JP2015169586A - Method of cutting porous member - Google Patents

Method of cutting porous member Download PDF

Info

Publication number
JP2015169586A
JP2015169586A JP2014045810A JP2014045810A JP2015169586A JP 2015169586 A JP2015169586 A JP 2015169586A JP 2014045810 A JP2014045810 A JP 2014045810A JP 2014045810 A JP2014045810 A JP 2014045810A JP 2015169586 A JP2015169586 A JP 2015169586A
Authority
JP
Japan
Prior art keywords
porous member
molten salt
cutting
salt
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014045810A
Other languages
Japanese (ja)
Inventor
山川 真弘
Shinko Yamakawa
真弘 山川
真吾 密山
Shingo Mitsuyama
真吾 密山
田中 博和
Hirokazu Tanaka
博和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2014045810A priority Critical patent/JP2015169586A/en
Publication of JP2015169586A publication Critical patent/JP2015169586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow a porous member to be cut at a normal temperature while maintaining a state of the porous member filled with an impregnant and to allow the impregnant to be easily removed from the porous member.SOLUTION: A method of cutting a porous member includes an impregnation step of heating a molten salt which is solidified at a normal temperature, to fuse it and impregnating the porous member with the molten salt being in a liquid state; a solidification step of cooling the porous member impregnated with the molten salt to solidify the molten salt; a cutting step of cutting the porous member solidified with the molten metal; and a removal step of heating the cut porous member to fuse the molten salt and removing the molten salt from the porous member.

Description

本発明は、多孔質部材の切断加工方法に関する。特に、多孔質部材に含浸剤を充填して多孔質部材の状態を保持したまま常温で切断できると共に、多孔質部材から含浸剤を容易に除去できる多孔質部材の切断加工方法に関する。   The present invention relates to a method for cutting a porous member. In particular, the present invention relates to a porous member cutting method that can be filled with an impregnating agent in a porous member and can be cut at room temperature while maintaining the state of the porous member, and can easily remove the impregnating agent from the porous member.

樹脂や金属、ガラスからなる多孔質部材が、種々の用途に利用されている。例えば、ニッケル水素電池やリチウムイオン電池などの正極集電体にはニッケルやアルミニウムからなる多孔質金属体(例、「セルメット(登録商標)」)、セパレータにはポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン系樹脂からなる多孔質膜(不織布)が利用されている。   Porous members made of resin, metal, or glass are used for various purposes. For example, a positive electrode current collector such as a nickel metal hydride battery or a lithium ion battery is a porous metal body made of nickel or aluminum (eg, “Celmet (registered trademark)”), and a separator is polyethylene (PE) or polypropylene (PP). Porous membranes (nonwoven fabrics) made of polyolefin resins such as are used.

このような多孔質部材を評価したり検査したりするため、断面観察用試料を作製し、光学顕微鏡や電子顕微鏡などを用いて断面を観察することによって、内部構造(組織)を解析することが行われている。多孔質部材の内部構造を観察するためには、多孔質部材を構成する骨格(繊維)の形状や多孔質部材内部の気孔といった内部構造を壊さずに、多孔質部材の状態を保持したまま断面を形成することが重要である。そのため、一般に、断面観察用試料は、多孔質部材を樹脂に包埋して固め、これをミクロトームやイオンビームなどを用いて切断することによって得ている。   In order to evaluate and inspect such a porous member, it is possible to analyze the internal structure (structure) by preparing a sample for cross-sectional observation and observing the cross-section using an optical microscope or an electron microscope. Has been done. In order to observe the internal structure of the porous member, the cross-section is maintained while maintaining the state of the porous member without breaking the internal structure such as the shape of the skeleton (fiber) constituting the porous member and the pores inside the porous member. It is important to form Therefore, in general, the cross-sectional observation sample is obtained by embedding and hardening a porous member in a resin and cutting it using a microtome, an ion beam, or the like.

その他、多孔質部材の断面を形成する方法が例えば特許文献1,2に開示されている。特許文献1には、湿潤状態にある多孔質繊維の内部構造を観察するために、乾燥処理した繊維を樹脂包埋した後、断面加工し、その後、繊維から包埋樹脂を除去することが記載されている。特許文献2には、合成樹脂製の多孔質部材にアルコールを含浸させ凍結した後、凍結した多孔質部材を破断することが記載されている。   In addition, for example, Patent Documents 1 and 2 disclose a method of forming a cross section of a porous member. Patent Document 1 describes that, in order to observe the internal structure of a porous fiber in a wet state, the dried fiber is embedded in a resin, then processed in cross section, and then the embedded resin is removed from the fiber. Has been. Patent Document 2 describes that a porous member made of synthetic resin is impregnated with alcohol and frozen, and then the frozen porous member is broken.

特開2013−92420号公報JP2013-92420A 特開2010−85173号公報JP 2010-85173 A

樹脂やアルコールといった含浸剤を多孔質部材に充填し固化させて、多孔質部材を切断する従来の方法では、樹脂の除去が困難であったり、アルコールを固化させるために低温に冷却する必要があるなどの問題がある。   In the conventional method of cutting the porous member by filling the porous member with an impregnating agent such as resin or alcohol, it is difficult to remove the resin, or it is necessary to cool to a low temperature in order to solidify the alcohol. There are problems such as.

例えば、多孔質部材を樹脂に包埋した場合、試料を切り出して断面を観察した際、充填された樹脂によって断面近傍の奥行き方向を観察することができず、切断位置での内部構造しか観察できない。つまり、3次元的な断面の観察がほぼ不可能である。そこで、試料から樹脂を除去することが考えられるが、多孔質部材に変形や変質を生じさせることなく、一度架橋して固化した樹脂を除去することは容易ではない。特許文献1では、試料を断面加工した後、包埋樹脂を除去する方法として、プラズマでエッチングする方法を提案しているが、このような方法では時間がかかり、設備コストも高くなる。   For example, when a porous member is embedded in a resin, when the sample is cut out and the cross section is observed, the depth direction near the cross section cannot be observed with the filled resin, and only the internal structure at the cutting position can be observed. . That is, it is almost impossible to observe a three-dimensional cross section. Therefore, it is conceivable to remove the resin from the sample, but it is not easy to remove the resin once crosslinked and solidified without causing deformation or alteration of the porous member. Patent Document 1 proposes a method of etching with plasma as a method of removing the embedding resin after cross-section processing of the sample. However, such a method takes time and increases the equipment cost.

一方、特許文献2では、代表例として、エタノールを含浸させた多孔質部材を液体窒素中に浸漬することにより凍結処理しているが、極低温で凍結処理するため、作業環境が制約される。例えば、多孔質部材の評価、検査において、多孔質部材の用途によっては、水分や酸素との接触による変質を避けるため、大気非暴露下で試料の作製から観察まで行うことが望まれる。そこで、グローブボックス内で作業を進めることが考えられえるが、グローブボックス内で液体窒素といった極低温の冷却剤を使用すると、グローブボックスも極低温に冷却され、その影響でグローブボックスが損傷するなどの不具合が起こり得る。また、グローブボックス内に試料を導入する際、水分を極力除去するため、グローブボックスに連結された予備室内に試料を入れ、予備室内の真空排気と不活性ガス(例、Arガス)などの置換ガスの導入を交互に複数回繰り返し行うことがある。その際、真空排気によって、液体窒素が揮発して消失してしまう虞がある。   On the other hand, in Patent Document 2, as a typical example, a freezing treatment is performed by immersing a porous member impregnated with ethanol in liquid nitrogen, but the working environment is restricted because the freezing treatment is performed at a very low temperature. For example, in the evaluation and inspection of a porous member, depending on the use of the porous member, it is desired to carry out from preparation of the sample to observation in the absence of exposure to the atmosphere in order to avoid alteration due to contact with moisture or oxygen. Therefore, it is conceivable to proceed with the work in the glove box, but if a cryogenic coolant such as liquid nitrogen is used in the glove box, the glove box is also cooled to a very low temperature, and the glove box is damaged by the effect. Can happen. In addition, when introducing a sample into the glove box, in order to remove moisture as much as possible, the sample is put in a spare chamber connected to the glove box, and evacuation and inert gas (eg, Ar gas) in the spare chamber are replaced. Gas introduction may be repeated several times alternately. At that time, the liquid nitrogen may be volatilized and lost by evacuation.

