JP2022103063A5 - - Google Patents

Download PDF

Info

Publication number
JP2022103063A5
JP2022103063A5 JP2021184835A JP2021184835A JP2022103063A5 JP 2022103063 A5 JP2022103063 A5 JP 2022103063A5 JP 2021184835 A JP2021184835 A JP 2021184835A JP 2021184835 A JP2021184835 A JP 2021184835A JP 2022103063 A5 JP2022103063 A5 JP 2022103063A5
Authority
JP
Japan
Prior art keywords
resin film
pfpe
impregnated
impregnated resin
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021184835A
Other languages
Japanese (ja)
Other versions
JP2022103063A (en
Filing date
Publication date
Application filed filed Critical
Priority to PCT/JP2021/046737 priority Critical patent/WO2022138491A1/en
Publication of JP2022103063A publication Critical patent/JP2022103063A/en
Priority to US18/336,150 priority patent/US20230323066A1/en
Publication of JP2022103063A5 publication Critical patent/JP2022103063A5/ja
Pending legal-status Critical Current

Links

Description

上記の方法によって本開示の一態様に係る樹脂膜を形成し得る理由を本発明者らは以下のように推測している。
工程(iii)において、未含浸樹脂膜が含むPFAの融点近傍の温度(温度300℃±50℃(好ましくは290℃~325℃)で、該未含侵樹脂膜の一方の表面をPFPEと接触させることにより、PFPEが該未含侵樹脂膜中に含浸され、含浸樹脂膜が得られる。
The inventors presume the reason why the resin film according to one aspect of the present disclosure can be formed by the above method as follows.
In step (iii), one surface of the unimpregnated resin film is treated with PFPE at a temperature near the melting point of PFA contained in the unimpregnated resin film (temperature of 300° C.±50° C. (preferably 290° C. to 325° C.) ) . By contacting, PFPE is impregnated into the non-impregnated resin film to obtain an impregnated resin film.

工程(iii)において、PFPEが含浸された樹脂膜は高温の状態にあるため、工程(iii)に引き続いて、工程(iv)において、含浸樹脂膜を例えば25℃程度の室温にまで冷却する。次いで、工程(v)において、溶剤を用いて含侵樹脂膜中のPFPEを除去することにより、含侵樹脂膜中のPFPEが存在していた部位に、樹脂膜の第2の表面に開口した空孔が形成される。
In step (iii), the resin film impregnated with PFPE is in a high temperature state, so following step (iii), in step (iv) , the impregnated resin film is cooled to room temperature, for example, about 25°C. . Next, in step (v), a solvent is used to remove PFPE in the impregnated resin film, thereby opening the second surface of the resin film at the site where PFPE in the impregnated resin film was present. A vacancy is formed.

そして、上記工程(iv)~(v)を経ることにより形成される樹脂膜は、その厚さ方向の断面における単位面積(8μm×11μm)当たりの空孔の面積割合P2が、第2の表面における単位面積(8μm×11μm)当たりの開口の面積割合P1よりも大きなものとなる。これは、工程(iii)で高温となることで膨張した含侵樹脂膜が、工程(iv)における冷却によって収縮するが、含侵樹脂膜の第2の表面の側は第1の表面の側よりも、より早く冷却が進むため、収縮の程度が大きい。そして、含侵樹脂膜の第2の表面の側の収縮に伴って含侵樹脂膜の第2の表面の近傍に存在するPFPEが、第2の表面か
含侵樹脂膜の外に押し出される。その結果、樹脂膜の第2の表面の開口は縮径する。
一方、含侵樹脂膜の第1の表面の側にまで浸透したPFPEは、含侵樹脂膜の第1の表面がマスキングされているため、含侵樹脂膜の収縮によっても含侵樹脂膜の外には放出されず、含侵樹脂膜内に留まる。そのため、PFPEの除去後に空隙となるPFPEの凝集部分のサイズはほとんど小さくならない。その結果、工程(v)を経て形成される樹脂膜の当該一方の面における開口率P1に対する空隙率P2の割合(P2/P1)は大きくなる。
Then, the resin film formed through the above steps (iv) to (v) has a hole area ratio P2 per unit area (8 μm × 11 μm) in the cross section in the thickness direction, which is the second surface is larger than the area ratio P1 of openings per unit area (8 μm×11 μm) in . This is because the impregnated resin film that has expanded due to the high temperature in step (iii) shrinks due to the cooling in step (iv), but the second surface side of the impregnated resin film is the first surface side. Since the cooling progresses more quickly than in the case of the steel, the degree of shrinkage is large. As the second surface side of the impregnated resin film shrinks, the PFPE existing near the second surface of the impregnated resin film is pushed out of the impregnated resin film from the second surface. As a result, the diameter of the opening on the second surface of the resin film is reduced.
On the other hand, since the first surface of the impregnated resin film is masked, the PFPE that permeates up to the first surface side of the impregnated resin film can be prevented from reaching the outside of the impregnated resin film even by contraction of the impregnated resin film. is not released into the atmosphere and remains in the impregnated resin film. Therefore, the size of the PFPE agglomerates that become voids after the removal of PFPE is hardly reduced. As a result, the ratio (P2/P1) of the porosity P2 to the opening ratio P1 on the one surface of the resin film formed through the step (v) increases.

