JP2022103272A - Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system - Google Patents

Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system Download PDF

Info

Publication number
JP2022103272A
JP2022103272A JP2022077148A JP2022077148A JP2022103272A JP 2022103272 A JP2022103272 A JP 2022103272A JP 2022077148 A JP2022077148 A JP 2022077148A JP 2022077148 A JP2022077148 A JP 2022077148A JP 2022103272 A JP2022103272 A JP 2022103272A
Authority
JP
Japan
Prior art keywords
molding
vacuum
laminated molded
molded product
defective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022077148A
Other languages
Japanese (ja)
Inventor
桂一郎 杉崎
Keiichiro Sugisaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2022077148A priority Critical patent/JP2022103272A/en
Publication of JP2022103272A publication Critical patent/JP2022103272A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a vacuum laminating system that can perform at least a part of determination of molding defects in a laminated molded product regardless of an operator; a molding defect detection method for a vacuum laminating system; and a molding condition modification method of the vacuum laminating system.
SOLUTION: A vacuum laminating system 11 for performing lamination molding comprises: a detection device that is provided in a subsequent step of a vacuum laminating device, and detects data of a laminated molded product laminated and molded; and a machine learning device unit including a learning unit that learns images of laminated molded products by distinguishing between non-defective and defective based on the detected data and a determination unit for detecting the laminated molded products at least during continuous molding by the detection device and determining whether they are a non-defective product or a defective product, and a type of defect. If a defective rate of the laminated molded products during the continuous molding exceeds a predetermined ratio as a result of the determination of presence or absence of defects and the type of the defects during the continuous molding, a proposed modification of molding conditions corresponding to the type of defects is notified or the molding conditions are modified.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により積層成形品を加圧して積層成形を行う真空積層システム、真空積層システムの成形不良検出方法および真空積層システムの成形条件修正方法に関するものである。 The present invention relates to a vacuum laminating system in which a laminated molded product is pressurized by a pressing body in a vacuum chamber formed between an upper plate and a lower plate of a vacuum laminating device to perform laminating molding, a method for detecting molding defects in a vacuum laminating system, and a method for detecting molding defects in a vacuum laminating system. It relates to a method of modifying molding conditions of a vacuum lamination system.

従来、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により積層成形品を加圧して積層成形を行う真空積層システムとしては、特許文献1ないし特許文献4に記載されたものが知られている。特許文献1は、真空プレス装置の真空チャンバ内で上部加圧ブロックに対して下部ブロック装置を加圧シリンダにより加圧し、フィルム状材料を基板に積層するものである。また特許文献2は真空積層装置の真空チャンバ内で膜体を用いて積層成形品を加圧するものである。そして特許文献2には、膜体内部の真空度が低いことに起因して膜体が浮き上がり、積層成形品に気泡等の不良が発生することも記載されている。 Conventionally, Patent Document 1 to Patent Document 4 describe a vacuum laminating system in which a laminated molded product is pressurized by a pressing body in a vacuum chamber formed between an upper plate and a lower plate of a vacuum laminating device to perform laminating molding. What was done is known. In Patent Document 1, the lower block device is pressed against the upper pressure block by a pressure cylinder in the vacuum chamber of the vacuum press device, and the film-like material is laminated on the substrate. Further, Patent Document 2 pressurizes a laminated molded product using a film body in a vacuum chamber of a vacuum laminating device. Further, Patent Document 2 also describes that the film body floats due to the low degree of vacuum inside the film body, and defects such as air bubbles occur in the laminated molded product.

また特許文献3と特許文献4は、真空積層システムにCCDカメラを取付け、前記CCDカメラで撮影された画像情報を制御に用いるものである。特許文献3は、真空積層装置の前工程にCCDカメラを取付け、積層成形品が上面から加圧するものか下面から加圧するものかを検出するものである。また特許文献4は、真空積層装置から送られてきた積層成形品が切断ステージのどの位置に停止しているかをCCDカメラで撮影し、積層成形品の位置に対応して切断機構を移動させるものである。 Further, in Patent Document 3 and Patent Document 4, a CCD camera is attached to a vacuum stacking system, and image information taken by the CCD camera is used for control. Patent Document 3 attaches a CCD camera to the pre-process of the vacuum laminating apparatus and detects whether the laminated molded product is pressurized from the upper surface or the lower surface. Further, Patent Document 4 captures with a CCD camera the position of the laminated molded product sent from the vacuum laminating device on the cutting stage, and moves the cutting mechanism according to the position of the laminated molded product. Is.

特開2005-334902号公報(請求項1、(0004)、(0016)ないし(0018)、(図1))JP-A-2005-334902 (Claim 1, (0004), (0016) to (0018), (FIG. 1)) 特開2001-2640154号公報(請求項1、(0003)、(0009)、(0010)、(図1))Japanese Unexamined Patent Publication No. 2001-2640154 (Claim 1, (0003), (0009), (0010), (FIG. 1)) 特開2006-103177号公報(請求項1、(0023))JP-A-2006-103177 (Claim 1, (0023)) 特開2013-103346号公報(請求項1、(0029)、(0040)、(図1))Japanese Unexamined Patent Publication No. 2013-103346 (Claim 1, (0029), (0040), (FIG. 1))

しかしながら特許文献1ないし特許文献4の真空積層システムは、いずれも積層成形品に成形不良があった場合にどのように対応するかについてはまったく記載されていないものであった。現状では真空積層システムにおいて積層成形された積層成形品は、作業者により成形不良がないかを1個ずつチェックしているのが実態である。これら作業者による成形不良のチェックは、人件費が発生する上に、判断する人によりバラつきが発生するという問題があった。また成形不良があったときの成形条件の修正は、熟練した作業者でないとできないという問題があった。 However, in each of the vacuum laminating systems of Patent Documents 1 to 4, there is no description about how to deal with a molding defect in the laminated molded product. At present, the laminated molded products that have been laminated and molded in the vacuum laminating system are actually checked one by one by an operator for molding defects. Checking for molding defects by these workers has a problem that labor costs are incurred and variations occur depending on the person who makes the judgment. Further, there is a problem that only a skilled worker can correct the molding conditions when there is a molding defect.

そこで本発明では、積層成形品の成形不良の判断の少なくとも一部を作業者によらずに行うことができる真空積層システムおよび前記真空積層システムの成形不良検出方法を提供することを第1の目的とする。または成形不良が発生した場合の成形条件の修正作業の少なくとも一部を作業者によらずに行うことができる真空積層システムおよび前記真空積層システムの成形不良検出方法を提供することを第2の目的とする。 Therefore, the first object of the present invention is to provide a vacuum laminating system and a method for detecting molding defects of the vacuum laminating system, which can perform at least a part of determination of molding defects of a laminated molded product without an operator. And. Another object of the second object is to provide a vacuum laminating system capable of performing at least a part of the work of correcting molding conditions when molding defects occur without an operator, and a method for detecting molding defects of the vacuum laminating system. And.

本発明の請求項1に記載の真空積層システムは、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムにおいて、前記真空積層装置の後工程に設けられ積層成形された積層成形品のデータを検出する検出装置と、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別して学習する学習部と、少なくとも連続成形時に積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良の種類を判断する判断部とが備えらえた機械学習装置部と、が備えられ、前記連続成形時に不良の有無と種類を判断し、前記連続成形時の積層成形品の不良率が所定の比率を超えた場合は、不良の種類に対応した成形条件の修正案を報知するかまたは成形条件を修正することを特徴とする。 In the vacuum laminating system according to claim 1 of the present invention, a laminated molded product including a circuit board or a wafer is pressed and laminated by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device. In a vacuum laminating system for molding, a detection device provided in a subsequent process of the vacuum laminating device to detect data of a laminated molded product, and an image of a laminated molded product based on the detected data are regarded as non-defective products. A machine learning device unit equipped with a learning unit that distinguishes and learns defective products, and a determination unit that detects at least a laminated molded product with the detection device during continuous molding and determines whether it is a good product or a defective product and the type of defect. , And, the presence or absence of defects and the type during the continuous molding are determined, and if the defect rate of the laminated molded product during the continuous molding exceeds a predetermined ratio, the molding conditions corresponding to the types of defects are corrected. It is characterized by notifying the proposal or modifying the molding conditions.

本発明の請求項2に記載の真空積層システムの成形不良検出方法は、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムの成形不良検出方法において、前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに不良品に区別された場合は不良の種類を機械学習装置の学習部に教師あり学習させ、少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良品の場合は不良の種類を機械学習装置の判断部が判断することを特徴とする。 The molding defect detecting method of the vacuum laminating system according to claim 2 of the present invention is a laminated molded product including a circuit board or a wafer by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device. In the molding defect detection method of the vacuum laminating system that pressurizes and performs laminating, the data of the laminated molded product laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device is detected, and the detected data is used. Based on this, the image of the laminated molded product is classified into a non-defective product and a defective product, and if it is classified as a defective product, the learning unit of the machine learning device is trained to learn the type of the defect, and at least the learning result is used during continuous molding. Then, the laminated molded product is detected by the detection device, and in the case of either a non-defective product or a defective product and a defective product, the type of the defect is determined by the determination unit of the machine learning device.

