示すように、堰体212の上端開口に取付けられた支持部213に、水平姿勢で先端が排水桝201の開口201aから圃場1側に突出する長さに設定されたアーム部材250が取り付けられ、アーム部材250の先端側の垂下部251に上下高さを異ならせた一対のフロートスイッチ方式の水位計252,253が取り付けられている。一対のフロートスイッチ方式の水位計252が第1の水位センサ、水位計253が第2の水位センサとなる。なお、アーム部材250は支持部213以外に取付けられていてもよく、堰体212と一体に上下するように配置されていればよい。 As shown in FIGS. 3A to 3C, the support portion 213 attached to the upper end opening of the weir body 212 has a length at which the tip protrudes from the opening 201a of the drainage basin 201 toward the field 1 in a horizontal posture. The set arm member 250 is attached, and a pair of float switch type water level gauges 252,253 having different vertical heights are attached to the hanging portion 251 on the tip end side of the arm member 250. The pair of float switch type water level gauges 252 serves as the first water level sensor, and the water level gauge 253 serves as the second water level sensor. The arm member 250 may be attached to other than the support portion 213, and may be arranged so as to move up and down integrally with the weir body 212.

フロートスイッチ方式の水位計は、例えば磁性体が内蔵されたフロートfと、フロートfを上下移動可能に保持する支軸aと、支軸aの上部位置に設けられたリードスイッチsなどで構成され、圃場1の貯水水位の上昇に伴ってフロートfが支軸aに沿って上昇してリードスイッチsに達すると、リードスイッチsの接点が閉じることにより、水位が所定水位に達したことを検知するスイッチである。 The float switch type water level gauge is composed of, for example, a float f having a built-in magnetic material, a support shaft a that holds the float f so as to be movable up and down, and a reed switch s provided at an upper position of the support shaft a. When the float f rises along the support axis a and reaches the reed switch s as the water storage water level in the field 1 rises, the contact of the reed switch s closes to detect that the water level has reached a predetermined water level. It is a switch to do.

従って、フロートスイッチ方式の水位計は、圧力式の水位計とは異なり、田面からの水位を直接検出できないのであるが、リードスイッチなどの接点が位置する高さに水位が達したことをフロートの上昇により検知することができる。本実施形態では、排水水位調節部210と連動して上下し、排水水位調節部210を基準とする圃場の相対水位が測定される。 Therefore, unlike the pressure type water level gauge, the float switch type water level gauge cannot directly detect the water level from the field surface, but the float indicates that the water level has reached the height at which the contacts such as the reed switch are located. It can be detected by climbing. In the present embodiment, the relative water level of the field is measured with reference to the drainage water level adjusting unit 210 by moving up and down in conjunction with the drainage water level adjusting unit 210.

具体的に、アーム部材250の先端側の垂下部251のうち、田面1sを基準に排水水位調節部210を構成する堰体212の上端開口の高さh1に相当する位置に第1の水位センサとなる水位計252のリードスイッチが設けられ、堰体212の上端開口の高さh2(=h1-Δh)に相当する位置に第2の水位センサとなる水位計253のリードスイッチが設けられている。 Specifically, the first water level sensor is located in the hanging portion 251 on the tip end side of the arm member 250 at a position corresponding to the height h1 of the upper end opening of the dam body 212 constituting the drainage water level adjusting portion 210 with reference to the rice field surface 1s. A reed switch of the water level gauge 252 is provided, and a reed switch of the water level gauge 253 as the second water level sensor is provided at a position corresponding to the height h2 (= h1-Δh) of the upper end opening of the dam body 212. There is.

図3(b)は、水位が所定のh3に設定され、図3(c)は水位がh4(<h3)に設定された例を示している。それぞれ圃場1の水位がh3、h4になった時に水位計252により水面が目標水位に達したことが検知される。この場合、何れも第二の水位センサである水位計253は既にオンしていることはいうまでもない。 FIG. 3B shows an example in which the water level is set to a predetermined h3, and FIG. 3C shows an example in which the water level is set to h4 (<h3). When the water level in the field 1 reaches h3 and h4, the water level gauge 252 detects that the water level has reached the target water level. In this case, it goes without saying that the water level gauge 253, which is the second water level sensor, is already on.

圃場1への給水開始後に第1の水位センサとなる水位計252で水位が検知されると、排水栓22に備えた水位制御部236は目標の貯水水位に達したと判断して、無線通信部237を介してクラウドサーバ34に目標貯水水位に達したことを報告する。クラウドサーバ34は、これに応答して対応する圃場1の給水栓12に止水指令を送信する。 When the water level is detected by the water level meter 252, which is the first water level sensor after the start of water supply to the field 1, the water level control unit 236 provided in the drain plug 22 determines that the target water storage level has been reached, and wireless communication is performed. It is reported to the cloud server 34 via the section 237 that the target water storage level has been reached. In response to this, the cloud server 34 transmits a water stop command to the corresponding water tap 12 of the field 1.

