JP2022103272A - Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system - Google Patents
Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system Download PDFInfo
- Publication number
- JP2022103272A JP2022103272A JP2022077148A JP2022077148A JP2022103272A JP 2022103272 A JP2022103272 A JP 2022103272A JP 2022077148 A JP2022077148 A JP 2022077148A JP 2022077148 A JP2022077148 A JP 2022077148A JP 2022103272 A JP2022103272 A JP 2022103272A
- Authority
- JP
- Japan
- Prior art keywords
- molding
- vacuum
- laminated molded
- molded product
- defective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000465 moulding Methods 0.000 title claims abstract description 196
- 238000010030 laminating Methods 0.000 title claims abstract description 84
- 230000007547 defect Effects 0.000 title claims abstract description 71
- 238000001514 detection method Methods 0.000 title claims abstract description 31
- 238000002715 modification method Methods 0.000 title abstract 2
- 230000002950 deficient Effects 0.000 claims abstract description 88
- 238000010801 machine learning Methods 0.000 claims abstract description 57
- 238000003475 lamination Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 30
- 238000012937 correction Methods 0.000 claims description 15
- 238000003825 pressing Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 238000012986 modification Methods 0.000 abstract description 15
- 230000004048 modification Effects 0.000 abstract description 15
- 238000013500 data storage Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 14
- 238000012545 processing Methods 0.000 description 12
- 230000006870 function Effects 0.000 description 10
- 238000013528 artificial neural network Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 238000013473 artificial intelligence Methods 0.000 description 6
- 238000011109 contamination Methods 0.000 description 6
- 230000037303 wrinkles Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 230000002787 reinforcement Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Images
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により積層成形品を加圧して積層成形を行う真空積層システム、真空積層システムの成形不良検出方法および真空積層システムの成形条件修正方法に関するものである。 The present invention relates to a vacuum laminating system in which a laminated molded product is pressurized by a pressing body in a vacuum chamber formed between an upper plate and a lower plate of a vacuum laminating device to perform laminating molding, a method for detecting molding defects in a vacuum laminating system, and a method for detecting molding defects in a vacuum laminating system. It relates to a method of modifying molding conditions of a vacuum lamination system.
従来、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により積層成形品を加圧して積層成形を行う真空積層システムとしては、特許文献1ないし特許文献4に記載されたものが知られている。特許文献1は、真空プレス装置の真空チャンバ内で上部加圧ブロックに対して下部ブロック装置を加圧シリンダにより加圧し、フィルム状材料を基板に積層するものである。また特許文献2は真空積層装置の真空チャンバ内で膜体を用いて積層成形品を加圧するものである。そして特許文献2には、膜体内部の真空度が低いことに起因して膜体が浮き上がり、積層成形品に気泡等の不良が発生することも記載されている。 Conventionally, Patent Document 1 to Patent Document 4 describe a vacuum laminating system in which a laminated molded product is pressurized by a pressing body in a vacuum chamber formed between an upper plate and a lower plate of a vacuum laminating device to perform laminating molding. What was done is known. In Patent Document 1, the lower block device is pressed against the upper pressure block by a pressure cylinder in the vacuum chamber of the vacuum press device, and the film-like material is laminated on the substrate. Further, Patent Document 2 pressurizes a laminated molded product using a film body in a vacuum chamber of a vacuum laminating device. Further, Patent Document 2 also describes that the film body floats due to the low degree of vacuum inside the film body, and defects such as air bubbles occur in the laminated molded product.
また特許文献3と特許文献4は、真空積層システムにCCDカメラを取付け、前記CCDカメラで撮影された画像情報を制御に用いるものである。特許文献3は、真空積層装置の前工程にCCDカメラを取付け、積層成形品が上面から加圧するものか下面から加圧するものかを検出するものである。また特許文献4は、真空積層装置から送られてきた積層成形品が切断ステージのどの位置に停止しているかをCCDカメラで撮影し、積層成形品の位置に対応して切断機構を移動させるものである。 Further, in Patent Document 3 and Patent Document 4, a CCD camera is attached to a vacuum stacking system, and image information taken by the CCD camera is used for control. Patent Document 3 attaches a CCD camera to the pre-process of the vacuum laminating apparatus and detects whether the laminated molded product is pressurized from the upper surface or the lower surface. Further, Patent Document 4 captures with a CCD camera the position of the laminated molded product sent from the vacuum laminating device on the cutting stage, and moves the cutting mechanism according to the position of the laminated molded product. Is.
しかしながら特許文献1ないし特許文献4の真空積層システムは、いずれも積層成形品に成形不良があった場合にどのように対応するかについてはまったく記載されていないものであった。現状では真空積層システムにおいて積層成形された積層成形品は、作業者により成形不良がないかを1個ずつチェックしているのが実態である。これら作業者による成形不良のチェックは、人件費が発生する上に、判断する人によりバラつきが発生するという問題があった。また成形不良があったときの成形条件の修正は、熟練した作業者でないとできないという問題があった。 However, in each of the vacuum laminating systems of Patent Documents 1 to 4, there is no description about how to deal with a molding defect in the laminated molded product. At present, the laminated molded products that have been laminated and molded in the vacuum laminating system are actually checked one by one by an operator for molding defects. Checking for molding defects by these workers has a problem that labor costs are incurred and variations occur depending on the person who makes the judgment. Further, there is a problem that only a skilled worker can correct the molding conditions when there is a molding defect.
そこで本発明では、積層成形品の成形不良の判断の少なくとも一部を作業者によらずに行うことができる真空積層システムおよび前記真空積層システムの成形不良検出方法を提供することを第1の目的とする。または成形不良が発生した場合の成形条件の修正作業の少なくとも一部を作業者によらずに行うことができる真空積層システムおよび前記真空積層システムの成形不良検出方法を提供することを第2の目的とする。 Therefore, the first object of the present invention is to provide a vacuum laminating system and a method for detecting molding defects of the vacuum laminating system, which can perform at least a part of determination of molding defects of a laminated molded product without an operator. And. Another object of the second object is to provide a vacuum laminating system capable of performing at least a part of the work of correcting molding conditions when molding defects occur without an operator, and a method for detecting molding defects of the vacuum laminating system. And.