本発明の請求項3に記載の真空積層システムの成形不良検出方法は、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムの成形条件修正方法において、前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに該不良品の場合は不良の種類を機械学習装置の学習部に学習させ、少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出し、不良品であると機械学習装置の判断部が判断したことに基づき、前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目の修正案を報知するかまたは前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目を修正することを特徴とする。 The molding defect detecting method of the vacuum laminating system according to claim 3 of the present invention is a laminated molded product including a circuit board or a wafer by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device. In the molding condition correction method of the vacuum laminating system that pressurizes and performs laminating, the data of the laminated molded product that was laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device is detected, and the detected data is used. Based on this, the image of the laminated molded product is distinguished into a good product and a defective product, and in the case of the defective product, the learning unit of the machine learning device is made to learn the type of the defective product, and at least during continuous molding, the laminated molding is performed using the learning result. Based on the fact that the product is detected by the detection device and the judgment unit of the machine learning device determines that the product is defective, at least the hot plate temperature, vacuum degree, pressurizing pressure, and molding time correspond to the type of defect. Notify the proposed modification of the molding condition item including one, or modify the molding condition item including at least one of hot plate temperature, vacuum degree, pressure pressure, and molding time according to the type of defect. It is characterized by that.

本発明の真空積層システムは、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムにおいて、前記真空積層装置の後工程に設けられ積層成形された積層成形品のデータを検出する検出装置と、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別して学習する学習部と、少なくとも連続成形時に積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良の種類を判断する判断部とが備えらえた機械学習装置部と、が備えられ、前記連続成形時に不良の有無と種類を判断し、前記連続成形時の積層成形品の不良率が所定の比率を超えた場合は、不良の種類に対応した成形条件の修正案を報知するかまたは成形条件を修正するので、成形不良の判断の少なくとも一部を作業者によらずに行うことができる。また本発明の真空積層システムの成形不良検出方法および真空積層システムの成形条件修正方法も少なくとも一部において同様の効果を奏する。 The vacuum laminating system of the present invention is a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding. In the detection device provided in the subsequent process of the vacuum laminating device to detect the data of the laminated molded product, and the image of the laminated molded product is discriminated into good products and defective products based on the detected data. A machine learning device unit provided with a learning unit for detecting at least a laminated molded product by the detection device during continuous molding and a determination unit for determining whether the product is a good product or a defective product and the type of defective product is provided. The presence or absence and type of defects during continuous molding are determined, and if the defect rate of the laminated molded product during continuous molding exceeds a predetermined ratio, a proposal for amending the molding conditions corresponding to the type of defects is notified. Since the molding conditions are modified, at least a part of the determination of molding defects can be made without an operator. Further, the method for detecting molding defects of the vacuum stacking system and the method for modifying the molding conditions of the vacuum stacking system of the present invention also have the same effect in at least a part of them.

本実施形態の積層成形装置の概略図である。It is a schematic diagram of the laminated molding apparatus of this embodiment. 本実施形態の積層成形装置の機械学習装置を示すブロック図である。It is a block diagram which shows the machine learning apparatus of the laminated molding apparatus of this embodiment. 本実施形態の積層成形装置の機械学習装置のニューラルネットワークを示す図である。It is a figure which shows the neural network of the machine learning apparatus of the laminated molding apparatus of this embodiment. 本実施形態の積層成形装置の機械学習装置を用いて積層成形品が良品であるか不良品であるかを教師あり学習する際のフローチャート図である。It is a flowchart at the time of supervised learning whether a laminated molded product is a good product or a defective product by using the machine learning device of the laminated molding apparatus of this embodiment. 本実施形態の積層成形装置の機械学習装置を用いて連続成形時に積層成形品が良品であるか不良品であるかを判断する際のフローチャート図である。It is a flowchart at the time of determining whether a laminated molded product is a good product or a defective product at the time of continuous molding by using the machine learning device of the laminated molding apparatus of this embodiment. 別の実施形態の積層成形装置の概略図である。It is a schematic diagram of the laminated molding apparatus of another embodiment.

本発明の実施形態の真空積層システム11について図1を参照して説明する。真空積層システム11は、キャリアフィルムF1,F2を用いて積層成形品A,A1を搬送するものである。真空積層システム11は、図1において右側の前工程から図1において左側の後工程に向けて順に、積層成形品載置部12、ダイアフラム加圧式の真空積層装置13(以下は単に真空積層装置13と略す)、積層成形品搬出部14が設けられている。また真空積層システム11には操作装置を兼ねたタッチパネル式の表示装置15や真空積層装置13の制御機能や本発明の機械学習装置の機能を備えた制御装置16が配置されている。 The vacuum stacking system 11 according to the embodiment of the present invention will be described with reference to FIG. The vacuum laminating system 11 conveys the laminated molded products A and A1 using the carrier films F1 and F2. The vacuum laminating system 11 includes a laminated molded product mounting portion 12 and a diaphragm pressure type vacuum laminating device 13 (hereinafter, simply vacuum laminating device 13) in order from the front process on the right side in FIG. 1 to the rear process on the left side in FIG. (Abbreviated as), a laminated molded product carry-out unit 14 is provided. Further, the vacuum stacking system 11 is provided with a touch panel type display device 15 that also serves as an operation device, a control device 16 having a control function of the vacuum stacking device 13, and a function of the machine learning device of the present invention.

積層成形品載置部12はフィルム送り部を含んでおり、下キャリアフィルムは巻出ロール17から従動ロール18を介して水平状態に巻き出される。水平状態となった下キャリアフィルムF1の部分に積層成形品Aを載置する載置ステージSAが設けられている。そして前記載置ステージSAの上方には、積層成形品Aの状態を検出する検出装置である第1のカメラ19が配置されている。第1のカメラ19はCCDカメラが用いられ、図示しない信号線により制御装置16に接続されている。そして前記第1のカメラ19により、積層成形品Aの形状、キャリアフィルムF1上への載置位置などが検出され、検出データは制御装置16へ送られる。なお本発明において第1のカメラ19は必須のものではない。 The laminated molded product mounting portion 12 includes a film feed portion, and the lower carrier film is unwound from the unwinding roll 17 via the driven roll 18 in a horizontal state. A mounting stage SA on which the laminated molded product A is mounted is provided on the portion of the lower carrier film F1 in the horizontal state. A first camera 19, which is a detection device for detecting the state of the laminated molded product A, is arranged above the above-mentioned placement stage SA. A CCD camera is used as the first camera 19, and the first camera 19 is connected to the control device 16 by a signal line (not shown). Then, the first camera 19 detects the shape of the laminated molded product A, the placement position on the carrier film F1, and the like, and the detection data is sent to the control device 16. The first camera 19 is not essential in the present invention.

前記載置ステージSAと真空積層装置13の間の上方には、フィルム送り部の上キャリアフィルムF2の巻出ロール20が配置されている。前記巻出ロール20から巻き出された上キャリアフィルムF2は、従動ロール21の部分から載置ステージSAにて載置された積層成形品Aの上面に重ねられる。そして上下のキャリアフィルムF1,F2に挟まれた積層成形品Aは、次工程の真空積層装置13へ送られる。 Above the above-mentioned placement stage SA and the vacuum laminating device 13, the unwinding roll 20 of the upper carrier film F2 of the film feed portion is arranged. The upper carrier film F2 unwound from the unwinding roll 20 is superposed on the upper surface of the laminated molded product A mounted on the mounting stage SA from the portion of the driven roll 21. Then, the laminated molded product A sandwiched between the upper and lower carrier films F1 and F2 is sent to the vacuum laminating device 13 in the next step.

真空積層装置13自体は、特許文献2ないし特許文献4にも記載されるように公知のものであり、固定的に配置された上盤22に対して下盤23が昇降装置により昇降可能に設けられ、下盤23が上昇した際に上盤22と下盤23の間に内部空間を真空化可能な真空チャンバCが形成されるようになっている。上盤22の下面の中央にはヒータ24により加熱される熱板25が固定され、熱板25の表面にはシリコンゴムやフッ素ゴム等の弾性膜体26が固定されている。また下盤23の上面中央にはヒータ27により加熱される熱板28が固定されている。これら熱板25,28の温度はそれぞれ温度センサ29,30により検出され、制御装置16に送信される。 The vacuum laminating device 13 itself is known as described in Patent Documents 2 to 4, and the lower board 23 is provided so as to be able to move up and down with respect to the fixedly arranged upper board 22 by an elevating device. Therefore, when the lower plate 23 rises, a vacuum chamber C capable of vacuuming the internal space is formed between the upper plate 22 and the lower plate 23. A hot plate 25 heated by the heater 24 is fixed to the center of the lower surface of the upper plate 22, and an elastic film body 26 such as silicon rubber or fluorine rubber is fixed to the surface of the hot plate 25. A hot plate 28 heated by the heater 27 is fixed to the center of the upper surface of the lower plate 23. The temperatures of these hot plates 25 and 28 are detected by the temperature sensors 29 and 30, respectively, and transmitted to the control device 16.

熱板28の上方にはコンプレッサ31から加圧気体を導入されることにより下盤23から膨出するシリコンゴムやフッ素ゴム等の膜体からなるダイアフラム32が配置されている。またダイアフラム32は真空ポンプ33より裏面側の空間を真空吸引されることにより熱板25に密着状態となる。本発明において前記ダイアフラム32は押圧体に相当する。前記コンプレッサ31からダイアフラム32の裏面側に送られる加圧気体の気圧は圧力センサ34(気圧センサ)により検出される。 Above the hot plate 28, a diaphragm 32 made of a film body such as silicon rubber or fluorine rubber that swells from the lower plate 23 when a pressurized gas is introduced from the compressor 31 is arranged. Further, the diaphragm 32 is in close contact with the hot plate 25 by being vacuum-sucked in the space on the back surface side of the vacuum pump 33. In the present invention, the diaphragm 32 corresponds to a pressing body. The atmospheric pressure of the pressurized gas sent from the compressor 31 to the back surface side of the diaphragm 32 is detected by the pressure sensor 34 (atmospheric pressure sensor).

