JP2005235739A - Fuel cell component and its manufacturing method - Google Patents

Fuel cell component and its manufacturing method Download PDF

Info

Publication number
JP2005235739A
JP2005235739A JP2004361239A JP2004361239A JP2005235739A JP 2005235739 A JP2005235739 A JP 2005235739A JP 2004361239 A JP2004361239 A JP 2004361239A JP 2004361239 A JP2004361239 A JP 2004361239A JP 2005235739 A JP2005235739 A JP 2005235739A
Authority
JP
Japan
Prior art keywords
fuel cell
cell component
gas
contact portion
end plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004361239A
Other languages
Japanese (ja)
Inventor
Hidenori Obayashi
英範 大林
Masanori Matsukawa
政憲 松川
Shinji Maeda
真志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP2004361239A priority Critical patent/JP2005235739A/en
Publication of JP2005235739A publication Critical patent/JP2005235739A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell component wherein uniform coating having excellent corrosion resistance is applied to a contact part making contact with a gas and the like, and to provide a manufacturing method of the fuel cell component. …Ž<P>SOLUTION: This fuel cell component is a component having the contact part making contact with liquid into which the gas circulating in the inside of a fuel cell or a part of it is fused. After applying electrodeposition coating using electrodeposition paint to the contact part of the fuel cell component which is in contact with the gas, the electrodeposition paint applied on the contact part in contact with the gas and the like is baked on the fuel cell component, and is fixed as uniform coating. The electrodeposition coating is the most preferably applied with cation electrodeposition coating using cation type polyimide electrodeposition paint. …Ž<P>COPYRIGHT: (C)2005,JPO&NCIPI …Ž

Description

本発明は、燃料電池内部を流通するガス又はその一部が溶け込んだ液体との接触部を有する燃料電池構成部品と、その燃料電池構成部品の製造方法とに関する。   The present invention relates to a fuel cell component having a contact portion with a gas flowing inside the fuel cell or a liquid in which a part thereof is dissolved, and a method for manufacturing the fuel cell component.

一般に燃料電池は、電池セルとセパレータプレートとを交互に配置して積層したものを端子板(ターミナル)及び絶縁板を介して一対のエンドプレート間に挟着保持してなる燃料電池スタックから構成されている。固体高分子型燃料電池の場合、電池セルは、プロトン透過性の高分子材料からなる固体高分子膜を、ガス透過性及び導電性を兼備した空気側電極及び水素側電極の間に挟んで構成されている。燃料電池を構成する燃料電池構成部品であって電池内ガス流通路の構築に関与するセパレータプレートやエンドプレートは、燃料電池内部を流通するガス又はその一部が溶け込んだ液体と接触する部分(以下「ガス等との接触部」という)を有している。   In general, a fuel cell is composed of a fuel cell stack in which battery cells and separator plates are alternately arranged and stacked and held between a pair of end plates via a terminal plate and an insulating plate. ing. In the case of a polymer electrolyte fuel cell, the battery cell is configured by sandwiching a solid polymer membrane made of a proton-permeable polymer material between an air-side electrode and a hydrogen-side electrode that have both gas permeability and conductivity. Has been. Separator plates and end plates that are fuel cell components that make up the fuel cell and are involved in the construction of the gas flow path in the cell are the parts that contact the gas flowing through the fuel cell or a liquid in which a part thereof is dissolved (hereinafter referred to as (Referred to as “contact portion with gas etc.”).

燃料電池の運転に伴い、電池セルから腐食性物質(例えばフッ化水素酸)が揮発し又はその一部が水分に溶け込むことにより、腐食ガスや腐食液(酸性を帯びた水)が発生し、それらが燃料電池のガス流通路を構成する金属部品のガス等との接触部を腐食することが知られている(例えば特許文献2参照)。このため、燃料電池を構成する金属部品のガス等との接触部における耐食性を向上させることが、重要な技術的課題となっている。これに関連して特許文献1は、燃料電池のガス配管の防食を確実にするために、ガス配管の内面を耐熱性及び耐酸性のあるポリエーテルサルフォン(PES)又はポリテトラフルオロエチレン(フッ素樹脂)のフィルムで被覆することを提案する。特許文献1では、PESについてはそれをジクロロメタン(溶媒)に溶解してガス配管内に流し込み塗布した後、ジクロロメタンを蒸発させることにより、又、フッ素樹脂については静電塗装法により塗布した後、高温処理することにより、ガス配管内部にフィルムを形成している。   With the operation of the fuel cell, corrosive substances (for example, hydrofluoric acid) volatilize from the battery cell or part of it dissolves in moisture, generating corrosive gas and corrosive liquid (acidic water), It is known that they corrode contact portions with gas or the like of metal parts constituting the gas flow passage of the fuel cell (see, for example, Patent Document 2). For this reason, it is an important technical problem to improve the corrosion resistance at the contact portion of the metal parts constituting the fuel cell with the gas. In this connection, Patent Document 1 discloses that heat-resistant and acid-resistant polyethersulfone (PES) or polytetrafluoroethylene (fluorine) is used on the inner surface of the gas pipe in order to ensure corrosion prevention of the gas pipe of the fuel cell. It is proposed to cover with a resin) film. In Patent Document 1, PES is dissolved in dichloromethane (solvent), poured into a gas pipe, applied, and then evaporated, and fluorine resin is applied by electrostatic coating, and then heated to high temperature. By processing, a film is formed inside the gas pipe.

しかしながら、特許文献1において用いられたフィルム形成手法(樹脂溶解液の流し込み塗布法や静電塗装法)では、燃料電池構成部品の形状が複雑な場合、塗膜のバラツキ、つまりフィルムの不均一性やフィルム形成の不連続性が生じ易く、フィルムに多くのピンホールができ易い。そのため、十分な耐食性が得られ難いという欠点がある。   However, in the film forming method used in Patent Document 1 (resin solution casting method or electrostatic coating method), when the shape of the fuel cell component is complicated, the coating film is uneven, that is, the film is not uniform. In addition, discontinuity in film formation is likely to occur, and many pinholes are easily formed in the film. Therefore, there is a drawback that sufficient corrosion resistance is difficult to obtain.

また、特許文献1のフッ素樹脂を静電塗装する方法では、燃料電池構成部品に溶接箇所があることでそこに溶接時に生じた酸化皮膜が多少とも残存していると、その残存酸化皮膜がフッ素樹脂付着の重大な疎外要因となって当該溶接箇所においてフッ素樹脂が十分に付着せず、耐食性が得られ難いという欠点がある。   Further, in the method of electrostatically coating the fluororesin disclosed in Patent Document 1, if there is a welded portion in the fuel cell component part and an oxide film generated during welding remains there, the residual oxide film is fluorine. There is a drawback in that the fluororesin does not adhere sufficiently at the welded portion and it is difficult to obtain corrosion resistance as a significant alienation factor for resin adhesion.