本発明の請求項1に記載の真空積層システムは、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムにおいて、前記真空積層装置の後工程に設けられ積層成形された積層成形品のデータを検出する検出装置と、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別して学習する学習部と、少なくとも連続成形時に積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良の種類を判断する判断部とが備えらえた機械学習装置部と、が備えられ、前記連続成形時に不良の有無と種類を判断し、前記連続成形時の積層成形品の不良率が所定の比率を超えた場合は、不良の種類に対応した成形条件の修正案を報知するかまたは成形条件を修正することを特徴とする。 In the vacuum laminating system according to claim 1 of the present invention, a laminated molded product including a circuit board or a wafer is pressed and laminated by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device. In a vacuum laminating system for molding, a detection device provided in a subsequent process of the vacuum laminating device to detect data of a laminated molded product, and an image of a laminated molded product based on the detected data are regarded as non-defective products. A machine learning device unit equipped with a learning unit that distinguishes and learns defective products, and a determination unit that detects at least a laminated molded product with the detection device during continuous molding and determines whether it is a good product or a defective product and the type of defect. , And, the presence or absence of defects and the type during the continuous molding are determined, and if the defect rate of the laminated molded product during the continuous molding exceeds a predetermined ratio, the molding conditions corresponding to the types of defects are corrected. It is characterized by notifying the proposal or modifying the molding conditions.
本発明の請求項2に記載の真空積層システムの成形不良検出方法は、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムの成形不良検出方法において、前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに不良品に区別された場合は不良の種類を機械学習装置の学習部に教師あり学習させ、少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良品の場合は不良の種類を機械学習装置の判断部が判断することを特徴とする。 The molding defect detecting method of the vacuum laminating system according to claim 2 of the present invention is a laminated molded product including a circuit board or a wafer by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device. In the molding defect detection method of the vacuum laminating system that pressurizes and performs laminating, the data of the laminated molded product laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device is detected, and the detected data is used. Based on this, the image of the laminated molded product is classified into a non-defective product and a defective product, and if it is classified as a defective product, the learning unit of the machine learning device is trained to learn the type of the defect, and at least the learning result is used during continuous molding. Then, the laminated molded product is detected by the detection device, and in the case of either a non-defective product or a defective product and a defective product, the type of the defect is determined by the determination unit of the machine learning device.
本発明の請求項3に記載の真空積層システムの成形不良検出方法は、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムの成形条件修正方法において、前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに該不良品の場合は不良の種類を機械学習装置の学習部に学習させ、少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出し、不良品であると機械学習装置の判断部が判断したことに基づき、前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目の修正案を報知するかまたは前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目を修正することを特徴とする。 The molding defect detecting method of the vacuum laminating system according to claim 3 of the present invention is a laminated molded product including a circuit board or a wafer by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device. In the molding condition correction method of the vacuum laminating system that pressurizes and performs laminating, the data of the laminated molded product that was laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device is detected, and the detected data is used. Based on this, the image of the laminated molded product is distinguished into a good product and a defective product, and in the case of the defective product, the learning unit of the machine learning device is made to learn the type of the defective product, and at least during continuous molding, the laminated molding is performed using the learning result. Based on the fact that the product is detected by the detection device and the judgment unit of the machine learning device determines that the product is defective, at least the hot plate temperature, vacuum degree, pressurizing pressure, and molding time correspond to the type of defect. Notify the proposed modification of the molding condition item including one, or modify the molding condition item including at least one of hot plate temperature, vacuum degree, pressure pressure, and molding time according to the type of defect. It is characterized by that.
本発明の真空積層システムは、真空積層装置の上盤と下盤の間に形成される真空チャンバ内で押圧体により回路基板またはウエハを含む積層成形品を加圧して積層成形を行う真空積層システムにおいて、前記真空積層装置の後工程に設けられ積層成形された積層成形品のデータを検出する検出装置と、検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別して学習する学習部と、少なくとも連続成形時に積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良の種類を判断する判断部とが備えらえた機械学習装置部と、が備えられ、前記連続成形時に不良の有無と種類を判断し、前記連続成形時の積層成形品の不良率が所定の比率を超えた場合は、不良の種類に対応した成形条件の修正案を報知するかまたは成形条件を修正するので、成形不良の判断の少なくとも一部を作業者によらずに行うことができる。また本発明の真空積層システムの成形不良検出方法および真空積層システムの成形条件修正方法も少なくとも一部において同様の効果を奏する。 The vacuum laminating system of the present invention is a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding. In the detection device provided in the subsequent process of the vacuum laminating device to detect the data of the laminated molded product, and the image of the laminated molded product is discriminated into good products and defective products based on the detected data. A machine learning device unit provided with a learning unit for detecting at least a laminated molded product by the detection device during continuous molding and a determination unit for determining whether the product is a good product or a defective product and the type of defective product is provided. The presence or absence and type of defects during continuous molding are determined, and if the defect rate of the laminated molded product during continuous molding exceeds a predetermined ratio, a proposal for amending the molding conditions corresponding to the type of defects is notified. Since the molding conditions are modified, at least a part of the determination of molding defects can be made without an operator. Further, the method for detecting molding defects of the vacuum stacking system and the method for modifying the molding conditions of the vacuum stacking system of the present invention also have the same effect in at least a part of them.