上盤22の下面の周囲部分に形成される枠部35と下盤23の上面の周囲部分に形成される枠部36はそれぞれ熱板25,28よりも突出しており、これら枠部35,36同士が当接することにより外界とは隔絶された真空チャンバCが形成される。真空チャンバCの真空度は真空センサ37により検出される。そして真空積層装置13の枠部分の一側(図1では右側)が積層成形前の積層成形品Aの入口となり、枠部分の他側(図1では左側)が積層成形後の積層成形品A1の出口となっている。また真空チャンバCは管路を介して前記真空ポンプ33に接続され、チャンバ内が真空吸引可能となっている。上記において温度センサ29,30、圧力センサ34、真空センサ37は、真空積層装置13の成形状態を検出するセンサ38に相当する(図2を参照)。またヒータ24,27、コンプレッサ31、真空ポンプ33は、真空積層装置13の作動部39に相当する(図2を参照)。 The frame portion 35 formed in the peripheral portion of the lower surface of the upper plate 22 and the frame portion 36 formed in the peripheral portion of the upper surface of the lower plate 23 protrude from the hot plates 25 and 28, respectively, and these frame portions 35 and 36. When they come into contact with each other, a vacuum chamber C isolated from the outside world is formed. The degree of vacuum in the vacuum chamber C is detected by the vacuum sensor 37. Then, one side (right side in FIG. 1) of the frame portion of the vacuum laminating apparatus 13 serves as an inlet for the laminated molded product A before laminating molding, and the other side (left side in FIG. 1) of the frame portion is the laminated molded product A1 after laminating molding. It is the exit of. Further, the vacuum chamber C is connected to the vacuum pump 33 via a pipeline, and the inside of the chamber can be evacuated. In the above, the temperature sensors 29 and 30, the pressure sensor 34, and the vacuum sensor 37 correspond to the sensor 38 that detects the molding state of the vacuum stacking device 13 (see FIG. 2). Further, the heaters 24 and 27, the compressor 31, and the vacuum pump 33 correspond to the operating portion 39 of the vacuum stacking device 13 (see FIG. 2).

真空積層装置13の後工程には積層成形品搬出部14が設けられている。フィルム巻取部を含む積層成形品搬出部14は、下キャリアフィルムF1のみが水平状態で送られる搬出ステージSBが設けられ、従動ロール40を介して下キャリアフィルムF1は折り返され下方の巻取ロール41に巻き取られる。また搬出ステージSBと真空積層装置13の間の上方には上キャリアフィルムF2の巻取ロール42が配置され、搬出ステージSBの手前で従動ロール43を介して上キャリアフィルムF2は積層成形された積層成形品A1から剥離され巻き取られる。なお本実施形態では積層成形品A,A1は、上下のキャリアフィルムF1,F2を用いて搬送されるが、下キャリアフィルムF1のみを用いて搬送されるものでもよく、キャリアフィルムF1,F2を使用せずにロボット等の搬送手段により搬送されるものでもよい。 A laminated molded product carry-out unit 14 is provided in the post-process of the vacuum laminating device 13. The laminated molded product carry-out section 14 including the film take-up section is provided with a carry-out stage SB in which only the lower carrier film F1 is fed in a horizontal state, and the lower carrier film F1 is folded back via the driven roll 40 to lower the take-up roll. It is taken up by 41. Further, a take-up roll 42 of the upper carrier film F2 is arranged above between the carry-out stage SB and the vacuum laminating device 13, and the upper carrier film F2 is laminated and molded via the driven roll 43 in front of the carry-out stage SB. It is peeled off from the molded product A1 and wound up. In the present embodiment, the laminated molded products A and A1 are conveyed using the upper and lower carrier films F1 and F2, but may be conveyed using only the lower carrier film F1 and the carrier films F1 and F2 are used. It may be transported by a transporting means such as a robot without using it.

積層成形品搬出部14の搬出ステージSBの上方には、積層成形品A1の状態を検出する検出装置である第2のカメラ44が配置されている。第2のカメラ44はCCDカメラが用いられ、制御装置16に接続されている。そして前記第2のカメラ44により、積層成形品A1の形状、キャリアフィルムF1上における位置などが検出され、検出データは信号線を介して制御装置16へ送られるようになっている。なお第2のカメラ44は、搬出ステージSBの上方ではなく、積層成形品A1を搬送するロボットや、ロボットによる積層成形品A1の搬送先のコンベアや積層成形品A1の検査場に設けられたものでもよい。従ってそれらのコンベアや検査場の第2のカメラ44が設けられる場合、それらの部分も本発明の真空積層システム11に含まれる。 A second camera 44, which is a detection device for detecting the state of the laminated molded product A1, is arranged above the carry-out stage SB of the laminated molded product carry-out unit 14. A CCD camera is used as the second camera 44, and the second camera 44 is connected to the control device 16. Then, the second camera 44 detects the shape of the laminated molded product A1, the position on the carrier film F1, and the like, and the detection data is sent to the control device 16 via the signal line. The second camera 44 is not above the carry-out stage SB, but is provided at a robot that conveys the laminated molded product A1, a conveyor at which the laminated molded product A1 is conveyed by the robot, or an inspection site for the laminated molded product A1. But it may be. Therefore, when the conveyor or the second camera 44 of the inspection site is provided, those parts are also included in the vacuum stacking system 11 of the present invention.

次に本発明の積層成形品A1の制御装置16と、成形不良の有無を判断するための機械学習装置51について図2を参照して説明する。上記したように真空積層システム11の操作装置を含む表示装置15、各カメラ19.44、各センサ38、作動部39は、それぞれ制御装置16に接続されている。そして前記表示装置15、カメラ19,44、センサ38からの情報は信号として制御装置16の入力処理部52に送られる。制御装置16は、後述する機械学習装置51の他に、真空積層装置13を含む真空積層システム11の各種成形条件や成形データを記憶しておく記憶部53と、入力値を処理して作動部39へ送る指令信号を生成する成形指令部54、表示装置15の画像表示を行う画像表示部55、出力処理部56等を備えている。 Next, the control device 16 of the laminated molded product A1 of the present invention and the machine learning device 51 for determining the presence or absence of molding defects will be described with reference to FIG. As described above, the display device 15, including the operating device of the vacuum stacking system 11, each camera 19.44, each sensor 38, and the operating unit 39 are connected to the control device 16, respectively. Then, the information from the display device 15, the cameras 19, 44, and the sensor 38 is sent as a signal to the input processing unit 52 of the control device 16. In addition to the machine learning device 51 described later, the control device 16 includes a storage unit 53 that stores various molding conditions and molding data of the vacuum stacking system 11 including the vacuum stacking device 13, and an operating unit that processes input values. It includes a molding command unit 54 that generates a command signal to be sent to 39, an image display unit 55 that displays an image of the display device 15, an output processing unit 56, and the like.

機械学習装置51は、人工知能であるAI(Artfifical Intelligence)技術を用いて積層成形品A1の不良の有無を学習し、作業者の判断を一部または全部(両者を合わせて少なくとも一部)において必要とせずに積層成形品の良否判定を可能とするものである。機械学習装置51は、検出されたデータを基礎にして積層成形品A1の画像を良品と不良品に区別可能なように学習する学習部57と、少なくとも連続成形時に積層成形品A1を検出装置である第2のカメラ44等により検出して良品または不良品のいずれかであると判断する判断部58とを備えている。学習部57については、学習処理部59と、学習データ保存部60を備えている。 The machine learning device 51 learns whether or not the laminated molded product A1 is defective by using AI (Artificial Intelligence) technology, which is artificial intelligence, and makes a part or all (at least a part of both) judgments of the operator. It is possible to judge the quality of a laminated molded product without the need for it. The machine learning device 51 is a learning unit 57 that learns the image of the laminated molded product A1 so that it can be distinguished into a non-defective product and a defective product based on the detected data, and a detection device that detects the laminated molded product A1 at least during continuous molding. It is provided with a determination unit 58 that is detected by a second camera 44 or the like and is determined to be either a non-defective product or a defective product. The learning unit 57 includes a learning processing unit 59 and a learning data storage unit 60.

学習処理部59は、図3に示されるような入力層72、中間層73、出力層74等の複数の階層を備えたニューラルネットワーク71を備えている。そして学習処理部59では、カメラ44等で撮影された良品画像である良品データ、および不良品画像である不良品データがニューラルネットワーク71の入力層72から入力されて教師あり学習が行われ、積層成形品A1が良品と不良品を識別するための回帰式等の関数式が出力層74から生成される。学習処理部59で生成された判断式は学習データ保存部60判断式保存部61に保存される。また学習処理部59は、ボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類が分類可能な不良状態学習部62を備えていることが望ましい。 The learning processing unit 59 includes a neural network 71 having a plurality of layers such as an input layer 72, an intermediate layer 73, and an output layer 74 as shown in FIG. Then, in the learning processing unit 59, good product data which is a good product image taken by a camera 44 or the like and defective product data which is a defective product image are input from the input layer 72 of the neural network 71, supervised learning is performed, and stacking is performed. A functional expression such as a regression equation for distinguishing a non-defective product from a defective molded product A1 is generated from the output layer 74. The determination formula generated by the learning processing unit 59 is stored in the learning data storage unit 60 judgment formula storage unit 61. Further, it is desirable that the learning processing unit 59 includes a defective state learning unit 62 that can classify the types of defects such as voids, material outflow, uneven pressure, wrinkles, foreign matter contamination, and misalignment.

