JP2022107973A - Rotary revolution conversion mechanism and reciprocating engine - Google Patents

Rotary revolution conversion mechanism and reciprocating engine Download PDF

Info

Publication number
JP2022107973A
JP2022107973A JP2021002709A JP2021002709A JP2022107973A JP 2022107973 A JP2022107973 A JP 2022107973A JP 2021002709 A JP2021002709 A JP 2021002709A JP 2021002709 A JP2021002709 A JP 2021002709A JP 2022107973 A JP2022107973 A JP 2022107973A
Authority
JP
Japan
Prior art keywords
rotation
annular groove
shaft
conversion mechanism
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021002709A
Other languages
Japanese (ja)
Inventor
宗篤 柿木
Muneatsu Kakigi
一也 岡▲崎▼
Kazuya Okazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2021002709A priority Critical patent/JP2022107973A/en
Publication of JP2022107973A publication Critical patent/JP2022107973A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

To provide a rotary revolution conversion mechanism which has high flexibility of design of a revolving track of revolving motion, and to provide a reciprocating engine.SOLUTION: A rotary revolution conversion mechanism 20 mutually converts rotative motion of a rotary shaft 21 and revolving motion of a revolving shaft 22 to transmit power and includes: an annular groove 23 which encloses the rotary shaft 21; and a node 24 which is fixed to the rotary shaft 21 and rotationally moves around the rotary shaft 21. The annular groove 23 forms an annular shape, and the node 24 has: a revolution arm part 24a; and a revolution elongated hole 24c which is placed at one end part on the side of the annular groove 23 of the revolution arm part 24a, arranged in a manner that its longitudinal direction is set in an extensin direction of the revolution arm part 24a, and overlaps with the annular groove 23 constantly. The revolving shaft 22 is inserted into the annular groove 23 and the revolution elongated hole 24c.SELECTED DRAWING: Figure 1

Description

本発明は、回転周回変換機構および往復動機関に関し、より詳細には、回転軸の回転運動および回転軸の周りを周回する周回軸の周回運動を相互に変換して伝達する回転周回変換機構とその回転周回変換機構を備える往復動機関に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation/circulation conversion mechanism and a reciprocating engine, and more particularly, a rotation/circulation conversion mechanism that mutually converts and transmits the rotary motion of a rotary shaft and the rotary motion of a rotary shaft that revolves around the rotary shaft. It relates to a reciprocating engine provided with the rotation rotation conversion mechanism.

内燃機関などの往復動機関はピストンの往復直線運動と回転軸の回転運動とを相互に変換する機構を備えており、回転軸の軸方向視で回転軸の周りを真円軌道で周回するクランクピンを有する構造のクランク軸が必須である(例えば、特許文献1参照)。 A reciprocating engine such as an internal combustion engine is equipped with a mechanism that mutually converts the reciprocating linear motion of the piston and the rotary motion of the rotating shaft. A crankshaft having a pin structure is essential (see, for example, Patent Document 1).

特許第5632962号Patent No. 5632962

クランク軸において、回転軸の軸方向視でクランクピンの周回軌道は真円軌道に限定される。それ故、クランク軸を有する機構ではクランクピンの周回軌道の設計の自由度が低いという問題がある。 In the crankshaft, the orbit of the crankpin is limited to a perfect circular orbit when viewed in the axial direction of the rotating shaft. Therefore, in the mechanism having the crankshaft, there is a problem that the degree of freedom in designing the orbit of the crankpin is low.

本開示の目的は、周回運動の周回軌道の設計の自由度が高い回転周回変換機構および往復動機関を提供することである。 An object of the present disclosure is to provide a rotation orbit conversion mechanism and a reciprocating engine with a high degree of freedom in designing the orbit of the orbital motion.

上記の目的を達成する本発明の一態様の回転周回変換機構は、回転軸の回転運動および前記回転軸の軸方向視で前記回転軸の周りを周回する周回軸の周回運動を相互に変換して伝達する回転周回変換機構において、前記回転軸の軸方向視で前記回転軸を囲繞する環状溝と、前記回転軸に固定されて前記回転軸を軸に回転運動する節と、を備え、前記環状溝は環形状を成し、前記節は前記回転軸から前記環状溝を超えて延在する周回用腕部とこの周回用腕部の前記環状溝の側の一端部に配置されてこの周回用腕部の延在方向に長手方向が向いて前記環状溝に重なる周回用長穴とを有し、前記周回軸は前記環状溝および前記周回用長穴の両方に挿通される構成であることを特徴とする。 A rotation orbit conversion mechanism according to one aspect of the present invention that achieves the above objects converts the rotational motion of a rotating shaft and the orbital motion of a orbiting shaft that revolves around the rotating shaft when viewed in the axial direction of the rotating shaft. a rotation rotation conversion mechanism for transmitting power through a rotary shaft, comprising: an annular groove surrounding the rotation shaft when viewed in the axial direction of the rotation shaft; and a node fixed to the rotation shaft and rotating around the rotation shaft, The annular groove has an annular shape, and the node is disposed at a winding arm extending beyond the annular groove from the rotating shaft and at one end of the winding arm on the annular groove side. and an elongated circling hole whose longitudinal direction is oriented in the extending direction of the arm portion and which overlaps with the annular groove, and the circulating shaft is inserted through both the annular groove and the elongated circulating hole. characterized by

上記の目的を達成する本発明の一態様の往復動機関は、上記に記載の回転周回変換機構と、シリンダの内部に配置されて往復直線運動するピストンと、このピストンの往復直線運動および前記周回軸の周回運動を相互に変換する直動周回変換機構と、を備えることを特徴とする。 A reciprocating engine according to one aspect of the present invention that achieves the above object comprises the above-described rotation/circulation conversion mechanism, a piston arranged inside a cylinder and performing reciprocating linear motion, the reciprocating linear motion of the piston and the reciprocating motion. a direct-acting orbital conversion mechanism for mutually converting the orbital motion of the shaft.

本発明の一態様によれば、周回軸の環状溝に沿った周回運動と回転軸の回転運動とが節の回転運動により相互に変換可能となり、環状溝の形状により周回軸の周回軌道を真円軌道以外の軌道に拘束することができる。これにより、周回軸の周回軌道の設計の自由度を高くすることができる。 According to one aspect of the present invention, the orbital motion of the orbital shaft along the annular groove and the rotational motion of the rotating shaft can be mutually converted by the rotational motion of the nodes, and the shape of the annular groove allows the orbital path of the orbital shaft to be true. Can be constrained to trajectories other than circular trajectories. As a result, it is possible to increase the degree of freedom in designing the circling orbit of the circulating shaft.

実施形態の回転周回変換機構とその回転周回変換機構を備えた実施形態の往復動機関を例示する斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view illustrating a rotation cycle conversion mechanism of an embodiment and a reciprocating engine of an embodiment provided with the rotation cycle conversion mechanism; 図1の回転周回変換機構を回転軸の軸方向に見た正面図である。It is the front view which looked at the rotation rotation rotation conversion mechanism of FIG. 1 in the axial direction of the rotating shaft. 図2の矢印IIIで示す断面図である。3 is a cross-sectional view indicated by arrow III in FIG. 2; FIG. 図2の節の第一変形例を例示する回転周回変換機構の正面図である。FIG. 3 is a front view of a rotation rotation conversion mechanism illustrating a first modified example of the node in FIG. 2; 図2の節の第二変形例を例示する回転周回変換機構の正面図である。FIG. 3 is a front view of a rotation rotation conversion mechanism illustrating a second modified example of the node in FIG. 2; 図1の往復動機関における回転軸の回転角度とピストンのX軸方向位置との関係を例示する関係図である。FIG. 2 is a relationship diagram illustrating the relationship between the rotation angle of a rotating shaft and the position of a piston in the X-axis direction in the reciprocating engine of FIG. 1; 図2の環状溝の第一変形例を例示する回転周回変換機構の正面図である。FIG. 4 is a front view of a rotation rotation conversion mechanism illustrating a first modified example of the annular groove of FIG. 2; 図2の環状溝の第二変形例を例示する回転周回変換機構の正面図である。FIG. 10 is a front view of a rotation rotation conversion mechanism illustrating a second modified example of the annular groove of FIG. 2; 図1の直動周回変換機構の変形例を例示する往復動機関の斜視図である。FIG. 2 is a perspective view of a reciprocating engine illustrating a modification of the linear motion rotation conversion mechanism of FIG. 1;