本発明の実施形態の真空積層システム11について図1を参照して説明する。真空積層システム11は、キャリアフィルムF1,F2を用いて積層成形品A,A1を搬送するものである。真空積層システム11は、図1において右側の前工程から図1において左側の後工程に向けて順に、積層成形品載置部12、ダイアフラム加圧式の真空積層装置13(以下は単に真空積層装置13と略す)、積層成形品搬出部14が設けられている。また真空積層システム11には操作装置を兼ねたタッチパネル式の表示装置15や真空積層装置13の制御機能や本発明の機械学習装置の機能を備えた制御装置16が配置されている。
The
積層成形品載置部12はフィルム送り部を含んでおり、下キャリアフィルムは巻出ロール17から従動ロール18を介して水平状態に巻き出される。水平状態となった下キャリアフィルムF1の部分に積層成形品Aを載置する載置ステージSAが設けられている。そして前記載置ステージSAの上方には、積層成形品Aの状態を検出する検出装置である第1のカメラ19が配置されている。第1のカメラ19はCCDカメラが用いられ、図示しない信号線により制御装置16に接続されている。そして前記第1のカメラ19により、積層成形品Aの形状、キャリアフィルムF1上への載置位置などが検出され、検出データは制御装置16へ送られる。なお本発明において第1のカメラ19は必須のものではない。
The laminated molded
前記載置ステージSAと真空積層装置13の間の上方には、フィルム送り部の上キャリアフィルムF2の巻出ロール20が配置されている。前記巻出ロール20から巻き出された上キャリアフィルムF2は、従動ロール21の部分から載置ステージSAにて載置された積層成形品Aの上面に重ねられる。そして上下のキャリアフィルムF1,F2に挟まれた積層成形品Aは、次工程の真空積層装置13へ送られる。
Above the above-mentioned placement stage SA and the
真空積層装置13自体は、特許文献2ないし特許文献4にも記載されるように公知のものであり、固定的に配置された上盤22に対して下盤23が昇降装置により昇降可能に設けられ、下盤23が上昇した際に上盤22と下盤23の間に内部空間を真空化可能な真空チャンバCが形成されるようになっている。上盤22の下面の中央にはヒータ24により加熱される熱板25が固定され、熱板25の表面にはシリコンゴムやフッ素ゴム等の弾性膜体26が固定されている。また下盤23の上面中央にはヒータ27により加熱される熱板28が固定されている。これら熱板25,28の温度はそれぞれ温度センサ29,30により検出され、制御装置16に送信される。
The
熱板28の上方にはコンプレッサ31から加圧気体を導入されることにより下盤23から膨出するシリコンゴムやフッ素ゴム等の膜体からなるダイアフラム32が配置されている。またダイアフラム32は真空ポンプ33より裏面側の空間を真空吸引されることにより熱板25に密着状態となる。本発明において前記ダイアフラム32は押圧体に相当する。前記コンプレッサ31からダイアフラム32の裏面側に送られる加圧気体の気圧は圧力センサ34(気圧センサ)により検出される。
Above the
上盤22の下面の周囲部分に形成される枠部35と下盤23の上面の周囲部分に形成される枠部36はそれぞれ熱板25,28よりも突出しており、これら枠部35,36同士が当接することにより外界とは隔絶された真空チャンバCが形成される。真空チャンバCの真空度は真空センサ37により検出される。そして真空積層装置13の枠部分の一側(図1では右側)が積層成形前の積層成形品Aの入口となり、枠部分の他側(図1では左側)が積層成形後の積層成形品A1の出口となっている。また真空チャンバCは管路を介して前記真空ポンプ33に接続され、チャンバ内が真空吸引可能となっている。上記において温度センサ29,30、圧力センサ34、真空センサ37は、真空積層装置13の成形状態を検出するセンサ38に相当する(図2を参照)。またヒータ24,27、コンプレッサ31、真空ポンプ33は、真空積層装置13の作動部39に相当する(図2を参照)。
The
真空積層装置13の後工程には積層成形品搬出部14が設けられている。フィルム巻取部を含む積層成形品搬出部14は、下キャリアフィルムF1のみが水平状態で送られる搬出ステージSBが設けられ、従動ロール40を介して下キャリアフィルムF1は折り返され下方の巻取ロール41に巻き取られる。また搬出ステージSBと真空積層装置13の間の上方には上キャリアフィルムF2の巻取ロール42が配置され、搬出ステージSBの手前で従動ロール43を介して上キャリアフィルムF2は積層成形された積層成形品A1から剥離され巻き取られる。なお本実施形態では積層成形品A,A1は、上下のキャリアフィルムF1,F2を用いて搬送されるが、下キャリアフィルムF1のみを用いて搬送されるものでもよく、キャリアフィルムF1,F2を使用せずにロボット等の搬送手段により搬送されるものでもよい。
A laminated molded product carry-out unit 14 is provided in the post-process of the
積層成形品搬出部14の搬出ステージSBの上方には、積層成形品A1の状態を検出する検出装置である第2のカメラ44が配置されている。第2のカメラ44はCCDカメラが用いられ、制御装置16に接続されている。そして前記第2のカメラ44により、積層成形品A1の形状、キャリアフィルムF1上における位置などが検出され、検出データは信号線を介して制御装置16へ送られるようになっている。なお第2のカメラ44は、搬出ステージSBの上方ではなく、積層成形品A1を搬送するロボットや、ロボットによる積層成形品A1の搬送先のコンベアや積層成形品A1の検査場に設けられたものでもよい。従ってそれらのコンベアや検査場の第2のカメラ44が設けられる場合、それらの部分も本発明の真空積層システム11に含まれる。
A
次に本発明の積層成形品A1の制御装置16と、成形不良の有無を判断するための機械学習装置51について図2を参照して説明する。上記したように真空積層システム11の操作装置を含む表示装置15、各カメラ19.44、各センサ38、作動部39は、それぞれ制御装置16に接続されている。そして前記表示装置15、カメラ19,44、センサ38からの情報は信号として制御装置16の入力処理部52に送られる。制御装置16は、後述する機械学習装置51の他に、真空積層装置13を含む真空積層システム11の各種成形条件や成形データを記憶しておく記憶部53と、入力値を処理して作動部39へ送る指令信号を生成する成形指令部54、表示装置15の画像表示を行う画像表示部55、出力処理部56等を備えている。
Next, the
機械学習装置51は、人工知能であるAI(Artfifical Intelligence)技術を用いて積層成形品A1の不良の有無を学習し、作業者の判断を一部または全部(両者を合わせて少なくとも一部)において必要とせずに積層成形品の良否判定を可能とするものである。機械学習装置51は、検出されたデータを基礎にして積層成形品A1の画像を良品と不良品に区別可能なように学習する学習部57と、少なくとも連続成形時に積層成形品A1を検出装置である第2のカメラ44等により検出して良品または不良品のいずれかであると判断する判断部58とを備えている。学習部57については、学習処理部59と、学習データ保存部60を備えている。
The machine learning device 51 learns whether or not the laminated molded product A1 is defective by using AI (Artificial Intelligence) technology, which is artificial intelligence, and makes a part or all (at least a part of both) judgments of the operator. It is possible to judge the quality of a laminated molded product without the need for it. The machine learning device 51 is a learning unit 57 that learns the image of the laminated molded product A1 so that it can be distinguished into a non-defective product and a defective product based on the detected data, and a detection device that detects the laminated molded product A1 at least during continuous molding. It is provided with a determination unit 58 that is detected by a
学習処理部59は、図3に示されるような入力層72、中間層73、出力層74等の複数の階層を備えたニューラルネットワーク71を備えている。そして学習処理部59では、カメラ44等で撮影された良品画像である良品データ、および不良品画像である不良品データがニューラルネットワーク71の入力層72から入力されて教師あり学習が行われ、積層成形品A1が良品と不良品を識別するための回帰式等の関数式が出力層74から生成される。学習処理部59で生成された判断式は学習データ保存部60判断式保存部61に保存される。また学習処理部59は、ボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類が分類可能な不良状態学習部62を備えていることが望ましい。
The