学習データ保存部60は、前記判断式保存部61に加えて製品データ保存部63が備えられている。更に製品データ保存部63には良品データ保存部64と不良品データ保存部65が備えられている。良品データ保存部64は、作業者により良品と判断された積層成形品A1の画像にリンクして良品を成形した際の成形条件やセンサにより検出される物理量データなどの成形データが保存される。また不良品データ保存部65は、作業者により不良品と判断された積層成形品A1の画像にリンクして不良品を成形した際の成形条件やセンサにより検出される物理量データなどの成形データが保存される。更に不良品データ保存部65は、作業者がボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類ごとに判断して入力したものを区分して記憶することがより望ましい。 The learning data storage unit 60 includes a product data storage unit 63 in addition to the determination formula storage unit 61. Further, the product data storage unit 63 is provided with a non-defective product data storage unit 64 and a defective product data storage unit 65. The non-defective product data storage unit 64 links to the image of the laminated molded product A1 determined to be a non-defective product by the operator, and stores molding data such as molding conditions when the non-defective product is molded and physical quantity data detected by the sensor. Further, the defective product data storage unit 65 links to the image of the laminated molded product A1 determined to be defective by the operator, and forms molding data such as molding conditions when the defective product is molded and physical quantity data detected by the sensor. It will be saved. Further, the defective product data storage unit 65 can classify and store what the operator has determined and input for each type of defect, such as voids, material outflow, uneven pressure, wrinkles, foreign matter contamination, and misalignment. More desirable.

次に機械学習装置51の判断部58について説明する。判断部58には、積層成形品A1の良否を判断する良否判断部66が備えられている。良否判断部66は、学習データ保存部60の判断式保存部61に保存された関数式に基づき、新しく送られてきた積層成形品A1の画像データの良否判定を行う。また良否判断部66は、ボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類が分類可能な不良状態判断部67を備えていることがより望ましい。 Next, the determination unit 58 of the machine learning device 51 will be described. The determination unit 58 is provided with a quality determination unit 66 for determining the quality of the laminated molded product A1. The quality determination unit 66 determines the quality of the newly sent image data of the laminated molded product A1 based on the function formula stored in the judgment formula storage unit 61 of the learning data storage unit 60. Further, it is more desirable that the quality determination unit 66 includes a defect state determination unit 67 capable of classifying the types of defects such as voids, material outflow, uneven pressure, wrinkles, foreign matter contamination, and misalignment.

また判断部58は、送られてきた画像から積層成形品A1が不良であると判断した場合に、前記判断部58により不良品と判断されたことに基づき、真空積層装置13の成形条件を修正するかしないかの判断や、成形条件を変更する場合どのように変更するかの判断する成形条件修正部68を備えている。成形条件修正部68ではニューラルネットワーク71等を用いて強化学習を行うことにより、より良好な成形条件を策定する。成形条件修正部68による成形条件の変更は自動的に行われるものの他、表示装置15に成形条件修正案として表示され、作業者が修正案を実行するかどうか決定するものでもよい。なお本発明における成形条件の「修正」は、成形条件を完全に別のものに置き換えるものも僅かに補正するものも両方含まれるものとする。 Further, when the determination unit 58 determines that the laminated molded product A1 is defective from the sent image, the determination unit 58 corrects the molding conditions of the vacuum lamination device 13 based on the determination that the laminated molded product A1 is defective. It is provided with a molding condition correction unit 68 for determining whether or not to perform the molding condition and how to change the molding condition when the molding condition is changed. The molding condition correction unit 68 formulates better molding conditions by performing reinforcement learning using a neural network 71 or the like. The molding condition modification unit 68 may change the molding condition automatically, or may be displayed on the display device 15 as a molding condition modification proposal and determine whether or not the operator executes the modification proposal. It should be noted that the "modification" of the molding condition in the present invention includes both a completely different molding condition and a slightly corrected molding condition.

なお上記の機械学習装置51は、真空積層システム11に付設された制御装置16ではなく、他の真空積層システムにも接続される同じ工場内の中央制御装置のコンピュータ(サーバーを含む)に保存されて処理を行うものや、通信により接続される本社内のコンピュータ(サーバーを含む)や、真空積層システムのメーカのコンピュータ等に保存されて処理を行うものでもよい。その場合はそれらのコンピュータ等も本発明の真空積層システムを構築する構成要素に含まれる。またフラッシュメモリ等の携帯物を用いて真空積層装置13のデータを、真空積層装置13とは接続されていないコンピュータの機械学習装置に移す場合、前記真空積層装置13と接続されていないコンピュータも本発明の真空積層システムに含まれる。 The machine learning device 51 is stored not in the control device 16 attached to the vacuum stacking system 11 but in the computer (including the server) of the central control device in the same factory connected to other vacuum stacking systems. It may be processed by being stored in a computer (including a server) in the head office connected by communication, a computer of a manufacturer of a vacuum stacking system, or the like. In that case, those computers and the like are also included in the components for constructing the vacuum stacking system of the present invention. Further, when the data of the vacuum stacking device 13 is transferred to the machine learning device of the computer not connected to the vacuum stacking device 13 by using a portable object such as a flash memory, the computer not connected to the vacuum stacking device 13 is also present. Included in the vacuum stacking system of the invention.

次に図4のフローチャートを参照して真空積層システム11の機械学習装置51による教師あり学習について説明する。最初に真空積層装置13を含む真空積層システム11の成形条件を設定する(s1)。この際に真空積層システム11の制御装置16の記憶部53に積層成形品Aの成形条件が保存されていれば、その成形条件を使用する。また同じ積層成形品Aの成形条件が保存されていない場合は、積層成形品Aのサイズ、質量、凹凸高さや間隔、材料(メーカ品番、メーカ推奨成形温度、材料等)を作業者が操作装置を兼ねた表示装置15から入力すると、機械学習装置51で過去に保存されている成形条件との比較から成形条件の案を演算して表示することも可能である。 Next, supervised learning by the machine learning device 51 of the vacuum stacking system 11 will be described with reference to the flowchart of FIG. First, the molding conditions of the vacuum laminating system 11 including the vacuum laminating device 13 are set (s1). At this time, if the molding conditions of the laminated molded product A are stored in the storage unit 53 of the control device 16 of the vacuum stacking system 11, the molding conditions are used. If the molding conditions of the same laminated molded product A are not preserved, the operator operates the size, mass, uneven height and spacing, and materials (manufacturer part number, manufacturer recommended molding temperature, material, etc.) of the laminated molded product A. When inputting from the display device 15 that also serves as the above, it is also possible to calculate and display a draft of the molding conditions from the comparison with the molding conditions stored in the past by the machine learning device 51.

まず積層成形品載置部12の載置ステージSAの載置された積層成形品A(その載置位置を含む)が第1のカメラ19で撮影され、撮影された積層成形品Aのデータは制御装置16の記憶部53に送られる。次の成形サイクルの開始に際して、積層成形品Aは上下のキャリアフィルムF1,F2の巻取ロール42,41の駆動による送りにより真空積層装置13に送られる。次に加熱された熱板28が取付けられた下盤23の上昇により、加熱された熱板25が取付けられた上盤22との間に真空チャンバCが形成され、更に該真空チャンバC内は真空ポンプ33により真空吸引される。この際に上下のキャリアフィルムF1,F2の間の積層成形品Aは、位置ずれを起こしやすい。そして真空チャンバCが所定の真空度となると押圧体であるダイアフラム32の下方の空間に対してコンプレッサ31から加圧空気が供給され、ダイアフラム32は上方の積層成形品に向けて膨出する。そして積層成形品Aはダイアフラム32と上盤22の熱板25に取付けられた弾性膜体26の間で加圧され積層成形される(s2)。 First, the laminated molded product A (including its mounting position) on which the mounting stage SA of the laminated molded product mounting portion 12 is mounted is photographed by the first camera 19, and the data of the photographed laminated molded product A is It is sent to the storage unit 53 of the control device 16. At the start of the next molding cycle, the laminated molded product A is fed to the vacuum laminating apparatus 13 by being driven by the take-up rolls 42 and 41 of the upper and lower carrier films F1 and F2. Next, a vacuum chamber C is formed between the lower plate 23 to which the heated hot plate 28 is attached and the upper plate 22 to which the heated hot plate 25 is attached, and the inside of the vacuum chamber C is further formed. Vacuum is sucked by the vacuum pump 33. At this time, the laminated molded product A between the upper and lower carrier films F1 and F2 is liable to be misaligned. When the vacuum chamber C reaches a predetermined degree of vacuum, pressurized air is supplied from the compressor 31 to the space below the diaphragm 32 which is a pressing body, and the diaphragm 32 bulges toward the upper laminated molded product. Then, the laminated molded product A is pressurized and laminated and molded between the diaphragm 32 and the elastic film body 26 attached to the hot plate 25 of the upper plate 22 (s2).