水面が波打っているような場合に、第1の水位センサとなる一方の水位計252のフロートが水面の波打ちに伴って上下するリードスイッチの接点が断続するチャターが生じ、これに応答してクラウドサーバ34に水位の上下変動が報告されると、給水栓12に対して給水指令と止水指令が交互に送信されるような不都合な事態が生じる。 When the water surface is wavy, a chatter occurs in which the contacts of the reed switches that move up and down with the float of the water level gauge 252, which is the first water level sensor, move up and down as the water surface undulates. When the vertical fluctuation of the water level is reported to the cloud server 34, an inconvenient situation occurs in which a water supply command and a water stop command are alternately transmitted to the water tap 12.

そのような場合に備えて、水位制御部236は、第1の水位センサとなる一方の水位計252で水面が検出された後は、第2の水位センサとなる他方の水位計253で水面が低下したことが検知されるまでの間はクラウドサーバ34に水位変動を報告せず、他方の水位計253で水面が低下したことが検知されて初めてクラウドサーバ34に水位低下を報告するように構成されている。水位計252,253の検出水位差は数十mm(例えば20mm程度)に設定されている。 In preparation for such a case, after the water level is detected by the water level gauge 252, which is the first water level sensor, the water level control unit 236 raises the water level by the other water level gauge 253, which is the second water level sensor. It is configured so that the water level fluctuation is not reported to the cloud server 34 until it is detected that the water level has dropped, and the water level drop is reported to the cloud server 34 only when the water level meter 253 detects that the water level has dropped. Has been done. The detected water level difference of the water level gauges 252 and 253 is set to several tens of mm (for example, about 20 mm).

なお、水面の波打に備えて、堰体212の上端開口の高さをh3(=h1+Δh)に設定するとともに、田面を基準に堰体212の上端開口の高さよりΔh低い位置に一方の水位計252のリードスイッチが設けられていてもよい。この様に設定すると、一方の水位計252により貯水水位が目標水位に達したことを適切に検出することができ、水面が波打った場合でも堰体212の上端開口から無駄に排水されることがなくなる。 In preparation for the undulation of the water surface, the height of the upper end opening of the weir body 212 is set to h3 (= h1 + Δh), and one of the water levels is Δh lower than the height of the upper end opening of the weir body 212 with respect to the rice field surface. A total of 252 reed switches may be provided. When set in this way, it is possible to appropriately detect that the stored water level has reached the target water level by one of the water level gauges 252, and even if the water surface is wavy, it is wastefully drained from the upper end opening of the weir body 212. Is gone.

上述した実施形態では、水位センサとして、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位を測定する第1の水位センサと、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位より低い相対水位を測定する第2の水位センサを備えた例を説明したが、第1の水位センサのみ備えた構成であってもよい。 In the above-described embodiment, as the water level sensor, the first water level sensor that moves up and down in conjunction with the drainage water level adjusting unit and measures the relative water level of the field with the drainage water level adjusting unit as a reference, and the drainage water level adjusting unit are linked. An example of providing a second water level sensor that moves up and down and measures a relative water level lower than the relative water level of the field with respect to the drainage water level adjustment unit has been described, but even if the configuration is provided only with the first water level sensor. good.

また、第1の水位センサにより検出される圃場の相対水位と、第2の水位センサにより検出される圃場の相対水位との中間の相対水位を検出する第3の水位センサを備えてもよい。 Further, a third water level sensor that detects an intermediate relative water level between the relative water level of the field detected by the first water level sensor and the relative water level of the field detected by the second water level sensor may be provided.

上述した実施形態では、排水水位調節部210が排水筒(堰体212)で構成され、水位センサ2が排水筒と連動して上下する例を説明したが、排水水位調節部210が圃場1と放水路21を仕切る堰板で構成され、水位センサ2が堰板と連動して上下するように構成してもよい。圃場と放水路を仕切る堰板の上下高さを調整することにより圃場からの溢流水位が調整され、調整された溢流水位を検出するように堰板に上述したアーム部材が圃場に延びるように配置されていればよい。 In the above-described embodiment, the drainage water level adjusting unit 210 is composed of a drainage cylinder (weir body 212), and the water level sensor 2 moves up and down in conjunction with the drainage cylinder. It may be configured to be composed of a weir plate that partitions the drainage channel 21, and the water level sensor 2 may be configured to move up and down in conjunction with the weir plate. The overflow water level from the field is adjusted by adjusting the vertical height of the weir plate that separates the field from the flood channel, so that the above-mentioned arm member extends to the field on the weir plate so as to detect the adjusted overflow water level. It suffices if it is placed in.

