JP2022096866A - 拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源 - Google Patents

拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源 Download PDF

Info

Publication number
JP2022096866A
JP2022096866A JP2020210096A JP2020210096A JP2022096866A JP 2022096866 A JP2022096866 A JP 2022096866A JP 2020210096 A JP2020210096 A JP 2020210096A JP 2020210096 A JP2020210096 A JP 2020210096A JP 2022096866 A JP2022096866 A JP 2022096866A
Authority
JP
Japan
Prior art keywords
fluctuation
δec
curvature
radius
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020210096A
Other languages
English (en)
Inventor
光雄 有馬
Mitsuo Arima
正之 石渡
Masayuki Ishiwatari
和彦 野田
Kazuhiko Noda
駿介 金杉
Shunsuke Kanasugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2020210096A priority Critical patent/JP2022096866A/ja
Priority to PCT/JP2021/046053 priority patent/WO2022131251A1/ja
Priority to US18/030,914 priority patent/US20230384490A1/en
Priority to TW110147540A priority patent/TW202244545A/zh
Publication of JP2022096866A publication Critical patent/JP2022096866A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】周期構造の回折現象により発生するスペクトルノイズを低減して直線状の拡散光の強度の均質性を向上でき、かつ、0次回折光のノイズを低減して配光性も向上する。【解決手段】直線状の拡散光を出射するマイクロレンズアレイ型の拡散板1は、基材10と、基材10のXY平面上にX方向に配列され、Y方向に延びる凸条部または凹条部からなる複数のシリンドリカルレンズ21とを備える。各々のシリンドリカルレンズ21のX方向の開口幅D、曲率半径Rはそれぞれ、基準開口幅Dk、基準曲率半径Rkを基準として、変動全幅率δD、δRで規定される変動範囲内でランダムに変動している。各々のシリンドリカルレンズ21の偏心量Ecは、変動全幅率δEcで規定される変動範囲内でランダムに変動している。δD、δRおよびδEcは、式(1)を満たし、かつ、δDまたはδRのうち少なくとも一方は0%ではない。【選択図】図2