このダイアフラム32による積層成形は、予め設定した熱板温度、真空度、空気圧力等の成形条件で行われるとともに、温度センサ29,30による測定される熱板温度、真空センサ37により測定される真空度、圧力センサ34により測定される空気圧等の実測値の成形データも制御装置16に送られ、記憶部53に保存される(s3)。所定の成形時間が終了すると積層成形は終了し、ダイアフラム32の裏面側への加圧空気供給は停止され、真空チャンバC内は常圧に戻される。そして下盤23が下降されて真空チャンバCが開放されると、上下のキャリアフィルムF1,F2の送りにより成形された積層成形品A1は、積層成形品搬出部14に送られる。その際に積層成形品A1が積層成形品搬出部14の搬出ステージSBに到達する前に上キャリアフィルムF2が剥離される。そして搬出ステージSBでは、上方に設けられた第2のカメラ44により積層成形品A1が撮影され、撮影された画像情報は制御装置16の機械学習装置51の学習処理部59に送られる(s4)。 Laminate molding by the diaphragm 32 is performed under the molding conditions such as the hot plate temperature, the degree of vacuum, and the air pressure set in advance, the hot plate temperature measured by the temperature sensors 29 and 30, and the vacuum measured by the vacuum sensor 37. Molding data of measured values such as air pressure measured by the pressure sensor 34 is also sent to the control device 16 and stored in the storage unit 53 (s3). When the predetermined molding time is completed, the laminated molding is completed, the supply of pressurized air to the back surface side of the diaphragm 32 is stopped, and the pressure inside the vacuum chamber C is returned to normal pressure. Then, when the lower plate 23 is lowered and the vacuum chamber C is opened, the laminated molded product A1 formed by feeding the upper and lower carrier films F1 and F2 is sent to the laminated molded product carry-out unit 14. At that time, the upper carrier film F2 is peeled off before the laminated molded product A1 reaches the carry-out stage SB of the laminated molded product carry-out unit 14. Then, in the carry-out stage SB, the laminated molded product A1 is photographed by the second camera 44 provided above, and the photographed image information is sent to the learning processing unit 59 of the machine learning device 51 of the control device 16 (s4). ..

また第2のカメラ44による撮影と前後して搬出ステージSB上の積層成形品A1は、搬出ステージSBの近傍に位置する作業者により目視によりチェックされ、良品であるか不良品であるかの良否判定がなされる。そして作業者が表示装置15(操作装置)のタッチパネル上の良品ボタンまたは不良品ボタンのいずれかのボタンを入力することにより、良否判定の結果は、表示装置15を介して制御装置16の学習処理部59に送られる。この際に必須ではないが、作業者により、積層成形品A1が不良であった際のボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類も入力することがより好ましい。 Further, before and after the shooting by the second camera 44, the laminated molded product A1 on the carry-out stage SB is visually checked by an operator located in the vicinity of the carry-out stage SB, and whether it is a good product or a defective product is good or bad. Judgment is made. Then, when the operator inputs either a good product button or a defective product button on the touch panel of the display device 15 (operation device), the result of the quality determination is a learning process of the control device 16 via the display device 15. It is sent to the department 59. At this time, although it is not essential, the operator may input the type of defect such as void, material outflow, uneven pressure, wrinkle generation, foreign matter contamination, misalignment, etc. when the laminated molded product A1 is defective. More preferred.

前記第2のカメラ44が撮影した積層成形品A1の画像と作業者が行った積層成形品A1良否判断結果、または不良の種類は、紐付されて1つのデータとして送られ、学習処理部59を介して学習データ保存部60の製品データ保存部63に送られる。そして作業者が積層成形品A1に不良なし(s5=Y)と判断した場合は、良品データ保存部64に良品状態の画像として保存され(s6)またその際の成形条件や成形データ(雰囲気温度、雰囲気湿度、熱板温度、真空チャンバCの真空度、ダイアフラムのショット数、積層成形品Aの材料および傾向)もまた良品成形の成形データとして保存される(s7)。また作業者が積層成形品A1に不良あり(s5=N)と判断した場合は、不良品データ保存部65に不良品状態の画像として保存される(s8)。またその際、良品の場合と同様に成形条件や成形データもまた不良品成形の成形データとして保存される(s9)。または先に積層成形品A1を第2のカメラ44で撮影した画像を保存し、保存された画像に対して良品、不良品の紐付をしてもよい。 The image of the laminated molded product A1 taken by the second camera 44, the result of the quality judgment of the laminated molded product A1 performed by the operator, or the type of defect are linked and sent as one data, and the learning processing unit 59 is sent. It is sent to the product data storage unit 63 of the learning data storage unit 60 via. When the operator determines that the laminated molded product A1 has no defects (s5 = Y), it is saved as an image in a good product state in the non-defective product data storage unit 64 (s6), and the molding conditions and molding data (atmosphere temperature) at that time are also stored. , Atmospheric humidity, hot plate temperature, vacuum degree of vacuum chamber C, number of shots of diaphragm, material and tendency of laminated molded product A) are also stored as molding data of non-defective product molding (s7). If the operator determines that the laminated molded product A1 is defective (s5 = N), it is stored as an image of the defective product state in the defective product data storage unit 65 (s8). At that time, the molding conditions and the molding data are also stored as the molding data of the defective product molding as in the case of the non-defective product (s9). Alternatively, an image of the laminated molded product A1 taken by the second camera 44 may be saved first, and a good product or a defective product may be associated with the saved image.

そして不良品の発生頻度が一定以上の場合(s10=Y)は、成形条件の修正を行なう(s11)。そして更に成形条件の修正の有無に係わらず、設定回数となるまで(s12=N)サンプリングした積層成形品A1の良否の判定を行い、データ収集を行う。 Then, when the frequency of occurrence of defective products is above a certain level (s10 = Y), the molding conditions are corrected (s11). Further, regardless of whether or not the molding conditions are modified, the quality of the laminated molded product A1 sampled until the set number of times is reached (s12 = N) is determined, and data is collected.

作業者による良否判定入力が設定した回数となると(s12=Y)、次に学習部57の学習処理部59では製品データ保存部63に蓄積された良品と判断された多数の画像と不良品と判断された多数の画像からなる学習データを教師として、ニューラルネットワーク71を用いて積層成形品A1の良否判定に用いる関数式を生成する(s13)。これらのニューラルネットワーク71を用いた教師あり学習は一定以上のサンプル数の蓄積がないと良好な良否判定をすることができないので最初に或る程度のサンプルの蓄積が行われる。そしてサンプルを蓄積した後は、学習処理部59においてニューラルネットワーク71の入力層72に画像と良否判定結果を紐付したサンプルを投入し、機械学習装置51が良否判定を行うための回帰分析を行い関数式(回帰式)を生成し、出力層74から出力する。出力された関数式は、学習部57の判断式保存部61に保存される(s14)。 When the number of pass / fail judgment inputs by the operator reaches the set number (s12 = Y), then the learning processing unit 59 of the learning unit 57 includes a large number of images and defective products that are determined to be good products stored in the product data storage unit 63. Using the learning data consisting of a large number of determined images as a teacher, a functional expression used for determining the quality of the laminated molded product A1 is generated using the neural network 71 (s13). In supervised learning using these neural networks 71, a good quality judgment cannot be made unless a certain number of samples are accumulated, so that a certain amount of samples are accumulated first. After accumulating the samples, the learning processing unit 59 inputs the sample in which the image and the pass / fail judgment result are linked to the input layer 72 of the neural network 71, and the machine learning device 51 performs regression analysis for making the pass / fail judgment and performs a function. An equation (regression equation) is generated and output from the output layer 74. The output function expression is stored in the determination expression storage unit 61 of the learning unit 57 (s14).

なお教師あり学習の手法は、回帰分析の他、決定木を用いたものでもよい。前記関数計算式は、そのまま利用される場合もあれば近似式として利用される場合もある。また図3のニューラルネットワーク71は、入力層72と出力層74の間に中間層73(隠れ層)を1層だけ備えたものであるが、入力層72と出力層74の間に複数の中間層73(隠れ層)を備え、ディープラーニングを行うものを除外するものではない。 The method of supervised learning may be a method using a decision tree in addition to regression analysis. The function calculation formula may be used as it is or as an approximate expression. Further, the neural network 71 of FIG. 3 is provided with only one intermediate layer 73 (hidden layer) between the input layer 72 and the output layer 74, but a plurality of intermediate layers are provided between the input layer 72 and the output layer 74. It does not exclude those having a layer 73 (hidden layer) and performing deep learning.

次に実際に積層成形を行い、前記の関数式を用いて機械学習装置51の良否判断部66により良否判定を行い、その良否判定結果を表示装置15に表示する。それに対して作業者は、機械学習装置51(AI)が行った良否判定結果に間違いがないか(s15)をチェックする。そして機械学習装置51の良否判断結果に間違いがある場合(s15=N)は、設定回数(s12)を増加させ、更に教師あり学習を追加して行う。また作業者が機械学習装置51の判断結果に間違いが無いことを確認した場合(s15=Y)は、教師あり学習を終了し、次回からは作業者のチェックなしに機械学習装置51のみによる良否判定が可能となる。 Next, laminating molding is actually performed, good / bad judgment is made by the good / bad judgment unit 66 of the machine learning device 51 using the above-mentioned function formula, and the good / bad judgment result is displayed on the display device 15. On the other hand, the operator checks whether the result of the quality determination performed by the machine learning device 51 (AI) is correct (s15). When there is an error in the quality determination result of the machine learning device 51 (s15 = N), the set number of times (s12) is increased, and supervised learning is further performed. If the worker confirms that the judgment result of the machine learning device 51 is correct (s15 = Y), the supervised learning is completed, and from the next time, the quality of the machine learning device 51 alone is used without the worker's check. Judgment becomes possible.

