JP2022110360A - Method for measuring defect rate of corrosion-resistant film - Google Patents
Method for measuring defect rate of corrosion-resistant film Download PDFInfo
- Publication number
- JP2022110360A JP2022110360A JP2021005707A JP2021005707A JP2022110360A JP 2022110360 A JP2022110360 A JP 2022110360A JP 2021005707 A JP2021005707 A JP 2021005707A JP 2021005707 A JP2021005707 A JP 2021005707A JP 2022110360 A JP2022110360 A JP 2022110360A
- Authority
- JP
- Japan
- Prior art keywords
- defect rate
- resistant film
- corrosion
- current density
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、耐食膜の欠陥率の測定方法に関する。 The present invention relates to a method for measuring the defect rate of corrosion resistant films.
非特許文献1において、耐食性ドライコーティング膜の欠陥を電気化学的に評価する方法として、臨界不動態化電流密度法(Critical Passivation Current Density Method;CPCD法)が記載されている。CPCD法は、活性態-不動態遷移特性を示す金属の臨界不動態化電流が金属の面積に比例することを利用して、耐食性コーティングの欠陥の評価を行う。詳細には、耐食性コーティングを施した活性態-不動態遷移特性を示す金属を活性態電位にすると、コーティングを貫通するピンホール等の欠陥の底部で露出している金属が溶解する。そのため、臨界不動態化電流は、露出している金属の面積、すなわち耐食性コーティングの欠陥面積に比例する。したがって、臨界不動態化電流から、耐食性コーティングの欠陥面積率を算出することができる。非特許文献1においては、金属の電位を-0.45Vから0.40Vまで23mV/分の速度で掃引して分極曲線を得て、臨界不動態化電流を求めている。
Non-Patent
非特許文献1の方法により臨界不動態化電流から算出した耐食膜の欠陥率は、実際の欠陥率よりも非常に大きい値となるため、計算値を補正することが必要となる。また、非特許文献1の方法では、臨界不動態化電流の測定に約45分かかるが、より短時間で欠陥率を算出できることが望ましい。
Since the defect rate of the corrosion-resistant film calculated from the critical passivation current by the method of
そこで、耐食膜の実際の欠陥率に十分近い値を、より短時間で得ることができる、耐食膜の欠陥率の測定方法を提供する。 Therefore, a method for measuring the defect rate of a corrosion-resistant film is provided, which can obtain a value sufficiently close to the actual defect rate of the corrosion-resistant film in a shorter time.
本発明の一態様に従えば、金属製の第1基材及び前記第1基材の表面に形成された耐食膜を備える部材の、前記耐食膜の欠陥率を測定する方法であって、
電解液中で前記部材の電位を250~360mV/分の範囲内の掃引速度で掃引して、前記部材の臨界不動態化電流密度を求めることと、
前記電解液中で、前記第1基材と同じ金属製の第2基材の電位を前記掃引速度で掃引して、前記第2基材の臨界不動態化電流密度を求めることと、
下記式(1):
R=(Ia/Ib)×100 (1)
(式中、Rは前記耐食膜の欠陥率(%)、Iaは前記部材の臨界不動態化電流密度、Ibは前記第2基材の臨界不動態化電流密度を表す)
にしたがって前記耐食膜の欠陥率を算出することと、
を含む方法が提供される。
According to one aspect of the present invention, a method for measuring the defect rate of a corrosion resistant film of a member provided with a metal first substrate and a corrosion resistant film formed on the surface of the first substrate, comprising:
determining the critical passivation current density of the member by sweeping the potential of the member in the electrolyte at a sweep rate in the range of 250-360 mV/min;
Sweeping the potential of a second substrate made of the same metal as the first substrate in the electrolytic solution at the sweep speed to determine the critical passivation current density of the second substrate;
Formula (1) below:
R = (Ia/Ib) x 100 (1)
(Wherein, R is the defect rate (%) of the corrosion resistant film, Ia is the critical passivation current density of the member, and Ib is the critical passivation current density of the second substrate)
calculating the defect rate of the corrosion resistant film according to
A method is provided comprising:
本開示の耐食膜の欠陥率の測定方法では、耐食膜の実際の欠陥率に十分近い値を、より短時間で得ることができる。 The method of measuring the defect rate of a corrosion resistant coating of the present disclosure can obtain a value sufficiently close to the actual defect rate of the corrosion resistant coating in a shorter time.