以下に、本開示における回転周回変換機構および往復動機関の実施形態について説明する。図中において、往復動機関10のピストン11の往復直線運動の方向をX方向とし、往復動機関10の出力軸12の軸方向で、回転周回変換機構20の回転軸21の軸方向をZ方向とし、X方向およびZ方向の両方に直交する方向をY方向とする。図中において、Z方向のピストン11の側を表側とし、その反対側を裏側とする。図中において、実線の矢印は各部材の動作を示し、点線の矢印は各部材の寸法を示す。なお、図中では、構成が分かり易いように寸法を変化させており、必ずしも実際に製造するものの比率とは一致させていない。 Embodiments of the rotation rotation conversion mechanism and the reciprocating engine in the present disclosure will be described below. In the figure, the direction of reciprocating linear motion of the piston 11 of the reciprocating engine 10 is the X direction, the axial direction of the output shaft 12 of the reciprocating engine 10 is the axial direction of the rotating shaft 21 of the rotation rotation conversion mechanism 20, and the Z direction is the axial direction. and the direction perpendicular to both the X and Z directions is the Y direction. In the drawings, the side of the piston 11 in the Z direction is the front side, and the opposite side is the back side. In the figure, solid line arrows indicate the operation of each member, and dotted line arrows indicate the dimensions of each member. In the drawings, the dimensions are changed so as to make the configuration easier to understand, and the ratios do not necessarily match the ratios of those actually manufactured.

本開示において往復直線運動とは物体が直線状に往復する運動を示し、本実施形態ではピストン11が行う運動である。回転運動とは物体が自身に存在する軸を中心にして真円状に回転する運動を示し、本実施形態では軸自身が回転する出力軸12および回転軸21が行う運動や回転軸21を軸にして回転する節24が行う運動である。周回運動とは回転運動とは異なり、物体が自身から離間した位置に存在する軸を中心にしてその軸の周りを周回する運動を示し、本実施形態では周回軸22が行う運動である。なお、周回運動する物体の周回軌道は真円に限定されるものではない。 In the present disclosure, reciprocating linear motion refers to linear reciprocating motion of an object, and in this embodiment, it is motion performed by the piston 11 . Rotational motion refers to a motion in which an object rotates in a perfect circle around its own axis. This is the motion performed by the joint 24 that rotates as Orbital motion is different from rotary motion in that an object revolves around an axis that exists at a distance from itself, and in this embodiment, it is the motion performed by the orbital axis 22 . It should be noted that the orbit of the orbiting object is not limited to a perfect circle.

図1に例示するように、実施形態の往復動機関10はピストン11の往復直線運動を動力源とする原動機であり、ピストン11、出力軸12、直動周回変換機構13、伝動装置14、および、回転周回変換機構20を備えて構成される。往復動機関10としては、ガソリンエンジンやディーゼルエンジンなどの内燃機関が例示される。 As illustrated in FIG. 1, the reciprocating engine 10 of the embodiment is a prime mover powered by the reciprocating linear motion of a piston 11, and includes a piston 11, an output shaft 12, a linear motion rotation conversion mechanism 13, a transmission device 14, and a , and a rotation rotation conversion mechanism 20 . As the reciprocating engine 10, an internal combustion engine such as a gasoline engine or a diesel engine is exemplified.

ピストン11は図示しないシリンダの内部に配置されて、軸方向がX方向に向いた円筒形状を成し、その冠面に作用する圧力または出力軸12の回転運動の伝達によりX方向に往復直線運動を行う。出力軸12はZ方向に延在して、X方向やY方向に屈曲しない比屈曲の回転軸であり、図示しない変速機や推進軸などの駆動機構に回転動力を出力するまたは駆動機構から回転動力を入力される。直動周回変換機構13はピストン11および周回軸22のそれぞれに連結され、ピストン11の往復直線運動および周回軸22の周回運動を相互に変換する機構である。 The piston 11 is arranged inside a cylinder (not shown) and has a cylindrical shape with its axial direction directed in the X direction. I do. The output shaft 12 extends in the Z direction and is a rotation shaft with a specific bending that does not bend in the X direction or the Y direction, and outputs rotational power to a drive mechanism such as a transmission or a propulsion shaft (not shown) or rotates from the drive mechanism. Power is input. The linear motion rotation conversion mechanism 13 is a mechanism that is connected to each of the piston 11 and the rotation shaft 22 and converts the reciprocating linear motion of the piston 11 and the rotation motion of the rotation shaft 22 to each other.

伝動装置14は出力軸12および回転軸21をそれぞれの回転動力が相互に伝達可能に連結する。伝動装置14としては歯車伝動装置や巻掛伝動装置が例示される。歯車伝動装置は少なくとも二つの歯車を有し、それらの歯車が出力軸12および回転軸21のそれぞれに固定されるとともに互いに直接的にまたは間接的に噛み合って構成される。巻掛伝動装置は出力軸12および回転軸21のそれぞれに固定されるプーリーまたはスプロケットと無端状のベルトまたはチェーンとから成り、それぞれのプーリーにベルトが、あるいは、それぞれのスプロケットにチェーンが巻き掛けられて構成される。 The transmission device 14 connects the output shaft 12 and the rotary shaft 21 so that their respective rotary powers can be mutually transmitted. As the transmission device 14, a gear transmission device and a winding transmission device are exemplified. The gear transmission has at least two gears, which are fixed to the output shaft 12 and the rotary shaft 21, respectively, and mesh directly or indirectly with each other. The winding transmission device consists of pulleys or sprockets fixed to the output shaft 12 and the rotating shaft 21, respectively, and endless belts or chains. A belt is wound around each pulley or a chain is wound around each sprocket. consists of

直動周回変換機構13は連結棒15、支持部材16、第一摺動部材17、および、第二摺動部材18を有して構成される。連結棒15はX方向に延在して、一端部がピストン11の下端部に固定され、他端部が第一摺動部材17に固定される。支持部材16は第一摺動部材17を摺動可能に片持ち支持する。第一摺動部材17はY方向に延在する腕部を少なくとも有し、支持部材16に沿ってX方向に往復直線運動する。第二摺動部材18は第一摺動部材17のY方向に延在する腕部に摺動可能に支持されるとともに周回軸22が遊嵌されてなる。第二摺動部材18は第一摺動部材17とともにX方向に往復直線運動しながら、第一摺動部材17に沿ってY方向に往復直線運動する。 The linear motion rotation conversion mechanism 13 includes a connecting rod 15 , a support member 16 , a first sliding member 17 and a second sliding member 18 . The connecting rod 15 extends in the X direction and has one end fixed to the lower end of the piston 11 and the other end fixed to the first sliding member 17 . The support member 16 supports the first slide member 17 in a slidable cantilever manner. The first sliding member 17 has at least an arm extending in the Y direction, and linearly reciprocates along the support member 16 in the X direction. The second sliding member 18 is slidably supported by the arm portion extending in the Y direction of the first sliding member 17, and is loosely fitted with the rotating shaft 22. As shown in FIG. The second sliding member 18 linearly reciprocates along the first sliding member 17 in the Y direction while linearly reciprocating in the X direction together with the first sliding member 17 .

支持部材16は複数でもよく、第一摺動部材17のY方向の両端部に配置されて第一摺動部材17を摺動可能に両端支持してもよい。また、第一摺動部材17は片持ちの場合にZ方向視でL字形状に限定されず、T字形状でもよく、両端支持の場合にZ方向視でH字形状やコの字形状でもよい。 A plurality of supporting members 16 may be provided, and may be arranged at both ends of the first sliding member 17 in the Y direction to slidably support both ends of the first sliding member 17 . Further, when the first sliding member 17 is cantilevered, it is not limited to an L shape when viewed in the Z direction, and may be a T shape. good.