学習データ保存部60は、前記判断式保存部61に加えて製品データ保存部63が備えられている。更に製品データ保存部63には良品データ保存部64と不良品データ保存部65が備えられている。良品データ保存部64は、作業者により良品と判断された積層成形品A1の画像にリンクして良品を成形した際の成形条件やセンサにより検出される物理量データなどの成形データが保存される。また不良品データ保存部65は、作業者により不良品と判断された積層成形品A1の画像にリンクして不良品を成形した際の成形条件やセンサにより検出される物理量データなどの成形データが保存される。更に不良品データ保存部65は、作業者がボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類ごとに判断して入力したものを区分して記憶することがより望ましい。
The learning data storage unit 60 includes a product data storage unit 63 in addition to the determination
次に機械学習装置51の判断部58について説明する。判断部58には、積層成形品A1の良否を判断する良否判断部66が備えられている。良否判断部66は、学習データ保存部60の判断式保存部61に保存された関数式に基づき、新しく送られてきた積層成形品A1の画像データの良否判定を行う。また良否判断部66は、ボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類が分類可能な不良状態判断部67を備えていることがより望ましい。
Next, the determination unit 58 of the machine learning device 51 will be described. The determination unit 58 is provided with a
また判断部58は、送られてきた画像から積層成形品A1が不良であると判断した場合に、前記判断部58により不良品と判断されたことに基づき、真空積層装置13の成形条件を修正するかしないかの判断や、成形条件を変更する場合どのように変更するかの判断する成形条件修正部68を備えている。成形条件修正部68ではニューラルネットワーク71等を用いて強化学習を行うことにより、より良好な成形条件を策定する。成形条件修正部68による成形条件の変更は自動的に行われるものの他、表示装置15に成形条件修正案として表示され、作業者が修正案を実行するかどうか決定するものでもよい。なお本発明における成形条件の「修正」は、成形条件を完全に別のものに置き換えるものも僅かに補正するものも両方含まれるものとする。
Further, when the determination unit 58 determines that the laminated molded product A1 is defective from the sent image, the determination unit 58 corrects the molding conditions of the
なお上記の機械学習装置51は、真空積層システム11に付設された制御装置16ではなく、他の真空積層システムにも接続される同じ工場内の中央制御装置のコンピュータ(サーバーを含む)に保存されて処理を行うものや、通信により接続される本社内のコンピュータ(サーバーを含む)や、真空積層システムのメーカのコンピュータ等に保存されて処理を行うものでもよい。その場合はそれらのコンピュータ等も本発明の真空積層システムを構築する構成要素に含まれる。またフラッシュメモリ等の携帯物を用いて真空積層装置13のデータを、真空積層装置13とは接続されていないコンピュータの機械学習装置に移す場合、前記真空積層装置13と接続されていないコンピュータも本発明の真空積層システムに含まれる。
The machine learning device 51 is stored not in the
次に図4のフローチャートを参照して真空積層システム11の機械学習装置51による教師あり学習について説明する。最初に真空積層装置13を含む真空積層システム11の成形条件を設定する(s1)。この際に真空積層システム11の制御装置16の記憶部53に積層成形品Aの成形条件が保存されていれば、その成形条件を使用する。また同じ積層成形品Aの成形条件が保存されていない場合は、積層成形品Aのサイズ、質量、凹凸高さや間隔、材料(メーカ品番、メーカ推奨成形温度、材料等)を作業者が操作装置を兼ねた表示装置15から入力すると、機械学習装置51で過去に保存されている成形条件との比較から成形条件の案を演算して表示することも可能である。
Next, supervised learning by the machine learning device 51 of the
まず積層成形品載置部12の載置ステージSAの載置された積層成形品A(その載置位置を含む)が第1のカメラ19で撮影され、撮影された積層成形品Aのデータは制御装置16の記憶部53に送られる。次の成形サイクルの開始に際して、積層成形品Aは上下のキャリアフィルムF1,F2の巻取ロール42,41の駆動による送りにより真空積層装置13に送られる。次に加熱された熱板28が取付けられた下盤23の上昇により、加熱された熱板25が取付けられた上盤22との間に真空チャンバCが形成され、更に該真空チャンバC内は真空ポンプ33により真空吸引される。この際に上下のキャリアフィルムF1,F2の間の積層成形品Aは、位置ずれを起こしやすい。そして真空チャンバCが所定の真空度となると押圧体であるダイアフラム32の下方の空間に対してコンプレッサ31から加圧空気が供給され、ダイアフラム32は上方の積層成形品に向けて膨出する。そして積層成形品Aはダイアフラム32と上盤22の熱板25に取付けられた弾性膜体26の間で加圧され積層成形される(s2)。
First, the laminated molded product A (including its mounting position) on which the mounting stage SA of the laminated molded
このダイアフラム32による積層成形は、予め設定した熱板温度、真空度、空気圧力等の成形条件で行われるとともに、温度センサ29,30による測定される熱板温度、真空センサ37により測定される真空度、圧力センサ34により測定される空気圧等の実測値の成形データも制御装置16に送られ、記憶部53に保存される(s3)。所定の成形時間が終了すると積層成形は終了し、ダイアフラム32の裏面側への加圧空気供給は停止され、真空チャンバC内は常圧に戻される。そして下盤23が下降されて真空チャンバCが開放されると、上下のキャリアフィルムF1,F2の送りにより成形された積層成形品A1は、積層成形品搬出部14に送られる。その際に積層成形品A1が積層成形品搬出部14の搬出ステージSBに到達する前に上キャリアフィルムF2が剥離される。そして搬出ステージSBでは、上方に設けられた第2のカメラ44により積層成形品A1が撮影され、撮影された画像情報は制御装置16の機械学習装置51の学習処理部59に送られる(s4)。
Laminate molding by the
また第2のカメラ44による撮影と前後して搬出ステージSB上の積層成形品A1は、搬出ステージSBの近傍に位置する作業者により目視によりチェックされ、良品であるか不良品であるかの良否判定がなされる。そして作業者が表示装置15(操作装置)のタッチパネル上の良品ボタンまたは不良品ボタンのいずれかのボタンを入力することにより、良否判定の結果は、表示装置15を介して制御装置16の学習処理部59に送られる。この際に必須ではないが、作業者により、積層成形品A1が不良であった際のボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等、不良の種類も入力することがより好ましい。
Further, before and after the shooting by the
前記第2のカメラ44が撮影した積層成形品A1の画像と作業者が行った積層成形品A1良否判断結果、または不良の種類は、紐付されて1つのデータとして送られ、学習処理部59を介して学習データ保存部60の製品データ保存部63に送られる。そして作業者が積層成形品A1に不良なし(s5=Y)と判断した場合は、良品データ保存部64に良品状態の画像として保存され(s6)またその際の成形条件や成形データ(雰囲気温度、雰囲気湿度、熱板温度、真空チャンバCの真空度、ダイアフラムのショット数、積層成形品Aの材料および傾向)もまた良品成形の成形データとして保存される(s7)。また作業者が積層成形品A1に不良あり(s5=N)と判断した場合は、不良品データ保存部65に不良品状態の画像として保存される(s8)。またその際、良品の場合と同様に成形条件や成形データもまた不良品成形の成形データとして保存される(s9)。または先に積層成形品A1を第2のカメラ44で撮影した画像を保存し、保存された画像に対して良品、不良品の紐付をしてもよい。
The image of the laminated molded product A1 taken by the
そして不良品の発生頻度が一定以上の場合(s10=Y)は、成形条件の修正を行なう(s11)。そして更に成形条件の修正の有無に係わらず、設定回数となるまで(s12=N)サンプリングした積層成形品A1の良否の判定を行い、データ収集を行う。 Then, when the frequency of occurrence of defective products is above a certain level (s10 = Y), the molding conditions are corrected (s11). Further, regardless of whether or not the molding conditions are modified, the quality of the laminated molded product A1 sampled until the set number of times is reached (s12 = N) is determined, and data is collected.