以下、適宜図面を参照して実施形態を説明する。本発明は、以下の実施形態に限定されず、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができる。なお、以下の説明で参照する図面において、同一の部材又は同様の機能を有する部材には同一の符号を付し、繰り返しの説明を省略する場合がある。また、図面の寸法比率が説明の都合上実際の比率とは異なったり、部材の一部が図面から省略されたりする場合がある。また、本願において、記号「~」を用いて表される数値範囲は、記号「~」の前後に記載される数値のそれぞれを下限値及び上限値として含む。 Hereinafter, embodiments will be described with reference to the drawings as appropriate. The present invention is not limited to the following embodiments, and various design changes can be made without departing from the spirit of the invention described in the claims. In the drawings referred to in the following description, the same members or members having similar functions are denoted by the same reference numerals, and repeated description may be omitted. Also, the dimensional ratios in the drawings may differ from the actual ratios for convenience of explanation, and some members may be omitted from the drawings. In addition, in the present application, a numerical range represented using the symbol "~" includes the numerical values described before and after the symbol "~" as the lower and upper limits, respectively.
実施形態に係る方法では、金属製の第1基材及びその表面に形成された耐食膜を備える部材の、耐食膜の欠陥率を測定する。 In the method according to the embodiment, the defect rate of the corrosion resistant film of the member provided with the metal first base material and the corrosion resistant film formed on the surface thereof is measured.
(1)部材の臨界不動態化密度の測定
第1基材を構成する金属は、活性態-不動態遷移特性を示す金属であれば特に限定されない。活性態-不動態遷移特性を示す金属としては、例えば、クロム、ニッケル、アルミニウム、炭素鋼、ステンレス鋼(例えば、SUS304、SUS316L)が挙げられる。
(1) Measurement of Critical Passivation Density of Member The metal constituting the first substrate is not particularly limited as long as it exhibits active state-passive state transition characteristics. Metals exhibiting active-passive transition properties include, for example, chromium, nickel, aluminum, carbon steel, and stainless steel (eg, SUS304, SUS316L).
耐食膜としては、例えば、Ti、TiN、SiO2、樹脂の膜が挙げられる。耐食膜は単層膜であってもよいし、多層膜であってもよい。耐食膜は、任意の成膜方法、例えば、スパッタ法、イオンプレーティング法、メッキ法、化学気相蒸着(CVD)法等により形成することができる。 Examples of the corrosion resistant film include Ti, TiN, SiO 2 and resin films. The corrosion resistant film may be a single layer film or a multilayer film. The corrosion resistant film can be formed by any film forming method such as sputtering, ion plating, plating, chemical vapor deposition (CVD), and the like.
上記部材を作用極とし、参照電極及び対極を用いて、電解液中で部材の電位を掃引しながら、流れる電流密度を測定する。耐食膜に欠陥があり第1基材が露出している部分が存在する場合、電位の掃引に伴い電流密度が増加する。さらに電位の掃引を継続すると、露出した第1基材の表面に不動態膜が形成されるため、電流が流れなくなる。この間の電流密度の最大値を臨界不動態化電流密度という。 Using the member as a working electrode and using a reference electrode and a counter electrode, the density of the flowing current is measured while sweeping the potential of the member in the electrolytic solution. If there is a portion where the corrosion resistant film is defective and the first substrate is exposed, the current density increases as the potential is swept. If the sweep of the potential is continued, a passivation film is formed on the exposed surface of the first base material, so that no current flows. The maximum current density during this period is called the critical passivation current density.
参照電極としては、例えば、Ag/AgCl電極を用いることができる。対極としては例えば、Pt電極を用いることができる。電解液としては、例えば、硫酸とチオシアン酸カリウムの溶液を用いることができる。 For example, an Ag/AgCl electrode can be used as the reference electrode. For example, a Pt electrode can be used as the counter electrode. As the electrolytic solution, for example, a solution of sulfuric acid and potassium thiocyanate can be used.