直動周回変換機構13によれば、ピストン11に連結される連結棒15が往復直線運動のみを行うため、ピストン11の姿勢の傾きを抑制することが可能となる。それ故、シリンダに作用するピストン11の側圧力を低減できる。これにより、ピストン11の往復直線運動における摩擦抵抗を低減するには有利になる。また、ピストン11と連結棒15との連結が固定でよく、ピストンピンが不要となり、ピストン11の構造が単純化する。 According to the linear motion rotation conversion mechanism 13 , the connecting rod 15 connected to the piston 11 performs only reciprocating linear motion, so that inclination of the posture of the piston 11 can be suppressed. Therefore, the side pressure of the piston 11 acting on the cylinder can be reduced. This is advantageous for reducing the frictional resistance in the reciprocating linear motion of the piston 11 . In addition, the connection between the piston 11 and the connecting rod 15 can be fixed, eliminating the need for a piston pin and simplifying the structure of the piston 11 .

回転周回変換機構20は往復動機関10に備えられ、ピストン11の往復直線運動を変換して得られる周回軸22の周回運動と回転軸21の回転運動とを相互に変換可能なリンク機構である。回転周回変換機構20は、環状溝23、節24、調節軸25、軸受26、蓋27、および、抜留部材28を備えて構成される。 The rotation orbit conversion mechanism 20 is provided in the reciprocating engine 10, and is a link mechanism capable of mutually converting the orbital motion of the orbital shaft 22 obtained by converting the reciprocating linear motion of the piston 11 and the rotational motion of the rotating shaft 21. . The rotation orbit conversion mechanism 20 includes an annular groove 23 , a node 24 , an adjustment shaft 25 , a bearing 26 , a lid 27 and a retaining member 28 .

回転軸21はZ方向に延在して成り、軸線を軸として軸自身が回転する。回転軸21はZ方向表側の一端部が節24に固定され、中途位置が軸受26に回転可能に支持され、Z方向裏側の他端部が伝動装置14を介して出力軸12に回転動力を伝達可能に連結される。回転軸21は直動周回変換機構13における第一摺動部材17のX方向の往復直線運動の中点でかつ第二摺動部材18のY方向の往復直線運動の中点に配置される。 The rotating shaft 21 extends in the Z direction and rotates about the axis. One end of the rotating shaft 21 on the front side in the Z direction is fixed to a node 24 , the midway position is rotatably supported by a bearing 26 , and the other end on the back side in the Z direction supplies rotational power to the output shaft 12 via the transmission device 14 . communicatively coupled. The rotating shaft 21 is arranged at the midpoint of the X-direction reciprocating linear motion of the first sliding member 17 and the midpoint of the Y-direction reciprocating linear motion of the second sliding member 18 in the linear motion rotation conversion mechanism 13 .

周回軸22はZ方向に延在して成り、Z方向視で回転軸21の周りを環状溝23に沿って周回する部材であり、その周回軌道は環状溝23の環形状で規定される。周回軸22はZ方向表側の一端部が直動周回変換機構13の第二摺動部材18に遊嵌され、中途位置が節24の周回用腕部24aに形成された周回用長穴24cおよび環状溝23の両方に挿通し、Z方向裏側の他端部が抜留部材28を有する。周回軸22は中途位置に軸径よりも拡径した拡径部を有し、その拡径部が節24のZ方向表側の面に接するように構成して、節24のZ方向の振れを抑える機能を有してもよい。 The rotating shaft 22 extends in the Z direction and is a member that rotates along the annular groove 23 around the rotating shaft 21 as viewed in the Z direction. One end on the front side in the Z direction of the circulating shaft 22 is loosely fitted in the second sliding member 18 of the direct-acting circulating conversion mechanism 13, and an elongated circulating hole 24c formed in the circulating arm portion 24a of the node 24 is formed in the intermediate position. It is inserted into both of the annular grooves 23 and has a retaining member 28 at the other end on the back side in the Z direction. The circling shaft 22 has an enlarged diameter portion at an intermediate position that is larger in diameter than the shaft diameter. It may have a function of suppressing.

図2に例示するように、環状溝23はZ方向視で回転軸21を囲繞し、Z方向表側から裏側に向かって窪んだ溝である。環状溝23は、軸受26に蓋27が固定されて形成され、互いに環径方向に対向する軸受26の突起部26aの外周面と蓋27の貫通穴27aの内周面との間の隙間で構成される。環状溝23はZ方向視で真円の環形状を除く環形状を成す。本開示において、真円とは回転軸21を中心とした真円を示す。本実施形態の環状溝23はZ方向視でX方向に短軸が向き、Y方向に長軸が向いた楕円の環形状を成す。 As illustrated in FIG. 2, the annular groove 23 is a groove that surrounds the rotating shaft 21 as viewed in the Z direction and is recessed from the front side to the back side in the Z direction. The annular groove 23 is formed by fixing the lid 27 to the bearing 26, and is a gap between the outer peripheral surface of the protrusion 26a of the bearing 26 and the inner peripheral surface of the through hole 27a of the lid 27, which face each other in the annular radial direction. Configured. The annular groove 23 has an annular shape other than a perfectly circular annular shape when viewed in the Z direction. In the present disclosure, a perfect circle means a perfect circle around the rotation axis 21 . The annular groove 23 of this embodiment has an elliptical ring shape with a short axis directed in the X direction and a long axis directed in the Y direction when viewed in the Z direction.

環状溝23は上死点区間23a、下死点区間23b、および、それらの区間以外の他の区間23c、23dに区画される。上死点区間23aは少なくともピストン11が上死点の近傍に位置する間に周回軸22が移動する区間を含む区間である。下死点区間23bは少なくともピストン11が下死点の近傍に位置する間に周回軸22が移動する区間を含む区間である。本開示においてピストン11が上死点(または下死点)の近傍に位置するとはピストン11が上死点(または下死点)に位置することを含む。例えば、ピストン11が上死点(または下死点)の近傍に位置する間とは、上死点を基準として回転軸21の回転角度において上死点(または下死点)の前の30°~上死点(または下死点)の後の30°の間で上死点(または下死点)を含む範囲が例示される。本実施形態の環状溝23は短軸がX方向に向き、長軸がY方向に向いた楕円の環形状であり、上死点区間23aの形状は他の区間23c、23dの形状における曲率よりも小さい曲率の円弧形状を成す。 The annular groove 23 is divided into a top dead center section 23a, a bottom dead center section 23b, and sections 23c and 23d other than those sections. The top dead center section 23a is a section including at least a section in which the rotation shaft 22 moves while the piston 11 is positioned near the top dead center. The bottom dead center section 23b is a section including at least a section in which the rotation shaft 22 moves while the piston 11 is positioned near the bottom dead center. In the present disclosure, positioning the piston 11 near the top dead center (or bottom dead center) includes positioning the piston 11 at the top dead center (or bottom dead center). For example, the term "while the piston 11 is positioned near the top dead center (or bottom dead center)" refers to 30 degrees before the top dead center (or bottom dead center) in terms of the rotation angle of the rotary shaft 21 with respect to the top dead center (or bottom dead center). ~ 30° after top dead center (or bottom dead center) and including top dead center (or bottom dead center) is exemplified. The annular groove 23 of this embodiment has an elliptical ring shape with a minor axis directed in the X direction and a major axis directed in the Y direction. also forms an arc shape with a small curvature.