本発明は、上記事情に鑑みてなされたものであり、本発明の目的の1つは、多孔質部材に含浸剤を充填して多孔質部材の状態を保持したまま常温で切断できると共に、多孔質部材から含浸剤を容易に除去できる多孔質部材の切断加工方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of the objects of the present invention is that the porous member is filled with an impregnating agent and can be cut at room temperature while maintaining the state of the porous member. An object of the present invention is to provide a porous member cutting method that can easily remove the impregnating agent from the porous member.

本発明の一態様に係る多孔質部材の切断加工方法は、以下の工程を備える。
常温で固化する溶融塩を加熱して融解し、液体状態の前記溶融塩を多孔質部材に含浸する含浸工程。
前記溶融塩を含浸させた前記多孔質部材を冷却して、前記溶融塩を固化する固化工程。
前記溶融塩で固化した前記多孔質部材を切断する切断工程。
切断した前記多孔質部材を加熱して前記溶融塩を融解し、前記多孔質部材から前記溶融塩を除去する除去工程。
A porous member cutting method according to an aspect of the present invention includes the following steps.
An impregnation step of heating and melting a molten salt that solidifies at room temperature, and impregnating the porous member with the molten salt in a liquid state.
A solidification step of cooling the porous member impregnated with the molten salt to solidify the molten salt;
A cutting step of cutting the porous member solidified with the molten salt.
A removal step of heating the cut porous member to melt the molten salt and removing the molten salt from the porous member.

上記多孔質部材の切断加工方法は、多孔質部材に含浸剤を充填して多孔質部材の状態を保持したまま常温で切断できると共に、多孔質部材から含浸剤を容易に除去できる。   The porous member cutting method can fill the porous member with the impregnating agent and cut the porous member at room temperature while maintaining the state of the porous member, and can easily remove the impregnating agent from the porous member.

試料1の断面顕微鏡写真である。2 is a cross-sectional photomicrograph of Sample 1. 試料2−1の断面顕微鏡写真である。It is a cross-sectional microscope picture of the sample 2-1. 試料2−2の断面顕微鏡写真である。It is a cross-sectional photomicrograph of Sample 2-2.

本発明者らは、様々な試行錯誤の結果、含浸剤として溶融塩を用いることで、上記課題を解決できることを見出した。   As a result of various trials and errors, the present inventors have found that the above problem can be solved by using a molten salt as an impregnating agent.

[本発明の実施形態の説明]
最初に、本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

(1)実施形態に係る多孔質部材の切断加工方法は、以下の工程を備える。
常温で固化する溶融塩を加熱して融解し、液体状態の溶融塩を多孔質部材に含浸する含浸工程。
溶融塩を含浸させた多孔質部材を冷却して、溶融塩を固化する固化工程。
溶融塩で固化した多孔質部材を切断する切断工程。
切断した多孔質部材を加熱して溶融塩を融解し、多孔質部材から溶融塩を除去する除去工程。
(1) The porous member cutting method according to the embodiment includes the following steps.
An impregnation step in which molten salt that is solidified at room temperature is heated and melted to impregnate a porous member with molten salt in a liquid state.
A solidification step of solidifying the molten salt by cooling the porous member impregnated with the molten salt.
A cutting step of cutting the porous member solidified with the molten salt.
A removal step of heating the cut porous member to melt the molten salt and removing the molten salt from the porous member.

上記多孔質部材の切断加工方法によれば、液体状態の溶融塩を多孔質部材に含浸し、冷却、固化することで、多孔質部材の状態を保持したまま常温で切断できる。また、切断後、加熱して溶融塩を融解することによって、多孔質部材から溶融塩を容易に除去できる。   According to the method for cutting a porous member, the porous member is impregnated with a molten salt in a liquid state, cooled and solidified, so that the porous member can be cut at room temperature while maintaining the state of the porous member. In addition, after cutting, the molten salt can be easily removed from the porous member by heating to melt the molten salt.

上記多孔質部材の切断加工方法に用いる溶融塩は、常温(20℃±15℃)で固化するものであり、常温では固体、加熱すると融解して液体になる。したがって、溶融塩を融点以上の温度に加熱して融解することによって溶融塩を液体状態にすることで、多孔質部材に溶融塩を容易に含浸できる。また、溶融塩を含浸させた多孔質部材を常温で冷却して溶融塩を固化でき、多孔質部材の状態を保形できる。よって、多孔質部材を溶融塩で固めることによって、多孔質部材の内部構造を破壊することなく、多孔質部材の状態を保持したまま常温で切断できる。更に、切断後、多孔質部材を溶融塩の融点以上の温度に加熱すれば、溶融塩が融解して液体状態になるため、多孔質部材から溶融塩を容易に除去できる。その他、溶融塩であれば、多孔質部材に変質を生じさせることも少ない。また、固化した溶融塩は脆性材料のため割れ易く、溶融塩で固化した多孔質部材を切断することによって、良好な断面を得易い。   The molten salt used in the porous member cutting method solidifies at room temperature (20 ° C. ± 15 ° C.), is solid at room temperature, and melts into liquid when heated. Therefore, the porous member can be easily impregnated with the molten salt by heating the molten salt to a temperature equal to or higher than the melting point to melt the molten salt. Moreover, the porous member impregnated with the molten salt can be cooled at room temperature to solidify the molten salt, and the state of the porous member can be maintained. Therefore, by solidifying the porous member with molten salt, the porous member can be cut at normal temperature while maintaining the state of the porous member without destroying the internal structure of the porous member. Furthermore, if the porous member is heated to a temperature equal to or higher than the melting point of the molten salt after cutting, the molten salt melts into a liquid state, so that the molten salt can be easily removed from the porous member. In addition, if it is a molten salt, the porous member is less likely to be altered. The solidified molten salt is easily brittle because it is a brittle material, and it is easy to obtain a good cross section by cutting the porous member solidified with the molten salt.

(2)上記多孔質部材の切断加工方法の一形態としては、溶融塩の融点が、30℃以上140℃以下であることが挙げられる。   (2) As one form of the said porous member cutting processing method, it is mentioned that melting | fusing point of molten salt is 30 degreeC or more and 140 degrees C or less.

溶融塩は常温(20℃±15℃)で固化する材料である。溶融塩の融点は常温以上で、かつ、多孔質部材の変質や損傷を生じない温度であることが好ましい。これにより、含浸工程において、溶融塩を加熱して融解し、液体状態の溶融塩を多孔質部材に含浸する際や、除去工程において、多孔質部材を加熱して溶融塩を融解し、多孔質部材から溶融塩を除去する際に、高温による多孔質部材の変質や損傷を防止できる。つまり、含浸工程や除去工程において、液体状態の溶融塩の温度や多孔質部材の加熱温度を多孔質部材の変質や損傷が生じる温度未満とすることができる。具体的には、溶融塩の融点は、30℃以上140℃以下であることが好ましい。溶融塩の融点の下限は、更に40℃以上、50℃以上であることが挙げられる。一方、上限は、更に120℃以下、90℃以下、70℃以下であることが挙げられる。溶融塩の融点が低いほど、多孔質部材の変質や損傷を効果的に防止できることに加え、含浸工程における溶融塩の加熱温度や、除去工程における多孔質部材の加熱温度を低くできる。   Molten salt is a material that solidifies at room temperature (20 ° C. ± 15 ° C.). The melting point of the molten salt is preferably not less than room temperature and a temperature that does not cause alteration or damage of the porous member. Thereby, in the impregnation step, the molten salt is heated and melted, and when the porous member is impregnated with the molten salt in the liquid state or in the removal step, the porous member is heated to melt the molten salt, When removing the molten salt from the member, it is possible to prevent the porous member from being altered or damaged due to high temperatures. That is, in the impregnation step and the removal step, the temperature of the molten salt in the liquid state and the heating temperature of the porous member can be made lower than the temperature at which the porous member is altered or damaged. Specifically, the melting point of the molten salt is preferably 30 ° C. or higher and 140 ° C. or lower. The lower limit of the melting point of the molten salt is further 40 ° C. or higher and 50 ° C. or higher. On the other hand, the upper limit is 120 ° C. or lower, 90 ° C. or lower, and 70 ° C. or lower. The lower the melting point of the molten salt, the more effectively the deterioration and damage of the porous member can be prevented, and the heating temperature of the molten salt in the impregnation step and the heating temperature of the porous member in the removal step can be lowered.