次に図5のフローチャートを参照して真空積層システム11の連続成形時の良否判定と成形条件の修正等について説明する。真空積層システム11の真空積層装置13では成形サイクル毎に連続して積層成形品A1が積層成形される(s101)。積層成形品搬出部14の搬出ステージSBにおいて積層成形品A1が撮影される(s102)。撮影された画像は、画像情報として判断部58の良否判断部66に送られる。そして上記の教師あり学習により生成されて判断式保存部61に保存されている関数式を用いて前記画像情報が良品の画像情報か、不良品の画像情報かの判断がなされる(s103)。良否判断部66において積層成形品A1の画像情報に不良なしと判断された場合(s103=Y)は、成形条件の修正無しの指令(s104)が出され次の積層成形品A1の成形が行われる。なおこれらAIによる機械学習装置51が良否判定した場合についても、作業者が抜き取り検査等の検査を重ねて行うようにしてもよい。従って本発明は機械学習装置51により少なくとも一部を作業者によらずに行うことができるものであればよい。 Next, the quality determination and the modification of the molding conditions at the time of continuous molding of the vacuum lamination system 11 will be described with reference to the flowchart of FIG. In the vacuum laminating device 13 of the vacuum laminating system 11, the laminated molded product A1 is continuously laminated and molded in each molding cycle (s101). The laminated molded product A1 is photographed on the carry-out stage SB of the laminated molded product carry-out unit 14 (s102). The captured image is sent to the quality determination unit 66 of the determination unit 58 as image information. Then, it is determined whether the image information is good image information or defective image information by using the function expression generated by the above supervised learning and stored in the determination expression storage unit 61 (s103). When the quality determination unit 66 determines that there is no defect in the image information of the laminated molded product A1 (s103 = Y), a command (s104) without modification of the molding conditions is issued and the next laminated molded product A1 is molded. Will be. Even when the machine learning device 51 based on AI determines whether the machine learning device 51 is good or bad, the operator may repeat the inspection such as sampling inspection. Therefore, the present invention may be such that at least a part of the machine learning device 51 can be performed without an operator.

また良否判断部66において積層成形品A1の画像情報に不良ありと判断された場合(s103=N)は、当該画像の積層成形品A1は、不良品として成形ラインから除去される(s105)。この際に機械学習装置51が不良品と判断した積層成形品A1のみ、または全ての積層成形品A1について作業者が再検査を行うようにしてもよい。従って本発明は機械学習装置51により少なくとも一部を作業者によらずに行うことができるものであればよい。そして機械学習装置51が不良品と判断したにも関わらず作業者が確認したところ良品であった場合や、機械学習装置51が良品と判断したにも関わらず作業者が確認したところ不良品であった場合は、再度学習部57で教師あり学習の対象としてもよい。 When the quality determination unit 66 determines that the image information of the laminated molded product A1 is defective (s103 = N), the laminated molded product A1 of the image is removed from the molding line as a defective product (s105). At this time, the operator may re-inspect only the laminated molded product A1 determined by the machine learning device 51 to be defective, or all the laminated molded products A1. Therefore, the present invention may be such that at least a part of the machine learning device 51 can be performed without an operator. Then, when the machine learning device 51 determines that the product is defective but the operator confirms that the product is non-defective, or when the machine learning device 51 determines that the product is defective but the operator confirms that the product is defective. If there is, it may be subject to supervised learning again in the learning unit 57.

そして次に良否判断部66において積層成形品A1が不良ありと判断されたことに基づき、成形条件修正部68において、各センサから送られた成形データを基礎として成形条件の修正が必要か?の判断がなされる(s106)。ただし不良の発生要因は種々あり、投入する積層成形品A自体に問題のある場合やゴミ等が混入する場合もあるので、1度不良が検出されたからといって成形条件を変更する訳ではない。そのため積層成形品A1に不良があっても成形条件を変更する必要がないと判断された場合(s106=N)は、成形条件の修正無しの指令(s104)が出され次の積層成形品の成形が行われる Next, based on the fact that the laminated molded product A1 is determined to be defective by the quality determination unit 66, is it necessary for the molding condition correction unit 68 to correct the molding conditions based on the molding data sent from each sensor? Is made (s106). However, there are various factors that cause defects, and there may be problems with the laminated molded product A itself to be charged or dust may be mixed in. Therefore, even if a defect is detected once, the molding conditions are not changed. .. Therefore, when it is determined that it is not necessary to change the molding conditions even if the laminated molded product A1 is defective (s106 = N), a command (s104) without modification of the molding conditions is issued and the next laminated molded product is issued. Molding is done

また不良率が所定の比率を超えた場合等で成形条件の修正が必要と判断された場合(s106=Y)は、機械学習装置51の成形条件修正部68により成形条件の修正を行う。本実施形態では、判断部58の成形条件修正部68において強化学習を行うことにより、作業者が関与しないか或いは少なくとも一部しか関与しないで、機械学習装置51により成形条件の修正を行うことが望ましい。強化学習については、予め設定された不良率に到達した際等に、機械学習装置51の成形条件修正部68において、良品が成形されていた際の成形条件や成形データと参照して、仮の成形条件を生成する。そして前記仮の成形条件で連続成形を行い、不良率が所定範囲内となったり良化した場合は、報酬が与えられる。また仮の成形条件で連続成形を行い不良率が悪化した場合は、負の報酬が与えられる。そして機械学習装置51の成形条件修正部68では前記報酬が多くなる方向に成形条件を修正していく。 When it is determined that the molding conditions need to be corrected (s106 = Y) when the defect rate exceeds a predetermined ratio, the molding conditions are corrected by the molding condition correction unit 68 of the machine learning device 51. In the present embodiment, by performing reinforcement learning in the molding condition correction unit 68 of the determination unit 58, the molding condition can be corrected by the machine learning device 51 with no involvement of the operator or at least a part of the involvement. desirable. Regarding reinforcement learning, when a preset defect rate is reached, etc., the molding condition correction unit 68 of the machine learning device 51 refers to the molding conditions and molding data when a good product is molded, and provisionally Generate molding conditions. Then, continuous molding is performed under the provisional molding conditions, and if the defect rate falls within a predetermined range or improves, a reward is given. In addition, if continuous molding is performed under temporary molding conditions and the defect rate worsens, a negative reward is given. Then, the molding condition correction unit 68 of the machine learning device 51 corrects the molding conditions in the direction in which the reward increases.

この際に修正される成形条件の項目は、熱板温度、真空度、加圧圧力、成形時間等が挙げられる。しかしながら良品成形を行うに際して前記成形条件の項目は複雑に絡み合っており、ある項目の設定値を修正すると他の項目の設定値も修正しないと却って不良品が多くなる場合もある。これらの成形条件の調整において機械学習装置51では、数理計画法等を用いて強化学習をすることにより各項目のバランスを取りながら良好な成形条件に近づけるようにしてもよい。 The items of the molding conditions to be modified at this time include the hot plate temperature, the degree of vacuum, the pressurizing pressure, the molding time and the like. However, when molding a non-defective product, the items of the molding conditions are intricately intertwined, and if the set value of one item is corrected, the number of defective products may increase unless the set value of another item is also corrected. In adjusting these molding conditions, the machine learning device 51 may approach good molding conditions while balancing each item by performing reinforcement learning using a mathematical programming method or the like.

または成形条件の修正の際に教師あり学習の結果を取り入れてもよい。良品データ保存部64および不良品データ保存部65には良品成形時および不良品成形時の成形条件を含む成形データが紐付して保存されているので、良品成形時の成形条件や成形データと乖離した成形条件の使用やそれに伴う成形データにより成形不良が出ているときは、過去の良品成形時の成形条件や成形データに戻す等の補正を行うものでもよい。また成形時の成形条件を含む成形データのサンプル数が不足する場合等はディープラーニングを取り入れてもよい。 Alternatively, the results of supervised learning may be incorporated when modifying the molding conditions. Since molding data including molding conditions at the time of good product molding and defective product molding are linked and stored in the non-defective product data storage unit 64 and the defective product data storage unit 65, they are different from the molding conditions and molding data at the time of good product molding. If molding defects occur due to the use of the molding conditions and the molding data associated therewith, corrections such as returning to the molding conditions and molding data at the time of past non-defective product molding may be performed. Further, when the number of samples of molding data including molding conditions at the time of molding is insufficient, deep learning may be incorporated.

この際の成形条件の修正は、成形条件の修正案を報知するかまたは成形条件を修正することにより行われる。成形条件の修正案の報知は、通常は表示装置15に表示することにより行われるが、音声によるものなどでもよく、作業者が真空積層装置13の近傍にいないときは携帯端末に報知するものでもよい。そして作業者は、機械学習装置51が提示した成形条件の修正案を採用または不採用の決定と修正設定を行う。またこの際にヒータの断線、真空チャンバCのシール不良、ダイアフラムの劣化、バルブを含む加圧機構や真空機構の不具合等が類推される場合、機械学習装置51はそれらを類推するメッセージやダイアフラム等部品の交換を指示するメッセージを表示装置15に表示させることが好ましい。更に成形条件の修正は、機械学習装置51が自動的に行うものであってもよい。機械学習装置51により自動的に成形条件の修正が行われる場合は、修正された成形条件は、記憶され、表示装置にも表示可能に設けられる。そして予定の成形個数に到達したか(s108)が判断され、予定の成形個数に到達(s108=Y)するまで連続成形が行われる。 The modification of the molding conditions at this time is performed by notifying the modification plan of the molding conditions or by modifying the molding conditions. The notification of the modification plan of the molding condition is usually performed by displaying it on the display device 15, but it may be notified by voice or the like, or when the operator is not in the vicinity of the vacuum stacking device 13, the notification device may be notified to the mobile terminal. good. Then, the worker decides to adopt or rejects the modification plan of the molding condition presented by the machine learning device 51, and makes a modification setting. At this time, if it is inferred that the heater is broken, the vacuum chamber C is not sealed, the diaphragm is deteriorated, or the pressurizing mechanism or vacuum mechanism including the valve is defective, the machine learning device 51 analogizes the message, diaphragm, etc. It is preferable to display a message instructing the replacement of parts on the display device 15. Further, the modification of the molding conditions may be automatically performed by the machine learning device 51. When the machine learning device 51 automatically modifies the molding conditions, the modified molding conditions are stored and can be displayed on the display device. Then, it is determined whether or not the planned number of molded pieces has been reached (s108), and continuous molding is performed until the planned number of molded pieces is reached (s108 = Y).