節24は回転軸21の一端部に固定されて回転軸21を軸に回転し、Z方向に厚さ方向が向いた板状の部材である。節24は周回用腕部24a、調節用腕部24b、周回用長穴24c、および、調節用長穴24dを有して構成される。本実施形態の節24のZ方向視における形状は長方形であり、その中心に回転軸21が固定される。節24のZ方向視における形状は長方形に限定されるものではなく、適宜変形可能である。節24は軸受26、蓋27から離間することが望ましい。 The joint 24 is a plate-like member that is fixed to one end of the rotating shaft 21, rotates around the rotating shaft 21, and has a thickness direction in the Z direction. The node 24 is configured with a winding arm portion 24a, an adjusting arm portion 24b, a winding slot 24c, and an adjusting slot 24d. The shape of the node 24 of this embodiment as viewed in the Z direction is a rectangle, and the rotating shaft 21 is fixed at the center thereof. The shape of the node 24 as viewed in the Z direction is not limited to a rectangle, and can be modified as appropriate. It is desirable that the node 24 be separated from the bearing 26 and the lid 27 .

周回用腕部24aおよび調節用腕部24bのそれぞれはZ方向視で回転軸21から回転軸21の軸径方向外側に向かって環状溝23を超えるまで延在する部位である。周回用腕部24aおよび調節用腕部24bの複数の腕部は節24の回転周方向に等間隔に配置される。複数の腕部が周回用腕部24aおよび調節用腕部24bの二つの腕部からなる場合に、周回用腕部24aおよび調節用腕部24bは回転軸21に対して点対称に配置される。 Each of the circulating arm portion 24a and the adjusting arm portion 24b is a portion that extends from the rotating shaft 21 toward the outside in the axial radial direction of the rotating shaft 21 until it exceeds the annular groove 23 as viewed in the Z direction. A plurality of arm portions of the winding arm portion 24a and the adjusting arm portion 24b are arranged at equal intervals in the rotational circumferential direction of the node 24. As shown in FIG. When the plurality of arms are composed of two arms, ie, the rotating arm portion 24a and the adjusting arm portion 24b, the rotating arm portion 24a and the adjusting arm portion 24b are arranged point-symmetrically with respect to the rotation shaft 21. .

周回用長穴24cおよび調節用長穴24dのそれぞれはZ方向視で長手方向が回転軸21の軸径方向に向いて環状溝23に常時重なり、節24をZ方向に貫通した長穴である。周回用長穴24cは周回用腕部24aの環状溝23の側の端部に配置され、周回軸22が挿通される。調節用長穴24dは調節用腕部24bの環状溝23の側の端部に配置され、調節軸25が挿通される。 Each of the rounding slot 24c and the adjustment slot 24d is a slot whose longitudinal direction is oriented in the axial radial direction of the rotating shaft 21 when viewed in the Z direction and which always overlaps the annular groove 23 and passes through the node 24 in the Z direction. . The winding elongated hole 24c is arranged at the end of the winding arm portion 24a on the annular groove 23 side, and the winding shaft 22 is inserted therethrough. The adjustment slot 24d is arranged at the end of the adjustment arm 24b on the annular groove 23 side, and the adjustment shaft 25 is inserted therethrough.

周回用長穴24cおよび調節用長穴24dの長手方向の両端部は周回軸22および調節軸25に非接触であることが望ましい。具体的に、周回用長穴24cおよび調節用長穴24dの長手方向の長さLaは、回転軸21からの距離の最大値Lmaxと最小値Lminとの差分よりも長いことが望ましい。このように、長さLaを調節することで、周回用長穴24cおよび調節用長穴24dは常時、環状溝23に重なり、長手方向の両端が周回軸22および調節軸25に非接触となる。これにより、周回軸22や調節軸25と節24との接触が周回方向のみとなり、接触に伴う伝達効率の低下や騒音の低下に有利になる。 It is desirable that both longitudinal ends of the winding elongated hole 24c and the adjusting elongated hole 24d are not in contact with the winding shaft 22 and the adjusting shaft 25, respectively. Specifically, it is desirable that the longitudinal length La of the rotation slot 24c and the adjustment slot 24d is longer than the difference between the maximum value Lmax and the minimum value Lmin of the distance from the rotation shaft 21 . By adjusting the length La in this way, the winding elongated hole 24c and the adjusting elongated hole 24d always overlap the annular groove 23, and both ends in the longitudinal direction are out of contact with the winding shaft 22 and the adjusting shaft 25. . As a result, the contact between the winding shaft 22 or the adjustment shaft 25 and the node 24 is only in the winding direction, which is advantageous in reducing transmission efficiency and noise caused by contact.

調節軸25はZ方向に延在して成り、Z方向の一端部が環状溝23から突出し、中途位置が環状溝23に挿通し、他端部が抜留部材28を有する。調節軸25はカウンタウェイト(つり合い錘ともいう)として機能する。調節軸25の重量は軸長、材質により適宜、調節可能である。調節軸25の一端部が軸に対して拡径した形状を成してもよい。 The adjustment shaft 25 extends in the Z direction, one end in the Z direction protrudes from the annular groove 23 , the midway position is inserted into the annular groove 23 , and the other end has a retaining member 28 . The adjustment shaft 25 functions as a counterweight. The weight of the adjustment shaft 25 can be appropriately adjusted depending on the shaft length and material. One end of the adjusting shaft 25 may have a shape with an enlarged diameter relative to the shaft.

図3に例示するように、軸受26は回転軸21を回転可能に支持するとともに環状溝23の一部を構成する部材であり、突起部26a、内側窪み26b、および、軸穴26cを有して構成される。突起部26aはZ方向視で中央部に配置されて、Z方向裏側から表側に向かって突出する。内側窪み26bは突起部26aの外周面のZ方向裏側の全周に亘って形成され、外周面から内側に向かって窪む。軸穴26cは突起部26aの中央部に配置されて、軸受26をZ方向に貫通する。 As illustrated in FIG. 3, the bearing 26 is a member that rotatably supports the rotating shaft 21 and constitutes a part of the annular groove 23, and has a protrusion 26a, an inner recess 26b, and a shaft hole 26c. consists of The projecting portion 26a is arranged in the central portion when viewed in the Z direction, and protrudes from the back side in the Z direction toward the front side. The inner recess 26b is formed over the entire circumference of the Z-direction back side of the outer peripheral surface of the projecting portion 26a, and is recessed inward from the outer peripheral surface. The shaft hole 26c is arranged in the center of the protrusion 26a and passes through the bearing 26 in the Z direction.

蓋27は軸受26に固定されて環状溝23の一部を構成する部材であり、貫通穴27aおよび外側窪み27bを有して構成される。貫通穴27aはZ方向視で中央部に配置されて、蓋27をZ方向に貫通する。外側窪み27bは貫通穴27aの内周面のZ方向裏側の全周に亘って形成され、内周面から外側に向かって窪む。 The lid 27 is a member that is fixed to the bearing 26 and constitutes a part of the annular groove 23, and has a through hole 27a and an outer recess 27b. The through hole 27a is arranged in the central portion when viewed in the Z direction and penetrates the lid 27 in the Z direction. The outer recess 27b is formed over the entire circumference of the Z-direction back side of the inner peripheral surface of the through hole 27a, and is recessed outward from the inner peripheral surface.

軸受26に蓋27が固定されると、互いに環状溝23の環径方向に対向する軸受26の突起部26aの外周面と蓋27の貫通穴27aの内周面との間の隙間が生じる。この隙間が環状溝23となる。また、内側窪み26bと外側窪み27bとが環状溝23を介して対向して配置される。 When the lid 27 is fixed to the bearing 26, a gap is formed between the outer peripheral surface of the protrusion 26a of the bearing 26 and the inner peripheral surface of the through hole 27a of the lid 27, which face each other in the ring radial direction of the annular groove 23. This gap becomes the annular groove 23 . Also, the inner recess 26b and the outer recess 27b are arranged to face each other with the annular groove 23 interposed therebetween.

抜留部材28は周回軸22および調節軸25のそれぞれのZ方向裏側の他端部に固定される部材である。抜留部材28は周回軸22および調節軸25のそれぞれの軸径よりも拡径して成り、内側窪み26bおよび外側窪み27bに収納される。抜留部材28は各々の軸径よりも拡径していればよく、抜留部材28がころ軸受で構成されてもよい。 The retaining member 28 is a member that is fixed to the other end portion on the back side in the Z direction of the rotating shaft 22 and the adjusting shaft 25 . The retaining member 28 has a diameter larger than that of the rotating shaft 22 and the adjusting shaft 25, and is accommodated in the inner recess 26b and the outer recess 27b. The retaining member 28 may have a diameter larger than the diameter of each shaft, and the retaining member 28 may be composed of a roller bearing.