部材の電位を掃引する範囲は、電解液、第1基材、及び耐食膜に応じて適宜定めてよい。掃引速度は、250~360mV/分の範囲内とする。掃引速度は一定であってよい。 The range over which the potential of the member is swept may be appropriately determined according to the electrolytic solution, the first base material, and the corrosion resistant film. The sweep rate should be in the range of 250-360 mV/min. The sweep speed may be constant.
(2)第2基材の臨界不動態化密度の測定
第2基材は、第1基材を構成する金属と同じ金属から構成される。第2基材の表面には耐食膜は形成されていない。上述した、部材の臨界不動態化密度の測定と同様の測定条件にて、第2基材の臨界不動態化密度を測定する。
(2) Measurement of Critical Passivation Density of Second Substrate The second substrate is composed of the same metal as that of the first substrate. No corrosion resistant film is formed on the surface of the second base material. The critical passivation density of the second substrate is measured under the same measurement conditions as the critical passivation density of the member described above.
(3)耐食膜の欠陥率の算出
測定した部材の臨界不動態化密度及び第2基材の臨界不動態化密度に基づき、部材の耐食膜の欠陥率を求める。具体的には、下記式(1):
R=(Ia/Ib)×100 (1)
(式中、Rは耐食膜の欠陥率(%)、Iaは部材の臨界不動態化電流密度、Ibは第2基材の臨界不動態化電流密度を表す)
にしたがって耐食膜の欠陥率を算出する。
(3) Calculation of Defect Rate of Corrosion-Resistant Film Based on the measured critical passivation density of the member and the critical passivation density of the second substrate, the defect rate of the corrosion-resistant film of the member is determined. Specifically, the following formula (1):
R = (Ia/Ib) x 100 (1)
(Wherein, R is the defect rate (%) of the corrosion resistant film, Ia is the critical passivation current density of the member, and Ib is the critical passivation current density of the second substrate)
Calculate the defect rate of the corrosion resistant film according to
実施形態に係る方法では、250~360mV/分の範囲内の速度で電位を掃引して臨界不動態化密度の測定することにより、後述する実施例で示すように、算出される欠陥率が、実際の欠陥率に十分に近い値となる。また、実施形態に係る方法では、非特許文献1に記載される従来技術と比べてより高速で電位を掃引するため、測定時間を短縮することができる。
In the method according to the embodiment, by measuring the critical passivation density by sweeping the potential at a rate within the range of 250 to 360 mV / min, as shown in the examples described later, the calculated defect rate is The value is sufficiently close to the actual defect rate. Moreover, in the method according to the embodiment, the potential is swept at a higher speed than the conventional technique described in Non-Patent
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples.
比較例1
SUS304製の板状の第1基材の表面に、スパッタ法により厚さ1μmのTi膜を耐食膜として形成した。次いで、Ti膜の欠陥の面積割合(欠陥率(実測値))が1.1%になるようにTi膜をけがいて、試験体を作製した。
Comparative example 1
A Ti film having a thickness of 1 μm was formed as a corrosion-resistant film on the surface of a plate-shaped first base material made of SUS304 by a sputtering method. Next, the Ti film was scribed so that the area ratio of defects in the Ti film (defect rate (actual value)) was 1.1%, and a test piece was produced.