即ち、排水栓22は、田面1sからの上下高さを調節可能な排水水位調節部と、アクチュエータを介して排水水位調節部の上下高さを自動調整する水位制御部と、水位制御部と外部装置であるクラウドサーバ34とを接続する無線通信部とを備えて構成されている。 That is, the drain plug 22 has a drainage water level adjusting unit that can adjust the vertical height from the rice field surface 1s, a water level control unit that automatically adjusts the vertical height of the drainage water level adjusting unit via an actuator, a water level control unit, and an outside. It is configured to include a wireless communication unit that connects to the cloud server 34, which is a device.

そして、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位を測定する水位センサと、同様に排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位より低い下限水位を検出する下限水位センサを備えている。 Then, the water level sensor that moves up and down in conjunction with the drainage water level adjustment unit to measure the relative water level of the field with respect to the drainage water level adjustment unit, and similarly moves up and down in conjunction with the drainage water level adjustment unit to move the drainage water level adjustment unit. It is equipped with a lower limit water level sensor that detects a lower limit water level lower than the relative water level of the reference field.

排水水位調節部は堰板または排水筒で構成され、水位センサ及び下限水位センサは、圃場の水位に応じて上下するフロートスイッチで構成され、排水筒に取付けられている。 The drainage water level adjusting unit is composed of a dam plate or a drainage cylinder, and the water level sensor and the lower limit water level sensor are composed of float switches that move up and down according to the water level of the field and are attached to the drainage cylinder.

なお、水位センサとしてフロートスイッチ以外のセンサ、例えば電気接点式のセンサなどを用いてもよい。例えば、一方の接点を目標水位に対応付けてアーム部材の垂下部に取り付け、他方の接点を田面近傍位置に設置し、両電極間に流れる電流の有無を検出するような構成であってもよい。 As the water level sensor, a sensor other than the float switch, for example, an electric contact type sensor may be used. For example, one contact may be attached to the hanging portion of the arm member in association with the target water level, and the other contact may be installed near the field surface to detect the presence or absence of a current flowing between both electrodes. ..

上述した例では、給水栓12及び排水栓22がWi-Fiルータなどの中継器32を介してインターネットに接続される態様を説明したが、給水栓12及び排水栓22に備えた無線通信部を携帯電話回線に接続可能な端末で構成し、ゲートウェイを介してインターネットに接続可能に構成してもよい。 In the above-mentioned example, the mode in which the water tap 12 and the drain plug 22 are connected to the Internet via a repeater 32 such as a Wi-Fi router has been described, but the wireless communication unit provided in the water tap 12 and the drain plug 22 is provided. It may be configured by a terminal that can be connected to a mobile phone line and can be connected to the Internet via a gateway.

また、複数の圃場をグループ化して給水栓12及び排水栓22に備えた無線通信部を特定小電力無線に基づく通信を行なう通信機で構成し、親機となる1台の通信機と子機となる他の通信機が互いに無線通信し、親機となる通信機に備えたインターネット接続可能な通信機が、子機から集信した水位情報などを含めて一括してクラウドサーバに送信するような構成であってもよい。 In addition, a plurality of fields are grouped together, and the wireless communication unit provided in the water tap 12 and the drain plug 22 is composed of a communication device that performs communication based on a specific low power radio, and one communication device and a slave unit that serve as a master unit. Other communication devices that become It may have a different configuration.

[給水栓の構成]
以下、給水栓12について詳述する。
図4に示すように、給水栓12は、圃場に設けられた給水桝101に収容される給水機構12Aと、給水機構12Aの上面に着脱自在に取り付けられ、給水機構12Aを制御して給水または止水の何れかに切り替える給水制御機構12Bを備えている。
[Configuration of water tap]
Hereinafter, the water tap 12 will be described in detail.
As shown in FIG. 4, the water tap 12 is detachably attached to the water supply mechanism 12A housed in the water supply basin 101 provided in the field and the upper surface of the water supply mechanism 12A, and controls the water supply mechanism 12A to supply water or supply water. It is equipped with a water supply control mechanism 12B that switches to either stop water.

給水機構12Aは、円筒状の弁箱120と、弁箱120の上下方向中央部に内周側に突出形成された弁座121と、弁座121に対向配置され、下面にゴム製のシール部材123が取り付けられた円盤状の弁体124を備えている。弁箱120の下端が給水管10から分岐した導水路11に接続されている。 The water supply mechanism 12A is arranged to face the cylindrical valve box 120, the valve seat 121 protruding inwardly from the central portion in the vertical direction of the valve box 120, and the valve seat 121, and has a rubber sealing member on the lower surface. It is provided with a disk-shaped valve body 124 to which 123 is attached. The lower end of the valve box 120 is connected to the headrace 11 branched from the water supply pipe 10.

弁箱120の上端部には、内周面に雌ネジが形成された軸受126が取り付けられ、軸受126には外周面に雄ネジが形成された弁軸125が螺合されている。そして弁軸125の下端が弁体124に固定されている。 A bearing 126 having a female thread formed on the inner peripheral surface is attached to the upper end of the valve box 120, and a valve shaft 125 having a male thread formed on the outer peripheral surface is screwed into the bearing 126. The lower end of the valve shaft 125 is fixed to the valve body 124.