Description

本発明は、拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源に関する。
光の拡散特性を変化させるために、入射光を所望の方向に拡散させる拡散板が用いられている。拡散板は、例えば、ディスプレイ等の表示装置、プロジェクタ等の投影装置、または各種の照明装置等といった様々な装置に広く利用される。拡散板の表面形状に起因する光の屈折を利用して、入射光を所望の拡散角で拡散させるタイプの拡散板がある。当該タイプの拡散板として、数十μm程度の大きさのマイクロレンズが複数配置されたマイクロレンズアレイ型の拡散板が知られている。
かかるマイクロレンズアレイ型の拡散板では、各マイクロレンズからの光の波面が干渉した結果、マイクロレンズ配列の周期構造による回折波が生じ、拡散光の強度分布にむらが生じるという問題がある。このため、マイクロレンズの配置や、レンズ面の形状、開口の形状をばらつかせることにより、干渉や回折による拡散光の強度分布のむらを低減する技術が提案されている。
例えば、特許文献1には、主面上に複数のマイクロレンズが矩形格子状に規則的に配置された拡散板において、断面形状が互いに相違し、かつ、対称軸を有さない複数のマイクロレンズを用いることが記載されている。また、特許文献2には、矩形格子状に配列された複数のマイクロレンズのレンズ頂点位置を、基準格子の格子点からずらして配置することが記載されている。
国際公開第2016/051785号 国際公開第2015/182619号
ところで、上記マイクロレンズアレイ型の拡散板の一例として、入射光を特定方向に延びる直線状に拡散させて、直線状の拡散光を出射する拡散板がある。かかる拡散板では、同一形状を有する複数のシリンドリカルレンズが周期的に配列されたマイクロレンズアレイ構造が一般的である。
しかしながら、このように同一形状を有する複数のシリンドリカルレンズが周期的に配列されたアレイ構造では、当該周期構造の回折現象によりスペクトル状の回折光(スペクトルノイズ)が発生し、直線状の拡散光の強度の均質性が低下するという問題があった。さらに、高い強度の0次回折光(ノイズ)が発生するため、拡散光を特定方向に適切に分散配光することが困難になり、直線状の拡散光の特定方向の配光性が低下するという問題もあった。
そこで、本発明は、上記事情に鑑みてなされたものであり、本発明の目的とするところは、直線状の拡散光を出射するマイクロレンズアレイ型の拡散板において、周期構造の回折現象により発生するスペクトルノイズを低減して直線状の拡散光の強度の均質性を向上でき、かつ、0次回折光のノイズを低減して配光性も向上することにある。
上記課題を解決するために、本発明のある観点によれば、
直線状の拡散光を出射するマイクロレンズアレイ型の拡散板であって、
基材と、
前記基材の少なくとも一方の表面におけるXY平面上にX方向に配列され、前記X方向に対して垂直なY方向に延びる凸条部または凹条部からなる複数のシリンドリカルレンズと、
を備え、
各々の前記シリンドリカルレンズの前記X方向の開口幅D[μm]は、基準開口幅Dk[μm]を基準として、変動全幅率δD[%]で規定される変動範囲内でランダムに変動しており、
各々の前記シリンドリカルレンズの曲率半径R[μm]は、基準曲率半径Rk[μm]を基準として、変動全幅率δR[%]で規定される変動範囲内でランダムに変動しており、
各々の前記シリンドリカルレンズの偏心量Ec[μm]は、変動全幅率δEc[%]で規定される変動範囲内でランダムに変動しており、
前記δD[%]、前記δR[%]および前記δEc[%]は、下記式(1)を満たし、かつ、前記δD[%]または前記δR[%]のうち少なくとも一方は0[%]ではない、拡散板が提供される。
Figure 2022096866000002
ただし、
前記変動全幅率δD[%]は、前記基準開口幅Dk[μm]に対する変動全幅ΔD[μm]の比率であり(δD=ΔD/Dk×100)、
前記変動全幅ΔD[μm]は、前記開口幅Dの変動量dDの上限値dDMAXと下限値dDMINとの差分であり(ΔD=dDMAX-dDMIN)、
前記変動全幅率δR[%]は、前記基準曲率半径Rkに対する変動全幅ΔRの比率であり(δR=ΔR/Rk×100)、
前記変動全幅ΔR[μm]は、前記曲率半径Rの変動量dRの上限値dRMAXと下限値dRMINとの差分であり(ΔR=dRMAX-dRMIN)、
前記偏心量Ecは、各々の前記シリンドリカルレンズの前記X方向の中心位置に対する、各々の前記シリンドリカルレンズの頂点の位置の前記X方向のずれ量であり、
前記変動全幅率δEc[%]は、前記基準開口幅Dkに対する変動全幅ΔEcの比率であり(δEc=ΔEc/Dk×100)、
前記変動全幅ΔEc[μm]は、前記偏心量Ecの上限値EcMAXと下限値EcMINとの差分である(ΔEc=EcMAX-EcMIN)。
前記δD[%]、前記δR[%]および前記δEc[%]は、下記式(2)を満たすようにしてもよい。
Figure 2022096866000003
前記δD[%]、前記δR[%]および前記δEc[%]は、下記式(3)を満たすようにしてもよい。
Figure 2022096866000004
前記δDは、7%以上、30%未満であるようにしてもよい。
前記δRは、7%以上、30%未満であるようにしてもよい。
前記δEcは、7%以上、30%以下であるようにしてもよい。
上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える、表示装置が提供される。
上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える、投影装置が提供される。
上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える、照明装置が提供される。
上記課題を解決するために、本発明の別の観点によれば、上記の拡散板を備える、リモートセンシング用光源が提供される。
以上説明したように本発明によれば、直線状の拡散光を出射するマイクロレンズアレイ型の拡散板において、周期構造の回折現象により発生するスペクトルノイズを低減して直線状の拡散光の強度の均質性を向上でき、かつ、0次回折光のノイズを低減して配光性も向上することができる。
本発明の一実施形態に係る拡散板を模式的に示した説明図である。 同実施形態に係る拡散板を模式的に示す拡大平面図および拡大断面図である。 同実施形態に係る拡散板のマイクロレンズアレイを模式的に示す斜視図である。 同実施形態の変更例に係る拡散板を模式的に示す拡大平面図および拡大断面図である。 同実施形態の変更例に係る拡散板のマイクロレンズアレイを模式的に示す斜視図である。 同実施形態に係るシリンドリカルレンズの偏心状態を模式的に示す拡大断面図である。 マイクロレンズアレイの周期構造による回折光の強度の一例を示すグラフである。 同実施形態に係る拡散板による配光特性の一例を示すグラフである。 同実施形態に係る拡散板の製造方法を示すフローチャートである。 比較例1に係る拡散板に関する説明図である。 比較例2に係る拡散板に関する説明図である。 比較例3に係る拡散板に関する説明図である。 比較例4に係る拡散板に関する説明図である。 比較例5に係る拡散板に関する説明図である。 比較例6に係る拡散板に関する説明図である。 比較例7に係る拡散板に関する説明図である。 比較例8に係る拡散板に関する説明図である。 実施例1に係る拡散板に関する説明図である。 実施例2に係る拡散板に関する説明図である。 実施例3に係る拡散板に関する説明図である。 実施例4に係る拡散板に関する説明図である。 実施例5に係る拡散板に関する説明図である。 実施例6に係る拡散板に関する説明図である。 実施例7に係る拡散板に関する説明図である。 実施例8に係る拡散板に関する説明図である。 実施例9に係る拡散板に関する説明図である。 実施例10に係る拡散板に関する説明図である。 実施例11に係る拡散板に関する説明図である。 実施例12に係る拡散板に関する説明図である。 実施例13に係る拡散板に関する説明図である。 参考例1に係る拡散板に関する説明図である。 参考例2に係る拡散板に関する説明図である。 参考例3に係る拡散板に関する説明図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
<1.拡散板の概要>
まず、本発明の実施形態に係る拡散板の概要について説明する。
以下に詳述する本実施形態に係る拡散板は、光の均質拡散機能を備えたマイクロレンズアレイ型の拡散板である。かかる拡散板は、基材と、当該基材の少なくとも一方の表面(主面)におけるXY平面上に形成されたマイクロレンズアレイとを有する。マイクロレンズアレイは、XY平面上に配列および展開される複数のマイクロレンズから構成される。本実施形態に係るマイクロレンズは、略円筒形状を有するシリンドリカルレンズからなる。当該シリンドリカルレンズは、X方向に対して垂直なY方向に延びる凸条部(凸レンズ)または凹条部(凹レンズ)からなり、例えば数十μm程度のX方向の開口幅Dを有する。シリンドリカルレンズは、例えば、略半円筒形状のレンズ面を有する。XY平面上において複数のシリンドリカルレンズがX方向に周期的に配列されることにより、マイクロレンズアレイが構成される。
本実施形態に係る拡散板では、X方向に配列される複数のシリンドリカルレンズのX方向の開口幅D(X方向のピッチ(周期)、レンズ径に相当する。)は、相互に異なるように、ランダムに(不規則に)変動している。さらに、複数のシリンドリカルレンズのX方向の曲率半径Rは、相互に異なるように、ランダムに(不規則に)変動している。加えて、各マイクロレンズの頂点のX方向の平面位置は、各マイクロレンズのX方向の中心位置からずれて偏心している。このときに複数のシリンドリカルレンズの偏心量Ecは、相互に異なるように、ランダムに(不規則に)変動している。また、複数のシリンドリカルレンズの頂点のZ方向の高さ位置(拡散板の厚み方向の位置)も、ランダムに(不規則に)変動し、相互に異なっている。
このように、本実施形態では、各シリンドリカルレンズの開口幅D、曲率半径R、偏心量Ec等をランダムに変動させる。これにより、各シリンドリカルレンズの表面形状は、ランダムに変動するため、複数のシリンドリカルレンズ間で、表面形状が相互に異なる形状となる。さらに、各シリンドリカルレンズの開口幅D、曲率半径R、偏心量Ecはそれぞれ、所定の変動全幅率δD、δR、δEc[%]で規定される変動範囲内で、ランダムに変動している。さらに、変動全幅率δD、δR、δEc[%]は、所定の関係式を満たすように設定されている。なお、変動全幅率δD、δR、δEc[%]や、これらの関係式の詳細については後述する。
以上のように、本実施形態に係る拡散板によれば、複数のマイクロレンズ(シリンドリカルレンズ)の各変動要素をランダムに変動させることにより、ランダム性の高いマイクロレンズアレイの3次元表面構造を実現している。かつ、変動全幅率δD、δR、δEcをパラメータとする関係式を満たすように設定することで、開口幅D、曲率半径R、偏心量Ecの変動量も好適な変動範囲に調整されている。これにより、拡散板から出射される一軸ライン状の拡散光において、0次回折光(ノイズ)を低減してX方向の配光性を向上できるとともに、マイクロレンズアレイの周期構造に起因するスペクトルノイズを低減して当該拡散光の強度の均質性も向上できる。なお、スペクトルノイズは、マイクロレンズアレイの周期構造に起因した回折現象により発生する周期的ピーク状の回折光からなるノイズである。
よって、本実施形態によれば、各マイクロレンズ(シリンドリカルレンズ)から発散される光の位相の重合せ状態を好適に制御することができる。この結果、一軸ライン状の拡散光のX方向の配光の均質性を満足しつつ、0次回折光のノイズを抑制することにより優れた配光性と、X方向の配光の異方性、拡散光の強度分布のカットオフ性を実現することができる。以下では、上記のような特徴を有する拡散板について詳細に説明する。
<2.拡散板の全体構成>
まず、図1を参照して、本発明の一実施形態に係る拡散板1の全体構成と、マイクロレンズのレイアウトパターンについて説明する。図1は、本実施形態に係る拡散板1を模式的に示した説明図である。
本実施形態に係る拡散板1は、マイクロレンズアレイ型の拡散板であり、基板上に配列された複数のマイクロレンズ(シリンドリカルレンズ21)からなるマイクロレンズアレイ20を備える。かかる拡散板1のマイクロレンズアレイ20は、図1に示すように、複数の単位セル3から構成されている。単位セル3は、マイクロレンズの基本配置パターンである。個々の単位セル3の表面には、所定のレイアウトパターン(配置パターン)で複数のマイクロレンズ(シリンドリカルレンズ21)が配置されている。
ここで、図1では、拡散板1を構成する単位セル3の形状が矩形、特に正方形である例を示している。しかしながら、単位セル3の形状は、図1に示した例に限定されるものではなく、例えば、正三角形状や正六角形状などのように、拡散板1の表面(XY平面)上を隙間なく埋めることが可能であれば、任意の形状であってよい。
図1の例では、拡散板1の表面上において、正方形の複数の単位セル3が、縦横(XおよびY方向)に繰り返し配列されている。本実施形態に係る拡散板1を構成する単位セル3の個数は、特に限定されるものではなく、拡散板1が1つの単位セル3から構成されていてもよいし、複数の単位セル3から構成されていてもよい。また、本実施形態に係る拡散板1においては、互いに異なる表面構造を有する単位セル3が繰り返し配置されていてもよいし、互いに同一の表面構造を有する単位セル3が繰り返し配置されていてもよい。
また、単位セル3、3間では、図1中の右側の拡大図に模式的に示したように、単位セル3内に設けられた複数のマイクロレンズ(シリンドリカルレンズ21)のレイアウトパターン(配置パターン)が、単位セル3の配列方向(換言すれば、アレイ配列方向)に連続している。複数の単位セル3、3間の境界部分においてマイクロレンズの連続性を保ちながら、単位セル3を隙間なく配列することにより、マイクロレンズアレイ20が構成されている。ここで、マイクロレンズの連続性とは、相互に隣接する2つの単位セル3のうち、一方の単位セル3の外縁に位置するマイクロレンズと、他方の単位セル3の外縁に位置するマイクロレンズとが、平面形状のずれや高さ方向の段差がなく、連続的に接続されていることを意味する。
このように、本実施形態に係る拡散板1では、マイクロレンズアレイ20の単位セル3(基本構造)が、境界の連続性を保って隙間なく配列されることで、マイクロレンズアレイ20が構成されている。これにより、単位セル3、3間の境界部分において、光の回折、反射、散乱等の意図しない不具合の発生を防止して、拡散板1による所望の配光特性を得ることができる。
<3.拡散板の構成>
次に、図2~図5を参照して、本実施形態に係る拡散板1の構成についてより詳細に説明する。図2は、本実施形態に係る拡散板1を模式的に示す拡大平面図および拡大断面図である。図3は、本実施形態に係る拡散板1のマイクロレンズアレイ20を模式的に示す斜視図である。図4は、本実施形態の変更例に係る拡散板1を模式的に示す拡大平面図および拡大断面図である。図5は、本実施形態の変更例に係る拡散板1のマイクロレンズアレイ20を模式的に示す斜視図である。
図2~図5に示すように、本実施形態に係る拡散板1は、基材10と、基材10の表面に形成されたマイクロレンズアレイ20と、を備える。
まず、基材10について説明する。基材10は、マイクロレンズアレイ20を支持するための基板である。かかる基材10は、フィルム状であってもよく、板状であってもよい。図2、図4に示す基材10は、例えば矩形平板状を有するが、かかる例に限定されない。基材10の形状や厚さは、拡散板1が実装される装置の形状に応じて、任意の形状および厚さであってよい。
基材10は、光を透過することが可能な透明基材であり、透光性を有する。基材10は、拡散板1に入射する光の波長帯域において透明とみなすことが可能な材質で形成される。例えば、基材10は、可視光に対応する波長帯域において光透過率が70%以上の材質にて形成されてもよい。
基材10は、例えば、ポリメチルメタクリレート(Polymethyl methacrylate:PMMA)、ポリエチレンテレフタレート(Polyethylene terephthalate:PET)、ポリカーボネート(Polycarbonate:PC)、環状オレフィン・コポリマー(Cyclo Olefin Copolymer:COC)、環状オレフィンポリマー(Cyclo Olefin Polymer:COP)、トリアセチルセルロース(Triacetylcellulose:TAC)等といった公知の樹脂で形成されてもよい。あるいは、基材10は、石英ガラス、ホウケイ酸ガラス、白板ガラス等といった公知の光学ガラスで形成されてもよい。
次に、マイクロレンズアレイ20について説明する。マイクロレンズアレイ20は、基材10の少なくとも一方の表面(主面)に設けられる。マイクロレンズアレイ20は、基材10の表面上に配列された複数のマイクロレンズ(単レンズ)の集合体である。本実施形態では、図2に示すように、マイクロレンズアレイ20が、基材10の一方の表面上に形成されている。しかし、かかる例に限定されず、基材10の両方の主面(表面と裏面)に、マイクロレンズアレイ20が形成されてもよい。