電解液として硫酸とチオシアン酸カリウムの溶液を用意した。試験体をホルダーで保持して電解液に浸漬した。このとき、ホルダーにより、試験体の測定領域(面積1cm2)以外の領域は電解液から絶縁した。試験体を電解液に浸漬した後、直ちに試験体の電位を-0.45Vから0.4Vまで20mV/分の一定速度で掃引して、分極曲線を得た。なお、参照電極としてAg/AgCl電極、対極としてPt電極を用いた。得られた分極曲線を図1中に実線で示す。分極曲線中の電流密度の最大値から、試験体の臨界不動態化電流密度Iaを求めた。 A solution of sulfuric acid and potassium thiocyanate was prepared as an electrolyte. The specimen was held by a holder and immersed in the electrolytic solution. At this time, the holder insulated the area other than the measurement area (area of 1 cm 2 ) of the specimen from the electrolytic solution. Immediately after the specimen was immersed in the electrolytic solution, the potential of the specimen was swept from -0.45 V to 0.4 V at a constant rate of 20 mV/min to obtain a polarization curve. An Ag/AgCl electrode was used as a reference electrode, and a Pt electrode was used as a counter electrode. The obtained polarization curve is indicated by a solid line in FIG. The critical passivation current density Ia of the specimen was obtained from the maximum value of the current density in the polarization curve.
同様にして、Ti膜を形成していないSUS304製の第2基材の分極曲線を得た。得られた分極曲線を図1中に破線で示す。分極曲線中の電流密度の最大値から、第2基材の臨界不動態化電流密度Ibを求めた。 Similarly, the polarization curve of the second substrate made of SUS304 without the Ti film was obtained. The obtained polarization curve is indicated by a dashed line in FIG. The critical passivation current density Ib of the second substrate was obtained from the maximum current density in the polarization curve.
下記式(1):
R=(Ia/Ib)×100 (1)
(式中、Rは試験体の欠陥率(%)、Iaは試験体の臨界不動態化電流密度、Ibは第2基材の臨界不動態化電流密度を表す)
にしたがって、Ti膜の欠陥率を計算した。
Formula (1) below:
R = (Ia/Ib) x 100 (1)
(Wherein, R is the defect rate (%) of the specimen, Ia is the critical passivation current density of the specimen, and Ib is the critical passivation current density of the second substrate)
The defect rate of the Ti film was calculated according to
同様に、Ti膜の欠陥率(実測値)が0%、2.1%、3.2%である試験体を作製し、各試験体の臨界不動態化電流密度Iaを測定し、式(1)に基づいて各試験体におけるTi膜の欠陥率を計算した。 Similarly, test specimens with Ti film defect rates (measured values) of 0%, 2.1%, and 3.2% were prepared, and the critical passivation current density Ia of each specimen was measured. 1), the defect rate of the Ti film in each specimen was calculated.
図2に、欠陥率(実測値)に対して欠陥率(計算値)をプロットしたグラフを示す。 FIG. 2 shows a graph in which the defect rate (calculated value) is plotted against the defect rate (measured value).
欠陥率を計算した後の試験体の欠陥部分の断面を走査型電子顕微鏡(SEM)で観察した。SEM像を図3に示す。 After calculating the defect rate, the cross-section of the defective portion of the specimen was observed with a scanning electron microscope (SEM). A SEM image is shown in FIG.
実施例1
Ti膜の欠陥率(実測値)が0%、0.05%、1%、1.7%である試験体を使用したことと、臨界不動態化電流密度を求めるときの電位の掃引速度を250mV/分としたこと以外は、比較例1と同様にして、各試験体の欠陥率(計算値)を求めた。結果を図2中に示す。
Example 1
The use of test specimens with Ti film defect rates (measured values) of 0%, 0.05%, 1%, and 1.7%, and the sweep speed of the potential when obtaining the critical passivation current density The defect rate (calculated value) of each specimen was determined in the same manner as in Comparative Example 1, except that the voltage was 250 mV/min. The results are shown in FIG.
実施例2
Ti膜の欠陥率(実測値)が0%、1.1%、2.1%、4.4%である試験体を使用したことと、臨界不動態化電流密度を求めるときの電位の掃引速度を360mV/分としたこと以外は、比較例1と同様にして、各試験体の欠陥率(計算値)を求めた。結果を図2中に示す。また。欠陥率を計算した後の試験体の欠陥部分の断面をSEM観察した。SEM像を図4に示す。
Example 2
Using specimens with Ti film defect rates (measured values) of 0%, 1.1%, 2.1%, and 4.4%, and sweeping the potential when determining the critical passivation current density The defect rate (calculated value) of each specimen was obtained in the same manner as in Comparative Example 1, except that the speed was 360 mV/min. The results are shown in FIG. Also. After calculating the defect rate, the cross section of the defective portion of the specimen was observed by SEM. A SEM image is shown in FIG.