上記については機械学習装置51が積層成形品A1の良否判断のみ行うケースについて記載してきた。しかし当初の教師あり学習の際に、作業者がボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれの少なくとも1つの不良を分類して入力し、各不良の種類ごとに不良の有無と種類を判断する関数式を生成し保存している場合は、判断部58においては、良否判断のみ行う場合と同様のニューラルネットワーク71を用いて、不良の種類も表示することができる。そして成形条件の修正時には不良の種類に対応した修正を行うことができる。一例を挙げれば、積層成形品にボイドが発生している場合は、真空度を高真空にしたり真空チャンバC形成後にダイアフラム32により加圧するまでの時間を延ばすなどの修正対応が行われる。また材料流出が発生している場合は、熱板温度を低下させたり、ダイアフラム32による加圧圧力を低下させるなどの修正対応が行われる。更には積層成形品A1に位置ずれが発生している場合は、真空チャンバCを形成後の真空度を上昇させる時間を遅くする、キャリアフィルムF1,F2の送り速度を遅くする、キャリアフィルムF1,F2の張力を調整するなどの修正対応が行われる。 Regarding the above, the case where the machine learning device 51 only determines the quality of the laminated molded product A1 has been described. However, at the time of initial supervised learning, the worker classifies and inputs at least one defect such as void, material outflow, pressure unevenness, wrinkle generation, foreign matter contamination, and misalignment, and the defect is defective for each type of defect. When a function expression for determining the presence / absence and the type is generated and saved, the determination unit 58 can also display the type of defect by using the neural network 71 similar to the case where only the pass / fail determination is performed. Then, when the molding conditions are corrected, the correction corresponding to the type of defect can be performed. For example, when a void is generated in the laminated molded product, correction measures are taken such as increasing the degree of vacuum to a high vacuum or extending the time until pressurization by the diaphragm 32 after forming the vacuum chamber C. Further, when the material outflow occurs, correction measures such as lowering the hot plate temperature and lowering the pressurizing pressure by the diaphragm 32 are taken. Further, when the laminated molded product A1 is displaced, the time for increasing the degree of vacuum after forming the vacuum chamber C is slowed down, the feeding speeds of the carrier films F1 and F2 are slowed down, and the carrier films F1 and F1 are slowed down. Correction measures such as adjusting the tension of F2 are performed.

また不良の種類の判別については、当初の教師あり学習において積層成形品A1の画像とともに作業者が良否判定のみを入力し機械学習装置51において良否判定の関数式のみが生成されている場合であっても、連続成形時にAIによるクラスタリング等の教師なし学習を取り入れることにより、ボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等のどの不良に該当するか撮影された画像から不良状態判断部67で分類を行うことができる。そして前記不良に対応した成形条件の修正やメッセージの報知を行うことができる。 Regarding the determination of the type of defect, in the initial supervised learning, the worker inputs only the pass / fail judgment together with the image of the laminated molded product A1, and the machine learning device 51 generates only the function expression of the pass / fail judgment. However, by incorporating unsupervised learning such as clustering by AI during continuous molding, which defects such as voids, material outflow, uneven pressure, wrinkles, foreign matter contamination, misalignment, etc. correspond to defects from the captured image. Classification can be performed by the state determination unit 67. Then, it is possible to correct the molding conditions corresponding to the defect and notify the message.

また積層成形品A1の位置ずれや材料流出等については、第1のカメラ19の画像と第2のカメラ44の画像を比較する際に、予め定めた計算式または数値を用いれば、機械学習装置51を用いずに従来の手法で良否判定が可能となる場合もある。しかしながら積層成形品A1が全体的に僅かずつ位置ずれを起こしているが重なっておらず良好な積層成形が出来ている場合や、他の良否条件との関係でファジーな状況で良否合否を決定する場合は、機械学習装置51による判断を取り入れることが望ましい。なお位置ずれの検出は、真空積層装置13の出口側の第2のカメラ44のみにしか設置されていない場合であっても、真空積層装置13の良好な成形位置で成形が行われたかを検出可能である。 Further, regarding the misalignment of the laminated molded product A1 and the outflow of materials, a machine learning device can be used by using a predetermined calculation formula or numerical value when comparing the image of the first camera 19 and the image of the second camera 44. In some cases, it is possible to make a pass / fail judgment by a conventional method without using 51. However, if the laminated molded product A1 is slightly misaligned as a whole but does not overlap and good laminated molding is possible, or if it is fuzzy in relation to other good / bad conditions, pass / fail is determined. In that case, it is desirable to incorporate the judgment by the machine learning device 51. Note that the misalignment is detected whether or not molding is performed at a good molding position of the vacuum stacking device 13, even if it is installed only in the second camera 44 on the outlet side of the vacuum stacking device 13. It is possible.

なお真空積層システム11の機械学習装置51の教師あり学習は、当初はそれぞれの積層成形品A1の成形ごとに行われるが、学習結果が蓄積されるにつれて積層成形品A1と同一や近似する成形品を成形する際は、教師あり学習を行わずに良否判定を行うことが可能となる場合が増加してくる。また新規に出荷される真空積層システム11や、旧来の真空積層システムにこの機械学習装置51を追加で導入した際は、従来の教師あり学習の結果を最初からインストールしておくことができ、新たに教師あり学習を行う回数等を減らすこともできる場合が増加する。 The supervised learning of the machine learning device 51 of the vacuum lamination system 11 is initially performed for each molding of the laminated molded product A1, but as the learning results are accumulated, the molded product that is the same as or similar to the laminated molded product A1. In the case of molding, there are increasing cases where it becomes possible to make a pass / fail judgment without supervised learning. In addition, when this machine learning device 51 is additionally introduced to the newly shipped vacuum stacking system 11 or the old vacuum stacking system, the results of conventional supervised learning can be installed from the beginning, which is new. In many cases, it is possible to reduce the number of times of supervised learning.

次に本発明の別の実施形態の真空積層システム101について図6を参照して相違点を中心に説明する。真空積層システム101は、積層成形品載置部102、ダイアフラム加圧式の真空積層装置103(以下は単に真空積層装置103と略す)の後に、真空チャンバを備えない平坦化プレス装置104が設けられ、平坦化プレス装置104の後工程に積層成形品搬出部105が設けられている。そして積層成形品の検出装置であるカメラは、積層成形品載置部102の上方に第1のカメラ106、真空積層装置103と平坦化プレス装置104の間の上方に第2のカメラ107、積層成形品搬出部105の上方に第3のカメラ108が設けられている。 Next, the vacuum stacking system 101 of another embodiment of the present invention will be described with reference to FIG. 6, focusing on the differences. In the vacuum laminating system 101, a flattening press device 104 without a vacuum chamber is provided after a laminated molded product mounting portion 102 and a diaphragm pressure type vacuum laminating device 103 (hereinafter, simply abbreviated as the vacuum laminating device 103). A laminated molded product carry-out unit 105 is provided in a post-process of the flattening press device 104. The camera, which is a detection device for the laminated molded product, has a first camera 106 above the laminated molded product mounting portion 102, and a second camera 107 above between the vacuum laminating device 103 and the flattening press device 104. A third camera 108 is provided above the molded product carry-out portion 105.

別の実施形態の真空積層システム101についても図1および図2に示される実施形態の真空積層システムと同様の機械学習装置51が備えられている。別の実施形態では、第2のカメラ107により真空積層装置103のみで積層成形した画像と、第3のカメラ108により真空積層装置103と平坦化プレス装置104の両方で撮影した画像が撮影される。そのため真空積層システム101の真空積層装置103が成形不良の原因となっているのか、平坦化プレス装置104が成形不良の原因となっているのかを早期に突き止める ことができる。 The vacuum stacking system 101 of another embodiment is also provided with the same machine learning device 51 as the vacuum stacking system of the embodiments shown in FIGS. 1 and 2. In another embodiment, an image taken by the second camera 107 and laminated only by the vacuum laminating device 103 and an image taken by both the vacuum laminating device 103 and the flattening press device 104 by the third camera 108 are taken. .. Therefore, it is possible to quickly determine whether the vacuum laminating device 103 of the vacuum laminating system 101 is the cause of the molding defect or the flattening press device 104 is the cause of the molding defect.

なお本実施形態および別の実施形態において積層成形品のデータを検出する検出装置としてはCCDカメラ等のカメラが主に使用される。しかし検出装置については次のような検出装置の少なくとも一つを使用するか、または前記カメラと併用して使用してもよい。検出装置として超音波センサ等により積層成形品の各測定点の高さを測定することにより積層成形品の反りや材料流出の有無を検出するものでもよい。また投光した光を受光部で受光することにより色や明暗度を検出する光電センサやレーザーセンサによりボイドの有無や材料流出の有無を検出するものでもよい。または積層成形品の加熱ムラを検出するものとしてサーモグラフィで積層成形品の温度を検出するものなどを用いてもよい。 In this embodiment and another embodiment, a camera such as a CCD camera is mainly used as a detection device for detecting data of a laminated molded product. However, as for the detection device, at least one of the following detection devices may be used, or may be used in combination with the camera. As a detection device, the presence or absence of warpage or material outflow of the laminated molded product may be detected by measuring the height of each measurement point of the laminated molded product with an ultrasonic sensor or the like. Further, the presence or absence of voids and the presence or absence of material outflow may be detected by a photoelectric sensor or a laser sensor that detects the color and brightness by receiving the projected light by the light receiving unit. Alternatively, a thermography that detects the temperature of the laminated molded product may be used to detect the heating unevenness of the laminated molded product.