往復動機関10の作用について説明する。ピストン11の冠面に圧力が作用した場合にピストン11、直動周回変換機構13、回転周回変換機構20、および、出力軸12の順に動力が伝達される。 The action of the reciprocating engine 10 will be described. When pressure acts on the crown surface of the piston 11, power is transmitted to the piston 11, the direct-acting rotation conversion mechanism 13, the rotation rotation conversion mechanism 20, and the output shaft 12 in this order.

具体的に、ピストン11の冠面に圧力が作用すると、ピストン11はX方向に往復直線運動を行う。次いで、第一摺動部材17がX方向に往復直線運動し、第二摺動部材18が第一摺動部材17とともにX方向に往復直線運動しながら第一摺動部材17に沿ってY方向に往復直線運動する。直動周回変換機構13は、第一摺動部材17のX方向の往復直線運動と第二摺動部材18のY方向の往復直線運動とにより、ピストン11の往復直線運動を周回軸22の周回運動に変換する。 Specifically, when pressure acts on the crown surface of the piston 11, the piston 11 performs reciprocating linear motion in the X direction. Next, the first sliding member 17 linearly reciprocates in the X direction, and the second sliding member 18 reciprocates linearly along the first sliding member 17 in the X direction along with the first sliding member 17 in the Y direction. reciprocating linear motion. The reciprocating linear motion of the first sliding member 17 in the X direction and the reciprocating linear motion of the second sliding member 18 in the Y direction cause the reciprocating linear motion of the piston 11 to revolve around the revolving shaft 22 . Convert to exercise.

次いで、周回軸22は環状溝23に沿って周回する。次いで、節24は周回軸22の周回に伴って回転軸21を軸にして回転し、その節24の回転に伴って回転軸21が回転するとともに調節軸25が環状溝23に沿って周回する。周回軸22は周回用長穴24cを長手方向に往復移動しながら環状溝23を周回し、調節軸25も同様に調節用長穴24dを長手方向に往復移動しながら環状溝23を周回する。回転周回変換機構20は周回軸22の周回軌道を楕円軌道に拘束しつつ、周回運動を回転軸21の回転運動に変換する。次いで、回転軸21の回転動力が伝動装置14により出力軸12に伝達されて出力軸12が回転し、その回転動力が図示しない駆動機構に伝達される。 The circling shaft 22 then circulates along the annular groove 23 . Next, the joint 24 rotates around the rotary shaft 21 as the rotary shaft 22 rotates, and as the rotary shaft 24 rotates, the rotary shaft 21 rotates and the adjusting shaft 25 rotates along the annular groove 23. . The circulating shaft 22 circulates in the annular groove 23 while longitudinally reciprocating through the circulating elongated hole 24c, and the adjusting shaft 25 similarly circulates in the annular groove 23 while reciprocatingly longitudinally reciprocating through the regulating elongated hole 24d. The rotary orbit conversion mechanism 20 constrains the orbit of the orbital shaft 22 to an elliptical orbit and converts the orbital motion into the rotational motion of the rotary shaft 21 . Next, the rotational power of the rotary shaft 21 is transmitted to the output shaft 12 by the transmission device 14 to rotate the output shaft 12, and the rotational power is transmitted to a drive mechanism (not shown).

ピストン11の冠面に圧力が作用せず、駆動機構から出力軸12に回転動力が伝達された場合に、前述した動力の流れと逆に、回転軸21、節24、周回軸22、直動周回変換機構13、および、ピストン11の順に動力が伝達される。 When no pressure is applied to the crown surface of the piston 11 and rotational power is transmitted from the drive mechanism to the output shaft 12, the rotating shaft 21, the node 24, the orbiting shaft 22, and the linear motion shaft 21, the joint 24, the orbiting shaft 22, and the direct-acting Power is transmitted to the rotation conversion mechanism 13 and the piston 11 in this order.

以上のように、本実施形態の回転周回変換機構20は周回軸22の環状溝23に沿った周回運動と回転軸21の回転運動とが節24の回転運動により相互に変換可能となり、環状溝23の形状により周回軸22の周回軌道を真円軌道以外の軌道に拘束することができる。これにより、周回運動の周回軌道の設計の自由度を高くすることができる。なお、回転周回変換機構20は環状溝23の形状を真円形状に構成することで、周回軸22の周回軌道を真円軌道にすることもできる。 As described above, in the rotary rotation conversion mechanism 20 of the present embodiment, the rotary motion of the rotary shaft 22 along the annular groove 23 and the rotary motion of the rotary shaft 21 can be mutually converted by the rotary motion of the joints 24. The shape of 23 can constrain the orbit of the orbital shaft 22 to an orbit other than a perfect circular orbit. This makes it possible to increase the degree of freedom in designing the orbit of the orbital motion. It should be noted that the rotary orbit conversion mechanism 20 can also make the orbit of the orbital shaft 22 a perfect circle by configuring the shape of the annular groove 23 in a perfect circle.

また、回転周回変換機構20は回転軸21の回転運動と周回軸22の周回運動とを節24の回転のみで変換するため、リンク数やジョイント数が少ない簡易なリンク機構となる。これにより、回転運動と周回運動とを歯車により変換する機構あるいはリンク数やジョイント数が多い複雑なリンク機構に比して、製造に要するコストを削減できることに加えて、運動質量の低減に有利になり、動力の伝達効率も向上することができる。 In addition, since the rotary rotation conversion mechanism 20 converts the rotary motion of the rotary shaft 21 and the rotary motion of the rotary shaft 22 only by the rotation of the joints 24, it becomes a simple link mechanism with a small number of links and joints. As a result, compared to a mechanism that converts rotary motion and orbital motion using gears or a complicated link mechanism with a large number of links and joints, in addition to being able to reduce the cost required for manufacturing, it is advantageous for reducing the kinetic mass. As a result, power transmission efficiency can be improved.

回転周回変換機構20の節24は周回用腕部24aおよび周回用長穴24cのみを有した構成としてもよいが、周回用腕部24aおよび周回用長穴24cに加えて調節用腕部24bおよび調節用長穴24dを有することが望ましい。回転周回変換機構20は節24が調節用腕部24bおよび調節用長穴24dを有し、調節用長穴24dおよび環状溝23に調節軸25が挿通することで、節24に偶力を作用させることができる。これにより、節24の回転のつり合いがとれ、節24が円滑に回転軸21を軸にして回転運動を行うことができる。 The joint 24 of the rotation/circulation conversion mechanism 20 may have only the circulating arm portion 24a and the circulating elongated hole 24c. It is desirable to have an adjustment slot 24d. In the rotation rotation conversion mechanism 20, the joint 24 has an adjusting arm portion 24b and an elongated adjusting hole 24d, and the adjusting shaft 25 is inserted through the elongated adjusting hole 24d and the annular groove 23, thereby acting a couple of forces on the joint 24. can be made As a result, the rotation of the joint 24 is balanced, and the joint 24 can smoothly rotate around the rotary shaft 21 .

図4および図5に例示するように、Z方向視における節24の形状は本実施形態の形状に限定されない。 As illustrated in FIGS. 4 and 5, the shape of the node 24 when viewed in the Z direction is not limited to the shape of this embodiment.