(3)上記多孔質部材の切断加工方法の一形態としては、溶融塩が、アルカリ金属及びアルカリ土類金属から選択される1種又は複数種をカチオンとして含み、FSA、TFSA又はFTAをアニオンとして含む単塩又はその混合塩であることが挙げられる。   (3) As one form of the cutting method of the porous member, the molten salt contains one or more kinds selected from alkali metals and alkaline earth metals as cations, and FSA, TFSA or FTA as anions It may be a single salt or a mixed salt thereof.

溶融塩としては、アルカリ金属及びアルカリ土類金属から選択される1種又は複数種をカチオンとして含み、FSA(ビスフルオロスルフォニルアミド;[(FSON])、TFSA(ビストリフルオロメチルスルフォニルアミド;[(CFSON])又はFTA(フルオロトリフルオロメチルスルフォニルアミド;[(FSO)(CFSO)N])をアニオンとして含む単塩又はその混合塩が好適に利用できる。このような溶融塩は、融点を低くでき、140℃以下の低融点を実現できる。更に、複数種の単塩を混合した混合塩とすることで、融点をより低下させることが可能である。例えば、溶融塩として、NaをカチオンとしFSAをアニオンとしたNaFSAと、KをカチオンとしFSAをアニオンとしたKFSAとの混合塩(NaFSA−KFSA)を用いることができる。 The molten salt includes one or more selected from alkali metals and alkaline earth metals as cations, and includes FSA (bisfluorosulfonylamide; [(FSO 2 ) 2 N] ), TFSA (bistrifluoromethylsulfonyl). An amide; [(CF 3 SO 2 ) 2 N] ) or FTA (fluorotrifluoromethylsulfonylamide; [(FSO 2 ) (CF 3 SO 2 ) N] ) as an anion or a mixed salt thereof It can be suitably used. Such a molten salt can have a low melting point and can realize a low melting point of 140 ° C. or lower. Furthermore, it is possible to lower melting | fusing point more by setting it as the mixed salt which mixed multiple types of single salt. For example, a mixed salt (NaFSA-KFSA) of NaFSA with Na as a cation and FSA as an anion and KFSA with K as a cation and FSA as an anion can be used as the molten salt.

(4)上記多孔質部材の切断加工方法の一形態としては、液体状態における溶融塩の粘度が、3.5Pa・s以下であることが挙げられる。   (4) As one form of the porous member cutting method, the viscosity of the molten salt in a liquid state is 3.5 Pa · s or less.

液体状態の溶融塩の粘度が3.5Pa・s以下であることで、流動性が高く、含浸工程において、多孔質部材内部の気孔に溶融塩が浸透して充填され易く、また、除去工程において、多孔質部材から溶融塩を効率良く除去できる。なお、溶融塩の粘度は、含浸直前(開始時)の温度で測定した値であり、例えば融点より10℃〜20℃高い温度範囲で測定した値である。   When the viscosity of the molten salt in the liquid state is 3.5 Pa · s or less, the fluidity is high, and in the impregnation step, the molten salt easily penetrates and fills the pores inside the porous member, and in the removal step The molten salt can be efficiently removed from the porous member. The viscosity of the molten salt is a value measured at a temperature immediately before impregnation (at the start), for example, a value measured in a temperature range 10 ° C. to 20 ° C. higher than the melting point.

(5)上記多孔質部材の切断加工方法の一形態としては、含浸工程において、真空雰囲気下で多孔質部材を液体状態の溶融塩に浸漬して、多孔質部材に溶融塩を含浸することが挙げられる。   (5) As one form of the method for cutting the porous member, in the impregnation step, the porous member is immersed in a molten salt in a liquid state in a vacuum atmosphere, and the porous member is impregnated with the molten salt. Can be mentioned.

真空雰囲気下で多孔質部材を液体状態の溶融塩に浸漬することで、多孔質部材内部の微細な気孔にも溶融塩が浸透して緻密に充填し易くなり、多孔質部材に溶融塩を効率良く含浸できる。   By immersing the porous member in a molten salt in a liquid state under a vacuum atmosphere, the molten salt penetrates into the fine pores inside the porous member, making it easy to densely fill the porous member. Can be impregnated well.

(6)上記多孔質部材の切断加工方法の一形態としては、切断工程において、多孔質部材を割断により切断することが挙げられる。   (6) One form of the porous member cutting method includes cutting the porous member by cleaving in the cutting step.

多孔質部材を割断により切断することで、切断時の応力によって多孔質部材の内部構造が破壊され難く、平滑でより良好な断面を得易い。   By cutting the porous member by cleaving, the internal structure of the porous member is not easily broken by the stress at the time of cutting, and it is easy to obtain a smooth and better cross section.

(7)上記多孔質部材の切断加工方法の一形態としては、除去工程において、溶融塩を融解して多孔質部材から溶融塩を除去した後、更に多孔質部材を溶剤で洗浄することが挙げられる。   (7) As one form of the cutting method of the porous member, in the removing step, after the molten salt is melted to remove the molten salt from the porous member, the porous member is further washed with a solvent. It is done.

溶融塩を融解して多孔質部材から溶融塩を除去することに加え、多孔質部材を溶剤で洗浄することで、多孔質部材から溶融塩を完全に除去し易い。例えば、溶剤として、アセトニトリルを用いることができる。   In addition to melting the molten salt to remove the molten salt from the porous member, it is easy to completely remove the molten salt from the porous member by washing the porous member with a solvent. For example, acetonitrile can be used as the solvent.

[本発明の実施形態の詳細]
本発明の実施形態に係る多孔質部材の切断加工方法の具体例を説明する。なお、本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
A specific example of the porous member cutting method according to the embodiment of the present invention will be described. In addition, this invention is not limited to these illustrations, is shown by the claim, and is intended that all the changes within the meaning and range equivalent to the claim are included.

<多孔質部材の切断加工方法>
実施形態に係る多孔質部材の切断加工方法は、以下の含浸工程と、固化工程と、切断工程と、除去工程と、を備える。
・含浸工程:常温で固化する溶融塩を加熱して融解し、液体状態の溶融塩を多孔質部材に含浸する。
・固化工程:溶融塩を含浸させた多孔質部材を冷却して、溶融塩を固化する。
・切断工程:溶融塩で固化した多孔質部材を切断する。
・除去工程:切断した多孔質部材を加熱して溶融塩を融解し、多孔質部材から溶融塩を除去する。
まず、切断加工対象である多孔質部材及び含浸剤に用いる溶融塩について説明し、次いで、各工程について詳しく説明する。
<Cutting method of porous member>
The porous member cutting method according to the embodiment includes the following impregnation step, solidification step, cutting step, and removal step.
Impregnation step: The molten salt that is solidified at room temperature is heated and melted, and the porous member is impregnated with the molten salt in a liquid state.
Solidification step: The porous member impregnated with the molten salt is cooled to solidify the molten salt.
-Cutting process: The porous member solidified with molten salt is cut.
Removal step: The cut porous member is heated to melt the molten salt, and the molten salt is removed from the porous member.
First, the porous member to be cut and the molten salt used for the impregnating agent will be described, and then each step will be described in detail.