本発明については、一々列挙はしないが、上記した本実施形態のものに限定されず、当業者が本発明の趣旨を踏まえて変更を加えたものや本実施形態の各記載を掛け合わせたものについても、適用されることは言うまでもないことである。 The present invention is not listed one by one, but is not limited to the above-described embodiment of the present invention. Needless to say, it also applies to.

例えば真空積層装置13,103の押圧体がダイアフラムの場合、ダイアフラムが設けられる盤は上盤または下盤のうち少なくとも一方の盤であればよい。また前記押圧体は、ダイアフラムではなく、弾性体を備えた平面状等の加圧板、回転可能な加圧ロールであってもよい。また真空積層装置13,103の数は、1台でもよいが、2台以上が直列に配置されたものでもよい。また真空積層システム11,101で積層成形される積層成形品は、回路基板の他、ウエハや他の板状体であってもよく限定されない。 For example, when the pressing body of the vacuum laminating devices 13 and 103 is a diaphragm, the board on which the diaphragm is provided may be at least one of the upper board and the lower board. Further, the pressing body may be a flat pressure plate provided with an elastic body or a rotatable pressure roll instead of the diaphragm. Further, the number of the vacuum stacking devices 13 and 103 may be one, but two or more may be arranged in series. Further, the laminated molded product to be laminated and molded by the vacuum laminating systems 11 and 101 may be a wafer or another plate-like body in addition to the circuit board, and is not limited thereto.

11,101 真空積層システム
13,103 真空積層装置
19,106 第1のカメラ
44,107 第2のカメラ(検出装置)
51 機械学習装置
57 学習部
58 判断部
59 学習処理部
66 良否判断部
68 成形条件修正部
11,101 Vacuum stacking system 13,103 Vacuum stacking device 19,106 First camera 44,107 Second camera (detection device)
51 Machine learning device 57 Learning unit 58 Judgment unit 59 Learning processing unit 66 Good / bad judgment unit 68 Molding condition correction unit

Claims (3)

真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムにおいて、
前記真空積層装置の後工程に設けられ積層成形された積層成形品のデータを検出する検出装置と、
検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別して学習する学習部と、少なくとも連続成形時に積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良の種類を判断する判断部とが備えらえた機械学習装置部と、が備えられ、
前記連続成形時に不良の有無と種類を判断し、
前記連続成形時の積層成形品の不良率が所定の比率を超えた場合は、不良の種類に対応した成形条件の修正案を報知するかまたは成形条件を修正することを特徴とする真空積層システム。
In a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding.
A detection device provided in a subsequent process of the vacuum laminating device and detecting data of a laminated molded product that has been laminated and molded.
A learning unit that learns by distinguishing images of laminated molded products into non-defective products and defective products based on the detected data, and at least during continuous molding, the laminated molded products are detected by the detection device and are defective as either good products or defective products. A machine learning device unit equipped with a judgment unit that determines the type of
During the continuous molding, the presence or absence of defects and the type are determined, and
When the defect rate of the laminated molded product during continuous molding exceeds a predetermined ratio, the vacuum lamination system is characterized by notifying a proposal for modifying the molding condition corresponding to the type of defect or modifying the molding condition. ..
真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムの成形不良検出方法において、
前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、
検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに不良品に区別された場合は不良の種類を機械学習装置の学習部に教師あり学習させ、
少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良品の場合は不良の種類を機械学習装置の判断部が判断することを特徴とする真空積層システムの成形不良検出方法。
In a molding defect detection method of a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding.
The data of the laminated molded product that was laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device was detected, and the data was detected.
Based on the detected data, the image of the laminated molded product is classified into a non-defective product and a defective product, and if it is classified as a defective product, the learning department of the machine learning device is supervised to learn the type of the defect.
At least during continuous molding, the learning result is used to detect the laminated molded product with the detection device, and if it is either a good product or a defective product and a defective product, the judgment unit of the machine learning device determines the type of defect. A method for detecting molding defects in a vacuum lamination system.
真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムの成形条件修正方法において、
前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、
検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに該不良品の場合は不良の種類を機械学習装置の学習部に学習させ、
少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出し、
不良品であると機械学習装置の判断部が判断したことに基づき、
前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目の修正案を報知するかまたは前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目を修正することを特徴とする真空積層システムの成形条件修正方法。
In the method of modifying the molding conditions of a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding.
The data of the laminated molded product that was laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device was detected, and the data was detected.
Based on the detected data, the image of the laminated molded product is classified into a non-defective product and a defective product, and in the case of the defective product, the learning unit of the machine learning device is made to learn the type of the defect.
At least during continuous molding, the learning result is used to detect the laminated molded product with the detection device.
Based on the judgment of the machine learning device that it is a defective product
Notify the correction proposal of the item of the molding condition including at least one of the hot plate temperature, the degree of vacuum, the pressurizing pressure, and the molding time corresponding to the type of the defect, or notify the hot plate temperature corresponding to the type of the defect. , A method for modifying molding conditions of a vacuum lamination system, comprising modifying items of molding conditions including at least one of vacuum degree, pressure pressure, and molding time.
JP2022077148A 2019-12-03 2022-05-09 Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system Pending JP2022103272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022077148A JP2022103272A (en) 2019-12-03 2022-05-09 Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218439A JP7071956B2 (en) 2019-12-03 2019-12-03 Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method
JP2022077148A JP2022103272A (en) 2019-12-03 2022-05-09 Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019218439A Division JP7071956B2 (en) 2019-12-03 2019-12-03 Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method

Publications (1)

Publication Number Publication Date
JP2022103272A true JP2022103272A (en) 2022-07-07

Family

ID=76218987

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019218439A Active JP7071956B2 (en) 2019-12-03 2019-12-03 Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method
JP2022077148A Pending JP2022103272A (en) 2019-12-03 2022-05-09 Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019218439A Active JP7071956B2 (en) 2019-12-03 2019-12-03 Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method

Country Status (1)

Country Link
JP (2) JP7071956B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7282945B1 (en) * 2022-03-29 2023-05-29 株式会社日本製鋼所 Control Device, Laminated Molded Product Manufacturing System, and Laminated Molded Product Manufacturing Method
JP7337323B1 (en) 2022-08-30 2023-09-04 東洋インキScホールディングス株式会社 QUALITY ESTIMATION SYSTEM, LAMINATION SYSTEM, QUALITY ESTIMATION METHOD, AND PROGRAM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758137A (en) * 1993-08-11 1995-03-03 Toshiba Corp Method for inspecting parts of semiconductor molding device, and semiconductor molding device
JP2012026982A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Sunx Co Ltd Inspection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006103177A (en) 2004-10-06 2006-04-20 Meiki Co Ltd Vacuum laminating apparatus and vacuum laminating method
JP2012129366A (en) 2010-12-15 2012-07-05 Nisshinbo Mechatronics Inc Inspection apparatus for solar cell
JP7265318B2 (en) 2018-03-23 2023-04-26 株式会社日本製鋼所 Injection molding machine system that adjusts molding conditions using machine learning

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758137A (en) * 1993-08-11 1995-03-03 Toshiba Corp Method for inspecting parts of semiconductor molding device, and semiconductor molding device
JP2012026982A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Sunx Co Ltd Inspection device

Also Published As

Publication number Publication date
JP7071956B2 (en) 2022-05-19
JP2021088072A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
JP2022103272A (en) Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system
CN101925944B (en) Method of manufacturing optical display unit and manufacturing system of optical display unit
KR101297395B1 (en) Secondary battery eloctrode panel vision detection method
JP7005930B2 (en) Sheet inspection equipment and inspection system
TW201823895A (en) Product manufacturing method and product manufacturing device
JP2019184380A (en) Imaging device and inspection system using imaging device
KR20230057433A (en) Systems and Methods for Computer Vision Aided Foam Board Processing
JP2024528597A (en) Calibration of a quality estimator for laser cutting processes.
KR20230064319A (en) Method, apparatus and program for inspecting defect
JP6027047B2 (en) Inspection system and PTP packaging machine
EP3447480B1 (en) In-process monitoring; automated decision-making; and process control for composite manufacturing using part-referenced ply-by-ply infrared thermography and other non-contact non-destructive inspection
TWI781671B (en) Inspection device, blister packaging machine, and manufacturing method of blister box
WO2022021806A1 (en) Packaging bag unequal edge defect automatic detection system and method
TW202310553A (en) Motor controlling system for application in apparatus having roll-to-roll mechanism
CN108960371B (en) Abnormality analysis method and abnormality analysis device for mounted component
CN115356259A (en) Square capacitor defect detection system and method based on deep learning
JP7532596B2 (en) Inspection device and inspection method
CN104713584B (en) Correcting method for optical detecting device
JP7195831B2 (en) Paper sheet handling equipment and paper sheet handling system
JP6456329B2 (en) Inspection system and PTP packaging machine
CN118946452A (en) Control device, laminated molded article manufacturing system, and laminated molded article manufacturing method
US11868069B2 (en) Image forming system and storage medium
TW202435017A (en) Interactive user feedback system to enhance inspection accuracy of automated visual inspection system
JP6943168B2 (en) Inspection system and inspection method
JP3488072B2 (en) Apparatus and method for managing carrier plate in press machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230704