特開平5−89903号公報(要約および実施例)Japanese Patent Laid-Open No. 5-89903 (Summary and Examples) 特開2003−142120号公報(第0003段落)JP2003-142120A (paragraph 0003)

本発明の目的は、ガス等との接触部に耐食性に優れた均一なコーティングが施された燃料電池構成部品を提供することにある。また、そのような燃料電池構成部品の製造方法を提供することにある。   An object of the present invention is to provide a fuel cell component in which a uniform coating excellent in corrosion resistance is applied to a contact portion with a gas or the like. Moreover, it is providing the manufacturing method of such a fuel cell component.

また、燃料電池構成部品のガス等との接触部に溶接箇所が含まれている場合でも、その溶接箇所を含むガス等との接触部に対し耐食性に優れた均一なコーティングが施された燃料電池構成部品及びその製造方法を提供することを目的とする。   In addition, even when a welded portion is included in a contact portion of a fuel cell component with a gas or the like, a fuel cell having a uniform coating with excellent corrosion resistance applied to the contact portion with the gas or the like including the welded portion It aims at providing a component and its manufacturing method.

本発明は、燃料電池内部を流通するガス又はその一部が溶け込んだ液体との接触部を有する燃料電池構成部品であって、前記接触部には、電着塗装法によって形成されたコーティングが施されていることを特徴とする燃料電池構成部品である(請求項1)。より好ましくは、前記接触部には、電着塗装法によって形成されたポリイミド電着塗料からなるコーティングが施されていることを特徴とする燃料電池構成部品である(請求項2)。更に好ましくは、前記燃料電池構成部品の基材は鋳物からなることを特徴とする請求項1又は2に記載の燃料電池構成部品である(請求項3)。更には、前記燃料電池構成部品の接触部には溶接箇所が含まれており、その溶接箇所を含む接触部には、電着塗装法によって形成されたコーティングが施されていることを特徴とする請求項1又は2に記載の燃料電池構成部品である(請求項4)。   The present invention relates to a fuel cell component having a contact portion with a gas flowing in the fuel cell or a liquid in which a part thereof is dissolved, and the contact portion is provided with a coating formed by an electrodeposition coating method. It is a fuel cell component part characterized by the above-mentioned (Claim 1). More preferably, the contact portion is provided with a coating made of a polyimide electrodeposition paint formed by an electrodeposition coating method (claim 2). More preferably, the fuel cell component according to claim 1 or 2, wherein the base material of the fuel cell component is made of a casting (Claim 3). Furthermore, the contact portion of the fuel cell component includes a welded portion, and the contact portion including the welded portion is provided with a coating formed by an electrodeposition coating method. A fuel cell component according to claim 1 or 2 (claim 4).

また本発明は、燃料電池内部を流通するガス又はその一部が溶け込んだ液体との接触部を有する燃料電池構成部品を製造する方法であって、燃料電池構成部品の前記接触部に対しカチオン型ポリイミド電着塗料を用いてカチオン電着塗装を施した後、その接触部に塗布されたカチオン型ポリイミド電着塗料を燃料電池構成部品に焼き付けて定着させることを特徴とする燃料電池構成部品の製造方法である(請求項5)。より好ましくは、前記燃料電池構成部品の基材は鋳物からなることを特徴とする請求項5に記載の燃料電池構成部品の製造方法である(請求項6)。更には、前記燃料電池構成部品の接触部には溶接箇所が含まれており、その溶接箇所を含む接触部に対しカチオン型ポリイミド電着塗料を用いてカチオン電着塗装を施すことを特徴とする請求項5に記載の燃料電池構成部品の製造方法である(請求項7)。   The present invention also relates to a method of manufacturing a fuel cell component having a contact portion with a gas flowing through the fuel cell or a liquid in which a part thereof is dissolved, and is a cation type with respect to the contact portion of the fuel cell component Production of a fuel cell component characterized by applying a cationic electrodeposition coating using a polyimide electrodeposition coating and then baking and fixing the cationic polyimide electrodeposition coating applied to the contact portion on the fuel cell component A method (claim 5). More preferably, the fuel cell component manufacturing method according to claim 5, wherein the base material of the fuel cell component is made of a casting (Claim 6). Further, the contact portion of the fuel cell component includes a welded portion, and the contact portion including the welded portion is subjected to cationic electrodeposition coating using a cationic polyimide electrodeposition paint. A fuel cell component manufacturing method according to claim 5 (claim 7).

(作用):
本発明の燃料電池構成部品及びその製造方法によれば、燃料電池構成部品のガス等との接触部の表面に対するコーティング(保護皮膜)の形成に際し電着塗装法を採用したため、燃料電池構成部品が複雑な形状をしているような場合でも、ガス等との接触部の全表面に対して万遍なく均一なコーティングを施すことができる。電着塗装法によって形成された保護皮膜の均一性は非常に高く、ピンホール等はほとんど存在しないため、ガス等との接触部の耐食性が大幅に改善される。
(Action):
According to the fuel cell component of the present invention and the method of manufacturing the same, since the electrodeposition coating method is employed for forming a coating (protective film) on the surface of the contact portion of the fuel cell component with the gas or the like, Even in the case of a complicated shape, a uniform coating can be uniformly applied to the entire surface of the contact portion with the gas or the like. The uniformity of the protective film formed by the electrodeposition coating method is very high and there are almost no pinholes, so that the corrosion resistance of the contact portion with the gas or the like is greatly improved.

特に燃料電池構成部品のガス等との接触部に対しポリイミド電着塗料(より好ましくはカチオン型ポリイミド電着塗料)を用いて電着塗装(より好ましくはカチオン電着塗装)を施し、ポリイミド電着塗料からなるコーティングを形成した場合には、ガス等との接触部の耐食性は飛躍的に高まり、その耐食レベルはフッ素樹脂コーティングよりも優れたものとなる。   In particular, the electrodeposition coating (more preferably cationic electrodeposition coating) is applied to the contact portion of the fuel cell component with the gas using a polyimide electrodeposition coating (more preferably cationic type polyimide electrodeposition coating). When a coating made of a paint is formed, the corrosion resistance of the contact portion with gas or the like is dramatically increased, and the corrosion resistance level is superior to that of the fluororesin coating.

更に本発明によれば、燃料電池構成部品の基材が鋳物で構成される場合でも、その鋳物部品のガス等との接触部に対して電着塗装法によるコーティングを施すことで優れた耐食性が確保される。一般に、鋳物の表層部には、不可避的に生じる無数の微細な穴(穴径は50μm以下)が存在しており、これらの微細な穴があるために均一で連続したコーティングは困難とされてきたが、本発明によれば、上記微細な穴の影響を受けることなく鋳物部品のガス等との接触部の全表面に対して均一で連続したコーティングを施すことが可能となる。   Furthermore, according to the present invention, even when the base material of the fuel cell component is made of a casting, excellent corrosion resistance can be obtained by coating the contact portion of the casting component with gas or the like by an electrodeposition coating method. Secured. In general, there are innumerable fine holes (hole diameter of 50 μm or less) that inevitably occur in the surface layer portion of a casting, and since these fine holes are present, uniform and continuous coating has been difficult. However, according to the present invention, a uniform and continuous coating can be applied to the entire surface of the contact part with the gas or the like of the cast part without being affected by the fine holes.