マイクロレンズは、例えば数十μmオーダーの微細な光学レンズである。マイクロレンズは、マイクロレンズアレイ20の単レンズを構成する。本実施形態に係るマイクロレンズは、図2~図5に示すように、シリンドリカルレンズ21で構成される。
シリンドリカルレンズ21は、略半円筒状(シリンダー状)のレンズ面を有する光学レンズである。シリンドリカルレンズ21は、例えば、レーザ光等の入射光をライン状の拡散光に変換する機能を有する。
各シリンドリカルレンズ21の表面形状は、略半円筒状の一部の曲面成分(蒲鉾型の曲面成分)を含む曲面形状であれば、特に限定されない。略半円筒状とは、実質的な半円筒状であり、厳密な半円筒状のみならず、半円筒状から歪んだ形状も含む。シリンドリカルレンズ21の表面形状は、例えば、円筒状成分のみを含む曲面形状であってもよいし、円筒状成分と非円筒状成分を含む曲面形状であってもよいし、あるいは、非円筒状成分のみを含む曲面形状であってもよい。
シリンドリカルレンズ21は、図2および図3に示すように、拡散板1の厚み方向に突出するように形成された凸構造(凸レンズ)であってもよいし、あるいは、図4および図5に示すように、拡散板1の厚み方向に陥没するように形成された凹構造(凹レンズ)であってもよい。このように、シリンドリカルレンズ21は、拡散板1の所望の光学特性に応じて、凸構造(凸レンズ)または凹構造(凹レンズ)のいずれであってもよい。
図2および図3に示すように、本実施形態に係るシリンドリカルレンズ21は、Y方向に細長く延びる凸条部からなり、凸構造を有するマイクロレンズである。凸条部からなる複数のシリンドリカルレンズ21がX方向に配列されることにより、凸構造のマイクロレンズからなるマイクロレンズアレイ20が構成される。
一方、図4および図5に示すように、本実施形態の変更例に係るシリンドリカルレンズ21は、Y方向に細長く延びる凹条部からなり、凹構造を有するマイクロレンズである。凹条部からなる複数のシリンドリカルレンズ21がX方向に配列されることにより、凹構造のマイクロレンズからなるマイクロレンズアレイ20が構成される。
凸構造または凹構造のいずれの場合であっても、各シリンドリカルレンズ21のX方向の開口幅D、曲率半径Rおよびレンズ頂点の偏心量Ecは、所定の変動幅の範囲内でランダムに変動している。このため、複数のシリンドリカルレンズ21の表面形状は、相互に異なる。
本実施形態に係るマイクロレンズアレイ20においては、複数のシリンドリカルレンズ21のX方向の開口幅Dは、所定の変動幅の範囲内でランダムに変動している。このため、シリンドリカルレンズ21のX方向の配置ピッチは一定ではなく、複数のシリンドリカルレンズ21は、X方向に所定のピッチ(周期)で規則的に配置されているわけでない。しかし、複数のシリンドリカルレンズ21は、Y方向に延びて相互に平行になるように配置されており、マイクロレンズアレイ20全体としては、ある程度規則的(以下、「準規則的」という。)に配置されている。
図2~図5に示すように、複数のシリンドリカルレンズ21は、X方向に互いに隙間なく隣接するように密集して配置されることが好ましい。換言すると、互いに隣接するシリンドリカルレンズ21、21間の境界部分に隙間(平坦部)が存在しないように、複数のシリンドリカルレンズ21がX方向に連続的に配置されることが好ましい。基材10上にシリンドリカルレンズ21を隙間なく配置する(換言すれば、シリンドリカルレンズ21の充填率が100%となるように配置する)ことで、入射光のうち拡散板1の表面で散乱せずにそのまま透過してしまう成分(以下、「0次透過光成分」ともいう。)を抑制することが可能となる。その結果、複数のシリンドリカルレンズ21が互いに隙間なく隣接するように配置されることにより、本実施形態に係るマイクロレンズアレイ20の拡散性能を更に向上させることが可能となる。
なお、0次透過光成分を抑制するためには、基材10の上のシリンドリカルレンズ21の充填率は、90%以上であることが好ましく、100%であることがより好ましい。ここで、充填率とは、基材10の表面(XY平面)上において複数のシリンドリカルレンズ21が占める部分の面積の割合である。充填率が100%であれば、マイクロレンズアレイ20の表面は、曲面成分で形成され、平坦面成分をほぼ含まないことになる。
ただし、実際のマイクロレンズアレイ20の製造上では、複数のシリンドリカルレンズ21の曲面を連続的に接続するために、隣接するシリンドリカルレンズ21、21間の境界における変曲点近傍が略平坦となることがあり得る。このような場合、シリンドリカルレンズ21、21間の境界において、略平坦となる変曲点近傍領域のX方向の幅(シリンドリカルレンズ21、21間の境界線のX方向の幅)は、例えば1μm以下であることが好ましい。これにより、0次透過光成分を十分に抑制できる。
本実施形態では、シリンドリカルレンズ21の表面形状(立体的な曲面形状)や平面形状(基材10のXY平面に投影した二次元形状)がランダムに変動している。図2および図4に示すように、シリンドリカルレンズ21の平面形状(XY平面に投影したシリンドリカルレンズ21の外形)は、全体的には、Y方向に細長く延びる帯状の略矩形状を有する。そして、複数のシリンドリカルレンズ21の表面形状および平面形状は、相互に異なる。このように、複数のシリンドリカルレンズ21が相互に異なる形状を有している理由は、各シリンドリカルレンズ21の開口幅D、曲率半径R、およびレンズ頂点の偏心量Ecなどが、所定の変動幅の範囲内でランダムに変動しているからである。なお、本実施形態に係るシリンドリカルレンズ21の開口幅D、曲率半径R、偏心量Ecの変動方法の詳細については、後述する。
このように、本実施形態では、各シリンドリカルレンズ21の開口幅D、曲率半径R、偏心量Ecはそれぞれランダムに変動し、ばらつきを有している。各々のシリンドリカルレンズ21の光学開口の位相分布は、方位によって異なる。複数のシリンドリカルレンズ21は、基材10の表面上に互いに重なり合うようにX方向に連続的に配列され、かつ各々のシリンドリカルレンズ21の曲率半径R、開口幅D、偏心量Ecがランダムに変動している。これにより、複数のシリンドリカルレンズ21の形状(表面形状および平面形状)は、互いに異なる形状となる。したがって、複数のシリンドリカルレンズ21は、図2~図5に示したように様々な形状を有するようになり、X方向に非対称な断面形状を有するものが多くなる。この結果、マイクロレンズアレイ20の周期構造が崩れるため、周期構造に起因したスペクトルノイズや、0次回折光等のノイズを低減できる。よって、本実施形態に係る拡散板1によれば、従来のマイクロレンズアレイと比べて、マイクロレンズアレイ20から出射されるライン状の拡散光の配光性と均質性を向上できる。
<4.パラメータの定義>
次に、本実施形態に係るマイクロレンズアレイ20に関する各種のパラメータの定義について説明する。
(A)開口幅に関するパラメータ
(A1)開口幅D[μm]:変動値
開口幅Dは、各シリンドリカルレンズ21のX方向の開口幅である(図2~図5参照。)。開口幅Dは、シリンドリカルレンズ21ごとにランダムに変動した実際の開口幅であり、変動値である。開口幅Dは、シリンドリカルレンズ21のX方向のレンズ径およびピッチ(周期)に相当する。
(A2)基準開口幅Dk[μm]:固定値
基準開口幅Dkは、シリンドリカルレンズ21の基準形状のX方向の開口幅である。基準開口幅Dkは、マイクロレンズアレイ20の設計時に設定される固定値である。基準開口幅Dkは、開口幅Dを変動させるときの基準値(変動中心値)となる。
(A3)開口幅の変動量dD[μm]:変動値
開口幅の変動量dDは、「開口幅D[μm]」と「基準開口幅Dk[μm]」との差分である。dDは、シリンドリカルレンズ21ごとにランダムに変動する変動値である。
dD=D-Dk
(A4)開口幅の変動率K[±%]:変動値
開口幅の変動率K「基準開口幅Dk[μm]」に対する「開口幅の変動量dD[μm]」の比率(百分率)である。Kは、シリンドリカルレンズ21ごとにランダムに変動する変動値である。
=dD/Dk×100
(A5)開口幅の変動全幅ΔD[μm]:固定値
開口幅の変動全幅ΔDは、開口幅の変動量dDの上限値dDMAX[μm]と下限値dDMIN[μm]との差分である。ΔDは、マイクロレンズアレイ20の設計時に設定される固定値である。ΔDは、開口幅Dを変動させるときの最大変動幅[μm]を表す。
ΔD=dDMAX-dDMIN
(A6)開口幅の変動全幅率δD[%]:固定値
開口幅の変動全幅率δDは、「基準開口幅Dk[μm]」に対する「開口幅の変動全幅ΔD[μm]」の比率(百分率)である。δDは、マイクロレンズアレイ20の設計時に設定される固定値である。δDは、開口幅Dを変動させるときの最大変動幅の比率(Dkに対する比率)であり、Dの変動範囲を表す。δDは、ゼロまたは正の値である。
δD=ΔD/Dk×100
(B)曲率半径に関するパラメータ
(B1)曲率半径R[μm]:変動値
曲率半径Rは、各シリンドリカルレンズ21のX方向の曲率半径である(図2~図5参照。)。曲率半径Rは、シリンドリカルレンズ21ごとにランダムに変動した実際の曲率半径であり、変動値である。曲率半径Rは、シリンドリカルレンズ21のX方向の断面における湾曲レンズ面の曲率半径を表す。
(B2)基準曲率半径Rk[μm]:固定値
基準曲率半径Rkは、シリンドリカルレンズ21の基準形状のX方向の曲率半径である。基準曲率半径Rkは、マイクロレンズアレイ20の設計時に設定される固定値である。基準曲率半径Rkは、曲率半径Rを変動させるときの基準値(変動中心値)となる。
(B3)曲率半径の変動量dR[μm]:変動値
曲率半径の変動量dRは、「曲率半径R[μm]」と「基準曲率半径Rk[μm]」との差分である。dRは、シリンドリカルレンズ21ごとにランダムに変動する変動値である。
dR=R-Rk
(B4)曲率半径の変動率K[±%]:変動値
曲率半径の変動率K「基準曲率半径Rk[μm]」に対する「曲率半径の変動量dR[μm]」の比率(百分率)である。Kは、シリンドリカルレンズ21ごとにランダムに変動する変動値である。
=dR/Rk×100
(B5)曲率半径の変動全幅ΔR[μm]:固定値
曲率半径の変動全幅ΔRは、曲率半径の変動量dRの上限値dRMAX[μm]と下限値dRMIN[μm]との差分である。ΔRは、マイクロレンズアレイ20の設計時に設定される固定値である。ΔRは、曲率半径Rを変動させるときの最大変動幅[μm]を表す。
ΔR=dRMAX-dRMIN
(B6)曲率半径の変動全幅率δR[%]:固定値
曲率半径の変動全幅率δRは、「基準曲率半径Rk[μm]」に対する「曲率半径の変動全幅ΔR[μm]」の比率(百分率)である。δRは、マイクロレンズアレイ20の設計時に設定される固定値である。δRは、曲率半径Rを変動させるときの最大変動幅の比率(Rkに対する比率)であり、Rの変動範囲を表す。δRは、ゼロまたは正の値である。
δR=ΔR/Rk×100
(C)偏心量に関するパラメータ
(C1)偏心量Ec[μm]:変動値
偏心量Ecは、各シリンドリカルレンズ21のX方向の中心位置(中心点23)に対する、各シリンドリカルレンズ21の頂点の位置(以下、レンズ頂点位置22という場合もある。)のX方向のずれ量である(図6参照。)。偏心量Ecは、シリンドリカルレンズ21ごとにランダムに変動した実際の偏心量であり、変動値である。なお、Ecが正の値である場合、レンズ頂点位置22が中心位置(中心点23)からX方向の正方向にずれることを意味する。一方、Ecが負の値である場合、レンズ頂点位置22が中心位置(中心点23)からX方向の負方向にずれることを意味する。このように、偏心量Ecは正の値にも負の値にもなりうる。
(C2)基準偏心量Eck[μm]:固定値
基準偏心量Eckは、シリンドリカルレンズ21の基準形状の偏心量である。本実施形態では、基準偏心量Eckは0μmであるが、Eckを0以外の数値に設定してもよい。基準偏心量Eckは、偏心量Ecを変動させるときの基準値(変動中心値)となる。
(C3)偏心量の変動率KEc[±%]:変動値
偏心量の変動率KEc「基準開口幅Dk[μm]」に対する「偏心量Ec[μm]」の比率(百分率)である。KEcは、シリンドリカルレンズ21ごとにランダムに変動する変動値である。
Ec=Ec/Dk×100
(C4)偏心量の変動全幅ΔEc[μm]:固定値
偏心量の変動全幅ΔEcは、偏心量Ecの上限値EcMAX[μm]と下限値EcMIN[μm]との差分である。ΔEcは、マイクロレンズアレイ20の設計時に設定される固定値である。ΔEcは、偏心量Ecを変動させるときの最大変動幅[μm]を表す。
ΔEc=EcMAX-EcMIN
(C5)偏心量の変動全幅率δEc[%]:固定値
偏心量の変動全幅率δEcは、「基準開口幅Dk[μm]」に対する「偏心量の変動全幅ΔEc[μm]」の比率(百分率)である。δEcは、マイクロレンズアレイ20の設計時に設定される固定値である。δEcは、偏心量Ecを変動させるときの最大変動幅の比率(Dkに対する比率)であり、Ecの変動範囲を表す。δEcは、ゼロまたは正の値である。
δEc=ΔEc/Dk×100
(D)その他のパラメータ
(D1)二乗和平方根K[%]:固定値
二乗和平方根Kは、上記の変動全幅率δD、δRおよびδEcの二乗和平方根である。二乗和平方根K[%]は、以下の式(10)で表される。Kは、マイクロレンズアレイ20の設計時に設定される固定値である。Kは、開口幅D、曲率半径Rおよび偏心量Ecを変動させるときの変動範囲を規定する。
Figure 2022096866000005
(D2)レンズ最大高低差Zmax[μm]
Zmaxは、マイクロレンズアレイ20の基準パターン(例えば、図1に示す単位セル3などの矩形領域)の領域内におけるマイクロレンズアレイ面の最大高低差を表す。基準パターンは、例えば、1辺が0.8mmまたは4mmなどの矩形領域であってよい。この基準パターンが基材10のXY平面上にタイリングされて広面積化されることより、マイクロレンズアレイ20が構成される。このため、Zmaxは、マイクロレンズアレイ20全域のレンズ面の最大高低差にも相当する。
<5.マイクロレンズの配置方法>
次に、図2~図6を参照して、本実施形態に係るマイクロレンズの配置方法について、詳細に説明する。図6は、本実施形態に係るシリンドリカルレンズ21の偏心状態を模式的に示す拡大断面図である。
上記のような特徴を有する複数のシリンドリカルレンズ21が配列されたマイクロレンズアレイ20は、以下に述べるマイクロレンズの配置方法により実現することが可能である。
まず、基準形状を有する複数のシリンドリカルレンズ21を、基材10のXY平面上にX方向に配列した基準状態(以下、「初期配列状態」ともいう。)を設定する。次いで、かかる初期配列状態から、シリンドリカルレンズ21の形状(例えば、シリンドリカルレンズ21のX方向の開口幅D、曲率半径R、頂点22の位置など)をランダムに変動させた状態(以下、「変動配列状態」ともいう。)に変更する。以下、このようなシリンドリカルレンズ21の配置方法を、「基準配置方法」と称する。
この基準配置方法では、規則的な基準状態のシリンドリカルレンズ21の配列を経た上で、シリンドリカルレンズ21の形状および配置にランダム性を付与する。このため、最終的な変動配列状態のマイクロレンズアレイ20を、ある程度マクロ的に俯瞰すると、規則的な初期配列状態をある程度推定できるようなシリンドリカルレンズ21の配置となる。以下に、この基準配置方法について詳述する。
(1)シリンドリカルレンズ21の初期配列状態
本実施形態に係る基準配置法では、まず、シリンドリカルレンズ21の配置の基準となる初期配列状態を設定する。具体的には、初期配列状態では、同一の基準形状を有する複数のシリンドリカルレンズ21が、基準面のXY平面上に、X方向に同一の基準開口幅Dk(同一のピッチ)で規則的に配列される。この初期配列状態では、複数のシリンドリカルレンズ21のX方向の開口幅Dは、同一の基準開口幅Dkであり、曲率半径Rは、同一の基準曲率半径Rkである。また、初期配列状態では、各シリンドリカルレンズ21の頂点22は、図6の一点鎖線で示すように、X方向に偏心しておらず(つまり、偏心量Ec=0μm)、各シリンドリカルレンズ21のX方向の中心点23の位置(基準位置)に配置されている。
初期配列状態では、各シリンドリカルレンズ21の平面形状は、Y方向に細長く延びる帯状の矩形状である(図2、図4参照。)。また、各シリンドリカルレンズ21の頂点22の位置(レンズ頂点位置22)は、偏心していないシリンドリカルレンズの基準形状の中心点23に一致している(図6参照。)。また、この初期配列状態では、各シリンドリカルレンズ21のX方向の開口幅Dは、基準開口幅Dk(X方向の配列ピッチ)に一致している(つまり、dD=0μm)。また、初期配列状態における各シリンドリカルレンズ21の表面形状は、予め設定された所定の基準形状(例えば、基準曲率半径Rkを有する半円筒形状)となっている。
(2)開口幅Dを変動させた第1の変動配列状態
上記のように初期配列状態を設定した後、シリンドリカルレンズ21のX方向の開口幅Dをランダムに変動させることにより、シリンドリカルレンズ21の表面形状を変動させた第1の変動配列状態を設定する。開口幅Dは、XZ平面の断面で切断したシリンドリカルレンズ21のX方向の開口幅(X方向のレンズ径)であり、X方向の配列ピッチに相当する。