弁座121の中央部には通水孔122が形成され、弁箱120の側壁上部には、複数の出水窓127が周方向に並ぶように形成されている。弁軸125に回転力が付与されると、軸受126に沿って弁軸125が上下移動し、弁軸125の上下移動に伴って弁体124が上下する。即ち、弁座121と弁体124と弁座121と弁体124との間に設けられたシール部材123などで弁機構が構成されている。 A water passage hole 122 is formed in the central portion of the valve seat 121, and a plurality of water outlet windows 127 are formed so as to be arranged in the circumferential direction on the upper portion of the side wall of the valve box 120. When a rotational force is applied to the valve shaft 125, the valve shaft 125 moves up and down along the bearing 126, and the valve body 124 moves up and down as the valve shaft 125 moves up and down. That is, the valve mechanism is composed of a seal member 123 provided between the valve seat 121, the valve body 124, the valve seat 121, and the valve body 124.

給水制御機構12Bは、上述した排水栓22に備えた排水制御機構22Bと同様に、水密性のケーシング131と、ケーシング131の天面に太陽を臨むように傾斜姿勢で取り付けられたソーラーパネル132と、ケーシング131に収容された駆動機構140と、蓄電池133と、アンテナ134と、制御盤135などを備えて構成されている。制御盤135には、弁の開閉制御部136と無線通信部137などが組み込まれている。 The water supply control mechanism 12B includes a watertight casing 131 and a solar panel 132 mounted in an inclined posture so as to face the sun on the top surface of the casing 131, similarly to the drainage control mechanism 22B provided in the drain plug 22 described above. The drive mechanism 140 housed in the casing 131, the storage battery 133, the antenna 134, the control panel 135, and the like are provided. The control panel 135 incorporates a valve open / close control unit 136, a wireless communication unit 137, and the like.

開閉制御部136及び無線通信部137はCPU、メモリ、入出力回路や通信回路などの周辺回路を備えて構成され、メモリに格納された制御プログラムがCPUで実行されることにより所定の機能、ここでは給水機構12Aに備えた弁機構に対する開閉制御機能が実現される。 The open / close control unit 136 and the wireless communication unit 137 are configured to include peripheral circuits such as a CPU, a memory, an input / output circuit, and a communication circuit, and a predetermined function is performed by executing a control program stored in the memory on the CPU. Then, the opening / closing control function for the valve mechanism provided in the water supply mechanism 12A is realized.

開閉制御部136は、無線通信部137を介してクラウドサーバ34から給水指示されると予め設定された弁開度まで開弁するべく駆動機構140を介して弁機構を制御し、クラウドサーバ34から圃場の貯水水位が目標水位となったことが送信されると弁機構を閉止する。 The open / close control unit 136 controls the valve mechanism via the drive mechanism 140 to open the valve to a preset valve opening when the water supply instruction is given from the cloud server 34 via the wireless communication unit 137, and the cloud server 34 controls the valve mechanism. When it is transmitted that the water storage level in the field has reached the target water level, the valve mechanism is closed.

ソーラーパネル132による発電電力が蓄電池133に充電され、蓄電池133の充電電力が開閉制御部136及び無線通信部137の制御電力として消費される。 The power generated by the solar panel 132 is charged to the storage battery 133, and the charging power of the storage battery 133 is consumed as the control power of the open / close control unit 136 and the wireless communication unit 137.

駆動機構140は、エンコーダが内蔵されたDCモータ141と、DCモータ141の出力軸に設けられたギア142と噛合する中空のメインギア143と、メインギア143の中空部に挿通された駆動軸146などを備えて構成され、弁体124を昇降駆動するアクチュエータとして機能する。 The drive mechanism 140 includes a DC motor 141 having a built-in encoder, a hollow main gear 143 that meshes with a gear 142 provided on the output shaft of the DC motor 141, and a drive shaft 146 inserted through a hollow portion of the main gear 143. It is configured to be equipped with such as, and functions as an actuator for raising and lowering the valve body 124.

メインギア143は、上下方向に延びる円筒状のボス部144と、ボス部144の上下方向中央部に延出形成された円盤状のギア部145とを備えた両ボス型のギアで、ボス部144の上下が軸受で回転可能に支持されている。ボス部144の内周面に形成されたキー溝に駆動軸146の外周面に突出形成されたキーが嵌合して、メインギア143と駆動軸146とが一体回転するように構成されている。 The main gear 143 is a double-boss type gear including a cylindrical boss portion 144 extending in the vertical direction and a disk-shaped gear portion 145 extending in the vertical central portion of the boss portion 144, and is a boss portion. The top and bottom of 144 are rotatably supported by bearings. A key protruding from the outer peripheral surface of the drive shaft 146 is fitted into a key groove formed on the inner peripheral surface of the boss portion 144, and the main gear 143 and the drive shaft 146 are configured to rotate integrally. ..