また本発明によれば、燃料電池構成部品のガス等との接触部に溶接箇所が含まれている場合でも、その溶接箇所を含む接触部に対して電着塗装法によるコーティングを施すことで、そのコーティングと前記接触部との馴染みの良好な密着性が得られ、比較的良好な耐食性を確保することが可能となる。   Further, according to the present invention, even when the welded portion is included in the contact portion with the gas or the like of the fuel cell component, by applying the coating by the electrodeposition coating method to the contact portion including the welded portion, Good adhesion between the coating and the contact portion can be obtained, and relatively good corrosion resistance can be ensured.

本発明の燃料電池構成部品によれば、電着塗装法によって、燃料電池構成部品のガス等との接触部に耐食性に優れた均一なコーティングを施しているため、ガス等との接触部の耐食性が大幅に改善される。その結果、燃料電池のガス流通部(ガス配管など)の腐食が防止又は抑制され、燃料電池の耐用年数が長くなるばかりか、腐食に起因する重量低減ひいては環境汚染物質(例えば重金属など)の流出が極力防止される。   According to the fuel cell component of the present invention, the contact portion with the gas etc. of the fuel cell component by the electrodeposition coating method is coated with a uniform coating with excellent corrosion resistance, so the corrosion resistance of the contact portion with the gas etc. Is greatly improved. As a result, corrosion of the fuel cell gas distribution part (gas piping, etc.) is prevented or suppressed, and the service life of the fuel cell is prolonged, as well as weight reduction due to corrosion and the outflow of environmental pollutants (eg heavy metals). Is prevented as much as possible.

本発明の燃料電池構成部品の製造方法によれば、ガス等との接触部に耐食性に優れた均一なコーティングを有する燃料電池構成部品を簡単且つ確実に製造することができる。   According to the method for manufacturing a fuel cell component of the present invention, it is possible to easily and reliably manufacture a fuel cell component having a uniform coating excellent in corrosion resistance at a contact portion with a gas or the like.

本発明は、燃料電池内部を流通するガス又はその一部が溶け込んだ液体との接触部を有する燃料電池構成部品に関するものである。そのような燃料電池構成部品としては、いわゆる燃料電池スタックを構成するためのセパレータプレート、エンドプレート及び端子板(ターミナル)を例示できる。なお、燃料電池構成部品の基材は、金属の圧延材はもちろんのこと、鋳物であってもよい。鋳物の材料としては、アルミニウム系材料、鉄系材料、マグネシウム系材料、銅系材料、チタン系材料、スズ系材料、亜鉛系材料等を例示できるが、このうち、アルミニウム系材料(例えばアルミニウム合金)や鉄系材料(例えばステンレス鋼、鋳鋼、鋳鉄)は特に好ましい。   The present invention relates to a fuel cell component having a contact portion with a gas flowing inside the fuel cell or a liquid in which a part thereof is dissolved. Examples of such fuel cell components include a separator plate, an end plate, and a terminal plate (terminal) for constituting a so-called fuel cell stack. The base material of the fuel cell component may be a cast metal as well as a rolled metal material. Examples of casting materials include aluminum-based materials, iron-based materials, magnesium-based materials, copper-based materials, titanium-based materials, tin-based materials, and zinc-based materials. Of these, aluminum-based materials (for example, aluminum alloys) And iron-based materials (for example, stainless steel, cast steel, cast iron) are particularly preferred.

また、燃料電池構成部品の基材は、複数の金属製の圧延材を溶接により結合したものであってもよい。金属製圧延材同士を結合するための溶接手法は特に限定されない。但し、燃料電池構成部品のガス等との接触部における溶接手法としては、ティグ(Tig)溶接などのイナートガスアーク溶接が特に好ましい。イナートガスアーク溶接によれば、溶接箇所における酸化皮膜の発生を極力抑制することができ、電着塗装法によって形成されるコーティングの密着性向上ひいては耐食性向上を図ることができる。   In addition, the base material of the fuel cell component may be formed by joining a plurality of metal rolled materials by welding. The welding method for joining metal rolling materials is not specifically limited. However, an inert gas arc welding such as Tig welding is particularly preferable as a welding technique in the contact portion of the fuel cell component with the gas. According to the inert gas arc welding, it is possible to suppress the generation of an oxide film at the welded portion as much as possible, and to improve the adhesion of the coating formed by the electrodeposition coating method, and hence the corrosion resistance.

燃料電池構成部品のガス等との接触部には、電着塗装法によってコーティングが施される。本発明の燃料電池構成部品は金属製であるため、電着塗装法としては、被塗物(燃料電池構成部品)に負電圧を印加して正に分極した電着塗料を析出させるカチオン電着塗装法を採用することが好ましい。   The contact portion of the fuel cell component with the gas or the like is coated by an electrodeposition coating method. Since the fuel cell component of the present invention is made of metal, the electrodeposition coating method includes cation electrodeposition in which a negative voltage is applied to the object to be coated (fuel cell component) to deposit a positively polarized electrodeposition paint. It is preferable to employ a coating method.

本発明の電着塗装において使用する電着塗料は特に限定されないが、ポリイミド系の電着塗料やフッ素樹脂系の電着塗料を用いることは好ましい。特に、ポリイミド系の電着塗料は、同じ電着塗装を行った場合でもフッ素樹脂系電着塗料の使用時よりも優れた耐食性を確保できることが実験によって確認されている(後記実施例3及び4参照)。   The electrodeposition paint used in the electrodeposition coating of the present invention is not particularly limited, but it is preferable to use a polyimide electrodeposition paint or a fluororesin electrodeposition paint. In particular, it has been confirmed by experiments that polyimide-based electrodeposition paints can ensure better corrosion resistance than the use of fluororesin-based electrodeposition paints even when the same electrodeposition coating is performed (Examples 3 and 4 described later). reference).

ポリイミド系の電着塗料としては、次の化学式1に示すような化学構造のポリイミドを主成分とするカチオン型ポリイミド電着塗料が最も好ましい。化学式1中、Rはアルキル鎖を、Arは芳香族構造を示す。このカチオン型ポリイミド電着塗料のガラス転移温度は約200℃(DSC測定)、5%重量減少温度は約400℃(TGA測定)であり、極めて高い耐熱性を有する。また、そのカチオン型ポリイミド電着塗料の絶縁破壊電圧は約1000Vであり、極めて高い電気絶縁性を有する。   As the polyimide-based electrodeposition paint, a cationic polyimide electrodeposition paint mainly composed of polyimide having a chemical structure as shown in the following chemical formula 1 is most preferable. In Chemical Formula 1, R represents an alkyl chain, and Ar represents an aromatic structure. This cationic polyimide electrodeposition coating has a glass transition temperature of about 200 ° C. (DSC measurement) and a 5% weight loss temperature of about 400 ° C. (TGA measurement), and has extremely high heat resistance. Further, the dielectric breakdown voltage of the cationic polyimide electrodeposition paint is about 1000 V, and has extremely high electrical insulation.