シリンドリカルレンズ21の開口幅Dをランダムに変動させる方法は、例えば、次のとおりである。まず、開口幅Dの変動の基準となる一定の基準開口幅Dk[μm]と、変動全幅率δD[%]を設定する。
次いで、基準開口幅Dk[μm]を、変動全幅率δD[%]で規定される変動範囲内でランダムに変動させることにより、開口幅Dを設定する。例えば、Dkを±(δD/2)%以内の変動率でランダムに変動させることにより、開口幅Dを設定してもよい(D[μm]=Dk[μm]×(100±(δD/2))[%])。この場合、開口幅Dの変動範囲は、{Dk[μm]×(100-(δD/2))[%]}以上、{Dk[μm]×(100+(δD/2))[%]}以下となる。例えば、δD=10%、Dk=40μmである場合、Dは、40μm(=Dk)を変動中心値として±5%(=±(δD/2))の変動範囲内でランダムに変動する。即ち、Dは、38μm~42μmの変動範囲内でランダムに変動する。
かかる開口幅Dの変動設定動作を各シリンドリカルレンズ21の個数分だけ繰り返して、各シリンドリカルレンズ21について、X方向の開口幅D、D、・・・、Dがそれぞれ設定される。なお、nは、X方向に配列されるシリンドリカルレンズ21の個数である。
以上のようにして、初期配列状態の各シリンドリカルレンズ21の開口幅Dをランダムに変動させて、第1の変動配列状態とする。この結果、図2~図5に示すように、X方向に配列された複数のシリンドリカルレンズ21のX方向の開口幅Dは、相互に異なる値となる。
このように、第1の変動配列状態では、シリンドリカルレンズ21の開口幅Dがランダムに変動している。かかる第1の変動配列状態では、初期配列状態と比べて、複数のシリンドリカルレンズ21の表面形状が相互に異なるように、複数のシリンドリカルレンズ21を配置することができる。ただし、第1の変動配列状態では、各シリンドリカルレンズ21のX方向の曲率半径Rは、基準曲率半径Rkに一致している(つまり、dR=0μm)。また、各シリンドリカルレンズ21の頂点22の位置は、各矩形格子の中心点23に一致しており、偏心していない(図6の一点鎖線を参照。)。即ち、偏心量Ecは、基準偏心量Eck(例えばEck=0)に一致している(つまり、Ec=0)。
(3)曲率半径Rを変動させた第2の変動配列状態
上記のように第1の変動配列状態を設定した後、シリンドリカルレンズ21の曲率半径Rをランダムに変動させることにより、シリンドリカルレンズ21の表面形状を変動させた第2の変動配列状態を設定する。曲率半径Rは、XZ平面の断面で切断したシリンドリカルレンズ21の断面形状の曲率半径R(X方向の曲率半径)である。
シリンドリカルレンズ21の曲率半径Rをランダムに変動させる方法は、例えば、次のとおりである。まず、曲率半径Rの変動の基準となる一定の基準曲率半径Rk[μm]と、変動全幅率δR[%]を設定する。
次いで、基準曲率半径Rkを、変動全幅率δR[%]で規定される変動範囲内でランダムに変動させることにより、曲率半径Rを設定する。例えば、Rkを±(δR/2)%以内の変動率でランダムに変動させることにより、曲率半径Rを設定してもよい(R[μm]=Rk[μm]×(100±(δR/2))[%])。この場合、曲率半径Rの変動範囲は、{Rk[μm]×(100-(δR/2))[%]}以上、{Rk[μm]×(100+(δR/2))[%]}以下となる。例えば、δR=20%、Rk=25μmである場合、Rは、25μm(=Rk)を変動中心値として±10%(=±(δR/2))の変動範囲内でランダムに変動する。即ち、Rは、22.5μm~27.5μmの変動範囲内でランダムに変動する。
かかる曲率半径Rの変動設定動作を各シリンドリカルレンズ21の個数分だけ繰り返して、各シリンドリカルレンズ21について、X方向の曲率半径R、R、・・・、Rがそれぞれ設定される。
以上のようにして、第1の変動配列状態の各シリンドリカルレンズ21の曲率半径Rをランダムに変動させて、第2の変動配列状態とする。この結果、図2~図5に示すように、X方向に配列された複数のシリンドリカルレンズ21のX方向の曲率半径Rは、相互に異なる値となる。
上記のように、第2の変動配列状態では、シリンドリカルレンズ21の開口幅Dおよび曲率半径Rがランダムに変動している。かかる第2の変動配列状態では、複数のシリンドリカルレンズ21の表面形状が第1の変動配列状態と比べてさらに相互に異なるように、複数のシリンドリカルレンズ21を配置することができる。ただし、第2の変動配列状態では、各シリンドリカルレンズ21の頂点22の位置は、各矩形格子の中心点23に一致しており、偏心していない(図6の一点鎖線を参照。)。なお、上記では、まず開口幅Dを変動させてから、曲率半径Rを変動させる例について説明したが、かかる例に限定されない。例えば、まず曲率半径Rを変動させてから、開口幅Dを変動させてもよい。
(4)レンズ頂点位置を変動させた第3の変動配列状態
上記のように第2の変動配列状態を設定した後、図6に示すように、各シリンドリカルレンズ21の頂点22のX方向の位置を、上記基準形状の中心位置からランダムに偏心させた第3の変動配列状態を設定する。ここで、偏心とは、XY平面上においてシリンドリカルレンズ21の頂点22の平面位置を、基準形状の中心点23の位置(中心位置)からX方向にずれるように変動させることを意味する。なお、基準形状の中心点23は、基準開口幅Dkを有するシリンドリカルレンズ21のX方向の中点である。
シリンドリカルレンズ21の頂点22のX方向の位置(レンズ頂点位置22)を、中心位置を基準としてランダムに偏心させる方法は、例えば、次のとおりである。
まず、レンズ頂点位置22の基準偏心量Eckと、偏心量Ec[μm]の変動全幅率δEc[%]を設定する。上述したように、偏心量Ecは、中心点23に対するレンズ頂点位置22のX方向のずれ量(レンズ頂点位置22と中心点23とのX方向の距離)である。Eckは、偏心量Ecを変動させるときの基準値(変動中心値)であり、本実施形態では、Eck=0[μm]である。変動全幅率δEc[%]は、基準開口幅Dk[μm]に対する変動全幅ΔEc[μm]の比率(百分率)である。Eck、δEc、ΔEcは、マイクロレンズアレイ20の設計時に設定される固定値である。
次いで、各シリンドリカルレンズ21の偏心量Ec[μm]を、基準偏心量Eckを基準として、変動全幅率δEc[%]で規定される変動範囲内でランダムに変動させた値に設定する。例えば、Dkを±(δEc/2)%以内の変動率でランダムに変動させることにより、偏心量Ecを設定してもよい(Ec[μm]=Dk[μm]×(±(δEc/2)[%]))。この場合、偏心量Ecの変動範囲は、{Dk[μm]×(-δEc/2)[%]}以上、{Dk[μm]×(+δEc/2)[%]}以下となる。例えば、δEc=10%、Dk=40μmである場合、Ecは、Eck=0μmを変動中心値として、40μm(=Dk)の±5%(=±(δEc/2))の変動範囲内でランダムに変動する。即ち、Ecは、-2μm~+2μmの変動範囲内でランダムに変動する。
かかる偏心量Ecの変動設定動作を各シリンドリカルレンズ21の個数分だけ繰り返して、各シリンドリカルレンズ21について、X方向の偏心量Ec、Ec、・・・、Ecがそれぞれ設定される。これにより、各シリンドリカルレンズ21のレンズ頂点位置22は、基準形状の中心位置(中心点23)を基準として、X方向の正方向または負方向にランダムに偏心する。
以上のようにして、第2の変動配列状態のレンズ頂点位置22を、中心点23からランダムに変動させて、第3の変動配列状態とする。この結果、図6に示すように、各シリンドリカルレンズ21のレンズ頂点位置22は、X方向にランダムな偏心量Ecだけ中心点23からずれる。
このように、第3の変動配列状態では、レンズ頂点位置22がランダムに偏心している。かかる第3の変動配列状態では、シリンドリカルレンズ21の表面形状が、第2の変動配列状態よりもさらに相互に異なるように、複数のシリンドリカルレンズ21を配置することができる。
また、上記第3の変動配列状態では、複数のシリンドリカルレンズ21の頂点22のZ方向の高さ位置(拡散板1の厚み方向の位置)は、相互に変動している。詳細には、図2~図5に示すように、X方向に配列された複数のシリンドリカルレンズ21の頂点22(凹レンズの最深点、または凸レンズの最高点)の高さ位置は、相互に異なる。これにより、複数のシリンドリカルレンズ21の表面形状のランダム性をさらに高めて、マイクロレンズアレイ20に十分な非周期性を付与することができる。
(5)まとめ
以上のように、本実施形態に係るシリンドリカルレンズ21の配置方法によれば、まず、複数のシリンドリカルレンズ21を規則的に配列する(初期配列状態)。その後、当該配列された複数のシリンドリカルレンズ21の開口幅Dや曲率半径R、レンズ頂点位置22の偏心量Ecをランダムに変動させる(第1、第2、第3の変動配列状態)。これにより、規則的に配列されたシリンドリカルレンズ21の表面形状を、ランダムに変動させることができる。このため、準規則的なシリンドリカルレンズ21の配列を実現しつつ、ランダム性の高いマイクロレンズアレイ20の3次元表面構造を実現できる。
したがって、本実施形態に係るマイクロレンズアレイ20によれば、各シリンドリカルレンズ21から発散される光の位相の重合せ状態を好適に制御できる。よって、各シリンドリカルレンズ21からの拡散光の干渉や、マイクロレンズアレイ20の周期構造による回折を好適に抑制できる。それ故、X方向のライン状の拡散光の強度分布のむらを低減して、X方向の配光の均質性を向上できる。さらに、X方向の配光の異方性と、拡散光の強度分布のカットオフ性を制御することも可能となる。
なお、カットオフ性とは、マイクロレンズアレイ20からの拡散光が、いわゆるトップハット型の拡散特性を有することを意味する。トップハット型の拡散特性とは、可視光領域のコリメート光や、コリメート性のある主光線を有して一定の開口を持つテレセントリック光に対して、一定領域における角度成分内でエネルギー分布の均質性が非常に高く、この角度成分の一定領域を超過するとエネルギーが急激に減少し得る光学機能をいう。かかるトップハット型の拡散特性が実現されることで、マイクロレンズアレイ20に入射した光の拡散光の輝度分布が、所定の拡散角度範囲で略均一となり、所定の拡散角度範囲内で、拡散光の輝度値がピークレベルの平均値を中心として例えば±20%の範囲内に収まっている状態が実現される(後述する図8を参照。)。
本実施形態に係るマイクロレンズアレイ20によれば、上記の配置方法で複数のシリンドリカルレンズ21をXY平面上に配列し、各シリンドリカルレンズ21の開口幅D、曲率半径R、レンズ頂点位置22の偏心量Ec等を適切に変動させ、シリンドリカルレンズ21の表面形状を変動させて、半円筒形状から歪んだ曲面形状を導入する。これによって、マイクロレンズアレイ20の所望の拡散特性を実現することができるので、トップハット型の拡散特性をより確実に実現させることが可能となる。
さらに、本実施形態によれば、同一の基準形状(例えば、所定の基準開口幅Dkおよび所定の基準曲率半径Rkで規定される半円筒形状)を有する複数のシリンドリカルレンズ21を、XY平面上に規則的に配列した上で(初期配列状態)、開口幅Dや曲率半径R、レンズ頂点位置22の偏心量Ecを変動させる(上記の第1、第2、第3の変動配列状態)。これにより、個々のシリンドリカルレンズ21の表面形状のランダム性を確保しつつ、拡散板1の表面上に複数のシリンドリカルレンズ21を相互に隙間なく連続的に配置することができる。したがって、隣接するシリンドリカルレンズ21間の境界部分に平坦部が極力存在しないようにできるので、入射光のうち拡散板1の表面で散乱せずにそのまま透過してしまう成分(0次透過光成分)を抑制することが可能となる。その結果、X方向のライン状の配光の均質性と、拡散性能を更に向上させることが可能となる。
<6.各パラメータの変動要件>
次に、本実施形態に係るシリンドリカルレンズ21の各パラメータ(開口幅D、曲率半径R、偏心量Ec)の変動要件について詳細に説明する。
上述したように、本実施形態に係るマイクロレンズアレイ20において、各々のシリンドリカルレンズ21のX方向の開口幅D[μm]は、基準開口幅Dkを基準として、変動全幅率δD[%]で規定される変動範囲内でランダムに変動している。また、各々のシリンドリカルレンズ21の曲率半径R[μm]は、基準曲率半径Rkを基準として、変動全幅率δR[%]で規定される変動範囲内でランダムに変動している。さらに、各々のシリンドリカルレンズ21のレンズ頂点位置22は、中心位置(各シリンドリカルレンズの基準形状におけるX方向の中心点23の位置)からX方向に偏心している。そして、各々のシリンドリカルレンズ21の偏心量Ec[μm]は、変動全幅率δEc[%]で規定される変動範囲内でランダムに変動している。
さらに、本実施形態に係るマイクロレンズアレイ20は、以下に説明するような変動要件を満たすことが好ましい。
(1)δD≠0[%]、および/または、δR≠0[%]の要件
まず、本実施形態に係るマイクロレンズアレイ20は、変動全幅率δD[%]または変動全幅率δR[%]のうち少なくとも一方は0[%]ではないという要件を満たす(δD≠0[%]、および/または、δR≠0[%])。このことは、各シリンドリカルレンズ21の開口幅Dまたは曲率半径Rのうち一方もしくは双方が、δD、δRで規定される所定の変動範囲内でランダムに変動していることを意味する。
即ち、δDが0[%]でない場合(つまり、δD>0[%]である場合)は、各シリンドリカルレンズ21の開口幅Dが、δDで規定される変動範囲内でランダム変動していることを意味する。一方、δDが0[%]である場合は、各シリンドリカルレンズ21の開口幅Dが変動せず、一定値(例えば、同一の基準開口幅Dk)であることを意味する。同様に、δRが0[%]でない場合(つまり、δR>0[%]である場合)は、各シリンドリカルレンズ21の曲率半径Rが、δRで規定される変動範囲内でランダムに変動していることを意味する。逆に、δRが0[%]である場合は、曲率半径Rが変動せず、一定値(例えば、同一の基準曲率半径Rk)であることを意味する。
このように、本実施形態では、δDまたはδRのうち少なくとも一方は0[%]でない。これにより、各シリンドリカルレンズ21の開口幅Dまたは曲率半径Rのうち一方もしくは双方が、ランダムに変動している。ここで、δDまたはδRのうち少なくとも一方が0[%]でないという条件を満たせば、δEcは0[%]であってもよいし、0[%]でなくてもよい(δEc>0[%])。δEcが0[%]でない場合は、各シリンドリカルレンズ21のレンズ頂点位置22が、δEcで規定される変動範囲内のランダムな偏心量Ecで偏心しており、中心位置からずれた位置に配置されていることを意味する。一方、δEcが0[%]である場合は、各シリンドリカルレンズ21のレンズ頂点位置22が偏心しておらず、中心位置に配置されていることを意味する。
上記のように、本実施形態に係るマイクロレンズアレイ20では、δD≠0[%]、および/または、δR≠0[%]の要件を満たす。よって、各シリンドリカルレンズ21がランダムな偏心量Ecで偏心しているが(δEc≠0[%])、開口幅Dおよび曲率半径Rの双方が変動していない場合(δD=0[%]、かつ、δR=0[%])は、本実施形態に係るマイクロレンズアレイ20の変動要件を満たしていない。つまり、δD=0[%]、かつ、δR=0[%]を満たす場合は、本実施形態に係るに係るマイクロレンズアレイ20に該当しない。本実施形態では、開口幅Dまたは曲率半径Rのうち少なくとも一方、好ましくは双方を変動させることによって、上述したようなライン状の拡散光の優れた配光性と均質性を得ることができる。
(2)δD、δR、δEcの二乗和平方根Kの要件
次に、本実施形態に係るマイクロレンズアレイ20において、変動全幅率δD[%]、変動全幅率δR[%]および変動全幅率δEc[%]が、下記式(1)を満たしている。
Figure 2022096866000006
ここで、式(1)の左辺は、変動全幅率δD、δRおよびδEcの二乗和平方根Kである。二乗和平方根K[%]は、上述した式(10)で表される。
本実施形態に係るマイクロレンズアレイ20では、上記式(1)に示すように、δD、δR、δEcの二乗和平方根Kは、9[%]以上である(K≧9)。換言すると、Kの下限値は9[%]である。δD、δRおよびδEcが式(1)を満たすように設定して、Kを9以上にすることによって、以下に述べるような効果がある。
特定方向(例えばX方向)に延びる直線状の拡散光(一軸ライン状の拡散光)を出射するマイクロレンズアレイ20においては、図7に示すように、マイクロレンズアレイ20の一要素(即ち、個々のシリンドリカルレンズ21)による回折(図7の実線)と、マイクロレンズアレイ20(即ち、X方向に配列される複数のシリンドリカルレンズ21全体)の周期構造による回折(図7の破線)とが重畳され、その交点の角度と強度を有するスペクトル状の回折光が発生する。