比較例2
Ti膜の欠陥率(実測値)が0%、0.05%、1%、1.7%である試験体を使用したことと、臨界不動態化電流密度を求めるときの電位の掃引速度を400mV/分としたこと以外は、比較例1と同様にして、各試験体の欠陥率(計算値)を求めた。結果を図2中に示す。
Comparative example 2
The use of test specimens with Ti film defect rates (measured values) of 0%, 0.05%, 1%, and 1.7%, and the sweep speed of the potential when obtaining the critical passivation current density The defect rate (calculated value) of each specimen was obtained in the same manner as in Comparative Example 1, except that the voltage was 400 mV/min. The results are shown in FIG.
図2中の破線は、欠陥率の実測値と計算値が完全に一致する場合を示している。図2からわかるように、電位を250~360mV/分の範囲内の掃引速度で掃引して臨界不動態化電流密度を求めた実施例1、2では、欠陥率の計算値が、実測値と十分に近い値であった。具体的には、実測値からの計算値のずれは±25%以内であった。一方、電位を250mV/分未満又は360mV/分超の掃引速度で掃引して臨界不動態化電流密度を求めた比較例1、2では、欠陥率の計算値が実測値と大きく異なっていた。 The dashed line in FIG. 2 indicates the case where the measured defect rate and the calculated defect rate completely match. As can be seen from FIG. 2, in Examples 1 and 2 in which the critical passivation current density was obtained by sweeping the potential at a sweep speed within the range of 250 to 360 mV / min, the calculated value of the defect rate was different from the measured value. The values were close enough. Specifically, the deviation of the calculated value from the measured value was within ±25%. On the other hand, in Comparative Examples 1 and 2 in which the potential was swept at a sweep rate of less than 250 mV/min or more than 360 mV/min to determine the critical passivation current density, the calculated defect rate was significantly different from the measured value.
図3に示されるように、比較例1の試験体では、Ti膜の下に第1基材であるSUS304が存在しない部分があることが確認された(図3中の左側)。このことは、Ti膜の欠陥部分の周囲において、分極曲線の測定中に第1基材の腐食が過剰に進行し、Ti膜に被覆されていた部分まで第1基材が腐食したことを示唆している。それにより、電解液に接して不動態膜が形成される第1基材の表面の面積が、実際のTi膜の欠陥面積よりも大きくなり、その結果、臨界不動態化電流密度から計算した欠陥率が実際の欠陥率よりも非常に大きくなったと考えられる。 As shown in FIG. 3, in the specimen of Comparative Example 1, it was confirmed that there was a portion where SUS304, which was the first substrate, did not exist under the Ti film (left side in FIG. 3). This suggests that the corrosion of the first substrate progressed excessively around the defective portion of the Ti film during the measurement of the polarization curve, and the first substrate was corroded to the portion covered with the Ti film. is doing. As a result, the area of the surface of the first substrate where the passivation film is formed in contact with the electrolyte becomes larger than the actual defect area of the Ti film, and as a result, the defect calculated from the critical passivation current density It is believed that the defect rate was much higher than the actual defect rate.
一方、図4に示されるように、実施例2の試験体では、Ti膜の欠陥部分においてのみ第1基材が腐食し、第1基材の過剰な腐食は見られなかった。そのため、欠陥率の計算値が、欠陥率の実測値と十分に近い値となったと考えられる。 On the other hand, as shown in FIG. 4, in the test piece of Example 2, the first base material corroded only at the defective portion of the Ti film, and excessive corrosion of the first base material was not observed. Therefore, it is considered that the calculated value of the defect rate is sufficiently close to the measured value of the defect rate.