Figure 2005235739
Figure 2005235739

燃料電池構成部品の製造に際しては、燃料電池構成部品のガス等との接触部に対しカチオン型ポリイミド電着塗料を用いてカチオン電着塗装を施した後、そのガス等との接触部に塗布されたカチオン型ポリイミド電着塗料を燃料電池構成部品に焼き付けて定着させることが好ましい。燃料電池構成部品においては導電性表面又は導電部を確保する必要が多いことから、燃料電池構成部品の導電性表面に対しては必要に応じてマスキングを施してから電着塗装を施すことが好ましい。なお、電着塗装の条件や、被塗物の前処理及び後処理の方法、電着塗料の焼き付け条件等は、使用する電着塗料の性質に応じて適宜選択される。   When manufacturing fuel cell components, after applying cationic electrodeposition coating using a cationic polyimide electrodeposition coating to the contact portion of the fuel cell component with the gas, etc., it is applied to the contact portion with the gas. It is preferable that the cationic polyimide electrodeposition coating is baked and fixed on the fuel cell component. Since it is often necessary to secure a conductive surface or conductive portion in the fuel cell component, it is preferable to mask the conductive surface of the fuel cell component as necessary before applying electrodeposition coating. . The conditions for electrodeposition coating, the pretreatment and post-treatment methods for the object to be coated, the baking conditions for the electrodeposition paint, and the like are appropriately selected according to the properties of the electrodeposition paint used.

以下、本発明を燃料電池スタックを構成する金属製エンドプレートに具体化した実施例1〜5及び比較例1〜3について説明する。   Hereinafter, Examples 1 to 5 and Comparative Examples 1 to 3 in which the present invention is embodied in a metal end plate constituting a fuel cell stack will be described.

(実施例1):
実施例1では、基材がアルミニウム合金からなる鋳物製のエンドプレートを使用した。先ず、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、少なくともガス配管の構成部分が露出した状態のエンドプレートを準備した。そのエンドプレートを十分に脱脂洗浄し、更にイオン交換水又は純水で水洗した。電着塗装槽にカチオン型ポリイミド電着塗料(株式会社シミズ製商品:エレコートPI)をイオン交換水又は純水で適度な濃度に希釈した水浴を準備し、その浴温を約25℃に調整した。そのポリイミド電着塗料水浴中に前記洗浄済みのエンドプレートを浸してエンドプレートの一部(電極接続部)を直流電源装置の負極に接続すると共に、水浴中に浸したカーボン製対向電極を直流電源装置の正極に接続し、20〜150Vの電圧にて約2分間、電着塗装を施した。その後、電着塗装槽から取り出したエンドプレートを水洗し、エアーブロー後に予備乾燥(80〜100℃で約10分間)を行った。そして、そのエンドプレートから前記マスク材を除去した後、それを加熱装置に移し、ポリイミド電着塗料の焼付け処理(約210℃で30分間)を行った。こうして、ガス配管構成部分に約11μmの膜厚のポリイミド皮膜が形成されたアルミニウム合金鋳物製のエンドプレートを得た。
(Example 1):
In Example 1, an end plate made of a casting whose base material is made of an aluminum alloy was used. First, a portion of the end plate that does not constitute the gas pipe portion was masked with a mask material to prepare an end plate in which at least the constituent portion of the gas pipe was exposed. The end plate was thoroughly degreased and washed with ion exchange water or pure water. A water bath was prepared by diluting a cationic polyimide electrodeposition paint (product of Shimizu Corporation: Elecoat PI) with ion-exchanged water or pure water in an electrodeposition coating tank, and the bath temperature was adjusted to about 25 ° C. . The washed end plate is immersed in the polyimide electrodeposition paint water bath to connect a part of the end plate (electrode connection portion) to the negative electrode of the DC power supply device, and the carbon counter electrode immersed in the water bath is connected to the DC power source. It was connected to the positive electrode of the apparatus, and electrodeposition coating was applied at a voltage of 20 to 150 V for about 2 minutes. Then, the end plate taken out from the electrodeposition coating tank was washed with water, followed by air drying and preliminary drying (at 80 to 100 ° C. for about 10 minutes). And after removing the said mask material from the end plate, it moved to the heating apparatus, and the baking process (about 210 degreeC for 30 minutes) of the polyimide electrodeposition coating material was performed. Thus, an end plate made of an aluminum alloy casting in which a polyimide film having a film thickness of about 11 μm was formed on the gas piping component part was obtained.

(比較例1):
比較例1では、実施例1で使用したのと同じ、基材がアルミニウム合金鋳物製のエンドプレートを使用した。先ず実施例1と同様、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、少なくともガス配管の構成部分が露出した状態のエンドプレートを準備した。そのエンドプレートを十分に脱脂洗浄し、更にイオン交換水又は純水で水洗した。そして、そのエンドプレートをシアン化金の浴中に浸し、電気メッキ法によりエンドプレートの金属露出面に対して金メッキを施した。こうして、ガス配管構成部分に約11μmの膜厚の金皮膜が形成されたアルミニウム合金鋳物製のエンドプレートを得た。
(Comparative Example 1):
In Comparative Example 1, the same end plate made of an aluminum alloy casting was used as in Example 1. First, as in Example 1, a portion of the end plate that does not constitute the gas piping portion was masked with a mask material to prepare an end plate in which at least the constituent portion of the gas piping was exposed. The end plate was thoroughly degreased and washed with ion exchange water or pure water. Then, the end plate was immersed in a gold cyanide bath, and gold plating was applied to the exposed metal surface of the end plate by electroplating. In this way, an end plate made of an aluminum alloy casting in which a gold film having a thickness of about 11 μm was formed on the gas piping component part was obtained.

(実施例2):
実施例2では、基材がステンレス鋼(SUS316)からなる鋳物製のエンドプレートを使用した。そして実施例1と同様、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、脱脂洗浄、イオン交換水又は純水による水洗後、カチオン型ポリイミド電着塗料(株式会社シミズ製商品:エレコートPI)を電着塗装法により塗装した。但し、実施例1のときよりも電着塗装時の印加電圧値を低くした。そして実施例1と同様、電着塗装槽から取り出したエンドプレートを水洗、エアーブロー、予備乾燥し、そのエンドプレートから前記マスク材を除去した後、ポリイミド電着塗料の焼付け処理(約210℃で30分間)を行った。こうして、ガス配管構成部分に約5μmの膜厚のポリイミド皮膜が形成されたステンレス鋼鋳物製のエンドプレートを得た。
(Example 2):
In Example 2, a cast end plate whose base material is made of stainless steel (SUS316) was used. And like Example 1, it masks with the mask material with respect to the location which does not comprise the gas piping part of an end plate, and after washing with degreasing washing, ion-exchange water, or pure water, it is a cation type polyimide electrodeposition paint (made by Shimizu Corporation) Product: Elecoat PI) was painted by the electrodeposition coating method. However, the applied voltage value at the time of electrodeposition coating was made lower than that in Example 1. As in Example 1, the end plate taken out from the electrodeposition coating tank was washed with water, air blown, pre-dried, the mask material was removed from the end plate, and then the polyimide electrodeposition paint was baked (at about 210 ° C. For 30 minutes). In this way, an end plate made of a stainless steel casting in which a polyimide film having a film thickness of about 5 μm was formed on the gas piping component part was obtained.