(多孔質部材)
多孔質部材は、内部に多数の気孔(特に、開気孔)を有する多孔質構造(組織)を持つ部材や材料で形成されている。多孔質部材としては、例えば、スポンジ状の網目状骨格を有する発泡体、粒子同士を結合した粒子集合体、繊維を製織又は製編した織編布や繊維同士を交絡又は結合した不織布に代表される繊維集合体が挙げられる。多孔質部材の材質は、樹脂、金属、ガラス、セラミックスなど、特に問わない。多孔質部材としては、例えば、ニッケル水素電池やリチウムイオン電池などの正極集電体に利用されているニッケルやアルミニウムからなる多孔質金属体(例、「セルメット(登録商標)」)や、セパレータに利用されているポリオレフィン系樹脂からなる多孔質膜(不織布)が挙げられる。また、レドックスフロー電池の電極に利用されている炭素繊維からなる多孔質膜や、隔膜(イオン交換膜)に利用されているポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂からなる多孔質膜が挙げられる。更には、溶融塩電池のセパレータに利用されているガラス繊維やPTFEからなる多孔質膜が挙げられる。その他、水処理用の濾過膜に利用されているPTFEからなる多孔質膜(例、「ポアフロン(登録商標)」)が挙げられる。
(Porous member)
The porous member is formed of a member or material having a porous structure (tissue) having a large number of pores (particularly, open pores) inside. Examples of the porous member include a foam having a spongy network skeleton, a particle aggregate in which particles are bonded, a woven or knitted fabric in which fibers are woven or knitted, and a nonwoven fabric in which fibers are entangled or bonded. Fiber aggregates. The material of the porous member is not particularly limited, such as resin, metal, glass, and ceramic. Examples of the porous member include a porous metal body made of nickel or aluminum (eg, “Celmet (registered trademark)”) used for a positive electrode current collector such as a nickel metal hydride battery or a lithium ion battery, or a separator. Examples thereof include a porous film (nonwoven fabric) made of a polyolefin-based resin. In addition, there are porous membranes made of carbon fibers used for electrodes of redox flow batteries, and porous membranes made of fluororesins such as polytetrafluoroethylene (PTFE) used for diaphragms (ion exchange membranes). Can be mentioned. Furthermore, the porous membrane which consists of glass fiber and PTFE currently used for the separator of a molten salt battery is mentioned. In addition, a porous membrane made of PTFE (eg, “PORFLON (registered trademark)”) used for a filtration membrane for water treatment can be mentioned.

(溶融塩の特性)
実施形態に係る多孔質部材の切断加工方法において、含浸剤に要求される好ましい特性は次のとおりである。(1)温度変化によって相変化(状態変化)を起こし、融点が常温(20℃±15℃)以上で、かつ、多孔質部材の変質や損傷を生じない温度であること。(2)多孔質部材に変質を生じさせないこと。(3)液体状態(融解状態)において流動性を有し、含浸・除去が容易であること。(4)固体状態(固化状態)において脆性であり、劈開性を持つこと。このような要求特性を全て満たす材料として、溶融塩が挙げられる。
(Characteristics of molten salt)
In the porous member cutting method according to the embodiment, preferable characteristics required for the impregnating agent are as follows. (1) A temperature that causes a phase change (state change) due to a temperature change, has a melting point of normal temperature (20 ° C. ± 15 ° C.) or more, and does not cause deterioration or damage of the porous member. (2) The porous member should not be altered. (3) It has fluidity in a liquid state (molten state) and can be easily impregnated and removed. (4) It is brittle in the solid state (solidified state) and has a cleavage property. As a material that satisfies all of the required characteristics, a molten salt can be cited.

上記(1)の特性を満たすことで、加熱して融解した溶融塩を多孔質部材に含浸した後、常温で冷却して溶融塩を固化でき、溶融塩で固化した多孔質部材を常温で切断できる。また、溶融塩を加熱融解して含浸・除去する際に、加熱温度を多孔質部材の変質や損傷が生じる温度未満とすることができ、高温による多孔質部材の変質や損傷を防止できる。加えて、低温(例えば0℃以下)で凍結処理する必要がなく、作業環境の制約が少ない。上記(2)の特性を満たすことで、多孔質部材が溶融塩と反応して、多孔質部材に変質を生じさせることがない。上記(3)の特性を満たすことで、加熱して融解した溶融塩を多孔質部材内部の気孔に浸透して充填したり、多孔質部材から効率良く除去し易い。上記(4)の特性を満たすことで、溶融塩で固化した多孔質部材を切断した際に、溶融塩に追従して多孔質部材が劈開して、ダレや変形の少ない良好な断面を得易い。その他、溶融塩は、蒸気圧がほぼ0(1×10−3Pa未満)であり、不燃性であることから、安全性も高い。 By satisfying the characteristics of (1) above, the porous member is impregnated with molten salt melted by heating, and then cooled at room temperature to solidify the molten salt, and the porous member solidified with molten salt is cut at room temperature it can. Further, when the molten salt is heated and melted for impregnation / removal, the heating temperature can be made lower than the temperature at which the porous member is altered or damaged, and the porous member can be prevented from being altered or damaged due to high temperature. In addition, there is no need for freezing at a low temperature (for example, 0 ° C. or lower), and there are few restrictions on the working environment. By satisfy | filling the characteristic of said (2), a porous member does not react with molten salt and a quality change is not produced in a porous member. By satisfying the above property (3), the molten salt melted by heating penetrates and fills the pores inside the porous member, and is easily removed from the porous member efficiently. When the porous member solidified with the molten salt is cut by satisfying the above characteristic (4), the porous member is cleaved following the molten salt, and it is easy to obtain a good cross section with less sagging and deformation. . In addition, since the molten salt has a vapor pressure of almost 0 (less than 1 × 10 −3 Pa) and is nonflammable, it has high safety.

(溶融塩の融点)
溶融塩の融点は、30℃以上140℃以下であることが好ましい。このような融点を満たすことで、常温で冷却して溶融塩を固化できると共に、溶融塩を加熱融解して含浸・除去する際の加熱温度を多孔質部材の変質や損傷が生じる温度未満とすることによって、高温による多孔質部材の変質や損傷を防止できる。溶融塩の融点の下限は、更に40℃以上、50℃以上であることが挙げられる。一方、上限は、更に120℃以下、90℃以下、70℃以下であることが好ましく、溶融塩の融点が低いほど、多孔質部材の変質や損傷を効果的に防止できることに加え、加熱温度を低くできる。
(Melting point of molten salt)
It is preferable that melting | fusing point of molten salt is 30 degreeC or more and 140 degrees C or less. By satisfying such a melting point, the molten salt can be solidified by cooling at room temperature, and the heating temperature when impregnating / removing the molten salt by heating and melting is less than the temperature at which the porous member is altered or damaged. As a result, the porous member can be prevented from being altered or damaged by high temperatures. The lower limit of the melting point of the molten salt is further 40 ° C. or higher and 50 ° C. or higher. On the other hand, the upper limit is further preferably 120 ° C. or lower, 90 ° C. or lower, and 70 ° C. or lower. The lower the melting point of the molten salt, the more effectively the alteration and damage of the porous member can be prevented. Can be lowered.

(溶融塩の粘度)
液体状態における溶融塩の粘度は、3.5Pa・s以下であることが好ましい。液体状態の溶融塩の粘度が3.5Pa・s以下であることで、流動性が高く、溶融塩を多孔質部材に含浸する際に、多孔質部材内部の気孔に溶融塩が浸透して充填され易く、また、除去工程において、多孔質部材から溶融塩を効率良く除去できる。より好ましい溶融塩の粘度は、2.5Pa・s以下である。なお、溶融塩の粘度は、融点より10℃〜20℃高い温度範囲で測定した値である。
(Viscosity of molten salt)
The viscosity of the molten salt in the liquid state is preferably 3.5 Pa · s or less. When the viscosity of the molten salt in the liquid state is 3.5 Pa · s or less, the fluidity is high, and when the porous member is impregnated with the molten salt, the molten salt penetrates and fills the pores inside the porous member. In addition, the molten salt can be efficiently removed from the porous member in the removing step. The viscosity of the molten salt is more preferably 2.5 Pa · s or less. Note that the viscosity of the molten salt is a value measured in a temperature range higher by 10 ° C. to 20 ° C. than the melting point.