Claims (1)
電解液中で前記部材の電位を250~360mV/分の範囲内の掃引速度で掃引して、前記部材の臨界不動態化電流密度を求めることと、
前記電解液中で、前記第1基材と同じ金属製の第2基材の電位を前記掃引速度で掃引して、前記第2基材の臨界不動態化電流密度を求めることと、
下記式(1):
R=(Ia/Ib)×100 (1)
(式中、Rは前記耐食膜の欠陥率(%)、Iaは前記部材の臨界不動態化電流密度、Ibは前記第2基材の臨界不動態化電流密度を表す)
にしたがって前記耐食膜の欠陥率を算出することと、
を含む方法。 A method for measuring the defect rate of a corrosion resistant film of a member comprising a metal first substrate and a corrosion resistant film formed on the surface of the first substrate, comprising:
determining the critical passivation current density of the member by sweeping the potential of the member in the electrolyte at a sweep rate in the range of 250-360 mV/min;
Sweeping the potential of a second substrate made of the same metal as the first substrate in the electrolytic solution at the sweep speed to determine the critical passivation current density of the second substrate;
Formula (1) below:
R = (Ia/Ib) x 100 (1)
(Wherein, R is the defect rate (%) of the corrosion resistant film, Ia is the critical passivation current density of the member, and Ib is the critical passivation current density of the second substrate)
calculating the defect rate of the corrosion resistant film according to
method including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021005707A JP2022110360A (en) | 2021-01-18 | 2021-01-18 | Method for measuring defect rate of corrosion-resistant film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021005707A JP2022110360A (en) | 2021-01-18 | 2021-01-18 | Method for measuring defect rate of corrosion-resistant film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022110360A true JP2022110360A (en) | 2022-07-29 |
Family
ID=82570041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021005707A Pending JP2022110360A (en) | 2021-01-18 | 2021-01-18 | Method for measuring defect rate of corrosion-resistant film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022110360A (en) |
-
2021
- 2021-01-18 JP JP2021005707A patent/JP2022110360A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11634831B2 (en) | Coated articles | |
Li et al. | In situ pH measurement during the formation of conversion coatings on an aluminum alloy (AA2024) | |
Walsh et al. | Electrochemical characterisation of the porosity and corrosion resistance of electrochemically deposited metal coatings | |
Ramachandran et al. | Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant | |
Notter et al. | Porosity of electrodeposited coatings: its cause, nature, effect and management | |
Xia et al. | Fast evaluation of degradation degree of organic coatings by analyzing electrochemical impedance spectroscopy data | |
TW201027062A (en) | A method of inspecting a metal coating and a method for analytical control of a deposition electrolyte serving to deposit said metal coating | |
Chang et al. | The golden alloy Cu-5Zn-5Al-1Sn: A multi-analytical surface characterization | |
Indira et al. | SECM study of effect of chromium content on the localized corrosion behavior of low-alloy steels in chloride environment | |
JPS5993882A (en) | Sensor for metal coating | |
El Fazazi et al. | Electrochemical deposition and spectroscopy investigation of Zn coatings on steel | |
JP2022110360A (en) | Method for measuring defect rate of corrosion-resistant film | |
Kumarasiri et al. | Surface wettability Analysis of nichrome alloy based on the measurements of sessile droplet contact angles | |
JP6751924B2 (en) | Evaluation method of corrosion resistance and repair method of plated products | |
WO2016002897A1 (en) | Method for measuring rate of corrosion of metal element | |
Ivanov et al. | Corrosion resistance of compositionally modulated Zn–Ni multilayers electrodeposited from dual baths | |
JP5223783B2 (en) | Method for predicting the amount of corrosion of metallic materials in contact with different metals | |
Worsley et al. | Influence of remote cathodes on corrosion mechanism at exposed cut edges in organically coated galvanized steels | |
JP6111058B2 (en) | FUEL CELL SEPARATOR, FUEL CELL CELL, FUEL CELL STACK, AND METHOD FOR MANUFACTURING FUEL CELL SEPARATOR | |
US7985487B2 (en) | Corrosion resistant conductive parts | |
JP5013104B2 (en) | Pinhole evaluation method | |
Court et al. | Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates | |
JP5169357B2 (en) | Pinhole evaluation method | |
JP2005235739A (en) | Fuel cell component and its manufacturing method | |
RU2796204C1 (en) | Express method for determining through porosity of microarc coatings |