図4の第一変形例の節24は、Z方向視で十字形状を成し、一つの周回用腕部24aと三つの調節用腕部24bとを有し、それらの複数の腕部がZ方向視で節24の周回方向に等間隔に配置されて構成される。第一変形例の節24は三つの調節用腕部24bのそれぞれに調節用長穴24dが形成されて、各々の調節用長穴24dに調節軸25が挿通される。調節用腕部24bの数は特に限定されるものではないが、多くなると調節軸25の数が増えることにより、重量、部品点数、および、周回運動における摩擦抵抗が増加することになる。それ故、調節用腕部24bの数は一つが望ましい。 The node 24 of the first modified example of FIG. 4 has a cross shape when viewed in the Z direction, and has one orbiting arm 24a and three adjusting arms 24b. When viewed from the direction, they are arranged at regular intervals in the winding direction of the node 24 . In the joint 24 of the first modification, each of the three adjusting arms 24b is formed with an adjusting elongated hole 24d, and an adjusting shaft 25 is inserted through each of the adjusting elongated holes 24d. The number of adjustment arms 24b is not particularly limited, but if the number is increased, the number of adjustment shafts 25 increases, resulting in an increase in weight, the number of parts, and frictional resistance in circular motion. Therefore, the number of adjusting arms 24b is preferably one.

図5の第二変形例の節24は、周回用長穴24cが形成された周回用腕部24aと調節用長穴24dが形成された調節用腕部24bとの間が埋まり、Z方向視で円形状を成し、周回用長穴24cおよび調節用長穴24dが円形状の節24の中心に対して点対称に形成されて構成される。このように、節24は回転周方向で隣り合う腕部どうしの間が埋まった円形状または正多角形状に構成されてもよい。節24が円形状または正多角形状に構成されて、回転軸21がその重心に配置されると、節24は勢車(フライホイールともいう)として機能する。これにより、ピストン11が上死点または下死点に位置しても、節24の慣性モーメントにより各部材の運動を滑らかに安定させることができる。 In the node 24 of the second modification shown in FIG. 5, the space between the winding arm portion 24a having the winding elongated hole 24c and the adjusting arm portion 24b having the adjusting elongated hole 24d is filled, and when viewed in the Z direction, , and the winding elongated hole 24c and the adjustment elongated hole 24d are formed point-symmetrically with respect to the center of the circular node 24. As shown in FIG. In this way, the joint 24 may be configured in a circular shape or a regular polygonal shape in which the space between the arms adjacent to each other in the rotation circumferential direction is filled. When the node 24 is configured in a circular or regular polygonal shape and the rotating shaft 21 is arranged at its center of gravity, the node 24 functions as a force wheel (also called a flywheel). As a result, even if the piston 11 is positioned at the top dead center or the bottom dead center, the motion of each member can be smoothly stabilized by the moment of inertia of the joint 24 .

環状溝23は蓋27を用いずに軸受26にZ方向に窪んだ窪みとして形成してもよいが、軸受26に蓋27が固定されたときに互いに対向する突起部26aの外周面と貫通穴27aの内周面との間の隙間で構成されることが望ましい。このように、環状溝23が軸受26と蓋27とにより形成されることで、環状溝23の内部に周回軸22や調節軸25の端部に固定された抜留部材28を収納する窪みを形成することが可能となる。これにより、周回軸22が環状溝23から抜け出ることを防止できるとともに周回軸22を直動周回変換機構13の第二摺動部材18と窪みに収納された抜留部材28とにより両端支持にできる。 The annular groove 23 may be formed in the bearing 26 as a recess that is recessed in the Z direction without using the lid 27. It is desirable that the gap between the inner peripheral surface of 27a is formed. By forming the annular groove 23 with the bearing 26 and the lid 27 in this manner, a recess is formed in the annular groove 23 to accommodate the retaining member 28 fixed to the end of the rotating shaft 22 and the adjusting shaft 25 . can be formed. As a result, the circulating shaft 22 can be prevented from slipping out of the annular groove 23, and the circulating shaft 22 can be supported at both ends by the second sliding member 18 of the linear motion turning conversion mechanism 13 and the retaining member 28 housed in the recess. .

本実施形態の往復動機関10は周回運動の周回軌道の設計の自由度が高い回転周回変換機構20を備えて、周回運動の周回軌道を真円軌道以外の軌道にすることで、ピストン11の往復直線運動の移動速度を所定の区間で減速させたり、所定の区間で増速させたりすることができる。 The reciprocating engine 10 of the present embodiment is provided with a rotation orbit conversion mechanism 20 that has a high degree of freedom in designing the orbit of the orbital motion, and by changing the orbit of the orbital motion to a trajectory other than a perfect circular orbit, the piston 11 can be The moving speed of the reciprocating linear motion can be decelerated in a predetermined section or increased in a predetermined section.

往復動機関10において、環状溝23はZ方向視で上死点区間23aの形状が他の区間23c、23dの形状における曲率よりも小さい曲率の円弧形状、または、直線形状を成すことが望ましい。本実施形態の環状溝23はZ方向視で短軸がピストン11の往復直線運動の方向に向いた楕円の環形状を成し、上死点区間23aの曲率が他の区間23c、23dの曲率よりも小さい。つまり、周回軸22が上死点区間23aを移動する間、ピストン11の往復直線運動の移動量が小さくなり、上死点の近傍におけるピストン11の往復直線運動の速度を低減することができる。これにより、ピストン11が上死点を離れるに従って生じる燃焼効率の低下を抑制するには有利になり、高等容度の燃焼サイクルを実現することができる。 In the reciprocating engine 10, it is desirable that the annular groove 23 has an arc shape or a linear shape in which the shape of the top dead center section 23a as viewed in the Z direction has a smaller curvature than the other sections 23c and 23d. The annular groove 23 of this embodiment has an elliptical annular shape with a short axis directed in the direction of reciprocating linear motion of the piston 11 when viewed in the Z direction, and the curvature of the top dead center section 23a is the curvature of the other sections 23c and 23d. less than That is, while the rotary shaft 22 moves through the top dead center section 23a, the amount of reciprocating linear motion of the piston 11 is reduced, and the speed of the reciprocating linear motion of the piston 11 near the top dead center can be reduced. This is advantageous in suppressing the decrease in combustion efficiency that occurs as the piston 11 moves away from the top dead center, and a combustion cycle with a high degree of constant volume can be realized.

図6に例示するように、実線で示す本実施形態の往復動機関10における上死点の近傍におけるピストン11の往復直線運動の速度は、従来周知のクランク軸を用いた往復動機関における上死点の近傍におけるピストンの往復直線運動の速度に比して遅くなっている。それ故、本実施形態の往復動機関10によれば、クランク軸を用いた往復動機関に比して等容度が高い燃焼サイクルとなる。 As illustrated in FIG. 6, the speed of the reciprocating linear motion of the piston 11 in the vicinity of the top dead center in the reciprocating engine 10 of the present embodiment indicated by the solid line is the top dead center of a conventionally known reciprocating engine using a crankshaft. It is slower than the speed of the reciprocating linear motion of the piston in the vicinity of the point. Therefore, according to the reciprocating engine 10 of the present embodiment, the combustion cycle has a higher degree of constant volume compared to a reciprocating engine using a crankshaft.

なお、環状溝23の楕円の短軸をピストン11の往復方向から傾けて、ピストン11が上死点に位置してからピストン11の往復直線運動の速度を減速させる構成にしてもよい。また、環状溝23の楕円の長軸をピストン11の往復方向に向けて、上死点の近傍におけるピストン11の往復直線運動の速度を速めることもできる。 The minor axis of the ellipse of the annular groove 23 may be tilted from the reciprocating direction of the piston 11 so that the speed of the reciprocating linear motion of the piston 11 is reduced after the piston 11 is positioned at the top dead center. Alternatively, the long axis of the ellipse of the annular groove 23 may be oriented in the reciprocating direction of the piston 11 to increase the speed of the reciprocating linear motion of the piston 11 near the top dead center.

図7および図8に例示するように、環状溝23のZ方向視における形状は楕円の環形状に限定されるものではなく、ピストン11の往復直線運動を所定の区間で増減速させる形状であればよい。 As exemplified in FIGS. 7 and 8, the shape of the annular groove 23 as viewed in the Z direction is not limited to an elliptical ring shape, and may be any shape that increases or decreases the reciprocating linear motion of the piston 11 in a predetermined interval. Just do it.