より詳細に説明すると、図7に示すように、各々のシリンドリカルレンズ21のレンズ面による屈折作用により、各々のシリンドリカルレンズ21から出射される拡散光(図7の実線)は、概略としてX方向に均質に配光される。この際、各々の拡散光は、その広角成分の配光が逓減しつつ、一方向には回折光を含みつつ、均質に配光される。一方、同一形状(つまり、同一の開口幅Dおよび同一のレンズ位相面)を有するシリンドリカルレンズ21が周期的に配列されたマイクロレンズアレイ20では、各シリンドリカルレンズによる上記均質な配光(図7の実線)と、マイクロレンズの周期構造による回折(図7の破線)とが重畳されて、スペクトル状の回折光(スペクトルノイズ:周期構造によるピーク状の回折光のノイズ)が発生する。
ここで、上記のKが9未満である場合、各シリンドリカルレンズ21の開口幅Dおよび曲率半径Rの変動量と、レンズ頂点位置22の偏心量Ecとが不適切な状態になるため、マイクロレンズ構造面の位相状態を適切にランダム化することができない。このため、各シリンドリカルレンズ21による上記均質な配光(図7の実線)と、マイクロレンズアレイ20の周期構造による回折(図7の破線)とが重畳されて、スペクトルノイズが発生するため、ライン状の拡散光の均質性が低下する。さらに、0次回折光のノイズが発生するため、ライン状の拡散光の配光が偏り、X方向の配光性も低下してしまう。
これに対し、本実施形態に係るマイクロレンズアレイ20によれば、上記式(1)を満たし、Kが9以上となるように、開口幅D、曲率半径Rおよび偏心量Ecをランダムに変動させる。これにより、各シリンドリカルレンズ21の開口幅Dおよび曲率半径R(ともに位相)の変動と、レンズ頂点位置22の偏心(位相分布の変化)とによって、マイクロレンズ構造面の位相状態を適切にランダム化することができる。
これにより、各々のシリンドリカルレンズ21からの相互に異なる配光成分が重畳(混成)されるので、上記スペクトル状の回折光の輝度分布が広がり、X方向に均質で円滑な広がりを有する配光を実現することができる。つまり、各々のシリンドリカルレンズ21からの、概略均質な、しかし相互に異なる配光成分の重ね合せ(混成)が可能になる。したがって、周期構造の回折現象であるスペクトル状の回折光(スペクトルノイズ)を解消して、均質な配光を実現できる。よって、ライン状の拡散光を出射するマイクロレンズアレイ20において、マイクロレンズアレイ20の周期構造の回折現象により発生するスペクトルノイズを低減して、ライン状の拡散光の強度の均質性を向上させることができる。かつ、0次回折光のノイズを低減して、上記ライン状の拡散光の特定方向(X方向)の配光性も向上させることができる。
また、上記式(1)では、変動全幅率δD、δR、δEcの二乗和平方根Kをパラメータとして用いて、マイクロレンズ形状の変動状態を評価している。これにより、シリンドリカルレンズ21の開口幅D、曲率半径R、およびレンズ頂点位置22の偏心量Ecの変動を総合的に考慮して、マイクロレンズ形状の変動状態を適切に評価できる。
さらに、上記式(1)では、変動率K、K、KEc[±%]の二乗和平方根ではなく、変動全幅率δD、δR、δEc[%]の二乗和平方根Kをパラメータとして用いている。これにより、マイクロレンズアレイ20の実空間上での変動範囲を極力考慮して、マイクロレンズ形状の変動状態を適切に評価できる。ランダムな変動率K、K、KEc[±%]の中心は、実際には基準ゼロになるとは限らず、偏りが発生する可能性が高い。しかし、実際の変動量dD、dR、Ecの変動全幅は、予め設定された所定の変動全幅率δD、δR、δEc[%]に倣うことが推察される。よって、拡散光の配光性と均質性を評価するための式(1)のパラメータとして、変動全幅率δD、δR、δEc[%]の二乗和平方根Kを用いることが好ましい。
ここで、図8を参照して、本実施形態に係る拡散板1による配光特性について説明する。図8は、本実施形態に係る拡散板1による配光特性の一例を示すグラフである。図8のグラフの縦軸は、マイクロレンズアレイ20により拡散された拡散光の輝度レベルを表し、図8のグラフの横軸は、拡散板1から出射される拡散光の拡散角を示す。グラフ中の実線は、ライン状の拡散光のX方向(シリンドリカルレンズ21の配列方向)の輝度分布を示し、破線は、当該ライン状の拡散光のY方向(シリンドリカルレンズ21の長手方向)の輝度分布を示す。
図8に示す例では、シリンドリカルレンズ21のレンズ形状の変動パラメータに関し、Dk=40μm、Rk=25μm、δD=20%、δR=20%、δEc=0%に設定されている。この場合、K=28.3となり、式(1)の条件(K≧9)を満たしている。
図8に示すように、本実施形態に係る拡散板1による拡散光のX方向の拡散角(半値全幅:FWHM)は約30°であるのに対し、当該拡散光のY方向の拡散角(半値全幅:FWHM)は約2°である。よって、本実施形態に係る拡散板1により、特定方向(X方向)に対して指向性を有するライン状の拡散光を好適に生成できる。X方向の輝度分布(図8の実線)に関し、拡散角が概ね-10°~10°の角度範囲では、拡散光の輝度レベルは概ね均質であり、輝度レベルの中心値(=約12.5)に対して±15%の範囲内に収まっている。よって、スペクトルノイズが十分に低減され、X方向の輝度分布が円滑であり、X方向の配光の均質性が高い。また、0°付近に顕著な0次回折光(ノイズ)も観察されず、拡散光がX方向に分散して配光されており、配光性も高い。
以上のように、本実施形態に係る拡散板1によれば、上記式(1)を満たすような変動条件で各シリンドリカルレンズ21のレンズ形状をランダムに変動させることによって、図8に示すように拡散光の均質性と配光性を向上することができる。また、拡散光の強度分布のカットオフ性を制御することにより、図8に示すようにトップハット型の拡散特性を実現することもできる。
(3)δD、δR、δEcの二乗和平方根Kの好ましい要件
さらに、δD、δRおよびδEcは、下記式(2)を満たすことが好ましい。つまり、変動全幅率δD、δR、δEcの二乗和平方根Kは、14[%]以上であることが好ましい。
Figure 2022096866000007
Kが14以上であることにより、拡散光の均質性および配光性のうち少なくとも一方若しくは双方を、より顕著に向上できるという効果がある。詳細には、Kが14以上であれば、マイクロレンズアレイ20の周期構造の回折現象により発生するスペクトルノイズをより顕著に低減して、ライン状の拡散光の均質性をさらに向上できる。また、0次回折光(ノイズ)をより低減して、拡散光のX方向の配光性をさらに向上できる。
また、δD、δRおよびδEcは、下記式(3)を満たすことが好ましい。つまり、δD、δR、δEcの二乗和平方根Kは、46.9[%]未満であることが好ましい。式(3)は、本実施形態に係るマイクロレンズアレイ20の物理的な構成条件を表す式である。
Figure 2022096866000008
Kが46.9以上であると、各シリンドリカルレンズ21の表面形状の変動が過度に大きくなるため、マイクロレンズ構造の実現性が失われたり、マイクロレンズの配光特性が劣化したりするという問題が生じる。
この問題について、より詳細に説明する、図1に示したように、本実施形態に係る拡散板1は、例えば、矩形状の複数の単位セル3(基準パターン)を、拡散板1のXY平面上に縦横に配列することで構成される。このように複数の単位セル3をXY平面上に展開する際、単位セル3同士の境界において、シリンドリカルレンズ21のレンズ構造の連続性を保つことが好ましい。また、当該境界部分以外においても、拡散板1のXY平面上の所定領域内に複数のシリンドリカルレンズ21を隙間なく連続的に収容することが好ましい。
この点、個々のシリンドリカルレンズ21の表面形状の変動が過度に大きいと、相互に隣接するシリンドリカルレンズ21間でレンズ構造の連続性を保つことが困難になる。この結果、XY平面上の所定領域内に複数のシリンドリカルレンズ21を隙間なく連続的に収容しきれず、マイクロレンズ構造の欠陥が発生するなど、マイクロレンズアレイ20の物理的な構成条件を満足しなくなる場合がある。
例えば、δDおよびδRが30%以上であり、かつ、δEcが20%以上である場合、Kは46.9以上となる。このようにKが46.9以上となる変動条件でマイクロレンズアレイ20を設計した場合、上記のようにマイクロレンズ構造に欠陥が生じ、マイクロレンズ構造の物理的な構成条件を満足しなくなる。
したがって、上記式(3)を満たし、Kが46.9未満になるように、シリンドリカルレンズ21の変動条件(即ち、開口幅D、曲率半径R、偏心量Ecの変動全幅率δD、δR、δEc)を設定することが好ましい。これにより、個々のシリンドリカルレンズ21の開口幅D、曲率半径R、偏心量Ecの変動量を、マイクロレンズ構造を実現可能な適切な変動範囲内に収めることができる。したがって、XY平面上において、相互に隣接するシリンドリカルレンズ21間でレンズ構造の連続性を保つことが可能になり、XY平面上の所定領域内に複数のシリンドリカルレンズ21を隙間なく連続的に収容することが可能になる。よって、マイクロレンズ構造の欠陥の発生を抑制でき、マイクロレンズアレイ20の物理的な構成条件を満足することができる。この結果、マイクロレンズアレイ20を好適に実現でき、配光特性の劣化を抑制することもできる。
(4)開口幅Dの変動全幅率δD
ここで、変動全幅率δDは、7%以上、30%未満であることが好ましい。δDが7%以上であれば、開口幅Dを十分に変動させることができるため、他の変動要素(曲率半径R、偏心量Ec等)の変動と合わせて、マイクロレンズアレイ20による拡散光の配光性と均質性を改善できるとともに、0次回折光(ノイズ)の発生を抑制できる効果がある。これに対し、δDが7%未満であると、開口幅Dの変動が不十分となり、当該拡散光の配光性と均質性が低下するおそれがある。一方、δDが30%以上であると、開口幅Dの変動が過度に大きくなる。このため、上述したように、XY平面上の所定領域内に複数のシリンドリカルレンズ21を隙間なく連続的に収容しきれず、マイクロレンズ構造の欠陥が発生するなど、マイクロレンズアレイ20の物理的な構成条件を満足しなくなる。
したがって、δDは、7%以上、30%未満であることが好ましく、25%以下であることがより好ましい。これにより、拡散光の配光性と均質性を向上させつつ、マイクロレンズアレイ20の物理的な構成条件を満足することができる。
(5)曲率半径Rの変動全幅率δR
変動全幅率δRは、7%以上、30%未満であることが好ましい。δRが7%以上であれば、曲率半径Rを十分に変動させることができるため、他の変動要素(開口幅D、偏心量Ec等)の変動と合わせて、マイクロレンズアレイ20による拡散光の配光性と均質性を改善できるとともに、0次回折光(ノイズ)の発生を抑制できる効果がある。これに対し、δRが7%未満であると、曲率半径Rの変動が不十分となり、当該拡散光の配光性と均質性が低下するおそれがある。一方、δRが30%以上であると、曲率半径Rの変動が過度に大きくなる。このため、上述したように、XY平面上の所定領域内に複数のシリンドリカルレンズ21を隙間なく連続的に収容しきれず、マイクロレンズ構造の欠陥が発生するなど、マイクロレンズアレイ20の物理的な構成条件を満足しなくなる。
したがって、δRは、7%以上、30%未満であることが好ましく、25%以下であることがより好ましい。これにより、拡散光の配光性と均質性を向上させつつ、マイクロレンズアレイ20の物理的な構成条件を満足することができる。
(6)偏心量Ecの変動全幅率δEc
変動全幅率δEcは、7%以上、30%以下であることが好ましい。δEcが7%以上であれば、偏心量Ecを十分に変動させることができるため、他の変動要素(開口幅D、曲率半径R等)の変動と合わせて、マイクロレンズアレイ20による拡散光の配光性と均質性を改善できるとともに、0次回折光(ノイズ)の発生を抑制できる効果がある。これに対し、δEcが7%未満であると、偏心量Ecの変動が不十分となり、当該拡散光の配光性と均質性が低下するおそれがある。一方、δEcが30%超であると、偏心量Ecの変動が過度に大きくなる。このため、上述したように、XY平面上の所定領域内に複数のシリンドリカルレンズ21を隙間なく連続的に収容しきれず、マイクロレンズ構造の欠陥が発生するなど、マイクロレンズアレイ20の物理的な構成条件を満足しなくなる。
したがって、δEcは、7%以上、30%以下であることが好ましく、20%以下であることがより好ましい。これにより、拡散光の配光性と均質性を向上させつつ、マイクロレンズアレイ20の物理的な構成条件を満足することができる。
<7.マイクロレンズの製造方法>
次に、図9を参照して、本実施形態に係る拡散板1の製造方法について説明する。図9は、本実施形態に係る拡散板1の製造方法を示すフローチャートである。
図9に示すように、本実施形態に係る拡散板1の製造方法では、まず、基材(マスタ原盤の基材または拡散板1の基材10)が洗浄される(ステップS101)。基材は、例えば、ガラスロールのようなロール状の基材であってもよいし、ガラスウェハまたはシリコンウェハのような平板状の基材であってもよい。
次いで、洗浄後の基材の表面上にレジストが形成される(ステップS103)。例えば、金属酸化物を用いたレジストにより、レジスト層を形成することができる。具体的には、ロール形状の基材に対しては、レジストをスプレイ塗布またはディッピング処理することにより、レジスト層を形成することができる。一方、平板状の基材に対しては、レジストを各種コーティング処理することにより、レジスト層を形成することができる。なお、レジストとしては、ポジ型光反応レジストを用いてもよいし、ネガ型光反応レジストを用いてもよい。また、基材とレジストとの密着性を高めるために、カップリング剤を使用してもよい。
さらに、マイクロレンズアレイ20の形状に対応するパターンを用いて、レジスト層が露光される(ステップS105)。かかる露光処理は、例えば、グレイスケールマスクを用いた露光、複数のグレイスケールマスクの重ね合わせによる多重露光、または、ピコ秒パルスレーザもしくはフェムト秒パルスレーザ等を用いたレーザ露光など、公知の露光方法を適宜適用すればよい。
その後、露光後のレジスト層が現像される(S107)。かかる現像処理により、レジスト層にパターンが形成される。レジスト層の材質に応じて適切な現像液を用いることで、現像処理を実行することができる。例えば、レジスト層が金属酸化物を用いたレジストで形成されている場合、無機または有機アルカリ溶液を用いることで、レジスト層をアルカリ現像することができる。
次いで、現像後のレジスト層を用いてスパッタ処理またはエッチング処理することにより(S109)、表面にマイクロレンズアレイ20の形状が形成されたマスタ原盤が完成する(S111)。具体的には、パターンが形成されたレジスト層をマスクとして、ガラス基材をガラスエッチングすることで、ガラスマスタを製造することができる。または、パターンが形成されたレジスト層にNiスパッタまたはニッケルめっき(NED処理)を行い、パターンが転写されたニッケル層を形成した後、基材を剥離することで、メタルマスタを製造することができる。例えば、膜厚50nm程度のNiスパッタ、または膜厚100μm~200μmのニッケルめっき(例えば、スルファミン酸Ni浴)等によって、レジストのパターンが転写されたニッケル層を形成することで、メタルマスタ原盤を製造することができる。
さらに、上記S111で完成したマスタ原盤(例えば、ガラスマスタ原盤、メタルマスタ原盤)を用いて、樹脂フィルム等にパターンを転写(インプリント)することで、表面にマイクロレンズアレイ20の反転形状が形成されたソフトモールドが作成される(S113)。
その後、ソフトモールドを用いて、ガラス基板またはフィルム基材等に対して、マイクロレンズアレイ20のパターンを転写し(S115)、さらに、必要に応じて保護膜、反射防止膜等を成膜することにより(S117)、本実施形態に係る拡散板1が製造される。
なお、上記では、マスタ原盤(S111)を用いてソフトモールドを製造(S113)した後に、当該ソフトモールドを用いた転写により拡散板1を製造(S115)する例について説明した。しかし、かかる例に限定されず、マイクロレンズアレイ20の反転形状が形成されたマスタ原盤(例えば無機ガラス原盤)を製造し、当該マスタ原盤を用いたインプリントにより拡散板1を製造してもよい。例えば、PET(PolyEthylene Terephthalate)またはPC(PolyCarbonate)からなる基材に、アクリル系光硬化樹脂を塗布し、塗布したアクリル系光硬化樹脂にマスタ原盤のパターンを転写し、アクリル系光硬化樹脂をUV硬化させることで、拡散板1を製造することができる。
一方、ガラス基材自体に対して直接加工を施して、拡散板1を製造する場合には、ステップS107における現像処理に引き続き、CF等の公知の化合物を用いて基材10に対してドライエッチング処理を施し(S119)、その後、必要に応じて保護膜、反射防止膜等を成膜する(S121)ことにより、本実施形態に係る拡散板1が製造される。
なお、図9に示した製造方法は、あくまでも一例であって、拡散板の製造方法は、上記の例に限定されない。例えば、精密機械加工技術を使用して、拡散板を製造することも可能である。この場合、形状が異なる複数種のダイヤモンドバイトなどの切削刃を用いて、マスタ原盤または拡散板の基材の表面を切削加工することにより、上記のような複数のシリンドリカルレンズが配列された表面形状を有するマイクロレンズ構造を形成してもよい。