駆動軸146の下端と弁軸125の上端がカップリング147を介して駆動連結され、DCモータ141が一方向に回転駆動すると弁体124が上昇して給水状態となり、DCモータ141が反対方向に回転駆動すると弁体124が降下して止水状態になる。 The lower end of the drive shaft 146 and the upper end of the valve shaft 125 are driven and connected via the coupling 147, and when the DC motor 141 is rotationally driven in one direction, the valve body 124 rises to a water supply state, and the DC motor 141 is in the opposite direction. When it is rotationally driven, the valve body 124 descends and becomes a water stop state.

[圃場の水管理方法]
上述した圃場の水管理システム100により、無線通信部を介して外部装置(クラウドサーバ)から圃場の貯水水位を送信する貯水水位指令ステップと、水位制御部によりアクチュエータを介して排水水位調節部を貯水水位に対応した上下高さに調整する排水水位調節ステップと、水位センサにより水位が検出されると、相対水位または相対水位から算出した圃場の貯水水位を、無線通信部を介して外部装置(クラウドサーバ)に送信する圃場水位送信ステップと、を備えた圃場の水管理方法が実行される。
[Field water management method]
The above-mentioned field water management system 100 stores the water storage water level command step for transmitting the water storage water level of the field from an external device (cloud server) via the wireless communication unit, and the water level control unit stores the drainage water level adjusting unit via the actuator. The drainage water level adjustment step that adjusts to the vertical height corresponding to the water level, and when the water level is detected by the water level sensor, the relative water level or the stored water level of the field calculated from the relative water level is set to the external device (cloud) via the wireless communication unit. The field water level transmission step to transmit to the server) and the field water management method comprising.

貯水水位指令ステップで外部装置(クラウドサーバ)から圃場の貯水水位が送信されると、排水水位調節ステップでアクチュエータを介して排水水位調節部が貯水水位に対応した上下高さに調整され、排水水位調節部に連動して水位センサの上下高さが自動で調整される。給水栓からの用水の給水が開始され、圃場水位送信ステップで水位センサにより検出された相対水位または相対水位から算出した圃場の貯水水位が外部装置(クラウドサーバ)に送信される。例えば外部装置が給水栓であれば、圃場水位送信ステップで圃場の貯水水位が所定水位に達したことを判定して給水を停止することができ、例えば外部装置がクラウドサーバであれば、圃場への貯水制御が遠隔で行なうことができる。 When the water storage water level of the field is transmitted from the external device (cloud server) in the water storage water level command step, the drainage water level adjustment unit is adjusted to the vertical height corresponding to the water storage water level via the actuator in the drainage water level adjustment step, and the drainage water level is adjusted. The vertical height of the water level sensor is automatically adjusted in conjunction with the adjustment unit. The water supply from the faucet is started, and the relative water level detected by the water level sensor in the field water level transmission step or the water storage water level of the field calculated from the relative water level is transmitted to the external device (cloud server). For example, if the external device is a water tap, the water supply can be stopped by determining that the stored water level in the field has reached a predetermined water level in the field water level transmission step. For example, if the external device is a cloud server, the field can be stopped. Water storage control can be performed remotely.

以下、排水栓及び排水栓に配された水位センサの別実施形態を説明する。
上述した実施形態では、水位制御部によりアクチュエータを介して排水水位調節部の上下高さが自動調整される例を説明したが、排水水位調節部の上下高さが手動調整可能に構成されていてもよい。
Hereinafter, another embodiment of the drain plug and the water level sensor arranged in the drain plug will be described.
In the above-described embodiment, an example in which the vertical height of the drainage water level adjusting unit is automatically adjusted by the water level control unit via an actuator has been described, but the vertical height of the drainage water level adjusting unit is configured to be manually adjustable. May be good.

つまり、田面からの上下高さを手動により調整可能な排水水位調節部を備え、圃場の貯水水位を調節する排水栓であって、排水水位調節部と連動して上下し、排水水位調節部を基準とする圃場の相対水位を測定する水位センサを備えていればよい。 In other words, it is a drain plug that has a drainage water level adjustment unit that can manually adjust the vertical height from the field surface and adjusts the water storage water level in the field. It suffices to have a water level sensor that measures the relative water level of the reference field.

例えば、上述した排水制御機構22Bに替えて、回転軸222を手動回転させるハンドルを排水桝201の上面に設けてもよいし、堰体212の上端開口に取付けた支持部213を直接手動で上下操作するように構成してもよい。 For example, instead of the drainage control mechanism 22B described above, a handle for manually rotating the rotating shaft 222 may be provided on the upper surface of the drainage basin 201, or the support portion 213 attached to the upper end opening of the weir body 212 may be directly moved up and down manually. It may be configured to operate.