図7の第一変形例の環状溝23は真円の環形状の一部を扁平させた環形状を成す。具体的に、第一変形例の環状溝23は下死点区間23bおよび他の区間23c、23dが所定の曲率の円弧形状を成し、上死点区間23aがその所定の曲率よりも小さい曲率の円弧形状を成す。このように、環状溝23は上死点区間23aの曲率を小さくして、ピストン11の上死点の近傍における往復直線運動の速度を低減できればよい。 The annular groove 23 of the first modified example of FIG. 7 has an annular shape obtained by flattening a part of the perfectly circular annular shape. Specifically, in the annular groove 23 of the first modified example, the bottom dead center section 23b and the other sections 23c and 23d form an arc shape with a predetermined curvature, and the top dead center section 23a has a curvature smaller than the predetermined curvature. form an arc. In this manner, the annular groove 23 may reduce the curvature of the top dead center section 23a to reduce the speed of the reciprocating linear motion of the piston 11 in the vicinity of the top dead center.

図8の第二変形例の環状溝23は角丸長方形の環形状を成す。具体的に、第二変形例の環状溝23は上死点区間23aおよび下死点区間23bが直線形状を成し、他の区間23c、23dが円弧形状を成す。このように、上死点区間23aが直線形状を成して、ピストン11は上死点の近傍で往復直線運動をしない状態となることで、燃焼サイクルの等容度は最も高くなる。 The annular groove 23 of the second modified example of FIG. 8 has a rectangular annular shape with rounded corners. Specifically, the annular groove 23 of the second modification has a top dead center section 23a and a bottom dead center section 23b that are linear, and other sections 23c and 23d that are arc-shaped. In this manner, the top dead center section 23a forms a linear shape, and the piston 11 does not reciprocate linearly in the vicinity of the top dead center.

図9に例示するように、直動周回変換機構13は本実施形態の構成に限定されない。この変形例の直動周回変換機構13は連結棒15、支持部材16、第一摺動部材17、および、揺動部材19を有して構成される。 As illustrated in FIG. 9, the linear motion rotation conversion mechanism 13 is not limited to the configuration of this embodiment. A direct-acting rotation conversion mechanism 13 of this modification includes a connecting rod 15 , a support member 16 , a first sliding member 17 , and a swinging member 19 .

連結棒15はX方向に延在して、一端部がピストン11の下端部に固定され、他端部が第一摺動部材17に固定される。支持部材16は第一摺動部材17を摺動可能に両端支持する。第一摺動部材17はZ方向に延在する円柱状を成し、支持部材16に沿ってX方向に往復直線運動する。揺動部材19はX方向下側に配置された一端部が第一摺動部材17を遊嵌し、X方向上側に配置された他端部が周回軸22を遊嵌する。揺動部材19は第一摺動部材17とともにX方向に往復直線運動するとともに一端部を軸にして他端部が揺動運動する。 The connecting rod 15 extends in the X direction and has one end fixed to the lower end of the piston 11 and the other end fixed to the first sliding member 17 . The supporting member 16 slidably supports both ends of the first sliding member 17 . The first sliding member 17 has a columnar shape extending in the Z direction and linearly reciprocates along the support member 16 in the X direction. The rocking member 19 has one end arranged on the lower side in the X direction loosely fitted with the first sliding member 17 , and the other end arranged on the upper side in the X direction loosely fitted with the rotating shaft 22 . The swinging member 19 reciprocates linearly in the X direction together with the first sliding member 17, and the other end swings about one end thereof.

この変形例の直動周回変換機構13も実施形態と同様に、シリンダに作用するピストン11の側圧力を低減できるとともにピストン11の構造が単純化する。この変形例の直動周回変換機構13の場合に、回転軸21は揺動部材19のX方向の往復直線運動の中点でかつ円心揺動運動におけるY方向の中点に配置される。 As in the embodiment, the direct-acting rotation conversion mechanism 13 of this modification can reduce the side pressure of the piston 11 acting on the cylinder, and the structure of the piston 11 is simplified. In the case of the linear motion rotation conversion mechanism 13 of this modified example, the rotating shaft 21 is arranged at the midpoint of the reciprocating linear motion of the swing member 19 in the X direction and the midpoint of the circular swing motion in the Y direction.

本実施形態の往復動機関10は複数のシリンダ(気筒)を備えた多気筒機関で構成されてもよい。その場合に、往復動機関10は複数のシリンダの一つごとに、ピストン11、回転軸21、直動周回変換機構13、および、回転周回変換機構20を備えるとともに、各々の回転軸21の一つごとに伝動装置14を備え、各々の伝動装置14が各々の回転軸21および一つの出力軸12の間を回転動力伝達可能に連結して構成される。 The reciprocating engine 10 of this embodiment may be configured as a multi-cylinder engine having a plurality of cylinders. In that case, the reciprocating engine 10 is provided with a piston 11, a rotary shaft 21, a linear motion rotation conversion mechanism 13, and a rotation rotation conversion mechanism 20 for each of the plurality of cylinders, and one of the rotation shafts 21 is provided. Each transmission device 14 is provided, and each transmission device 14 is configured to connect each rotating shaft 21 and one output shaft 12 so as to be capable of transmitting rotational power.

周知の多気筒機関では、クランク軸を用いて各々のシリンダで生じた動力を回転動力として出力するが、本実施形態の往復動機関10は回転周回変換機構20を備えるため、クランク軸を用いることができない。そこで、各々の回転軸ごとに伝動装置14を備えることで、各々のシリンダで生じた動力を一つの出力軸12から出力可能となる。 In a well-known multi-cylinder engine, a crankshaft is used to output the power generated in each cylinder as rotational power. can't Therefore, by providing the transmission device 14 for each rotating shaft, the power generated by each cylinder can be output from one output shaft 12 .

10 往復動機関
11 ピストン
12 出力軸
13 直動周回変換機構
20 回転周回変換機構
21 回転軸
22 周回軸
23 環状溝
24 節
24a 周回用腕部
24b 調節用腕部
24c 周回用長穴
24d 調節用長穴
25 調節軸
26 軸受
27 蓋
28 抜留部材
10 reciprocating engine 11 piston 12 output shaft 13 direct-acting rotation conversion mechanism 20 rotation rotation conversion mechanism 21 rotating shaft 22 rotation shaft 23 annular groove 24 node 24a rotation arm 24b adjustment arm 24c rotation long hole 24d adjustment length Hole 25 Adjusting shaft 26 Bearing 27 Lid 28 Retaining member

Claims (9)