(溶融塩の組成)
溶融塩としては、アルカリ金属及びアルカリ土類金属から選択される1種又は複数種をカチオンとして含み、FSA(ビスフルオロスルフォニルアミド)、TFSA(ビストリフルオロメチルスルフォニルアミド)又はFTA(フルオロトリフルオロメチルスルフォニルアミド)をアニオンとして含む単塩又はその混合塩が好適に利用できる。上記溶融塩は、融点が常温より高く、常温では固体状態で、融点以上の温度で融解して液体状態になる。また、上記溶融塩は、融点を低くでき、140℃以下の低融点を実現できる他、液体状態での粘度も3.5Pa・s以下を実現できる。
(Composition of molten salt)
The molten salt includes one or more selected from alkali metals and alkaline earth metals as a cation, and FSA (bisfluorosulfonylamide), TFSA (bistrifluoromethylsulfonylamide) or FTA (fluorotrifluoromethylsulfonyl). A simple salt containing amide) as an anion or a mixed salt thereof can be suitably used. The molten salt has a melting point higher than room temperature, is in a solid state at room temperature, and melts into a liquid state at a temperature equal to or higher than the melting point. The molten salt can have a low melting point, can realize a low melting point of 140 ° C. or lower, and can also realize a viscosity in a liquid state of 3.5 Pa · s or lower.

カチオンとなるアルカリ金属としては、Li、Na、K、Rb及びCsから選択することができ、アルカリ土類金属としては、Mg、Ca、Sr及びBaから選択することができる。例えば、FSAをアニオンとする溶融塩の単塩としては、LiFSA、NaFSA、KFSA、RbFSA、CsFSA、Mg(FSA)、Ca(FSA)、Sr(FSA)及びBa(FSA)が挙げられる。また、TFSAをアニオンとする溶融塩の単塩としては、LiTFSA、NaTFSA、KTFSA、RbTFSA、CsTFSA、Mg(TFSA)、Ca(TFSA)、Sr(TFSA)及びBa(TFSA)が挙げられる。FTAをアニオンとする溶融塩の単塩としては、LiFTA、NaFTA、KFTA、RbFTA、CsFTA、Mg(FTA)、Ca(FTA)、Sr(FTA)及びBa(FTA)が挙げられる。また、これら単塩を混合した混合塩とすることもでき、混合塩とすることで、融点をより低下させることが可能である。更に、溶融塩には、有機カチオンを含んでいてもよい。有機カチオンとしては、1−エチル−3−メチルイミダゾリウムカチオン等のアルキルイミダゾール系カチオン、N−エチル−N―メチルピロリジニウムカチオン等のアルキルピロリジニウム系カチオン、1−メチル−ピリジニウムカチオン等のアルキルピリジニウム系カチオン、トリメチルヘキシルアンモニウムカチオン等の4級アンモニウム系カチオンなどが挙げられる。 The alkali metal to be a cation can be selected from Li, Na, K, Rb and Cs, and the alkaline earth metal can be selected from Mg, Ca, Sr and Ba. For example, as a single salt of a molten salt having FSA as an anion, LiFSA, NaFSA, KFSA, RbFSA, CsFSA, Mg (FSA) 2 , Ca (FSA) 2 , Sr (FSA) 2, and Ba (FSA) 2 can be mentioned. It is done. Examples of the molten salt having TFSA as an anion include LiTFSA, NaTFSA, KTFSA, RbTFSA, CsTFSA, Mg (TFSA) 2 , Ca (TFSA) 2 , Sr (TFSA) 2 and Ba (TFSA) 2. It is done. Examples of the single salt of the molten salt having FTA as an anion include LiFTA, NaFTA, KFTA, RbFTA, CsFTA, Mg (FTA) 2 , Ca (FTA) 2 , Sr (FTA) 2 and Ba (FTA) 2 . Moreover, it can also be set as the mixed salt which mixed these single salts, and it is possible to lower melting | fusing point more by using mixed salt. Furthermore, the molten salt may contain an organic cation. Examples of organic cations include alkylimidazole cations such as 1-ethyl-3-methylimidazolium cation, alkylpyrrolidinium cations such as N-ethyl-N-methylpyrrolidinium cation, and 1-methyl-pyridinium cation. And quaternary ammonium cations such as alkylpyridinium cations and trimethylhexylammonium cations.

溶融塩の一例としては、NaをカチオンとしFSAをアニオンとしたNaFSAと、KをカチオンとしFSAをアニオンとしたKFSAとの混合塩(NaFSA−KFSA)が挙げられる。NaFSA−KFSAは、NaFSAとKFSAとのモル比を変えることで融点を変えることができ、NaFSAを30mol%以上60mol%以下、KFSAを40mol%以上70mol%以下とすることで、融点を140℃以下、更に120℃以下にすることができる。特に、NaFSAを40mol%以上50mol%以下、KFSAを50mol%以上60mol%以下とすると、融点を90℃以下にすることができ、好ましい。例えば、NaFSAが45mol%、KFSAが55mol%の場合、NaFSA−KFSAの融点は、約57℃である。   An example of the molten salt is a mixed salt (NaFSA-KFSA) of NaFSA with Na as a cation and FSA as an anion and KFSA with K as a cation and FSA as an anion. NaFSA-KFSA can change the melting point by changing the molar ratio of NaFSA and KFSA, and the melting point is 140 ° C. or less by setting NaFSA to 30 mol% to 60 mol% and KFSA to 40 mol% to 70 mol%. Further, it can be set to 120 ° C. or lower. In particular, when NaFSA is 40 mol% or more and 50 mol% or less and KFSA is 50 mol% or more and 60 mol% or less, the melting point can be 90 ° C. or less, which is preferable. For example, when NaFSA is 45 mol% and KFSA is 55 mol%, the melting point of NaFSA-KFSA is about 57 ° C.

〈含浸工程〉
含浸工程では、常温で固化する溶融塩を加熱して融解し、液体状態の溶融塩を多孔質部材に含浸する。溶融塩を融点(例えば30℃)以上の温度に加熱して融解することによって溶融塩を液化することで、多孔質部材に溶融塩を容易に含浸できる。また、溶融塩を加熱して融解する際の加熱温度、即ち液体状態の溶融塩の温度は、多孔質部材の変質や損傷を生じない温度範囲(例えば140℃以下)とする。ここで、液体状態の溶融塩の粘度が3.5Pa・s以下であれば、多孔質部材内部の気孔に溶融塩が浸透して充填され易い。含浸は、例えば、多孔質部材を型枠に入れ、そこに液体状態の溶融塩を型枠に注入して、多孔質部材を溶融塩に浸漬することが挙げられる。
<Impregnation process>
In the impregnation step, the molten salt that solidifies at room temperature is heated and melted to impregnate the porous member with the molten salt in a liquid state. The porous member can be easily impregnated with the molten salt by liquefying the molten salt by heating and melting the molten salt to a temperature equal to or higher than the melting point (for example, 30 ° C.). The heating temperature when the molten salt is melted by heating, that is, the temperature of the molten salt in a liquid state is set to a temperature range (for example, 140 ° C. or less) that does not cause the porous member to be altered or damaged. Here, if the viscosity of the molten salt in the liquid state is 3.5 Pa · s or less, the molten salt easily penetrates into and fills the pores inside the porous member. The impregnation includes, for example, putting a porous member into a mold, injecting a molten salt in a liquid state into the mold, and immersing the porous member in the molten salt.