(比較例2):
比較例2では、実施例2で使用したのと同じ、基材がステンレス鋼(SUS316)からなる鋳物製のエンドプレートを使用した。先ず実施例1及び2と同様、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、少なくともガス配管の構成部分が露出した状態のエンドプレートを準備した。そのエンドプレートを十分に脱脂洗浄し、更にイオン交換水又は純水で水洗した。そして、そのエンドプレートをシアン化金の浴中に浸し、電気メッキ法によりエンドプレートの金属露出面に対して金メッキを施した。こうして、ガス配管構成部分に約9μmの膜厚の金皮膜が形成されたステンレス鋼鋳物製のエンドプレートを得た。
(Comparative Example 2):
In Comparative Example 2, the same end plate made of a casting made of stainless steel (SUS316) as that used in Example 2 was used. First, as in Examples 1 and 2, a portion of the end plate that does not constitute the gas piping portion was masked with a mask material to prepare an end plate in which at least the constituent portion of the gas piping was exposed. The end plate was thoroughly degreased and washed with ion exchange water or pure water. Then, the end plate was immersed in a gold cyanide bath, and gold plating was applied to the exposed metal surface of the end plate by electroplating. Thus, an end plate made of a stainless steel casting having a gold film having a film thickness of about 9 μm formed on the gas pipe constituent part was obtained.

(実施例3):
実施例3では、基材がステンレス鋼(SUS316L)の圧延材からなるエンドプレートを使用した。そして実施例1と同様、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、脱脂洗浄、イオン交換水又は純水による水洗後、カチオン型ポリイミド電着塗料(株式会社シミズ製商品:エレコートPI)を電着塗装法により塗装した。そして実施例1と同様、電着塗装槽から取り出したエンドプレートを水洗、エアーブロー、予備乾燥し、そのエンドプレートから前記マスク材を除去した後、ポリイミド電着塗料の焼付け処理(約210℃で30分間)を行った。こうして、ガス配管構成部分に約15μmの膜厚のポリイミド皮膜が形成されたステンレス鋼圧延材製のエンドプレートを得た。
(Example 3):
In Example 3, an end plate made of a rolled material made of stainless steel (SUS316L) was used. And like Example 1, it masks with the mask material with respect to the location which does not comprise the gas piping part of an end plate, and after washing with degreasing washing, ion-exchange water, or pure water, it is a cation type polyimide electrodeposition paint (made by Shimizu Corporation) Product: Elecoat PI) was painted by the electrodeposition coating method. As in Example 1, the end plate taken out from the electrodeposition coating tank was washed with water, air blown, pre-dried, the mask material was removed from the end plate, and then the polyimide electrodeposition paint was baked (at about 210 ° C. For 30 minutes). Thus, an end plate made of a rolled stainless steel material in which a polyimide film having a film thickness of about 15 μm was formed on the gas piping component part was obtained.

(実施例4):
実施例4では、実施例3で使用したのと同じ、基材がステンレス鋼(SUS316L)の圧延材からなるエンドプレートを使用した。先ず実施例1及び3と同様、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、少なくともガス配管の構成部分が露出した状態のエンドプレートを準備した。そのエンドプレートを十分に脱脂洗浄し、更にイオン交換水又は純水で水洗した。電着塗装槽にフッ素樹脂分散型の電着塗料(株式会社シミズ製商品:エレコートナイスロンCTR)をイオン交換水又は純水で適度な濃度に希釈した水浴を準備し、その浴温を約25℃に調整した。そのフッ素樹脂電着塗料水浴中に前記洗浄済みのエンドプレートを浸してエンドプレートの一部(電極接続部)を直流電源装置の負極に接続すると共に、水浴中に浸したカーボン製対向電極を直流電源装置の正極に接続し、30〜200Vの電圧にて約2分間、電着塗装を施した。その後、電着塗装槽から取り出したエンドプレートを水洗し、エアーブロー後に予備乾燥(80〜100℃で約10分間)を行った。そして、そのエンドプレートから前記マスク材を除去した後、それを加熱装置に移し、フッ素樹脂電着塗料の焼付け処理(約210℃で30分間)を行った。こうして、ガス配管構成部分に約15μmの膜厚のフッ素樹脂皮膜が形成されたステンレス鋼圧延材製のエンドプレートを得た。
(Example 4):
In Example 4, the same end plate as that used in Example 3 was made of a rolled material whose base material was stainless steel (SUS316L). First, as in Examples 1 and 3, a portion of the end plate that does not constitute the gas piping portion was masked with a mask material to prepare an end plate in which at least the constituent portion of the gas piping was exposed. The end plate was thoroughly degreased and washed with ion exchange water or pure water. Prepare a water bath in which a fluororesin-dispersed electrodeposition paint (product of Shimizu Corporation: Elecoat Nicelon CTR) is diluted with ion-exchanged water or pure water to an appropriate concentration in the electrodeposition coating tank. Adjusted to 25 ° C. The cleaned end plate is immersed in the fluororesin electrodeposition paint water bath to connect a part of the end plate (electrode connection part) to the negative electrode of the DC power supply, and the carbon counter electrode immersed in the water bath is connected to the DC It connected to the positive electrode of the power supply device, and applied electrodeposition for about 2 minutes at a voltage of 30 to 200V. Then, the end plate taken out from the electrodeposition coating tank was washed with water, and pre-dried (about 10 minutes at 80 to 100 ° C.) after air blowing. And after removing the said mask material from the end plate, it moved to the heating apparatus, and the baking process (about 210 degreeC for 30 minutes) of the fluororesin electrodeposition coating material was performed. Thus, an end plate made of a rolled stainless steel material in which a fluororesin film having a film thickness of about 15 μm was formed on the gas piping component part was obtained.