作業者による良否判定入力が設定した回数となると(s12=Y)、次に学習部57の学習処理部59では製品データ保存部63に蓄積された良品と判断された多数の画像と不良品と判断された多数の画像からなる学習データを教師として、ニューラルネットワーク71を用いて積層成形品A1の良否判定に用いる関数式を生成する(s13)。これらのニューラルネットワーク71を用いた教師あり学習は一定以上のサンプル数の蓄積がないと良好な良否判定をすることができないので最初に或る程度のサンプルの蓄積が行われる。そしてサンプルを蓄積した後は、学習処理部59においてニューラルネットワーク71の入力層72に画像と良否判定結果を紐付したサンプルを投入し、機械学習装置51が良否判定を行うための回帰分析を行い関数式(回帰式)を生成し、出力層74から出力する。出力された関数式は、学習部57の判断式保存部61に保存される(s14)。
When the number of pass / fail judgment inputs by the operator reaches the set number (s12 = Y), then the
なお教師あり学習の手法は、回帰分析の他、決定木を用いたものでもよい。前記関数計算式は、そのまま利用される場合もあれば近似式として利用される場合もある。また図3のニューラルネットワーク71は、入力層72と出力層74の間に中間層73(隠れ層)を1層だけ備えたものであるが、入力層72と出力層74の間に複数の中間層73(隠れ層)を備え、ディープラーニングを行うものを除外するものではない。 The method of supervised learning may be a method using a decision tree in addition to regression analysis. The function calculation formula may be used as it is or as an approximate expression. Further, the neural network 71 of FIG. 3 is provided with only one intermediate layer 73 (hidden layer) between the input layer 72 and the output layer 74, but a plurality of intermediate layers are provided between the input layer 72 and the output layer 74. It does not exclude those having a layer 73 (hidden layer) and performing deep learning.
次に実際に積層成形を行い、前記の関数式を用いて機械学習装置51の良否判断部66により良否判定を行い、その良否判定結果を表示装置15に表示する。それに対して作業者は、機械学習装置51(AI)が行った良否判定結果に間違いがないか(s15)をチェックする。そして機械学習装置51の良否判断結果に間違いがある場合(s15=N)は、設定回数(s12)を増加させ、更に教師あり学習を追加して行う。また作業者が機械学習装置51の判断結果に間違いが無いことを確認した場合(s15=Y)は、教師あり学習を終了し、次回からは作業者のチェックなしに機械学習装置51のみによる良否判定が可能となる。
Next, laminating molding is actually performed, good / bad judgment is made by the good /
次に図5のフローチャートを参照して真空積層システム11の連続成形時の良否判定と成形条件の修正等について説明する。真空積層システム11の真空積層装置13では成形サイクル毎に連続して積層成形品A1が積層成形される(s101)。積層成形品搬出部14の搬出ステージSBにおいて積層成形品A1が撮影される(s102)。撮影された画像は、画像情報として判断部58の良否判断部66に送られる。そして上記の教師あり学習により生成されて判断式保存部61に保存されている関数式を用いて前記画像情報が良品の画像情報か、不良品の画像情報かの判断がなされる(s103)。良否判断部66において積層成形品A1の画像情報に不良なしと判断された場合(s103=Y)は、成形条件の修正無しの指令(s104)が出され次の積層成形品A1の成形が行われる。なおこれらAIによる機械学習装置51が良否判定した場合についても、作業者が抜き取り検査等の検査を重ねて行うようにしてもよい。従って本発明は機械学習装置51により少なくとも一部を作業者によらずに行うことができるものであればよい。
Next, the quality determination and the modification of the molding conditions at the time of continuous molding of the
また良否判断部66において積層成形品A1の画像情報に不良ありと判断された場合(s103=N)は、当該画像の積層成形品A1は、不良品として成形ラインから除去される(s105)。この際に機械学習装置51が不良品と判断した積層成形品A1のみ、または全ての積層成形品A1について作業者が再検査を行うようにしてもよい。従って本発明は機械学習装置51により少なくとも一部を作業者によらずに行うことができるものであればよい。そして機械学習装置51が不良品と判断したにも関わらず作業者が確認したところ良品であった場合や、機械学習装置51が良品と判断したにも関わらず作業者が確認したところ不良品であった場合は、再度学習部57で教師あり学習の対象としてもよい。
When the
そして次に良否判断部66において積層成形品A1が不良ありと判断されたことに基づき、成形条件修正部68において、各センサから送られた成形データを基礎として成形条件の修正が必要か?の判断がなされる(s106)。ただし不良の発生要因は種々あり、投入する積層成形品A自体に問題のある場合やゴミ等が混入する場合もあるので、1度不良が検出されたからといって成形条件を変更する訳ではない。そのため積層成形品A1に不良があっても成形条件を変更する必要がないと判断された場合(s106=N)は、成形条件の修正無しの指令(s104)が出され次の積層成形品の成形が行われる
Next, based on the fact that the laminated molded product A1 is determined to be defective by the
また不良率が所定の比率を超えた場合等で成形条件の修正が必要と判断された場合(s106=Y)は、機械学習装置51の成形条件修正部68により成形条件の修正を行う。本実施形態では、判断部58の成形条件修正部68において強化学習を行うことにより、作業者が関与しないか或いは少なくとも一部しか関与しないで、機械学習装置51により成形条件の修正を行うことが望ましい。強化学習については、予め設定された不良率に到達した際等に、機械学習装置51の成形条件修正部68において、良品が成形されていた際の成形条件や成形データと参照して、仮の成形条件を生成する。そして前記仮の成形条件で連続成形を行い、不良率が所定範囲内となったり良化した場合は、報酬が与えられる。また仮の成形条件で連続成形を行い不良率が悪化した場合は、負の報酬が与えられる。そして機械学習装置51の成形条件修正部68では前記報酬が多くなる方向に成形条件を修正していく。
When it is determined that the molding conditions need to be corrected (s106 = Y) when the defect rate exceeds a predetermined ratio, the molding conditions are corrected by the molding
この際に修正される成形条件の項目は、熱板温度、真空度、加圧圧力、成形時間等が挙げられる。しかしながら良品成形を行うに際して前記成形条件の項目は複雑に絡み合っており、ある項目の設定値を修正すると他の項目の設定値も修正しないと却って不良品が多くなる場合もある。これらの成形条件の調整において機械学習装置51では、数理計画法等を用いて強化学習をすることにより各項目のバランスを取りながら良好な成形条件に近づけるようにしてもよい。 The items of the molding conditions to be modified at this time include the hot plate temperature, the degree of vacuum, the pressurizing pressure, the molding time and the like. However, when molding a non-defective product, the items of the molding conditions are intricately intertwined, and if the set value of one item is corrected, the number of defective products may increase unless the set value of another item is also corrected. In adjusting these molding conditions, the machine learning device 51 may approach good molding conditions while balancing each item by performing reinforcement learning using a mathematical programming method or the like.