更に、含浸工程において、真空雰囲気下で多孔質部材を液体状態の溶融塩に浸漬して、多孔質部材に溶融塩を含浸することが好ましい。真空雰囲気下で多孔質部材を液体状態の溶融塩に浸漬することで、多孔質部材内部の微細な気孔にも溶融塩が浸透して緻密に充填され易くなる。真空雰囲気の真空度は、例えば、10Pa以下、好ましくは1Pa以下とすることが挙げられる。溶融塩は、蒸気圧が極めて低く(ほぼ0)であることから、真空雰囲気下で使用しても気化することがなく、消失することがない。   Furthermore, in the impregnation step, the porous member is preferably impregnated with the molten salt by immersing the porous member in a molten salt in a liquid state in a vacuum atmosphere. By immersing the porous member in a molten salt in a liquid state in a vacuum atmosphere, the molten salt penetrates into fine pores inside the porous member and becomes easy to be densely filled. The degree of vacuum in the vacuum atmosphere is, for example, 10 Pa or less, preferably 1 Pa or less. Since the molten salt has an extremely low vapor pressure (nearly 0), it does not vaporize and disappear even when used in a vacuum atmosphere.

〈固化工程〉
固化工程では、溶融塩を含浸させた多孔質部材を冷却して、溶融塩を固化する。溶融塩を含浸させた多孔質部材を冷却して溶融塩を固化することによって、多孔質部材を溶融塩で固めることができる。溶融塩を含浸させた多孔質部材は常温で冷却して溶融塩を固化できる。冷却は、放冷による自然冷却の他、空冷や水冷による強制冷却でもよく、強制冷却により固化に要する時間を短縮できる。
<Solidification process>
In the solidification step, the porous member impregnated with the molten salt is cooled to solidify the molten salt. By cooling the porous member impregnated with the molten salt to solidify the molten salt, the porous member can be solidified with the molten salt. The porous member impregnated with the molten salt can be cooled at room temperature to solidify the molten salt. Cooling may be natural cooling by standing cooling, forced cooling by air cooling or water cooling, and the time required for solidification can be shortened by forced cooling.

〈切断工程〉
切断工程では、溶融塩で固化した多孔質部材を切断する。溶融塩で固化した多孔質部材を切断することによって、多孔質部材の内部構造が破壊され難く、多孔質部材の状態を保持したまま断面を形成することができ、良好な断面が得られる。切断は常温で行うことができる。切断方式としては、例えば、多孔質部材に機械的な衝撃や曲げ応力を与えて劈開する割断、多孔質部材を一対の刃物で挟み込むせん断、ナイフや鋸の刃を多孔質部材に押し当てて引き切る刃物による切断など種々の方式を採用できる。
<Cutting process>
In the cutting step, the porous member solidified with the molten salt is cut. By cutting the porous member solidified with the molten salt, the internal structure of the porous member is not easily destroyed, and the cross section can be formed while maintaining the state of the porous member, and a good cross section can be obtained. Cutting can be performed at room temperature. Examples of the cutting method include cleaving by cleaving the porous member by applying mechanical impact or bending stress, shearing by sandwiching the porous member with a pair of blades, and pulling by pressing a knife or saw blade against the porous member. Various methods such as cutting with a cutting blade can be adopted.

特に、多孔質部材を割断により切断することが好ましい。割断による切断は、切りくずの発生が少なく、断面への切りくずの付着を抑制したり、切断時の応力によって断面の変形が生じ難く、多孔質部材の内部構造が破壊され難いなど、平滑でより良好な断面を得易い。割断方法としては、例えば、ナイフの刃を多孔質部材に押し当てて衝撃や曲げ応力を与えたり、多孔質部材にスクライブ線を形成し、スクライブ線に沿って衝撃や曲げ応力を与えることが挙げられる。   In particular, it is preferable to cut the porous member by cleaving. Cutting by cleaving is smooth because there are few occurrences of chips, the adhesion of chips to the cross section is suppressed, the cross section is hardly deformed by the stress at the time of cutting, and the internal structure of the porous member is difficult to be destroyed. It is easy to obtain a better cross section. As the cleaving method, for example, a knife blade is pressed against the porous member to give an impact or bending stress, or a scribe line is formed on the porous member to give the impact or bending stress along the scribe line. It is done.

〈除去工程〉
除去工程では、切断した多孔質部材を加熱して溶融塩を融解し、多孔質部材から溶融塩を除去する。溶融塩の融点(例えば30℃)以上の温度に多孔質部材を加熱して融解することによって溶融塩を液化することで、多孔質部材から溶融塩を容易に除去できる。また、溶融塩を融解して多孔質部材から除去する際の多孔質部材の加熱温度は、多孔質部材の変質や損傷を生じない温度範囲(例えば140℃以下)とする。ここで、液体状態の溶融塩の粘度が3.5Pa・s以下であれば、多孔質部材から溶融塩を効率良く除去できる。
<Removal process>
In the removing step, the cut porous member is heated to melt the molten salt, and the molten salt is removed from the porous member. The molten salt can be easily removed from the porous member by liquefying the molten salt by heating and melting the porous member to a temperature equal to or higher than the melting point (for example, 30 ° C.) of the molten salt. The heating temperature of the porous member when the molten salt is melted and removed from the porous member is set to a temperature range (for example, 140 ° C. or less) that does not cause the porous member to be altered or damaged. Here, if the viscosity of the molten salt in a liquid state is 3.5 Pa · s or less, the molten salt can be efficiently removed from the porous member.

更に、溶融塩を融解して多孔質部材から溶融塩を除去した後、多孔質部材を溶剤で洗浄することが好ましい。これにより、多孔質部材から溶融塩を完全に除去し易い。溶剤としては、例えば、アセトニトリル、メタノール、エタノール、イソプロピルアルコールなどの有機溶媒が好適に利用できる。   Furthermore, it is preferable to wash the porous member with a solvent after melting the molten salt to remove the molten salt from the porous member. Thereby, it is easy to completely remove the molten salt from the porous member. As the solvent, for example, organic solvents such as acetonitrile, methanol, ethanol, and isopropyl alcohol can be suitably used.

[試験例1]
溶融塩としてNaFSA−KFSA(NaFSA:KFSA=45mol%:55mol%,融点:約57℃)を用い、上述した実施形態の多孔質部材の切断加工方法によって多孔質部材を切断して断面観察用試料を作製した。そして、その試料の切断面を観察して評価した。NaFSA−KFSAの粘度を回転粘度計(東京計器株式会社製、DVH−E II型)を用いて測定したところ、60℃で5.919Pa・s(5919cp)、70℃で2.105Pa・s(2105cp)であった。
[Test Example 1]
Sample for cross-sectional observation using NaFSA-KFSA (NaFSA: KFSA = 45 mol%: 55 mol%, melting point: about 57 ° C.) as the molten salt, and cutting the porous member by the porous member cutting method of the above-described embodiment. Was made. And the cut surface of the sample was observed and evaluated. When the viscosity of NaFSA-KFSA was measured using a rotational viscometer (DVH-E II type, manufactured by Tokyo Keiki Co., Ltd.), it was 5.919 Pa · s (5919 cp) at 60 ° C and 2.105 Pa · s (70 ° C). 2105 cp).