ここで、P2/P1の値は、工程(iii)の含浸工程における未含侵樹脂膜へのPFPEの含浸量によって調整することができる。すなわち、未含侵樹脂膜へのPFPEの含浸量を増やすことで、樹脂膜の内部の空隙を増やすことができ、P2の値は増加する。また、未含侵樹脂膜への含浸量を増加させることで、樹脂膜の第2の表面の開口の数も増えるためP1の値は増加する。しかしながら、その理由は明らかでないが、未含侵樹脂膜への含浸量の増加によるP1の増加の程度は、P2の増加の程度よりも大きい。そのため、未含侵樹脂膜へのPFPEの含浸量を増やすことによって、P2/P1を小さくする方向に調整することができる。
Here, the value of P2/P1 can be adjusted by the amount of PFPE impregnated into the unimpregnated resin film in the impregnation step (iii). That is, by increasing the amount of PFPE impregnated into the unimpregnated resin film, the voids inside the resin film can be increased, and the value of P2 increases. Further, by increasing the impregnation amount of the non-impregnated resin film, the number of openings on the second surface of the resin film also increases, so the value of P1 increases. However, although the reason is not clear, the degree of increase in P1 due to the increase in the impregnation amount of the unimpregnated resin film is greater than the degree of increase in P2. Therefore, by increasing the amount of PFPE impregnated into the non-impregnated resin film, P2/P1 can be adjusted to be smaller.

未含侵樹脂膜中へのPFPEの含浸量は、例えば、含浸時のPFPEの温度、PFPEの粘度、未含侵樹脂膜とPFPEとの接触時間によって調整することができる。具体的には、PFAの融点近傍の温度範囲(温度250~350℃)の内で高いほど、PFPEの粘度が低いほど、また、接触時間が長いほど、未含侵樹脂膜へのPFPEの含浸量を増加させることができる。
The amount of PFPE impregnated into the non-impregnated resin film can be adjusted by, for example, the temperature of PFPE during impregnation, the viscosity of PFPE, and the contact time between the non-impregnated resin film and PFPE. Specifically, the higher the temperature range (temperature 250 to 350 ° C.) near the melting point of PFA, the lower the viscosity of PFPE, and the longer the contact time, the higher the impregnation of PFPE into the unimpregnated resin film. amount can be increased.

前記したP2の好適な範囲を達成するうえでは、工程(iii)において、含浸樹脂膜の質量を基準として、PFPEの含有比率が、好ましくは、25~60質量%、特には、30~45質量%となるようにPFPEを含浸させることが好ましい。
In order to achieve the preferable range of P2 described above, in step (iii) , the content ratio of PFPE is preferably 25 to 60% by mass, particularly 30 to 45%, based on the mass of the impregnated resin membrane. It is preferable to impregnate PFPE so that it becomes mass %.

また、工程(iii)におけるPFPEの温度としては、PFAの融点(Tm)が280~320℃の範囲内であるため、好ましくは、250℃~350℃、特には、290℃~325℃である。
また、未含侵樹脂膜の外周面とPFPEとの接触時間としては、未含侵樹脂膜中に含浸させるPFPEの粘度や含浸させる量によっても異なるが、目安としては、20秒~5分、特には、30秒~2分の範囲内である。この範囲内の時間で、未含侵樹脂膜内に空孔を形成可能な十分な量のPFPEを含浸させ得る。
The temperature of PFPE in step (iii) is preferably 250°C to 350°C, particularly 290°C to 325°C, since the melting point (Tm) of PFA is in the range of 280°C to 320°C. .
In addition, the contact time between the outer peripheral surface of the non-impregnated resin film and PFPE varies depending on the viscosity of the PFPE impregnated in the non-impregnated resin film and the impregnated amount. In particular, it is in the range of 30 seconds to 2 minutes. A time within this range can impregnate a sufficient amount of PFPE to form voids in the unimpregnated resin film .

さらに、PFPEの粘度が低いほど未含侵樹脂膜への含浸量を増加させ得る。但し、粘度の低すぎるPFPEは、PFAとの親和性が高まるためか、含侵樹脂膜内での凝集、連結によるPFPEの領域が形成されにくく、高い空孔面積率を得にくい場合がある。そのため、未含侵樹脂膜に含浸させるPFPEの好ましい粘度としては、10mPa・s~400mPa・sであり、特には、30mPa・s~350mPa・sである。
ここでいう粘度とは、レオメータ(TAインスツルメント製:DHR-2)を用いて、コーン角度1°、コーン半径20mmのコーンプレート型を装着し、せん断速度100s-1で60秒間回転させた後の粘度の値である。測定温度は40℃とする。
Furthermore, the lower the viscosity of PFPE, the higher the impregnation amount into the unimpregnated resin film . However, PFPE with too low a viscosity may not easily form a PFPE region due to aggregation or linkage in the impregnated resin film , possibly due to an increase in affinity with PFA, making it difficult to obtain a high pore area ratio. Therefore, the preferable viscosity of the PFPE with which the unimpregnated resin film is impregnated is 10 mPa·s to 400 mPa·s, particularly 30 mPa·s to 350 mPa·s.
The viscosity here is measured using a rheometer (manufactured by TA Instruments: DHR-2), equipped with a cone plate mold with a cone angle of 1 ° and a cone radius of 20 mm, and rotated at a shear rate of 100 s -1 for 60 seconds. is the later viscosity value. The measurement temperature shall be 40°C.

