JP2022093988A - アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 - Google Patents
アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 Download PDFInfo
- Publication number
- JP2022093988A JP2022093988A JP2020206753A JP2020206753A JP2022093988A JP 2022093988 A JP2022093988 A JP 2022093988A JP 2020206753 A JP2020206753 A JP 2020206753A JP 2020206753 A JP2020206753 A JP 2020206753A JP 2022093988 A JP2022093988 A JP 2022093988A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- treatment step
- aluminum alloy
- forged product
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J1/00—Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
- B21J1/06—Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/002—Hybrid process, e.g. forging following casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/02—Die forging; Trimming by making use of special dies ; Punching during forging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G7/00—Pivoted suspension arms; Accessories thereof
- B60G7/001—Suspension arms, e.g. constructional features
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/047—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/05—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/057—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/10—Constructional features of arms
- B60G2206/11—Constructional features of arms the arm being a radius or track or torque or steering rod or stabiliser end link
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/70—Materials used in suspensions
- B60G2206/71—Light weight materials
- B60G2206/7102—Aluminium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/80—Manufacturing procedures
- B60G2206/81—Shaping
- B60G2206/8102—Shaping by stamping
- B60G2206/81022—Shaping by stamping by forging
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Forging (AREA)
Abstract
【課題】常温における機械的特性に優れると共に、再結晶粒が発生し難いアルミニウム合金鍛造品およびその製造方法を提供する。【解決手段】アルミニウム合金鍛造品1はCu:0.15質量%~1.0質量%、Mg:0.6質量%~1.3質量%、Si:0.60質量%~1.45質量%、Mn:0.03質量%~1.0質量%、Fe:0.2質量%~0.4質量%、Cr:0.03質量%~0.4質量%、Ti:0.012質量%~0.035質量%、B:0.0001質量%~0.03質量%、Zn:0.25質量%以下、Zr:0.05質量%以下、残部がAl及び不可避不純物からなり、前記鍛造品1断面のX線回折測定で得られるX線回折パターンにおけるAlFeMnSi相の回折ピークの積分強度を「Q1」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q2」(cps・deg)としたとき、Q1/Q2の値が6×10-2以下である。【選択図】図1
Description
本発明は、常温における機械的特性に優れたAl-Mg-Si系アルミニウム合金鍛造品およびその製造方法に関する。
近年、アルミニウム合金は、軽量性を生かして各種製品の構造部材としての用途が拡大しつつある。例えば、自動車の足廻りやバンパー部品は今まで高張力鋼が用いられてきたが、近年は高強度アルミニウム合金材が用いられるようになっている。自動車部品、例えば、サスペンション部品は専ら鉄系材料が使用されていたが、軽量化を主目的としてアルミニウム材料またはアルミニウム合金材料に置き換えられることが多くなってきた。
これらの自動車部品では優れた耐食性、高強度および優れた加工性が要求されることから、アルミニウム合金材料としてAl-Mg-Si系合金、特にA6061が多用されている。そして、このような自動車部品は強度の向上を図るため、アルミニウム合金材料を加工用素材として塑性加工の1つである鍛造加工を行って製造される。