(試料1)
ポリフェニレンスルフィド(PPS)樹脂の繊維で形成されたPPSの多孔質部材を用意した。具体的には、このPPSの多孔質部材は、直径10μm程度の多数のPPS樹脂の繊維を絡ませて圧縮した厚さ60μm程度のシート状部材である。また、NaFSA−KFSAを70℃に加熱して融解し、液体状態のNaFSA−KFSAを用意した。PPSの多孔質部材を型枠に入れ、液体状態のNaFSA−KFSAを型枠に注入して、PPSの多孔質部材を液体状態のNaFSA−KFSAに浸漬することにより、NaFSA−KFSAをPPSの多孔質部材に含浸した。その後、PPSの多孔質部材をNaFSA−KFSAに浸漬した状態で常温で放置することにより、NaFSA−KFSAを含浸させたPPSの多孔質部材を冷却して、NaFSA−KFSAを固化した。次に、NaFSA−KFSAで固化したPPSの多孔質部材を型枠から取り出し、これにナイフの刃を押し当てて衝撃を与えることで割断することにより、NaFSA−KFSAで固化したPPSの多孔質部材を切断した。切断したPPSの多孔質部材を70℃に加熱して、含浸させたNaFSA−KFSAを融解し、PPSの多孔質部材からNaFSA−KFSAを除去した。以上のようにして、試料1の断面観察用試料を作製した。そして、作製した試料1の切断面を走査型電子顕微鏡(SEM)で観察した。図1に、試料1の断面顕微鏡写真を示す(上:倍率200倍、下:倍率1000倍)。
(Sample 1)
A PPS porous member formed of polyphenylene sulfide (PPS) resin fibers was prepared. Specifically, the PPS porous member is a sheet-like member having a thickness of about 60 μm, which is formed by entanglement with a large number of PPS resin fibers having a diameter of about 10 μm. Moreover, NaFSA-KFSA was heated to 70 ° C. and melted to prepare NaFSA-KFSA in a liquid state. A PPS porous member is placed in a mold, liquid NaFSA-KFSA is injected into the mold, and the PPS porous member is immersed in the liquid NaFSA-KFSA, thereby allowing NaFSA-KFSA to pass through the PPS. The material was impregnated. Then, the PPS porous member impregnated with NaFSA-KFSA was cooled by leaving the PPS porous member immersed in NaFSA-KFSA at room temperature to solidify NaFSA-KFSA. Next, the PPS porous member solidified with NaFSA-KFSA is taken out from the mold, and is cut by applying an impact by pressing a knife blade against the porous member, whereby the porous member of PPS solidified with NaFSA-KFSA Was cut off. The cut PPS porous member was heated to 70 ° C. to melt the impregnated NaFSA-KFSA, and the NaFSA-KFSA was removed from the PPS porous member. As described above, a sample for observing the cross section of Sample 1 was produced. And the cut surface of the produced sample 1 was observed with the scanning electron microscope (SEM). FIG. 1 shows a cross-sectional micrograph of Sample 1 (upper: 200 times magnification, lower: 1000 times magnification).

図1に示すように、試料1の切断面は、ダレや変形がなく平滑な断面であり、試料の繊維や空孔の状態が保持されていることから、試料の状態を明瞭に観察できることが分かる。また、図1から、切断面において、奥行き方向の状態も明瞭に観察できることが分かる。つまり、実施形態の多孔質部材の切断加工方法によれば、多孔質部材の内部構造を破壊することなく、多孔質部材の状態を保持したまま断面を形成することができ、多孔質部材の状態を明瞭に観察できる。   As shown in FIG. 1, the cut surface of the sample 1 has a smooth cross section without sagging or deformation, and the state of the fiber and pores of the sample is maintained, so that the state of the sample can be clearly observed. I understand. Further, FIG. 1 shows that the state in the depth direction can be clearly observed on the cut surface. That is, according to the porous member cutting method of the embodiment, the cross-section can be formed while maintaining the state of the porous member without destroying the internal structure of the porous member. Can be observed clearly.

[試験例2]
試験例2では、切断加工対象として、アラミド樹脂からなる多孔質部材を用意した。このアラミドの多孔質部材は、スポンジ状の網目構造を有するシート状部材(アラミド発泡シート)である。そして、アラミド発泡シートを上述した実施形態の多孔質部材の切断加工方法によって切断して断面観察用試料を作製すると共に、試験例1と同じように、その試料の切断面をSEMで観察して評価した。
[Test Example 2]
In Test Example 2, a porous member made of an aramid resin was prepared as a cutting object. This porous member of aramid is a sheet-like member (aramid foam sheet) having a sponge-like network structure. And while cut | disconnecting the aramid foam sheet with the cutting method of the porous member of embodiment mentioned above and producing the sample for cross-section observation, the cut surface of the sample is observed by SEM like Test Example 1. evaluated.

(試料2−1)
試料1で用いたNaFSA−KFSAを70℃に加熱して融解し、液体状態のNaFSA−KFSAを用意した。アラミド発泡シートを型枠に入れ、液体状態のNaFSA−KFSAを型枠に注入して、アラミド発泡シートを液体状態のNaFSA−KFSAに浸漬した。その後、アラミド発泡シートをNaFSA−KFSAに浸漬した状態で常温で冷却して、NaFSA−KFSAを固化した。次に、NaFSA−KFSAで固化したアラミド発泡シートを型枠から取り出し、これにナイフの刃を押し当て、衝撃を与えて割断により切断した。切断したアラミド発泡シートを70℃に加熱してNaFSA−KFSAを融解し、アラミド発泡シートから溶融塩を除去した。以上のようにして、試料2−1の断面観察用試料を作製した。図2に、試料2−1の断面顕微鏡写真を示す(上:倍率5000倍、中:倍率10000倍、下:倍率20000倍)。
(Sample 2-1)
NaFSA-KFSA used in Sample 1 was melted by heating to 70 ° C. to prepare NaFSA-KFSA in a liquid state. The aramid foam sheet was placed in a mold, liquid NaFSA-KFSA was poured into the mold, and the aramid foam sheet was immersed in liquid NaFSA-KFSA. Thereafter, the aramid foamed sheet was cooled at room temperature while being immersed in NaFSA-KFSA to solidify NaFSA-KFSA. Next, the aramid foamed sheet solidified with NaFSA-KFSA was taken out of the mold, pressed against it with a knife blade, and was cut by cleaving with impact. The cut aramid foam sheet was heated to 70 ° C. to melt NaFSA-KFSA, and the molten salt was removed from the aramid foam sheet. As described above, a sample for cross-sectional observation of Sample 2-1 was produced. FIG. 2 shows a cross-sectional photo of the sample 2-1 (upper: 5,000 times magnification, middle: 10000 times magnification, lower: 20,000 times magnification).

(試料2−2)
比較として、試料2−1と同じアラミド発泡シートを従来の凍結割断法によって切断して断面観察用試料を作製し、その試料の切断面をSEMで観察して評価した。アラミド発泡シートを樹脂製のカプセルに入れると共に、カプセルにエタノールを封入し、エタノールをアラミド発泡シートに含浸した。その後、このカプセルを液体窒素に浸漬して冷却し、エタノールを凍結した。次に、凍結したカプセルにナイフの刃を押し当てて衝撃を与えることにより割断し、アラミド発泡シートを切断した。切断したアラミド発泡シートを常温で放置してエタノールを溶かし、アラミド発泡シートからエタノールを除去した。以上のようにして、試料2−2の断面観察用試料を作製した。図3に、試料2−2の断面顕微鏡写真を示す(上:倍率5000倍、中:倍率10000倍、下:倍率20000倍)。
(Sample 2-2)
As a comparison, the same aramid foam sheet as that of Sample 2-1 was cut by a conventional freeze cleaving method to prepare a sample for cross-sectional observation, and the cut surface of the sample was observed with an SEM and evaluated. The aramid foam sheet was placed in a resin capsule, ethanol was sealed in the capsule, and the aramid foam sheet was impregnated with ethanol. Then, this capsule was immersed in liquid nitrogen and cooled, and ethanol was frozen. Next, a knife blade was pressed against the frozen capsule to give an impact, and the aramid foam sheet was cut. The cut aramid foam sheet was allowed to stand at room temperature to dissolve ethanol, and the ethanol was removed from the aramid foam sheet. As described above, a cross-sectional observation sample of Sample 2-2 was produced. FIG. 3 shows a cross-sectional micrograph of Sample 2-2 (upper: 5,000 times magnification, middle: 10000 times magnification, lower: 20,000 times magnification).

図2、図3に示すように、いずれの試料も、切断面にダレや変形がなく平滑な断面であり、試料の繊維や空孔の状態が保持されていることが分かる。また、図2、図3から、いずれの試料の切断面も、奥行き方向の状態を明瞭に観察できることが分かる。つまり、実施形態の多孔質部材の切断加工方法によれば、従来の凍結割断方法と同等以上の良好な断面を得ることができる。   As shown in FIG. 2 and FIG. 3, it can be seen that all the samples have a smooth cross section without sagging or deformation on the cut surface, and the state of the fibers and holes of the sample is maintained. In addition, it can be seen from FIGS. 2 and 3 that the cut surface of either sample can clearly observe the state in the depth direction. That is, according to the porous member cutting method of the embodiment, it is possible to obtain a good cross section equal to or better than that of the conventional freeze cutting method.