(実施例5):
実施例5では、図4(A)の一部拡大断面図に示すように、ステンレス鋼(SUS304)の圧延材2枚(11,12)の端部同士を付き合わせてティグ溶接(13)により結合したものを基材とするエンドプレートを使用した。このエンドプレートにあってはそのガス配管構成部分に前記ティグ溶接箇所(13)が含まれる。そして実施例1と同様、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、脱脂洗浄、イオン交換水又は純水による水洗後、カチオン型ポリイミド電着塗料(株式会社シミズ製商品:エレコートPI)を電着塗装法により塗装した。そして実施例1と同様、電着塗装槽から取り出したエンドプレートを水洗、エアーブロー、予備乾燥し、そのエンドプレートから前記マスク材を除去した後、ポリイミド電着塗料の焼付け処理(約210℃で30分間)を行った。こうして、図4(B)の一部拡大断面図に示すように、ティグ溶接箇所(13)を含むガス配管構成部分に約9μmの膜厚のポリイミド皮膜(14)が形成されたステンレス鋼圧延材(ティグ溶接品)製のエンドプレートを得た。
(Example 5):
In Example 5, as shown in the partially enlarged cross-sectional view of FIG. 4A, the ends of two rolled steel (11, 12) of stainless steel (SUS304) are attached to each other by TIG welding (13). An end plate based on the bonded one was used. In the end plate, the TIG welded portion (13) is included in the gas piping component. And like Example 1, it masks with the mask material with respect to the location which does not comprise the gas piping part of an end plate, and after washing with degreasing cleaning, ion-exchange water, or pure water, it is cationic type polyimide electrodeposition paint (made by Shimizu Corporation) Product: Elecoat PI) was painted by the electrodeposition coating method. As in Example 1, the end plate taken out from the electrodeposition coating tank was washed with water, air blown, pre-dried, the mask material was removed from the end plate, and then the polyimide electrodeposition paint was baked (at about 210 ° C. For 30 minutes). Thus, as shown in the partially enlarged cross-sectional view of FIG. 4B, a rolled stainless steel material in which a polyimide film (14) having a film thickness of about 9 μm is formed on the gas pipe constituent part including the TIG welded part (13). An end plate made of (Tig welded product) was obtained.

(比較例3):
比較例3では、実施例5で使用したのと同じ、ステンレス鋼(SUS304)の圧延材2枚(11,12)の端部同士を付き合わせてティグ溶接(13)により結合したものを基材とするエンドプレートを使用した。先ず実施例5と同様、エンドプレートのガス配管部分を構成しない箇所に対しマスク材でマスキングを施し、少なくともガス配管の構成部分が露出した状態のエンドプレートを準備した。そのエンドプレートを十分に脱脂洗浄し、更にイオン交換水又は純水で水洗した。そして、そのエンドプレートをシアン化金の浴中に浸し、電気メッキ法によりエンドプレートの金属露出面に対して金メッキを施した。こうして、ティグ溶接箇所(13)を含むガス配管構成部分に約9μmの膜厚の金皮膜が形成されたステンレス鋼圧延材(ティグ溶接品)製のエンドプレートを得た。
(Comparative Example 3):
In Comparative Example 3, the same base material as that used in Example 5 was bonded by TIG welding (13) with the ends of two rolled steel materials (11, 12) made of stainless steel (SUS304). An end plate was used. First, as in Example 5, a portion of the end plate that does not constitute the gas pipe portion was masked with a mask material, and an end plate in which at least the constituent portion of the gas pipe was exposed was prepared. The end plate was thoroughly degreased and washed with ion exchange water or pure water. Then, the end plate was immersed in a gold cyanide bath, and gold plating was applied to the exposed metal surface of the end plate by electroplating. Thus, an end plate made of a rolled stainless steel material (TIG welded product) in which a gold film having a film thickness of about 9 μm was formed on the gas piping component including the TIG welded portion (13) was obtained.

(耐食性試験方法):
実施例1〜5及び比較例1〜3で得られた各エンドプレートについて耐食性試験を行った。耐食性試験の方法は、日本工業規格の「ステンレス鋼のアノード分極曲線の測定方法」(JIS−G0579)に準じた。即ち、ポテンショスタット、電位スイープ装置、対数変換器付き記録計、電解槽及び恒温槽を組み合わせてなる測定装置を準備すると共に、電解槽には、ポテンショスタットに電気接続された対極(白金製電極)及び照合電極(この場合SCE(飽和甘こう電極))を配置した。また、電解槽に20%硫酸水溶液を満たしてその溶液の温度を30℃に調節すると共に、窒素ガスを約1時間吹き込んで脱酸素処理した。電解槽の溶液中に測定対象となる試験片(ポテンショスタットに電気接続されている)を浸した後、ポテンショスタット及び電位スイープ装置により、アノード分極曲線を測定した。電位のスイープ速度は毎分20mVとした。そして、測定した分極曲線をSHE換算し、その換算したものを半対数記録紙(電圧を等間隔目盛の横軸、電流密度を対数目盛の縦軸とするもの)に記録した。実施例1及び比較例1についての測定結果を図1に、実施例2及び比較例2についての測定結果を図2に、実施例3及び実施例4についての測定結果を図3に、実施例5及び比較例3についての測定結果を図5に示す。
(Corrosion resistance test method):
Each end plate obtained in Examples 1 to 5 and Comparative Examples 1 to 3 was subjected to a corrosion resistance test. The method of the corrosion resistance test was in accordance with Japanese Industrial Standard “Measurement Method of Anode Polarization Curve of Stainless Steel” (JIS-G0579). That is, a measuring device is prepared by combining a potentiostat, a potential sweep device, a recorder with a logarithmic converter, an electrolytic cell and a thermostatic chamber, and the electrolytic cell has a counter electrode (platinum electrode) electrically connected to the potentiostat. And a reference electrode (in this case SCE (saturated ginger electrode)). Further, the electrolytic cell was filled with a 20% aqueous sulfuric acid solution, the temperature of the solution was adjusted to 30 ° C., and nitrogen gas was blown in for about 1 hour for deoxygenation treatment. After immersing a test piece to be measured (electrically connected to a potentiostat) in a solution in an electrolytic cell, an anodic polarization curve was measured with a potentiostat and a potential sweep device. The potential sweep rate was 20 mV per minute. Then, the measured polarization curve was converted to SHE, and the converted curve was recorded on a semi-logarithmic recording paper (where voltage is a horizontal axis of a regular interval scale and current density is a vertical axis of a logarithmic scale). The measurement results for Example 1 and Comparative Example 1 are shown in FIG. 1, the measurement results for Example 2 and Comparative Example 2 are shown in FIG. 2, the measurement results for Example 3 and Example 4 are shown in FIG. The measurement results for No. 5 and Comparative Example 3 are shown in FIG.

(耐食性試験結果の考察):
アノード分極曲線は金属製試験片における耐食性の良否を判断する指標となり得る。つまり、所定の電位スイープ範囲において電流密度が小さく現われるほど耐食性に優れ、逆に電流密度が大きく現われるほど耐食性が低い、つまり腐食ガスや腐食液に接触したときに腐食が進みやすい(腐食速度がはやい)ことを示唆する。
(Consideration of corrosion resistance test results):
The anodic polarization curve can serve as an index for judging whether the corrosion resistance of the metal test piece is good or bad. In other words, the smaller the current density appears in the predetermined potential sweep range, the better the corrosion resistance. Conversely, the larger the current density, the lower the corrosion resistance.In other words, corrosion tends to proceed when it comes into contact with corrosive gas or liquid (corrosion rate is fast). ).