または成形条件の修正の際に教師あり学習の結果を取り入れてもよい。良品データ保存部64および不良品データ保存部65には良品成形時および不良品成形時の成形条件を含む成形データが紐付して保存されているので、良品成形時の成形条件や成形データと乖離した成形条件の使用やそれに伴う成形データにより成形不良が出ているときは、過去の良品成形時の成形条件や成形データに戻す等の補正を行うものでもよい。また成形時の成形条件を含む成形データのサンプル数が不足する場合等はディープラーニングを取り入れてもよい。 Alternatively, the results of supervised learning may be incorporated when modifying the molding conditions. Since molding data including molding conditions at the time of good product molding and defective product molding are linked and stored in the non-defective product data storage unit 64 and the defective product data storage unit 65, they are different from the molding conditions and molding data at the time of good product molding. If molding defects occur due to the use of the molding conditions and the molding data associated therewith, corrections such as returning to the molding conditions and molding data at the time of past non-defective product molding may be performed. Further, when the number of samples of molding data including molding conditions at the time of molding is insufficient, deep learning may be incorporated.
この際の成形条件の修正は、成形条件の修正案を報知するかまたは成形条件を修正することにより行われる。成形条件の修正案の報知は、通常は表示装置15に表示することにより行われるが、音声によるものなどでもよく、作業者が真空積層装置13の近傍にいないときは携帯端末に報知するものでもよい。そして作業者は、機械学習装置51が提示した成形条件の修正案を採用または不採用の決定と修正設定を行う。またこの際にヒータの断線、真空チャンバCのシール不良、ダイアフラムの劣化、バルブを含む加圧機構や真空機構の不具合等が類推される場合、機械学習装置51はそれらを類推するメッセージやダイアフラム等部品の交換を指示するメッセージを表示装置15に表示させることが好ましい。更に成形条件の修正は、機械学習装置51が自動的に行うものであってもよい。機械学習装置51により自動的に成形条件の修正が行われる場合は、修正された成形条件は、記憶され、表示装置にも表示可能に設けられる。そして予定の成形個数に到達したか(s108)が判断され、予定の成形個数に到達(s108=Y)するまで連続成形が行われる。
The modification of the molding conditions at this time is performed by notifying the modification plan of the molding conditions or by modifying the molding conditions. The notification of the modification plan of the molding condition is usually performed by displaying it on the
上記については機械学習装置51が積層成形品A1の良否判断のみ行うケースについて記載してきた。しかし当初の教師あり学習の際に、作業者がボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれの少なくとも1つの不良を分類して入力し、各不良の種類ごとに不良の有無と種類を判断する関数式を生成し保存している場合は、判断部58においては、良否判断のみ行う場合と同様のニューラルネットワーク71を用いて、不良の種類も表示することができる。そして成形条件の修正時には不良の種類に対応した修正を行うことができる。一例を挙げれば、積層成形品にボイドが発生している場合は、真空度を高真空にしたり真空チャンバC形成後にダイアフラム32により加圧するまでの時間を延ばすなどの修正対応が行われる。また材料流出が発生している場合は、熱板温度を低下させたり、ダイアフラム32による加圧圧力を低下させるなどの修正対応が行われる。更には積層成形品A1に位置ずれが発生している場合は、真空チャンバCを形成後の真空度を上昇させる時間を遅くする、キャリアフィルムF1,F2の送り速度を遅くする、キャリアフィルムF1,F2の張力を調整するなどの修正対応が行われる。
Regarding the above, the case where the machine learning device 51 only determines the quality of the laminated molded product A1 has been described. However, at the time of initial supervised learning, the worker classifies and inputs at least one defect such as void, material outflow, pressure unevenness, wrinkle generation, foreign matter contamination, and misalignment, and the defect is defective for each type of defect. When a function expression for determining the presence / absence and the type is generated and saved, the determination unit 58 can also display the type of defect by using the neural network 71 similar to the case where only the pass / fail determination is performed. Then, when the molding conditions are corrected, the correction corresponding to the type of defect can be performed. For example, when a void is generated in the laminated molded product, correction measures are taken such as increasing the degree of vacuum to a high vacuum or extending the time until pressurization by the
また不良の種類の判別については、当初の教師あり学習において積層成形品A1の画像とともに作業者が良否判定のみを入力し機械学習装置51において良否判定の関数式のみが生成されている場合であっても、連続成形時にAIによるクラスタリング等の教師なし学習を取り入れることにより、ボイド、材料流出、加圧ムラ、皺発生、異物混入、位置ずれ等のどの不良に該当するか撮影された画像から不良状態判断部67で分類を行うことができる。そして前記不良に対応した成形条件の修正やメッセージの報知を行うことができる。
Regarding the determination of the type of defect, in the initial supervised learning, the worker inputs only the pass / fail judgment together with the image of the laminated molded product A1, and the machine learning device 51 generates only the function expression of the pass / fail judgment. However, by incorporating unsupervised learning such as clustering by AI during continuous molding, which defects such as voids, material outflow, uneven pressure, wrinkles, foreign matter contamination, misalignment, etc. correspond to defects from the captured image. Classification can be performed by the
また積層成形品A1の位置ずれや材料流出等については、第1のカメラ19の画像と第2のカメラ44の画像を比較する際に、予め定めた計算式または数値を用いれば、機械学習装置51を用いずに従来の手法で良否判定が可能となる場合もある。しかしながら積層成形品A1が全体的に僅かずつ位置ずれを起こしているが重なっておらず良好な積層成形が出来ている場合や、他の良否条件との関係でファジーな状況で良否合否を決定する場合は、機械学習装置51による判断を取り入れることが望ましい。なお位置ずれの検出は、真空積層装置13の出口側の第2のカメラ44のみにしか設置されていない場合であっても、真空積層装置13の良好な成形位置で成形が行われたかを検出可能である。
Further, regarding the misalignment of the laminated molded product A1 and the outflow of materials, a machine learning device can be used by using a predetermined calculation formula or numerical value when comparing the image of the
なお真空積層システム11の機械学習装置51の教師あり学習は、当初はそれぞれの積層成形品A1の成形ごとに行われるが、学習結果が蓄積されるにつれて積層成形品A1と同一や近似する成形品を成形する際は、教師あり学習を行わずに良否判定を行うことが可能となる場合が増加してくる。また新規に出荷される真空積層システム11や、旧来の真空積層システムにこの機械学習装置51を追加で導入した際は、従来の教師あり学習の結果を最初からインストールしておくことができ、新たに教師あり学習を行う回数等を減らすこともできる場合が増加する。
The supervised learning of the machine learning device 51 of the