以上説明した試験例では、実施形態の多孔質部材の切断加工方法を多孔質部材の断面観察用試料の作製に利用する場合を例に挙げたが、実施形態の多孔質部材の切断加工方法は、多孔質部材を所定の寸法に切断して部品に加工する場合にも利用できる。実施形態の多孔質部材の切断加工方法によれば、切断面にダレや変形がなく、多孔質部材の状態を保持したまま切断でき、かつ、含浸させた溶融塩も容易に除去できるので、切断加工した部品に影響を与えることも少ない。   In the test examples described above, the example of using the porous member cutting method of the embodiment for the preparation of the cross-sectional observation sample of the porous member is taken as an example, but the porous member cutting method of the embodiment is described below. It can also be used when a porous member is cut into a predetermined size and processed into a part. According to the porous member cutting method of the embodiment, the cutting surface is free from sagging and deformation, can be cut while maintaining the state of the porous member, and the impregnated molten salt can also be easily removed. The machined parts are less affected.

本発明の多孔質部材の切断加工方法は、多孔質部材の切断加工に好適に利用可能である。   The method for cutting a porous member of the present invention can be suitably used for cutting a porous member.

Claims (7)

常温で固化する溶融塩を加熱して融解し、液体状態の前記溶融塩を多孔質部材に含浸する含浸工程と、
前記溶融塩を含浸させた前記多孔質部材を冷却して、前記溶融塩を固化する固化工程と、
前記溶融塩で固化した前記多孔質部材を切断する切断工程と、
切断した前記多孔質部材を加熱して前記溶融塩を融解し、前記多孔質部材から前記溶融塩を除去する除去工程と、
を備える多孔質部材の切断加工方法。
An impregnation step of heating and melting the molten salt solidified at room temperature, and impregnating the porous member with the molten salt in a liquid state;
Cooling the porous member impregnated with the molten salt to solidify the molten salt;
A cutting step of cutting the porous member solidified with the molten salt;
Removing the molten salt by heating the cut porous member to melt the molten salt, and removing the molten salt from the porous member;
A method for cutting a porous member.
前記溶融塩の融点が、30℃以上140℃以下である請求項1に記載の多孔質部材の切断加工方法。   The porous member cutting method according to claim 1, wherein the molten salt has a melting point of 30 ° C. or higher and 140 ° C. or lower. 前記溶融塩が、アルカリ金属及びアルカリ土類金属から選択される1種又は複数種をカチオンとして含み、FSA、TFSA又はFTAをアニオンとして含む単塩又はその混合塩である請求項1又は請求項2に記載の多孔質部材の切断加工方法。   The molten salt is a single salt or a mixed salt thereof containing one or more kinds selected from alkali metals and alkaline earth metals as cations and containing FSA, TFSA or FTA as anions. The cutting method of the porous member as described in 2. 液体状態における前記溶融塩の粘度が、3.5Pa・s以下である請求項1〜請求項3のいずれか1項に記載の多孔質部材の切断加工方法。   The method for cutting a porous member according to any one of claims 1 to 3, wherein a viscosity of the molten salt in a liquid state is 3.5 Pa · s or less. 前記含浸工程において、真空雰囲気下で前記多孔質部材を液体状態の前記溶融塩に浸漬して、前記多孔質部材に前記溶融塩を含浸する請求項1〜請求項4のいずれか1項に記載の多孔質部材の切断加工方法。   The said impregnation process WHEREIN: The said porous member is immersed in the said molten salt in a liquid state in a vacuum atmosphere, The said molten salt is impregnated with the said molten salt in any one of Claims 1-4. A method for cutting a porous member. 前記切断工程において、前記多孔質部材を割断により切断する請求項1〜請求項5のいずれか1項に記載の多孔質部材の切断加工方法。   The method for cutting a porous member according to any one of claims 1 to 5, wherein the porous member is cut by cleaving in the cutting step. 前記除去工程において、前記溶融塩を融解して前記多孔質部材から前記溶融塩を除去した後、更に前記多孔質部材を溶剤で洗浄する請求項1〜請求項6のいずれか1項に記載の多孔質部材の切断加工方法。   The said removal process WHEREIN: After melting the said molten salt and removing the said molten salt from the said porous member, the said porous member is further wash | cleaned with a solvent. A method for cutting a porous member.
JP2014045810A 2014-03-10 2014-03-10 Method of cutting porous member Pending JP2015169586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045810A JP2015169586A (en) 2014-03-10 2014-03-10 Method of cutting porous member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045810A JP2015169586A (en) 2014-03-10 2014-03-10 Method of cutting porous member

Publications (1)

Publication Number Publication Date
JP2015169586A true JP2015169586A (en) 2015-09-28

Family

ID=54202430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045810A Pending JP2015169586A (en) 2014-03-10 2014-03-10 Method of cutting porous member

Country Status (1)

Country Link
JP (1) JP2015169586A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096463A (en) * 2017-11-22 2019-06-20 Tdk株式会社 Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery
US20220293964A1 (en) * 2019-07-10 2022-09-15 Sekisui Chemical Co., Ltd. Metal sheet having carbon material, electrode for electricity storage device, and electricity storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096463A (en) * 2017-11-22 2019-06-20 Tdk株式会社 Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery
JP6992436B2 (en) 2017-11-22 2022-01-13 Tdk株式会社 Lithium-ion secondary battery electrolyte and lithium-ion secondary battery
US20220293964A1 (en) * 2019-07-10 2022-09-15 Sekisui Chemical Co., Ltd. Metal sheet having carbon material, electrode for electricity storage device, and electricity storage device

Similar Documents

Publication Publication Date Title
Li et al. Single‐ion conducting electrolyte based on electrospun nanofibers for high‐performance lithium batteries
TWI437748B (en) Non-aqueous secondary battery separator, polyolefin microporous membrane substrate, method for producing the same, nonaqueous secondary battery separator, and nonaqueous secondary battery
Bonnick et al. The quest for the holy grail of solid-state lithium batteries
EP3275037B1 (en) Porous electrolyte membrane, manufacturing process thereof and electrochemical devices comprising same
JP3050021B2 (en) Battery separator and lithium battery using the same
JP2012529742A (en) Polyethylene-based composite microporous membrane with highly heat-resistant organic / inorganic coating layer
CN102473887A (en) Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
JP2011500881A (en) Microporous membrane and its manufacture and use
CN101137422A (en) Production of high porosity open-cell membranes
Xu et al. Combining polymeric membranes with inorganic woven fabric: Towards the continuous and affordable fabrication of a multifunctional separator for lithium-ion battery
JP5279618B2 (en) Block copolymer film and production method thereof
JP6030952B2 (en) Diaphragm for alkaline water electrolysis and method for producing the same
JP2011210436A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015169586A (en) Method of cutting porous member
KR101449597B1 (en) Thermally Activated Reserve Battery Containing Metal Foam Impregnated With Lithium And Method Of Preparing The Same
US20100183907A1 (en) Hard Spacers in Microporous Membrane Matrix
KR101739803B1 (en) A thermal batteries using a eutectic salt coated solid-electrolyte and a manufacturing method therefor
Song et al. Dynamic visualization of cathode/electrolyte evolution in quasi‐solid‐state lithium batteries
JP2013204146A (en) Diaphragm for alkaline water electrolysis and method for manufacturing the same
JP2005268095A (en) Separator for electronic component and manufacturing method thereof
JP2011210574A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and the nonaqueous secondary battery
Gou et al. Interfacially stable and high-safety lithium batteries enabled by porosity engineering toward cellulose separators
JP6818557B2 (en) Porous polyolefin separation membrane and its manufacturing method
Kim et al. Highly sustainable polyphenylene sulfide membrane of tailored porous architecture for high-performance lithium-ion battery applications
JP2014511900A (en) Filled polymer microporous membrane based on surface free energy