図1の測定結果(実施例1と比較例1との対比)、図2の測定結果(実施例2と比較例2との対比)及び図5の測定結果(実施例5と比較例3との対比)から、一般的な耐食皮膜として知られている金皮膜(比較例1,2及び3)よりも、本発明のポリイミド皮膜(実施例1,2及び5)の方が広い電圧範囲にわたって高い耐食性を示すことが判明した。特に実施例1,2では、エンドプレートの基材が一般に均一な皮膜の形成が難しいとされている鋳物製であるにもかかわらず、電着塗装法によりポリイミド皮膜(膜厚が約5〜11μm)を形成することで、電流密度が0.01μA/cm2又はそれ以下となるほどの極めて高いレベルの耐食性を確保することができる点は注目に値する。 The measurement results in FIG. 1 (comparison between Example 1 and Comparative Example 1), the measurement results in FIG. 2 (Comparison between Example 2 and Comparative Example 2), and the measurement results in FIG. 5 (Example 5 and Comparative Example 3) In contrast, the polyimide film of the present invention (Examples 1, 2 and 5) over a wider voltage range than the gold film (Comparative Examples 1, 2 and 3) known as a general corrosion-resistant film. It was found to show high corrosion resistance. Particularly in Examples 1 and 2, although the base material of the end plate is made of a casting which is generally considered difficult to form a uniform film, a polyimide film (film thickness is about 5 to 11 μm) by the electrodeposition coating method. It is noteworthy that a very high level of corrosion resistance can be ensured so that the current density is 0.01 μA / cm 2 or less.

また、図3の測定結果から、電着塗装法により形成されたポリイミド皮膜(実施例3)及び電着塗装法により形成されたフッ素樹脂皮膜(実施例4)を備えたエンドプレートによれば、電流密度が0.1μA/cm2以下となるほどの高レベルの耐食性を確保することができることが判明した。特に実施例3と実施例4との比較から、耐食性の確保に関してフッ素樹脂皮膜よりもポリイミド皮膜の方が優れていることは注目に値する。 Further, from the measurement results of FIG. 3, according to the end plate provided with the polyimide film (Example 3) formed by the electrodeposition coating method and the fluororesin film (Example 4) formed by the electrodeposition coating method, It has been found that a high level of corrosion resistance can be ensured so that the current density is 0.1 μA / cm 2 or less. In particular, from the comparison between Example 3 and Example 4, it is noteworthy that the polyimide film is superior to the fluororesin film in terms of ensuring corrosion resistance.

実施例5の結果(図5参照)から、ステンレス鋼製エンドプレートのガス配管構成部分に溶接箇所(13)が存在したとしても、電着塗装法によりポリイミド皮膜(14)を形成することで、比較的良好なレベルの耐食性を確保できることが判明した。   From the result of Example 5 (see FIG. 5), even if the welded portion (13) is present in the gas piping component of the stainless steel end plate, by forming the polyimide film (14) by the electrodeposition coating method, It has been found that a relatively good level of corrosion resistance can be secured.

実施例1及び比較例1についての耐食性試験の結果を示すグラフ。The graph which shows the result of the corrosion resistance test about Example 1 and Comparative Example 1. FIG. 実施例2及び比較例2についての耐食性試験の結果を示すグラフ。The graph which shows the result of the corrosion resistance test about Example 2 and Comparative Example 2. FIG. 実施例3及び実施例4についての耐食性試験の結果を示すグラフ。The graph which shows the result of the corrosion resistance test about Example 3 and Example 4. FIG. (A)は実施例5におけるステンレス鋼圧延材のティグ溶接品の一部拡大断面図、(B)は、前記ティグ溶接品にコーティングを施したときの一部拡大断面図。(A) is a partial expanded sectional view of the TIG welded product of the stainless steel rolling material in Example 5, (B) is a partially expanded sectional view when the TIG welded product is coated. 実施例5及び比較例3についての耐食性試験の結果を示すグラフ。The graph which shows the result of the corrosion resistance test about Example 5 and Comparative Example 3. FIG.

符号の説明Explanation of symbols

11,12…圧延材、13…溶接箇所、14…ポリイミド皮膜(コーティング)。   DESCRIPTION OF SYMBOLS 11,12 ... Rolled material, 13 ... Welded part, 14 ... Polyimide film (coating).

Claims (7)

燃料電池内部を流通するガス又はその一部が溶け込んだ液体との接触部を有する燃料電池構成部品であって、前記接触部には、電着塗装法によって形成されたコーティングが施されていることを特徴とする燃料電池構成部品。   A fuel cell component having a contact portion with a gas flowing through the fuel cell or a liquid in which a part of the gas is dissolved, and the contact portion is provided with a coating formed by an electrodeposition coating method A fuel cell component characterized by. 燃料電池内部を流通するガス又はその一部が溶け込んだ液体との接触部を有する燃料電池構成部品であって、前記接触部には、電着塗装法によって形成されたポリイミド電着塗料からなるコーティングが施されていることを特徴とする燃料電池構成部品。   A fuel cell component having a contact portion with a gas flowing inside the fuel cell or a liquid in which a part thereof is dissolved, wherein the contact portion is a coating made of a polyimide electrodeposition paint formed by an electrodeposition coating method A fuel cell component characterized by the above. 前記燃料電池構成部品の基材は鋳物からなることを特徴とする請求項1又は2に記載の燃料電池構成部品。   The fuel cell component according to claim 1 or 2, wherein the base material of the fuel cell component is made of a casting. 前記燃料電池構成部品の接触部には溶接箇所が含まれており、その溶接箇所を含む接触部には、電着塗装法によって形成されたコーティングが施されていることを特徴とする請求項1又は2に記載の燃料電池構成部品。   2. The contact portion of the fuel cell component includes a welded portion, and the contact portion including the welded portion is coated with a coating formed by an electrodeposition coating method. Or a fuel cell component according to 2; 燃料電池内部を流通するガス又はその一部が溶け込んだ液体との接触部を有する燃料電池構成部品を製造する方法であって、
燃料電池構成部品の前記接触部に対しカチオン型ポリイミド電着塗料を用いてカチオン電着塗装を施した後、その接触部に塗布されたカチオン型ポリイミド電着塗料を燃料電池構成部品に焼き付けて定着させることを特徴とする燃料電池構成部品の製造方法。
A method of manufacturing a fuel cell component having a contact portion with a gas flowing through the fuel cell or a liquid in which part of the gas is dissolved,
After the cationic electrodeposition coating is applied to the contact portion of the fuel cell component using a cationic polyimide electrodeposition paint, the cationic polyimide electrodeposition coating applied to the contact portion is baked and fixed on the fuel cell component. A method for producing a fuel cell component, characterized by comprising:
前記燃料電池構成部品の基材は鋳物からなることを特徴とする請求項5に記載の燃料電池構成部品の製造方法。   6. The method of manufacturing a fuel cell component according to claim 5, wherein the base material of the fuel cell component is made of a casting. 前記燃料電池構成部品の接触部には溶接箇所が含まれており、その溶接箇所を含む接触部に対しカチオン型ポリイミド電着塗料を用いてカチオン電着塗装を施すことを特徴とする請求項5に記載の燃料電池構成部品の製造方法。   6. A contact portion of the fuel cell component includes a welded portion, and the contact portion including the welded portion is subjected to cationic electrodeposition coating using a cationic polyimide electrodeposition coating. A method for producing a fuel cell component as described in 1 above.
JP2004361239A 2004-01-21 2004-12-14 Fuel cell component and its manufacturing method Pending JP2005235739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361239A JP2005235739A (en) 2004-01-21 2004-12-14 Fuel cell component and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004012836 2004-01-21
JP2004361239A JP2005235739A (en) 2004-01-21 2004-12-14 Fuel cell component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005235739A true JP2005235739A (en) 2005-09-02