手動で調節される排水水位調節部と連動して水位センサが上下するため、排水水位調節部の上下高さを調節する度に手動で水位センサの上下位置を調節する作業が不要になる。 Since the water level sensor moves up and down in conjunction with the manually adjusted drainage water level adjustment unit, it is not necessary to manually adjust the vertical position of the water level sensor each time the vertical height of the drainage water level adjustment unit is adjusted.

また、排水水位調節部の上下高さが手動調整され、排水水位調節部に連動して水位センサが上下調整される場合でも、排水水位調節部に対する水位センサの相対水位または相対水位から算出した圃場の貯水水位を外部装置に送信する無線通信部を備えていることが好ましく、水位センサにより検出された相対水位または相対水位から算出した圃場の貯水水位が通信部を介して上述したクラウドサーバのような外部装置に送信されると、当該水位に基づいて外部装置で適切な処理、例えば給水栓の遠隔制御などが可能になる。 In addition, even when the vertical height of the drainage water level adjustment unit is manually adjusted and the water level sensor is adjusted up and down in conjunction with the drainage water level adjustment unit, the field calculated from the relative water level or the relative water level of the water level sensor with respect to the drainage water level adjustment unit. It is preferable to have a wireless communication unit that transmits the stored water level of the above to an external device, and the relative water level detected by the water level sensor or the stored water level of the field calculated from the relative water level is like the cloud server described above via the communication unit. When transmitted to an external device, the external device can perform appropriate processing based on the water level, for example, remote control of the faucet.

この様な手動で調節される排水水位調節部を備えた排水栓では、水位センサにより水位が検出されると、相対水位または相対水位から算出した圃場の貯水水位を、無線通信部を介してクラウドサーバなどの外部装置に送信する圃場水位送信ステップと、圃場の貯水水位を調整するために、無線通信部を介して、当該外部装置より給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、を備えることにより圃場の水管理方法が実行される。 In a drainage tap equipped with such a manually adjusted drainage water level adjusting unit, when the water level is detected by the water level sensor, the relative water level or the stored water level of the field calculated from the relative water level is clouded via the wireless communication unit. A water faucet opening / closing command for transmitting a field water level transmission step to be transmitted to an external device such as a server and a command for instructing the water faucet to open / close from the external device via the wireless communication unit in order to adjust the water storage water level in the field. By providing a step, a method of water management in the field is carried out.

水位センサの相対水位または相対水位から算出した圃場の貯水水位を外部装置に送信するために無線通信部に替えて有線の通信部、具体的には水位センサの接点状態を出力する信号線を備えていてもよい。当該信号線を介して外部装置である無線通信機能を備えた給水栓12に接点状態を出力することで、給水栓12からクラウドサーバに水位情報を報告することができる。 In order to transmit the relative water level of the water level sensor or the stored water level of the field calculated from the relative water level to the external device, it is equipped with a wired communication unit instead of the wireless communication unit, specifically a signal line that outputs the contact state of the water level sensor. May be. By outputting the contact state to the water tap 12 having a wireless communication function, which is an external device, via the signal line, the water level information can be reported from the water tap 12 to the cloud server.

このような排水栓では、水位センサにより水位が検出されると、相対水位または相対水位から算出した圃場の貯水水位を、通信部を介して給水栓に送信する圃場水位送信ステップと、圃場の貯水水位を調整するために、給水栓と通信したクラウドサーバなどの外部装置が給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、を備えることにより圃場の水管理方法が実行される。 In such a drain plug, when the water level is detected by the water level sensor, the field water level transmission step of transmitting the water storage water level of the field calculated from the relative water level or the relative water level to the water tap via the communication unit, and the water storage of the field. In order to adjust the water level, the water management method in the field is executed by providing a water faucet opening / closing command step in which an external device such as a cloud server communicating with the water faucet sends a command to instruct the faucet to open / close. ..

以上説明した実施形態は本発明の一例に過ぎず、該記載により本発明の技術的範囲が限定されることを意図するものではなく、排水栓、圃場の水管理方法の具体的な構成は本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。 The embodiments described above are merely examples of the present invention, and the description is not intended to limit the technical scope of the present invention. Needless to say, it is possible to appropriately change and design within the range in which the action and effect of the invention are exhibited.