<8.拡散板1の適用例>
次に、本実施形態に係る拡散板1の適用例について説明する。
以上説明したような拡散板1は、その機能を実現するために光を拡散させる必要がある装置に対して、適宜実装することが可能である。かかる装置としては、例えば、各種のディスプレイ(例えば、LED、有機ELディスプレイ)等の表示装置や、プロジェクタ等の投影装置、各種の照明装置を挙げることができる。
例えば、拡散板1は、液晶表示装置のバックライト、拡散板一体化レンズ等に適用することも可能であり、光整形の用途にも適用可能である。また、拡散板1は、投影装置の透過スクリーン、フレネルレンズ、反射スクリーン等にも適用可能である。また、拡散板1は、スポット照明やベース照明等に利用される各種の照明装置や、各種の特殊ライティングや、中間スクリーンや最終スクリーン等の各種のスクリーン等に適用することも可能である。さらに、拡散板1は、光学装置における光源光の拡散制御などの用途にも適用可能であり、LED光源装置の配光制御、レーザ光源装置の配光制御、各種ライトバルブ系への入射配光制御等にも適用できる。
また、拡散板1は、リモートセンシング用光源に適用することができる。例えば、拡散板1は、LIDAR(Light Detection and Ranging)などの光を用いたリモートセンシング技術や、各種の工業用または民生用のロボット機器のセンシング用光源の配光制御などに適用することができる。
なお、拡散板1が適用される装置は、上記の適用例に限定されず、光の拡散を利用する装置であれば、任意の公知の装置に対しても適用可能である。
<9.実施例>
次に、本発明の実施例に係る拡散板について説明する。なお、以下の実施例は、あくまでも本発明に係る拡散板の効果や実施可能性を示すための一例にすぎず、本発明は以下の実施例に限定されるものではない。
<9.1.拡散板の設計条件>
マイクロレンズアレイの表面構造を変更しつつ、以下で説明する製造方法により、本発明の実施例、比較例および参考例に係る拡散板を製造した。
具体的には、まず、ガラス基材を洗浄した後、ガラス基材の一方の表面(主面)に、光反応レジストを2μm~18μmのレジスト厚で塗布した。光反応レジストとしては、例えば、PMER-LA900(東京応化工業社製)、またはAZ4620(登録商標)(AZエレクトロニックマテリアルズ社製)などのポジ型光反応レジストを用いた。
次に、波長405nmのレーザを用いるレーザ描画装置にて、ガラス基材上のレジストにパターンを描画して、レジスト層を露光した。なお、g線を用いたステッパ露光装置にて、ガラス基材上のレジストにマスク露光を行うことで、レジスト層を露光してもよい。
続いて、レジスト層を現像することで、レジストにパターンを形成した。現像液としては、例えば、NMD-W(東京応化工業社製)、またはPMER P7G(東京応化工業社製)などの水酸化テトラメチルアンモニウム(Tetramethylammonium hydroxide:TMAH)溶液を用いた。
次に、パターンが形成されたレジストを用いて、ガラス基材をエッチングすることにより、拡散板を製造した。具体的には、ArガスまたはCFガスを用いたガラスエッチングによって、レジストのパターンをガラス基材に形成することで、拡散板を製造した。
表1は、上記のように製造した実施例、比較例および参考例に係る拡散板に関し、マイクロレンズアレイの表面構造の設計条件と、当該拡散板によるライン状拡散光の配光性および均質性の評価結果を示す。
Figure 2022096866000009
表1に示す各実施例、比較例および参考例では、上述した本実施形態に係るマイクロレンズの配置方法により、マイクロレンズアレイ20を設計した。この際、表1に示すレンズパラメータ(Dk、Rk、δD、δR、δEc、Zmax)等の各種パラメータを適宜変更して、相異なるマイクロレンズ(シリンドリカルレンズ)の表面形状のパターンを生成した。そして、各実施例、比較例および参考例に係るマイクロレンズ(シリンドリカルレンズ)の形状および配置を表すレンズパターンを出力した。このレンズパターンを用いて、上記製造方法により各実施例、比較例および参考例に係る拡散板を製造した。
具体的には、シリンドリカルレンズ(マイクロレンズ)のX方向の開口幅Dについては、表1に示すとおり、各実施例、比較例および参考例ごとに、固定値またはランダムな変動値とした。変動全幅率δD=0%である場合は、各シリンドリカルレンズの開口幅Dを変動させずに、全てのシリンドリカルレンズの開口幅Dを基準開口幅Dk(固定値)に設定したことを意味する。一方、変動全幅率δD≠0%である場合は、例えば次式のように、基準開口幅Dkを基準として、当該δDで規定される変動範囲内で、各シリンドリカルレンズの開口幅Dをランダムに変動させたことを意味する。
D[μm]=Dk[μm]+(Dk[μm]×±(δD/2)[%])
同様に、シリンドリカルレンズ21のX方向の曲率半径Rについては、表1に示すとおり、各実施例、比較例および参考例ごとに、固定値またはランダムな変動値とした。変動全幅率δR=0%である場合は、各シリンドリカルレンズの曲率半径Rを変動させずに、全てのシリンドリカルレンズの曲率半径Rを基準曲率半径Rk(固定値)に設定したことを意味する。一方、変動全幅率δR≠0%である場合は、例えば次式のように、基準曲率半径Rkを基準として、当該δRで規定される変動範囲内で、各シリンドリカルレンズの曲率半径Rをランダムに変動させたことを意味する。
R[μm]=Rk[μm]+(Rk[μm]×±(δR/2)[%])
また、レンズ頂点位置22の偏心量については、変動全幅率δEc=0%である場合は、全てのシリンドリカルレンズのレンズ頂点位置22を偏心させずに、偏心量Ecを0μm(基準偏心量Eck)に設定したことを意味する。一方、変動全幅率δEc≠0%である場合は、例えば次式のように、当該δEcで規定される変動範囲内で、各シリンドリカルレンズのレンズ頂点位置22の偏心量Ecを、X方向の正および負方向にランダムに偏心させたことを意味する。
Ec[μm]=0[μm]+(Dk[μm]×±(δEc/2)[%])
ここで、実施例1~13では、δD、δR、δEcの二乗和平方根Kが9以上であり(具体的には、K≧9.9)、上記の式(1)の条件を満たしており、かつ、Kが46.9未満であり(具体的には、K≦46.4)、上記の式(3)の条件も満たしており、かつ、「δEc≦30%」の条件も満たしている。さらに、実施例7~13では、Kが14以上であり(具体的には、K≧14.1)、上記の式(2)の条件も満たしている。
これに対し、比較例1~7では、Kが9未満であり、式(1)の条件を満たしていない。また、比較例8では、K=10であり、式(1)の条件を満たしているものの、δD=0、かつ、δR=0である。したがって、比較例8は、本実施形態に係るマイクロレンズアレイ20の要件(δDまたはδRのうち少なくとも一方は0%ではないという要件(δD≠0、または、δR≠0))を満たしていない。また、参考例1、2は、Kが46.9以上であり、式(3)の条件を満たしておらず、参考例3は、δEcが35%であり、「δEc≦30%」の条件を満たしていない。
上記のように製造した実施例1~13、比較例1~8および参考例1~3に係る拡散板におけるマイクロレンズアレイの表面形状を、共焦点レーザ顕微鏡にて観察した。さらに、当該各拡散板の配光パターンは、Virtual-Lab(LightTrans社製)にてシミュレーションし、当該各拡散板の配光特性は、配光特性測定器Mini-Diff(Light Tec社製)にて測定した。
実施例1~13、比較例1~8および参考例1~3に係る拡散板のマイクロレンズアレイの表面形状のパターン、拡散光の配光特性や輝度分布等のシミュレーション結果を、図10~図33にそれぞれ示す。
図10~図33(実施例1~13、比較例1~8および参考例1~3)において、(A)は、マイクロレンズアレイの表面形状のパターンを示す共焦点レーザ顕微鏡画像(倍率50倍)である。(B)は、電磁場解析による配光のシミュレーション結果を示す画像である。(C)は、拡散光の輝度分布のシミュレーション結果を示すグラフ(横軸:拡散板から100mm先(Z方向)の投影像におけるX方向の座標位置[mm]。縦軸:拡散光の輝度レベルを表す電場の振幅(電界強度[V/m]))である。(D)は、上記δD、δR、δEcの二乗和平方根Kの値を示す。
<9.2.拡散板の評価基準>
(1)配光性の評価基準
各実施例および比較例に係る拡散板によるライン状拡散光の配光性に関し、0次回折光(ノイズ)の低減度合いを、次のような評価基準により3段階(評価◎、○、×)で評価した。かかる配光性の評価結果を上記表1に示す。
評価◎:0次回折光が明らかに低減された。
評価○:0次回折光の発生が明らかではなかった。
評価×:強度が高い0次回折光、または、芯のある輝度分布を有する0次回折光が、明らかに発生した。
ここで、「強度が高い0次回折光」とは、例えば、図10~図13、図17(比較例1~4、8)の(C)のグラフに示すように、0.8[V/m]以上、または0.8[V/m]に近い輝度レベルのピークを有する0次回折光である。また、「芯のある輝度分布を有する0次回折光」とは、例えば、図14~図16(比較例5~7)の(C)のグラフに示すように、輝度レベルのピークが0.8[V/m]よりも小さいが、X方向に広い輝度分布を有する0次回折光である。
拡散板から出射される0次回折光(輝線スペクトルを含む。)は、X方向の配光の分散を阻害するノイズである。例えば、図10~図30の(C)に示す輝度分布のグラフにおいて、0次回折光(ノイズ)は、横軸のX座標位置の中央付近(概ね90~120mmの位置付近)に縦軸の輝度レベル(電界強度[V/m])が高い値(例えば0.8前後)となるピーク部分として、現れる。0次回折光を低減できれば、拡散板のX方向の配光性を改善できる。マイクロレンズの表面形状の変動により0次回折光(ノイズ)が低減される度合いによって、各実施例および比較例に係る拡散板の配光性を評価した。
(2)均質性の評価基準
各実施例および比較例に係る拡散板によるライン状拡散光の均質性に関し、拡散光に含まれるスペクトルノイズの低減度合いを、次のような評価基準により3段階(評価◎、○、×)で評価した。かかる均質性の評価結果を上記表1に示す。
評価◎:スペクトルノイズが、概ね0.5[V/m]以下の低い輝度レベルに均質的に低減された。
評価○:輝度レベルが約0.5[V/m]程度の高強度のスペクトルノイズが低減された。
評価×:輝度レベルが約0.5[V/m]を十分に超える高強度のスペクトルノイズが発生した。
(3)総合評価基準
各実施例および比較例に係る拡散板の配光性(0次回折光の低減度合い)および均質性(スペクトルノイズの低減度合い)に関する総合評価を、次のような評価基準により5段階(評価A~E)で評価した。かかる総合評価結果を表1に示す。
評価A:拡散光の配光性および均質性の双方が非常に良好であった。即ち、0次回折光やその他の回折光の発生がなく、かつ、スペクトルノイズが概ね0.5[V/m]以下の低い輝度レベルに均質的に低減された。
評価B:拡散光の配光性および均質性の双方が良好であり、かつ、当該配光性または均質性の一方が非常に良好であった。即ち、0次回折光の発生がないか(配光性が非常に良好)、もしくは0次回折光が概ね抑制されていた(配光性が良好)。かつ、スペクトルノイズが概ね0.5[V/m]以下の低い輝度レベルに均質的に低減されたか(均質性が非常に良好)、もしくは、輝度レベルが約0.5[V/m]程度の高強度のスペクトルノイズが低減された(均質性が良好)。
評価C:拡散光の配光性および均質性の双方が良好であった。即ち、0次回折光は概ね抑制され、かつ、輝度レベルが約0.5[V/m]程度の高強度のスペクトルノイズが低減された。
評価D:拡散光の配光性が不十分であった。即ち、輝度レベルが0.8[V/m]相当以上の0次回折光、または、芯のある輝度分布を有する0次回折光が発生した。
評価E:KまたはδEcの設定値が過度に大きいことが原因となり、レンズ表面形状を過度に変動させたため、複数のシリンドリカルレンズがレンズ生成領域内に収まらず、マイクロレンズ構造の欠落が発生した。このため、マイクロレンズアレイの物理的な構成条件を満たさなかった。
<9.3.実施例と比較例、参考例の評価結果の対比>
以下に、実施例1~13、比較例1~8および参考例1~3の評価結果について対比説明する。
(A)式(1)の条件(K≧9)、および要件(δD≠0、および/または、R≠0)について
表1に示すように、比較例1~7は、式(1)の条件(K≧9)を満たしていない。この結果、比較例1~7では、配光性の評価および均質性の評価はすべて「×」であり、総合評価は「D」評価である。
また、比較例8は、本実施形態に係るマイクロレンズアレイの要件(即ち、δDまたはδRのうち少なくとも一方は0%ではないという要件(δD≠0、および/または、δR≠0))を満たしておらず、開口幅Dおよび曲率半径Rを変動させずに、偏心量Ecだけを変動させている。この結果、比較例8では、配光性の評価は「×」であり、総合評価は「D」評価である。
これに対し、実施例1~13では、式(1)の条件(K≧9)を満たしている。さらに、実施例1~13では、本実施形態に係るマイクロレンズアレイの要件(δD≠0、および/または、δR≠0)も満たしており、開口幅Dおよび曲率半径Rのうち少なくとも一方を変動させている。この結果、実施例1~13では、配光性および均質性の評価はすべて「○」または「◎」であり、総合評価は「A」、「B」または「C」評価である。
以上の結果から、本発明の実施例1~13のように式(1)の条件(K≧9)を満たし、かつ要件(δD≠0、および/または、δR≠0)を満たすことによって、一軸ライン状の拡散光において0次回折光(ノイズ)の発生を抑制して、当該拡散光の配光性を向上できるとともに、スペクトルノイズも低減して、当該拡散光のX方向の均質性も向上できることがわかる。
(B)式(2)の条件(K≧14)について
表1に示すように、実施例1~6は、式(1)の条件(K≧9)を満たしているが、式(2)の条件(K≧14)を満たしていない。この結果、実施例1~6では、配光性の評価および均質性の評価はすべて「○」であり、総合評価は「C」評価である。
これに対し、実施例7~13では、式(2)の条件(K≧14)を満たしている。この結果、実施例7~13では、配光性および均質性の評価のうち一方もしくは両方の評価が「◎」であり、総合評価は「A」または「B」評価である。
以上の結果から、本発明の実施例7~13のように式(2)の条件(K≧14)を満たすことによって、0次回折光(ノイズ)の発生をより確実に抑制して、当該拡散光の配光性をさらに向上できるとともに、スペクトルノイズを大幅に低減して、当該拡散光のX方向の均質性もさらに向上できることがわかる。
(C)式(3)の条件(K<46.9)と、「δEc≦30%」の条件について
表1に示すように、参考例1、2は、式(3)の条件(K<46.9)を満たしていない。式(3)は、本実施形態に係るマイクロレンズアレイの物理的な構成条件を表す式である。また、参考例3は、「δEc≦30%」の条件を満たしていない。この「δEc≦30%」の条件も、本実施形態に係るマイクロレンズアレイの物理的な構成条件を表す式である。さらに、参考例1、2では、「δD<30%」と「δR<30%」の条件(マイクロレンズアレイの物理的な構成条件として好ましい条件)も満たしていない。この結果、参考例1~3では、レンズ表面形状を過度に変動させたため、複数のシリンドリカルレンズがレンズ生成領域内に収まらず、マイクロレンズ構造の欠落が発生した。このため、マイクロレンズアレイの物理的な構成条件を満たさなかった。この結果、参考例1~3の総合評価は「E」評価であった。
これに対し、実施例1~13では、式(3)の条件(K<46.9)を満たし、かつ、「δEc≦30%」の条件も満たしている。さらに、実施例1~13では、「δD<30%」と「δR<30%」の好ましい条件も満たしている。この結果、実施例1~13では、複数のシリンドリカルレンズがレンズ生成領域内に収まり、マイクロレンズ構造の欠落が発生せず、マイクロレンズアレイの物理的な構成条件を満たしていた。この結果、実施例1~13の総合評価は、「E」評価にはならず、「A」~「C」評価であった。
以上の結果から、本発明の実施例1~13のように式(3)の条件(K<46.9)、および「δEc≦30%」の条件を満たすことによって、各シリンドリカルレンズの表面形状を適切な変動範囲内で変動させることができるため、マイクロレンズアレイの物理的な構成条件を満たすことがわかる。さらに、「δD<30%」と「δR<30%」の好ましい条件を満たすことにより、マイクロレンズアレイの物理的な構成条件を、より確実に満たし、マイクロレンズアレイ構造の成立性をさらに向上できることがわかる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
1 拡散板
3 単位セル
10 基材
20 マイクロレンズアレイ
21 シリンドリカルレンズ(マイクロレンズ)
22 シリンドリカルレンズの頂点(レンズ頂点位置)
23 シリンドリカルレンズの中心点(中心位置)
D 開口幅
R 曲率半径
Ec 偏心量