Family

ID=35018441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361239A Pending JP2005235739A (en) 2004-01-21 2004-12-14 Fuel cell component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005235739A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012300A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Fuel cell
JP2007042598A (en) * 2005-06-29 2007-02-15 Aisin Takaoka Ltd Method for manufacturing fuel cell stack and terminal plate
JP2007113080A (en) * 2005-10-21 2007-05-10 Aisin Takaoka Ltd Coated aluminum material
JP2007311069A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, fuel cell separator, and its manufacturing method
US8137865B2 (en) 2006-09-29 2012-03-20 Toyota Jidosha Kabshiki Kaisha Plate member for fuel cell, manufacturing method of the plate member, and fuel cell
US9515327B2 (en) 2006-09-04 2016-12-06 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method for manufacturing the fuel cell separator, and fuel cell

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364491A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Surface treatment of constituent parts of magnetic disk device
JPH07282836A (en) * 1994-04-05 1995-10-27 Toyota Motor Corp Gas piping fixing structure of fuel cell
JP2001243970A (en) * 2000-02-29 2001-09-07 Aisin Seiki Co Ltd Fuel cell
JP2002212789A (en) * 2001-01-12 2002-07-31 Nippon Paint Co Ltd Cation electrodeposition coating method to welding area
JP2003074519A (en) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd Logic plate and processing method
JP2003203647A (en) * 2001-12-28 2003-07-18 Dainippon Printing Co Ltd Separator for direct methanol flat polymer electrolyte fuel cell and polymer electrolyte fuel cell using this separator
JP2003249240A (en) * 2001-12-20 2003-09-05 Dainippon Printing Co Ltd Separator for polyelectrolyte fuel cell
JP2003346874A (en) * 2002-05-24 2003-12-05 Mitsubishi Heavy Ind Ltd Channel built-in pedestal and fuel cell power generating system using the same
JP2004031166A (en) * 2002-06-26 2004-01-29 Kansai Paint Co Ltd Electrostatic coating composite for fuel cell metal separator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364491A (en) * 1989-08-02 1991-03-19 Hitachi Ltd Surface treatment of constituent parts of magnetic disk device
JPH07282836A (en) * 1994-04-05 1995-10-27 Toyota Motor Corp Gas piping fixing structure of fuel cell
JP2001243970A (en) * 2000-02-29 2001-09-07 Aisin Seiki Co Ltd Fuel cell
JP2002212789A (en) * 2001-01-12 2002-07-31 Nippon Paint Co Ltd Cation electrodeposition coating method to welding area
JP2003074519A (en) * 2001-09-04 2003-03-12 Mitsubishi Heavy Ind Ltd Logic plate and processing method
JP2003249240A (en) * 2001-12-20 2003-09-05 Dainippon Printing Co Ltd Separator for polyelectrolyte fuel cell
JP2003203647A (en) * 2001-12-28 2003-07-18 Dainippon Printing Co Ltd Separator for direct methanol flat polymer electrolyte fuel cell and polymer electrolyte fuel cell using this separator
JP2003346874A (en) * 2002-05-24 2003-12-05 Mitsubishi Heavy Ind Ltd Channel built-in pedestal and fuel cell power generating system using the same
JP2004031166A (en) * 2002-06-26 2004-01-29 Kansai Paint Co Ltd Electrostatic coating composite for fuel cell metal separator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012300A (en) * 2005-06-28 2007-01-18 Toyota Motor Corp Fuel cell
JP2007042598A (en) * 2005-06-29 2007-02-15 Aisin Takaoka Ltd Method for manufacturing fuel cell stack and terminal plate
JP2007113080A (en) * 2005-10-21 2007-05-10 Aisin Takaoka Ltd Coated aluminum material
JP4667202B2 (en) * 2005-10-21 2011-04-06 アイシン高丘株式会社 Aluminum material with corrosion resistant insulation coating for fuel cell components
JP2007311069A (en) * 2006-05-16 2007-11-29 Nissan Motor Co Ltd Fuel cell stack, fuel cell separator, and its manufacturing method
US9515327B2 (en) 2006-09-04 2016-12-06 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, method for manufacturing the fuel cell separator, and fuel cell
US8137865B2 (en) 2006-09-29 2012-03-20 Toyota Jidosha Kabshiki Kaisha Plate member for fuel cell, manufacturing method of the plate member, and fuel cell

Similar Documents

Publication Publication Date Title
JP7067543B2 (en) Steel sheet for cans and its manufacturing method
KR101266096B1 (en) Fuel cell separator and method for producing same
US4019877A (en) Method for coating of polyimide by electrodeposition
TWI676692B (en) Steel sheet for cans and method of manufacturing the same
EP2818578B1 (en) Metal material surface treatment method, and metal material
JP2004139951A (en) Separator for fuel cell and its manufacturing method
JP2005235739A (en) Fuel cell component and its manufacturing method
JPS63213698A (en) Permanent anode for process of high current density zinc plating
JP2010013684A (en) Stainless steel for conductive component having low contact electric resistance, and method for producing the same
KR101336443B1 (en) Manufacturing method of thin film on magnesium alloy to have superior corrosion resistance
JP2007284736A (en) Membrane-fitted hollow electrode for electrodeposition coating
Reddy et al. Improved Corrosion Protection of Aluminum Alloys by System Approach Interface Engineering: Part 1—Alclad 2024-T3
Johnsan et al. Changes in the wettability of microporous copper layers prepared by different modes of electrodeposition
CN111200136B (en) Anti-corrosion treatment method for welding wire of metal bipolar plate and metal bipolar plate
JP5336797B2 (en) Manufacturing method of heat transfer tube and header tube of open rack type vaporizer
JP2017211217A (en) Evaluation method of corrosion resistance, and repair method of plated product
JP2004265695A (en) Separator for fuel cell
JPH11269688A (en) Electrolytic electrode
JP6644219B2 (en) Method for forming insulating layer using self-selective closing treatment of fine conductive part
WO2009152640A1 (en) Method for repairing the polar terminal of a lead-acid battery
JP2000328280A (en) Electrodeposition drum for metallic foil
JP3406403B2 (en) Electrode for strong acid water
KR20240065788A (en) Development of Functional Surface Treatment for Sports and Leisure Products SUS 316L
JP2793534B2 (en) Welding wire for steel with excellent rust resistance
JP2022110360A (en) Method for measuring defect rate of corrosion-resistant film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070821

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019