工程(v)では、含浸樹脂膜中のPFPEを溶解可能であり、PFAを溶解しない溶剤中に、樹脂膜の第1の表面が濡れるように浸漬する。
ここで、「PFPEを溶解する溶剤」とは、例えば、25℃において、溶剤100gに対しPFPEの溶解量が10g以上の溶剤が挙げられる。一方、「PFAを溶解しない溶剤」とは、25℃において、溶剤100gに対しPFAの溶解量が1g以下の溶剤が挙げられる。
かかる溶媒としては、例えば、ハイドロフルオロエーテルが挙げられる。ハイドロフルオロエーテルは、例えば「NoveC7600」(商品名、スリーエム社製)として市販されているものを用い得る。
また、工程(v)において、含浸樹脂膜からPFPE除去する際に、より効率的にPFPEを除去するために、超音波の印加や、フッ素溶剤の加温が有効である。
In step (v) , the first surface of the resin film is soaked in a solvent that can dissolve PFPE in the impregnated resin film but does not dissolve PFA.
Here, the “solvent that dissolves PFPE” includes, for example, a solvent that dissolves 10 g or more of PFPE per 100 g of solvent at 25°C. On the other hand, the "solvent that does not dissolve PFA" includes a solvent that dissolves 1 g or less of PFA per 100 g of solvent at 25°C.
Such solvents include, for example, hydrofluoroethers. As the hydrofluoroether, for example, one commercially available as "NoveC7600" (trade name, manufactured by 3M) can be used.
In step (v), when removing PFPE from the impregnated resin film, application of ultrasonic waves or heating of a fluorine solvent is effective for more efficient removal of PFPE.

JP2021184835A 2020-12-25 2021-11-12 Resin film and water resistant moisture permeable film Pending JP2022103063A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/046737 WO2022138491A1 (en) 2020-12-25 2021-12-17 Resin membrane and water-resistant and moisture-permeable membrane
US18/336,150 US20230323066A1 (en) 2020-12-25 2023-06-16 Resinous membrane and water-resistant and moisture-permeable membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217954 2020-12-25
JP2020217954 2020-12-25

Publications (2)

Publication Number Publication Date
JP2022103063A JP2022103063A (en) 2022-07-07
JP2022103063A5 true JP2022103063A5 (en) 2023-06-16

Family

ID=82273379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021184835A Pending JP2022103063A (en) 2020-12-25 2021-11-12 Resin film and water resistant moisture permeable film

Country Status (1)

Country Link
JP (1) JP2022103063A (en)

Similar Documents

Publication Publication Date Title
Pogany Anomalous diffusion of water in glassy polymers
JP2012099574A (en) Method of producing film and film produced by that production method
JP2022103063A5 (en)
Hermansson et al. Characterization of protein gels by scanning and transmission electron microscopy A methodology study of soy protein gels
JP7405524B2 (en) Graphite material and its manufacturing method
JP2014511900A (en) Filled polymer microporous membrane based on surface free energy
US5460854A (en) Impregnated ceramic core and method of making same
Wu et al. Engineering the surface properties of bamboo scrimber to enhance the gluing properties
Jia et al. Wetting and adhesion behavior of Armos fibers after dielectric barrier discharge plasma treatment
KR20180025719A (en) Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process
JP4705335B2 (en) Separator for electronic parts and method for manufacturing the same
JP2010007016A (en) Method for producing polymer electrolyte membrane
Ko et al. Fabrication of multicomponent polymer nanostructures containing PMMA shells and encapsulated PS nanospheres in the nanopores of anodic aluminum oxide templates
JP4015653B2 (en) Method for producing porous separation membrane
JPH03295879A (en) Method for impregnating metal into carbon material
JP2015169586A (en) Method of cutting porous member
JP2770716B2 (en) Waterproofing method for carbon rods for dry batteries
Scherer Stress from re-immersion of partially dried gel
CN103977712A (en) Preparation method of poroperm-prevention composite membrane
JP2005239773A (en) Method for producing porous film
WO2024007964A1 (en) Composite separator and preparation method therefor, secondary battery and electric device
JPH051049B2 (en)
Pimenov et al. Use of freezing techniques for increasing the output of ultralow density laser targets
JP2003012851A (en) Production method of composite from rigid polymer solution, and composite film
JP2000344930A (en) Microporous film of polyolefin having high molecular weight and its production