次に本発明の別の実施形態の真空積層システム101について図6を参照して相違点を中心に説明する。真空積層システム101は、積層成形品載置部102、ダイアフラム加圧式の真空積層装置103(以下は単に真空積層装置103と略す)の後に、真空チャンバを備えない平坦化プレス装置104が設けられ、平坦化プレス装置104の後工程に積層成形品搬出部105が設けられている。そして積層成形品の検出装置であるカメラは、積層成形品載置部102の上方に第1のカメラ106、真空積層装置103と平坦化プレス装置104の間の上方に第2のカメラ107、積層成形品搬出部105の上方に第3のカメラ108が設けられている。
Next, the
別の実施形態の真空積層システム101についても図1および図2に示される実施形態の真空積層システムと同様の機械学習装置51が備えられている。別の実施形態では、第2のカメラ107により真空積層装置103のみで積層成形した画像と、第3のカメラ108により真空積層装置103と平坦化プレス装置104の両方で撮影した画像が撮影される。そのため真空積層システム101の真空積層装置103が成形不良の原因となっているのか、平坦化プレス装置104が成形不良の原因となっているのかを早期に突き止める ことができる。
The
なお本実施形態および別の実施形態において積層成形品のデータを検出する検出装置としてはCCDカメラ等のカメラが主に使用される。しかし検出装置については次のような検出装置の少なくとも一つを使用するか、または前記カメラと併用して使用してもよい。検出装置として超音波センサ等により積層成形品の各測定点の高さを測定することにより積層成形品の反りや材料流出の有無を検出するものでもよい。また投光した光を受光部で受光することにより色や明暗度を検出する光電センサやレーザーセンサによりボイドの有無や材料流出の有無を検出するものでもよい。または積層成形品の加熱ムラを検出するものとしてサーモグラフィで積層成形品の温度を検出するものなどを用いてもよい。 In this embodiment and another embodiment, a camera such as a CCD camera is mainly used as a detection device for detecting data of a laminated molded product. However, as for the detection device, at least one of the following detection devices may be used, or may be used in combination with the camera. As a detection device, the presence or absence of warpage or material outflow of the laminated molded product may be detected by measuring the height of each measurement point of the laminated molded product with an ultrasonic sensor or the like. Further, the presence or absence of voids and the presence or absence of material outflow may be detected by a photoelectric sensor or a laser sensor that detects the color and brightness by receiving the projected light by the light receiving unit. Alternatively, a thermography that detects the temperature of the laminated molded product may be used to detect the heating unevenness of the laminated molded product.
本発明については、一々列挙はしないが、上記した本実施形態のものに限定されず、当業者が本発明の趣旨を踏まえて変更を加えたものや本実施形態の各記載を掛け合わせたものについても、適用されることは言うまでもないことである。 The present invention is not listed one by one, but is not limited to the above-described embodiment of the present invention. Needless to say, it also applies to.
例えば真空積層装置13,103の押圧体がダイアフラムの場合、ダイアフラムが設けられる盤は上盤または下盤のうち少なくとも一方の盤であればよい。また前記押圧体は、ダイアフラムではなく、弾性体を備えた平面状等の加圧板、回転可能な加圧ロールであってもよい。また真空積層装置13,103の数は、1台でもよいが、2台以上が直列に配置されたものでもよい。また真空積層システム11,101で積層成形される積層成形品は、回路基板の他、ウエハや他の板状体であってもよく限定されない。
For example, when the pressing body of the
11,101 真空積層システム
13,103 真空積層装置
19,106 第1のカメラ
44,107 第2のカメラ(検出装置)
51 機械学習装置
57 学習部
58 判断部
59 学習処理部
66 良否判断部
68 成形条件修正部
11,101 Vacuum stacking system 13,103 Vacuum stacking device 19,106 First camera 44,107 Second camera (detection device)
51 Machine learning device 57 Learning unit 58
Claims (3)
前記真空積層装置の後工程に設けられ積層成形された積層成形品のデータを検出する検出装置と、
検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別して学習する学習部と、少なくとも連続成形時に積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良の種類を判断する判断部とが備えらえた機械学習装置部と、が備えられ、
前記連続成形時に不良の有無と種類を判断し、
前記連続成形時の積層成形品の不良率が所定の比率を超えた場合は、不良の種類に対応した成形条件の修正案を報知するかまたは成形条件を修正することを特徴とする真空積層システム。 In a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding.
A detection device provided in a subsequent process of the vacuum laminating device and detecting data of a laminated molded product that has been laminated and molded.
A learning unit that learns by distinguishing images of laminated molded products into non-defective products and defective products based on the detected data, and at least during continuous molding, the laminated molded products are detected by the detection device and are defective as either good products or defective products. A machine learning device unit equipped with a judgment unit that determines the type of
During the continuous molding, the presence or absence of defects and the type are determined, and
When the defect rate of the laminated molded product during continuous molding exceeds a predetermined ratio, the vacuum lamination system is characterized by notifying a proposal for modifying the molding condition corresponding to the type of defect or modifying the molding condition. ..
前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、
検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに不良品に区別された場合は不良の種類を機械学習装置の学習部に教師あり学習させ、
少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出して良品または不良品のいずれかと不良品の場合は不良の種類を機械学習装置の判断部が判断することを特徴とする真空積層システムの成形不良検出方法。 In a molding defect detection method of a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding.
The data of the laminated molded product that was laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device was detected, and the data was detected.
Based on the detected data, the image of the laminated molded product is classified into a non-defective product and a defective product, and if it is classified as a defective product, the learning department of the machine learning device is supervised to learn the type of the defect.
At least during continuous molding, the learning result is used to detect the laminated molded product with the detection device, and if it is either a good product or a defective product and a defective product, the judgment unit of the machine learning device determines the type of defect. A method for detecting molding defects in a vacuum lamination system.