Claims (10)

  1. 直線状の拡散光を出射するマイクロレンズアレイ型の拡散板であって、
    基材と、
    前記基材の少なくとも一方の表面におけるXY平面上にX方向に配列され、前記X方向に対して垂直なY方向に延びる凸条部または凹条部からなる複数のシリンドリカルレンズと、
    を備え、
    各々の前記シリンドリカルレンズの前記X方向の開口幅D[μm]は、基準開口幅Dk[μm]を基準として、変動全幅率δD[%]で規定される変動範囲内でランダムに変動しており、
    各々の前記シリンドリカルレンズの曲率半径R[μm]は、基準曲率半径Rk[μm]を基準として、変動全幅率δR[%]で規定される変動範囲内でランダムに変動しており、
    各々の前記シリンドリカルレンズの偏心量Ec[μm]は、変動全幅率δEc[%]で規定される変動範囲内でランダムに変動しており、
    前記δD[%]、前記δR[%]および前記δEc[%]は、下記式(1)を満たし、かつ、前記δD[%]または前記δR[%]のうち少なくとも一方は0[%]ではない、拡散板。
    Figure 2022096866000010

    ただし、
    前記変動全幅率δD[%]は、前記基準開口幅Dk[μm]に対する変動全幅ΔD[μm]の比率であり(δD=ΔD/Dk×100)、
    前記変動全幅ΔD[μm]は、前記開口幅Dの変動量dDの上限値dDMAXと下限値dDMINとの差分であり(ΔD=dDMAX-dDMIN)、
    前記変動全幅率δR[%]は、前記基準曲率半径Rkに対する変動全幅ΔRの比率であり(δR=ΔR/Rk×100)、
    前記変動全幅ΔR[μm]は、前記曲率半径Rの変動量dRの上限値dRMAXと下限値dRMINとの差分であり(ΔR=dRMAX-dRMIN)、
    前記偏心量Ecは、各々の前記シリンドリカルレンズの前記X方向の中心位置に対する、各々の前記シリンドリカルレンズの頂点の位置の前記X方向のずれ量であり、
    前記変動全幅率δEc[%]は、前記基準開口幅Dkに対する変動全幅ΔEcの比率であり(δEc=ΔEc/Dk×100)、
    前記変動全幅ΔEc[μm]は、前記偏心量Ecの上限値EcMAXと下限値EcMINとの差分である(ΔEc=EcMAX-EcMIN)。
  2. 前記δD[%]、前記δR[%]および前記δEc[%]は、下記式(2)を満たす、請求項1に記載の拡散板。
    Figure 2022096866000011
  3. 前記δD[%]、前記δR[%]および前記δEc[%]は、下記式(3)を満たす、請求項1または2に記載の拡散板。
    Figure 2022096866000012
  4. 前記δDは、7%以上、30%未満である、請求項1~3のいずれか1項に記載の拡散板。
  5. 前記δRは、7%以上、30%未満である、請求項1~4のいずれか1項に記載の拡散板。
  6. 前記δEcは、7%以上、30%以下である、請求項1~5のいずれか1項に記載の拡散板。
  7. 請求項1~6のいずれか1項に記載の拡散板を備える、表示装置。
  8. 請求項1~6のいずれか1項に記載の拡散板を備える、投影装置。
  9. 請求項1~6のいずれか1項に記載の拡散板を備える、照明装置。
  10. 請求項1~6のいずれか1項に記載の拡散板を備える、リモートセンシング用光源。
JP2020210096A 2020-12-18 2020-12-18 拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源 Pending JP2022096866A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020210096A JP2022096866A (ja) 2020-12-18 2020-12-18 拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源
PCT/JP2021/046053 WO2022131251A1 (ja) 2020-12-18 2021-12-14 拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源
US18/030,914 US20230384490A1 (en) 2020-12-18 2021-12-14 Diffusion plate, display device, projection device, lighting device, and remote sensing light source
TW110147540A TW202244545A (zh) 2020-12-18 2021-12-17 擴散板、顯示裝置、投影裝置、照明裝置及遙測用光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020210096A JP2022096866A (ja) 2020-12-18 2020-12-18 拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源