100:圃場の水管理システム
1:圃場
1s:田面
2,252,253:水位センサ
10:給水管
12:給水栓
20:排水路
22:排水栓
30:インターネット
32:中継器
34:圃場管理サーバ(外部装置)
210:排水水位調節部
236:水位制御部
240:駆動機構(アクチュエータ)
100: Field water management system 1: Field 1s: Field 2,252,253: Water level sensor 10: Water supply pipe 12: Water tap 20: Drainage channel 22: Drainage tap 30: Internet 32: Repeater 34: Field management server ( External device)
210: Drainage water level adjustment unit 236: Water level control unit 240: Drive mechanism (actuator)

Claims (10)

田面からの上下高さを調節可能な排水水位調節部と、アクチュエータを介して前記排水水位調節部の上下高さを自動調整する水位制御部と、前記水位制御部と外部装置とを接続する無線通信部とを備えて構成され、圃場の貯水水位を調節する排水栓であって、
前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位を測定する第1の水位センサを備えている排水栓。
A wireless connection between a drainage water level adjusting unit that can adjust the vertical height from the field surface, a water level control unit that automatically adjusts the vertical height of the drainage water level adjusting unit via an actuator, and the water level control unit and an external device. It is a drain plug that is equipped with a communication unit and regulates the water storage level in the field.
A drain plug provided with a first water level sensor that moves up and down in conjunction with the drain water level adjusting unit and measures the relative water level of the field with respect to the drain water level adjusting unit.
前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位より低い相対水位を測定する第2の水位センサをさらに備え、
前記第1の水位センサを上限水位センサとし、前記第2の水位センサを下限水位センサとし、前記水位センサは前記上限水位センサと前記下限水位センサで構成されている請求項1記載の排水栓。
Further equipped with a second water level sensor that moves up and down in conjunction with the drainage water level adjusting unit and measures a relative water level lower than the relative water level of the field with respect to the drainage water level adjusting unit.
The drain plug according to claim 1, wherein the first water level sensor is an upper limit water level sensor, the second water level sensor is a lower limit water level sensor, and the water level sensor is composed of the upper limit water level sensor and the lower limit water level sensor.
前記水位センサは、圃場の水位に応じて上下するフロートスイッチで構成されている請求項1または2記載の排水栓。 The drain plug according to claim 1 or 2, wherein the water level sensor is composed of a float switch that moves up and down according to the water level of the field. 前記排水水位調節部は堰板または排水筒で構成され、前記水位センサは前記堰板または排水筒に取付けられている請求項1から3の何れかに記載の排水栓。 The drainage plug according to any one of claims 1 to 3, wherein the drainage water level adjusting unit is composed of a weir plate or a drainage cylinder, and the water level sensor is attached to the weir plate or the drainage cylinder. 田面からの上下高さを手動により調節可能な排水水位調節部を備え、圃場の貯水水位を調節する排水栓であって、
前記排水水位調節部と連動して上下し、前記排水水位調節部を基準とする圃場の相対水位を測定する水位センサを備えている排水栓。
It is a drain plug that adjusts the water storage level in the field with a drain water level adjustment unit that can manually adjust the vertical height from the field surface.
A drain plug provided with a water level sensor that moves up and down in conjunction with the drain water level adjusting unit and measures the relative water level of the field with respect to the drain water level adjusting unit.
前記相対水位または前記相対水位から算出した圃場の貯水水位を外部装置に送信する通信部を備えている請求項5記載の排水栓。 The drainage plug according to claim 5, further comprising a communication unit that transmits the relative water level or the stored water level of the field calculated from the relative water level to an external device. 前記通信部が無線通信部である請求項6記載の排水栓。 The drain plug according to claim 6, wherein the communication unit is a wireless communication unit. 請求項1から4の何れかに記載の排水栓を用いた圃場の水管理方法であって、
前記無線通信部を介して外部装置から圃場の貯水水位を送信する貯水水位指令ステップと
前記水位制御部により前記アクチュエータを介して前記排水水位調節部を前記貯水水位に対応した上下高さに調整する排水水位調節ステップと、
前記水位センサにより水位が検出されると、前記相対水位または前記相対水位から算出した圃場の貯水水位を、前記無線通信部を介して前記外部装置に送信する圃場水位送信ステップと、
を備えている圃場の水管理方法。
A method for managing water in a field using the drain plug according to any one of claims 1 to 4.
The water storage level command step for transmitting the water storage level of the field from the external device via the wireless communication unit and the water level control unit adjust the drainage water level adjusting unit to a vertical height corresponding to the water storage level via the actuator. Drainage water level adjustment step and
When the water level is detected by the water level sensor, the field water level transmission step of transmitting the relative water level or the stored water level of the field calculated from the relative water level to the external device via the wireless communication unit, and the field water level transmission step.
Field water management method.
請求項6記載の排水栓を用いた圃場の水管理方法であって、
前記水位センサにより水位が検出されると、前記相対水位または前記相対水位から算出した圃場の貯水水位を、前記通信部を介して給水栓に送信する圃場水位送信ステップと、
圃場の貯水水位を調整するために、前記給水栓と通信した外部装置が前記給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、
を備えている圃場の水管理方法。
A method for managing water in a field using the drain plug according to claim 6.
When the water level is detected by the water level sensor, the field water level transmission step of transmitting the relative water level or the stored water level of the field calculated from the relative water level to the faucet via the communication unit, and the field water level transmission step.
A faucet opening / closing command step in which an external device communicating with the faucet sends a command to instruct the faucet to open / close in order to adjust the water storage level in the field.
Field water management method.
請求項7記載の排水栓を用いた圃場の水管理方法であって、
前記水位センサにより水位が検出されると、前記相対水位または前記相対水位から算出した圃場の貯水水位を、前記無線通信部を介して前記外部装置に送信する圃場水位送信ステップと、
圃場の貯水水位を調整するために、前記無線通信部を介して、前記外部装置より給水栓に開閉を指示する指令を送信する給水栓開閉指令ステップと、
を備えている圃場の水管理方法。
A method for managing water in a field using the drain plug according to claim 7.
When the water level is detected by the water level sensor, the field water level transmission step of transmitting the relative water level or the stored water level of the field calculated from the relative water level to the external device via the wireless communication unit, and the field water level transmission step.
In order to adjust the water storage level in the field, a water tap opening / closing command step for transmitting a command to open / close the water tap from the external device via the wireless communication unit, and a water tap opening / closing command step.
Field water management method.
JP2018241980A 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs Active JP7096636B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018241980A JP7096636B2 (en) 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs
JP2022100773A JP7375121B2 (en) 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241980A JP7096636B2 (en) 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022100773A Division JP7375121B2 (en) 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods

Publications (2)

Publication Number Publication Date
JP2020103044A JP2020103044A (en) 2020-07-09
JP7096636B2 true JP7096636B2 (en) 2022-07-06

Family

ID=71447504

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018241980A Active JP7096636B2 (en) 2018-12-26 2018-12-26 Field water management method using drain plugs and drain plugs
JP2022100773A Active JP7375121B2 (en) 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022100773A Active JP7375121B2 (en) 2018-12-26 2022-06-23 Drain plugs, field water management systems, and field water management methods

Country Status (1)

Country Link
JP (2) JP7096636B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020066484A1 (en) 2000-12-06 2002-06-06 Stringam Blair Lewis Automated farm turnout
JP2006314249A (en) 2005-05-12 2006-11-24 National Agriculture & Food Research Organization Automatic water tap
JP2009060883A (en) 2007-09-05 2009-03-26 Amc:Kk Automatic water level regulator for paddy field
JP2011115059A (en) 2009-12-01 2011-06-16 Yoshihiro Senda Automatic water supply device for rice field
JP2017193914A (en) 2016-04-22 2017-10-26 株式会社クボタケミックス Electric actuator for farm field

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3082813B2 (en) * 1993-03-26 2000-08-28 旭有機材工業株式会社 Automatic water supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020066484A1 (en) 2000-12-06 2002-06-06 Stringam Blair Lewis Automated farm turnout
JP2006314249A (en) 2005-05-12 2006-11-24 National Agriculture & Food Research Organization Automatic water tap
JP2009060883A (en) 2007-09-05 2009-03-26 Amc:Kk Automatic water level regulator for paddy field
JP2011115059A (en) 2009-12-01 2011-06-16 Yoshihiro Senda Automatic water supply device for rice field
JP2017193914A (en) 2016-04-22 2017-10-26 株式会社クボタケミックス Electric actuator for farm field

Also Published As

Publication number Publication date
JP2022118202A (en) 2022-08-12
JP2020103044A (en) 2020-07-09
JP7375121B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
US11064844B2 (en) Water management system and method for managing water
JP2017192366A (en) Field water supply and drainage system
CA2450151A1 (en) Irrigation gate system
JP6709670B2 (en) Electric actuator for field
WO2012123877A1 (en) An irrigation control device using an artificial neural network
JP2007239286A (en) Construction method for lowering underground water level
JP2023115141A (en) Field water management system and hydrant control device
JP7096636B2 (en) Field water management method using drain plugs and drain plugs
CN202171052U (en) Intelligent controller for valve electric actuator
JPH08275684A (en) System for controlling irrigation of paddy field
TW202015518A (en) Irrigating system
JP6966937B2 (en) Field drain plug, field water storage management system, water storage management server and field water storage method
KR20040091883A (en) A remote control system for opening and shutting watergate and a method using thereof
JP7293546B2 (en) Agricultural drainage system and its control method
JP7440260B2 (en) Field water management system and hydrant control device
CN203150706U (en) Telecommunication base station antenna remote automatic monitoring regulation and control device
JP7490030B2 (en) Field water management system, water supply control mechanism and drainage control mechanism
KR100715424B1 (en) Water level control system on the basis of the portable handphone
JP2021052646A (en) Switchgear
CN220568199U (en) Fixed-point radar wave online flow measurement system
WO2016042395A2 (en) Method and device for regulating a water flow
JP7096148B2 (en) Field water management system
KR100841753B1 (en) Bathtub control system which uses the WALL-PAD
KR102089103B1 (en) System for automatic switchgear sensing rainwater
JP7442216B1 (en) Water lock automatic control device and water lock automatic control system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220623

R150 Certificate of patent or registration of utility model

Ref document number: 7096636

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150