前記真空積層装置の後工程に設けられた検出装置により積層成形された積層成形品のデータを検出し、
検出されたデータを基礎にして積層成形品の画像を良品と不良品に区別するともに該不良品の場合は不良の種類を機械学習装置の学習部に学習させ、
少なくとも連続成形時に前記学習結果を利用して積層成形品を前記検出装置で検出し、
不良品であると機械学習装置の判断部が判断したことに基づき、
前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目の修正案を報知するかまたは前記不良の種類に対応して熱板温度、真空度、加圧圧力、成形時間の少なくとも1つを含む成形条件の項目を修正することを特徴とする真空積層システムの成形条件修正方法。 In the method of modifying the molding conditions of a vacuum laminating system in which a laminated molded product including a circuit board or a wafer is pressed by a pressing body in a vacuum chamber formed between the upper plate and the lower plate of the vacuum laminating device to perform laminating molding.
The data of the laminated molded product that was laminated and molded by the detection device provided in the subsequent process of the vacuum laminating device was detected, and the data was detected.
Based on the detected data, the image of the laminated molded product is classified into a non-defective product and a defective product, and in the case of the defective product, the learning unit of the machine learning device is made to learn the type of the defect.
At least during continuous molding, the learning result is used to detect the laminated molded product with the detection device.
Based on the judgment of the machine learning device that it is a defective product
Notify the correction proposal of the item of the molding condition including at least one of the hot plate temperature, the degree of vacuum, the pressurizing pressure, and the molding time corresponding to the type of the defect, or notify the hot plate temperature corresponding to the type of the defect. , A method for modifying molding conditions of a vacuum lamination system, comprising modifying items of molding conditions including at least one of vacuum degree, pressure pressure, and molding time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022077148A JP2022103272A (en) | 2019-12-03 | 2022-05-09 | Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019218439A JP7071956B2 (en) | 2019-12-03 | 2019-12-03 | Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method |
JP2022077148A JP2022103272A (en) | 2019-12-03 | 2022-05-09 | Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019218439A Division JP7071956B2 (en) | 2019-12-03 | 2019-12-03 | Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022103272A true JP2022103272A (en) | 2022-07-07 |
Family
ID=76218987
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019218439A Active JP7071956B2 (en) | 2019-12-03 | 2019-12-03 | Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method |
JP2022077148A Pending JP2022103272A (en) | 2019-12-03 | 2022-05-09 | Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019218439A Active JP7071956B2 (en) | 2019-12-03 | 2019-12-03 | Vacuum stacking system, vacuum stacking system molding defect detection method, and vacuum stacking system molding condition correction method |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7071956B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7282945B1 (en) | 2022-03-29 | 2023-05-29 | 株式会社日本製鋼所 | Control Device, Laminated Molded Product Manufacturing System, and Laminated Molded Product Manufacturing Method |
JP7337323B1 (en) | 2022-08-30 | 2023-09-04 | 東洋インキScホールディングス株式会社 | QUALITY ESTIMATION SYSTEM, LAMINATION SYSTEM, QUALITY ESTIMATION METHOD, AND PROGRAM |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0758137A (en) * | 1993-08-11 | 1995-03-03 | Toshiba Corp | Method for inspecting parts of semiconductor molding device, and semiconductor molding device |
JP2012026982A (en) * | 2010-07-27 | 2012-02-09 | Panasonic Electric Works Sunx Co Ltd | Inspection device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006103177A (en) | 2004-10-06 | 2006-04-20 | Meiki Co Ltd | Vacuum laminating apparatus and vacuum laminating method |
JP2012129366A (en) | 2010-12-15 | 2012-07-05 | Nisshinbo Mechatronics Inc | Inspection apparatus for solar cell |
JP7265318B2 (en) | 2018-03-23 | 2023-04-26 | 株式会社日本製鋼所 | Injection molding machine system that adjusts molding conditions using machine learning |
-
2019
- 2019-12-03 JP JP2019218439A patent/JP7071956B2/en active Active
-
2022
- 2022-05-09 JP JP2022077148A patent/JP2022103272A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0758137A (en) * | 1993-08-11 | 1995-03-03 | Toshiba Corp | Method for inspecting parts of semiconductor molding device, and semiconductor molding device |
JP2012026982A (en) * | 2010-07-27 | 2012-02-09 | Panasonic Electric Works Sunx Co Ltd | Inspection device |
Also Published As
Publication number | Publication date |
---|---|
JP7071956B2 (en) | 2022-05-19 |
JP2021088072A (en) | 2021-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022103272A (en) | Vacuum laminating system, molding defect detection method of vacuum laminating system, and molding condition modification method of vacuum laminating system | |
JP7005930B2 (en) | Sheet inspection equipment and inspection system | |
KR101297395B1 (en) | Secondary battery eloctrode panel vision detection method | |
JP2015172576A (en) | Composite inspection and structural inspection of multiple layers | |
CN107270841A (en) | A kind of packaging bag coding defects detection mechanism | |
TW201823895A (en) | Product manufacturing method and product manufacturing device | |
JP2019184380A (en) | Imaging device and inspection system using imaging device | |
CN114760969B (en) | Quality measuring method and quality measuring device | |
KR20230057433A (en) | Systems and Methods for Computer Vision Aided Foam Board Processing | |
JP2024528597A (en) | Calibration of a quality estimator for laser cutting processes. | |
KR20230064319A (en) | Method, apparatus and program for inspecting defect | |
JP6188620B2 (en) | Inspection device and PTP packaging machine | |
EP3447480B1 (en) | In-process monitoring; automated decision-making; and process control for composite manufacturing using part-referenced ply-by-ply infrared thermography and other non-contact non-destructive inspection | |
JP6027047B2 (en) | Inspection system and PTP packaging machine | |
TWI781671B (en) | Inspection device, blister packaging machine, and manufacturing method of blister box | |
WO2022021806A1 (en) | Packaging bag unequal edge defect automatic detection system and method | |
CN115356259A (en) | Square capacitor defect detection system and method based on deep learning | |
TW202310553A (en) | Motor controlling system for application in apparatus having roll-to-roll mechanism | |
CN108960371B (en) | Abnormality analysis method and abnormality analysis device for mounted component | |
CN104713584B (en) | Correcting method for optical detecting device | |
JP6347614B2 (en) | Sealed body flap inspection device | |
JP7532596B2 (en) | Inspection device and inspection method | |
JP7195831B2 (en) | Paper sheet handling equipment and paper sheet handling system | |
JP6456329B2 (en) | Inspection system and PTP packaging machine | |
JP6943168B2 (en) | Inspection system and inspection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220509 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230322 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230522 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230704 |