Publications (1)

Publication Number Publication Date
JP2022096866A true JP2022096866A (ja) 2022-06-30

Family

ID=82059170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020210096A Pending JP2022096866A (ja) 2020-12-18 2020-12-18 拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源

Country Status (4)

Country Link
US (1) US20230384490A1 (ja)
JP (1) JP2022096866A (ja)
TW (1) TW202244545A (ja)
WO (1) WO2022131251A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243527A1 (en) 2022-06-15 2023-12-21 Sony Semiconductor Solutions Corporation Solid-state image-capturing device, and image-capturing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116626792B (zh) * 2023-07-25 2023-10-13 苏州龙马璞芯芯片科技有限公司 一种扩散片和光学系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874009B2 (ja) * 2006-06-19 2012-02-08 シチズン電子株式会社 光拡散装置
WO2009090828A1 (ja) * 2008-01-15 2009-07-23 Toray Industries, Inc. 光学シート及び液晶表示装置用面光源
JP2011059667A (ja) * 2009-08-10 2011-03-24 Sumitomo Chemical Co Ltd 複合光制御板、面光源装置および透過型画像表示装置
CN103903519A (zh) * 2012-12-25 2014-07-02 鸿富锦精密工业(深圳)有限公司 电视墙及其黑框消除结构
JP2015169804A (ja) * 2014-03-07 2015-09-28 株式会社リコー レンズアレイ、画像表示装置、及び移動体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243527A1 (en) 2022-06-15 2023-12-21 Sony Semiconductor Solutions Corporation Solid-state image-capturing device, and image-capturing apparatus

Also Published As

Publication number Publication date
TW202244545A (zh) 2022-11-16
WO2022131251A1 (ja) 2022-06-23
US20230384490A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP6884518B2 (ja) 拡散板、拡散板の設計方法、拡散板の製造方法、表示装置、投影装置及び照明装置
JP7217319B2 (ja) 光学体、拡散板、表示装置、投影装置及び照明装置
CN108351437B (zh) 扩散板、扩散板的设计方法、扩散板的制造方法、显示装置、投影装置和照明装置
WO2022131251A1 (ja) 拡散板、表示装置、投影装置、照明装置およびリモートセンシング用光源
CN108139512B (zh) 扩散板、显示装置、投影装置和照明装置
TW202122835A (zh) 擴散板、顯示裝置、投影裝置及照明裝置
KR102501349B1 (ko) 반사형 확산판, 표시 장치, 투영 장치 및 조명 장치
CN112534313B (zh) 光扩散板、图像显示装置及照明装置
JP2019139163A (ja) 拡散板、拡散板の設計方法、表示装置、投影装置及び照明装置
WO2023042798A1 (ja) 拡散板、表示装置、投影装置および照明装置
WO2021079923A1 (ja) 拡散板、表示装置、投影装置及び照明装置
WO2023190682A1 (ja) 拡散板および装置
WO2023190680A1 (ja) 拡散板、表示装置、投影装置および照明装置
JP2023152876A (ja) 拡散板および装置
CN112703433B (zh) 光学体的制造方法
WO2020059770A1 (ja) 光拡散板、画像表示装置及び照明装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231208