回転軸の回転運動および前記回転軸の軸方向視で前記回転軸の周りを周回する周回軸の周回運動を相互に変換して伝達する回転周回変換機構において、前記回転軸の軸方向視で前記回転軸を囲繞する環状溝と、前記回転軸に固定されて前記回転軸を軸に回転運動する節と、を備え、前記環状溝は環形状を成し、前記節は前記回転軸から前記環状溝を超えて延在する周回用腕部とこの周回用腕部の前記環状溝の側の一端部に配置されてこの周回用腕部の延在方向に長手方向が向いて前記環状溝に常時重なる周回用長穴とを有し、前記周回軸は前記環状溝および前記周回用長穴の両方に挿通される構成であることを特徴とする回転周回変換機構。 In a rotation/circulation converting mechanism for mutually converting and transmitting the rotational motion of a rotating shaft and the orbital motion of a rotating shaft that revolves around the rotating shaft when viewed in the axial direction of the rotating shaft, the An annular groove surrounding a rotating shaft and a node fixed to the rotating shaft and rotating around the rotating shaft, the annular groove forming an annular shape, and the node extending from the rotating shaft to the annular A winding arm extending beyond the groove and a winding arm disposed at one end of the winding arm on the side of the annular groove and having a longitudinal direction in the extending direction of the winding arm always in the annular groove. A rotation/circulation converting mechanism, characterized in that it has overlapping slots for rotation, and the rotation shaft is inserted through both the annular groove and the slots for rotation. 前記周回用長穴の長手方向の長さは前記周回軸が前記環状溝に沿って周回運動する場合の前記周回軸および前記回転軸の間の距離の最大値と最小値との差分よりも長い請求項1に記載の回転周回変換機構。 The longitudinal length of the orbiting elongated hole is longer than the difference between the maximum value and the minimum value of the distance between the orbiting shaft and the rotating shaft when the orbiting shaft orbits along the annular groove. The rotation rotation conversion mechanism according to claim 1. 前記節は、前記回転軸から前記環状溝を超えて延在する少なくとも一つの調節用腕部およびこの調節用腕部の前記環状溝の側の一端部に配置されてこの調節用腕部の延在方向に長手方向が向いて前記環状溝に常時重なる調節用長穴を有し、前記移動用腕部および少なくとも一つの前記調節用腕部からなる複数の腕部が前記節の回転周方向に等間隔に配置されて成り、
前記環状溝および前記調節用長穴の両方に挿通されて前記環状溝に沿って周回運動する調節軸を備える請求項1または2に記載の回転周回変換機構。
The node comprises at least one adjusting arm extending from the axis of rotation beyond the annular groove and one end of the adjusting arm on the side of the annular groove for extending the adjusting arm. A plurality of arms formed of the moving arm and at least one of the adjusting arms extend in the circumferential direction of rotation of the joint, each having an adjusting elongated hole that always overlaps the annular groove with its longitudinal direction oriented in the forward direction. are arranged at regular intervals,
3. The rotation/circulation conversion mechanism according to claim 1, further comprising an adjustment shaft that is inserted through both the annular groove and the adjustment elongated hole and that rotates along the annular groove.
前記節は前記節の回転周方向で隣り合う前記腕部どうしの間が埋まり、前記回転軸の軸方向視で前記回転軸を中心とした円形状または正多角形状を成す請求項3に記載の回転周回変換機構。 4. The joint according to claim 3, wherein a space between the arms adjacent to each other in the rotation circumferential direction of the joint is filled, and a circular shape or a regular polygonal shape is formed centering on the rotary shaft when viewed in the axial direction of the rotary shaft. Rotational rotation conversion mechanism. 前記節は前記周回用長穴および一つの前記調節用長穴が前記回転軸に対して点対称に配置される請求項3または4に記載の回転周回変換機構。 5. The rotation/circulation conversion mechanism according to claim 3 or 4, wherein said joint has said slot for rotation and one said slot for adjustment arranged point-symmetrically with respect to said rotation axis. 前記回転軸を回転可能に支持する軸受とこの軸受に固定される蓋とを備え、
前記軸受は前記回転軸の軸方向に突出した突起部を有し、前記蓋は前記突起部が貫通する貫通穴を有し、
前記環状溝は前記軸受に前記蓋が固定されたときに互いに対向する前記突起部の外周面と前記貫通穴の内周面との間の隙間で構成される請求項1~5のいずれか1項に記載の回転周回変換機構。
A bearing that rotatably supports the rotating shaft and a lid fixed to the bearing,
The bearing has a projection projecting in the axial direction of the rotating shaft, the lid has a through hole through which the projection penetrates,
6. The annular groove according to any one of claims 1 to 5, wherein the annular groove is constituted by a gap between an outer peripheral surface of the protrusion and an inner peripheral surface of the through hole which are opposed to each other when the cover is fixed to the bearing. 3. A rotating orbiting conversion mechanism according to the above paragraph.
前記突起部はその外周面の全周に亘って内側に向かって窪んだ窪みが形成され、前記貫通穴はその内周面の全周に亘って外側に向かって窪んだ窪みが形成され、
前記周回軸は前記環状溝に挿入される端部が軸径方向に拡径して成り、その端部が前記突起部に形成された窪みと前記貫通穴に形成された窪みとの両方に遊嵌される請求項6に記載の回転周回変換機構。
The protruding portion has an inwardly recessed recess formed along the entire circumference of the outer peripheral surface thereof, and the through hole has an outwardly recessed recess formed along the entire inner peripheral surface thereof,
The peripheral shaft has an end portion that is inserted into the annular groove and has an enlarged diameter in the shaft radial direction, and the end portion is free in both the recess formed in the protrusion and the recess formed in the through hole. 7. The rotation rotation conversion mechanism according to claim 6, which is fitted.
請求項1~7のいずれか1項に記載の回転周回変換機構と、シリンダの内部に配置されて往復直線運動するピストンと、このピストンの往復直線運動および前記周回軸の周回運動を相互に変換する直動周回変換機構と、を備えることを特徴とする往復動機関。 A rotation/circulation conversion mechanism according to any one of claims 1 to 7, a piston arranged inside a cylinder and performing reciprocating linear motion, and mutually converting the reciprocating linear motion of the piston and the reciprocating motion of the revolving shaft. A reciprocating engine, comprising: a linear motion rotation conversion mechanism. 前記環状溝は少なくとも前記ピストンが上死点の近傍に位置する区間を含む上死点区間と少なくとも前記ピストンが下死点の近傍に位置する区間を含む下死点区間とそれらの区間以外の他の区間とに区画され、前記上死点区間の形状が前記他の区間の形状における曲率よりも小さい曲率の円弧形状、または、直線形状を成す請求項8に記載の往復動機関。 The annular groove has a top dead center section including at least a section in which the piston is positioned near the top dead center, a bottom dead center section including at least a section in which the piston is positioned near the bottom dead center, and other sections other than those sections. 9. The reciprocating engine according to claim 8, wherein the top dead center section has a circular arc shape or a linear shape with a curvature smaller than that of the other sections.
JP2021002709A 2021-01-12 2021-01-12 Rotary revolution conversion mechanism and reciprocating engine Pending JP2022107973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021002709A JP2022107973A (en) 2021-01-12 2021-01-12 Rotary revolution conversion mechanism and reciprocating engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021002709A JP2022107973A (en) 2021-01-12 2021-01-12 Rotary revolution conversion mechanism and reciprocating engine

Publications (1)

Publication Number Publication Date
JP2022107973A true JP2022107973A (en) 2022-07-25

Family

ID=82556172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021002709A Pending JP2022107973A (en) 2021-01-12 2021-01-12 Rotary revolution conversion mechanism and reciprocating engine

Country Status (1)

Country Link
JP (1) JP2022107973A (en)

Similar Documents

Publication Publication Date Title
JP4959896B2 (en) Inner cycloid engine
US6024067A (en) Assembly for direct connection of internal combustion engine and machine driven
JP4464591B2 (en) Continuously variable transmission using vibration torque and one-way drive
US20180187744A1 (en) Vibration damping device
JP5161306B2 (en) Reciprocating rotational power converter
JP2022107973A (en) Rotary revolution conversion mechanism and reciprocating engine
JP2015001266A (en) Stepless speed change device
JP2022107974A (en) Rotary revolution conversion mechanism and reciprocating engine
US7344467B2 (en) Self-regulating continuously variable transmission
JP5786697B2 (en) Continuously variable transmission with adjustable gear ratio using slider link mechanism
US4823627A (en) Mechanical transmission
JP2000073701A (en) Direct-coupled crank device for two linearly reciprocating movable bodies
WO2000036276A1 (en) Low noise high efficiency positive displacement pump
JP6409476B2 (en) engine
JP2014511980A (en) Transmission
JP2895431B2 (en) Direct-coupled assembly of internal combustion engine and driven machinery
JP5796499B2 (en) Continuously variable transmission with adjustable gear ratio through oscillating motion
JP3367440B2 (en) Damper device and driving force transmission device for internal combustion engine
JP2016044727A (en) Non-stage transmission
JP2022107972A (en) multi-cylinder engine
JP2011102602A (en) Balance device in internal combustion engine
KR100880916B1 (en) Reciprocating and Rotating Type Power Transforming Apparatus
JPH1089002A (en) Crank mechanism such as reciprocating piston mechanism
KR101242679B1 (en) Crank apparatus having power transferring device
WO2011044744A1 (en) Rotating-reciprocating conversion mechanism, parts thereof and equipments therewith