また、最近ではコストダウンを図る必要があるため、押出をせずに鋳造部材をそのまま素材として鍛造した後、T6処理して得たサスペンション部品が実用化され始めており、さらなる軽量化を目的として、従来のA6061に代わる高強度合金の開発が進められている(下記特許文献1~3参照)。
しかし、上述したAl-Mg-Si系の高強度合金は、鍛造および熱処理工程において加工組織が再結晶し、粗大結晶粒が発生することにより、十分な高強度を得ることができないという問題があった。そのため、粗大再結晶粒生成防止のため、Zrを添加して再結晶を防止しているものがある(例えば上記特許文献1および2)。
しかしながら、Zrを添加することは、再結晶防止に効果があるものの、次のような問題点があった。
(1)Zrの添加により、Al-Ti-B系合金の結晶粒微細化効果が弱められ、鋳塊自体の結晶粒が粗くなり、塑性加工後の加工品(鍛造品)の強度低下を招く。
(2)鋳塊自体の結晶粒微細化効果が弱められるため、鋳塊割れが発生し易くなり、内部欠陥が増加し、歩留まりが悪化する。
(3)Zrは、Al-Ti-B系合金と化合物を形成し、合金溶湯を貯留する炉の底に化合物が堆積し、炉を汚染すると共に、製造した鋳塊においてもこれら化合物が鋳塊中に粗大に晶出し、強度を低下させる。
このように、Zrの添加は、再結晶防止に効果があるものの、強度の安定性を維持することが困難であった。
本発明は、かかる技術的背景に鑑みてなされたものであって、常温における機械的特性に優れると共に、再結晶粒が発生し難いアルミニウム合金鍛造品およびその製造方法を提供することを目的とする。
前記目的を達成するために、本発明は以下の手段を提供する。
[1]Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.3質量%、Si:0.60質量%~1.45質量%、Mn:0.03質量%~1.0質量%、Fe:0.2質量%~0.4質量%、Cr:0.03質量%~0.4質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金鍛造品であって、
前記鍛造品断面のX線回折測定で得られるX線回折パターンにおけるAlFeMnSi相の回折ピークの積分強度を「Q1」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q2」(cps・deg)としたとき、Q1/Q2の値が6×10-2以下であることを特徴とするアルミニウム合金鍛造品。
前記鍛造品断面のX線回折測定で得られるX線回折パターンにおけるAlFeMnSi相の回折ピークの積分強度を「Q1」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q2」(cps・deg)としたとき、Q1/Q2の値が6×10-2以下であることを特徴とするアルミニウム合金鍛造品。
[2]前項1に記載のアルミニウム合金鍛造品の製造方法であって、
溶湯を得る溶湯形成工程と、
前記溶湯形成工程で得られる溶湯を鋳造加工することにより鋳造品を得る鋳造工程と、
前記鋳造工程で得られる鋳造品に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程後の鋳造品に鍛造加工を行って鍛造品を得る鍛造工程と、
前記鍛造工程で得られる鍛造品に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程後に焼き入れする焼き入れ処理工程と、
前記焼き入れ処理工程後の鍛造品に時効処理を行う時効処理工程とを含むことを特徴とするアルミニウム合金鍛造品の製造方法。
溶湯を得る溶湯形成工程と、
前記溶湯形成工程で得られる溶湯を鋳造加工することにより鋳造品を得る鋳造工程と、
前記鋳造工程で得られる鋳造品に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程後の鋳造品に鍛造加工を行って鍛造品を得る鍛造工程と、
前記鍛造工程で得られる鍛造品に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程後に焼き入れする焼き入れ処理工程と、
前記焼き入れ処理工程後の鍛造品に時効処理を行う時効処理工程とを含むことを特徴とするアルミニウム合金鍛造品の製造方法。
[3]前記均質化熱処理工程は前記鋳造工程で得られる鋳造品に370℃~560℃の温度で4時間~10時間保持する均質化熱処理を行い、
前記鍛造工程は前記均質化熱処理工程後の鋳造品に加熱温度450℃~560℃で鍛造加工を行い、
前記溶体化処理工程は前記鍛造工程で得られる鍛造品に20℃~500℃までの昇温速度が5.0℃/min以上で昇温させ、530℃~560℃で0.3時間~3時間以内保持する溶体化処理を行い、
前記焼き入れ処理工程は前記溶体化処理工程後5秒~60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間水槽内で焼き入れを行い、
前記時効処理工程は前記焼き入れ処理工程後の鍛造品に180℃~220℃の温度で0.5時間~1.5時間加熱して時効処理を行うことを特徴とする前項2に記載のアルミニウム合金鍛造品の製造方法。
前記鍛造工程は前記均質化熱処理工程後の鋳造品に加熱温度450℃~560℃で鍛造加工を行い、
前記溶体化処理工程は前記鍛造工程で得られる鍛造品に20℃~500℃までの昇温速度が5.0℃/min以上で昇温させ、530℃~560℃で0.3時間~3時間以内保持する溶体化処理を行い、
前記焼き入れ処理工程は前記溶体化処理工程後5秒~60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間水槽内で焼き入れを行い、
前記時効処理工程は前記焼き入れ処理工程後の鍛造品に180℃~220℃の温度で0.5時間~1.5時間加熱して時効処理を行うことを特徴とする前項2に記載のアルミニウム合金鍛造品の製造方法。
[1]の発明によれば、各元素の含有量が所定の範囲内に設定され、Q1/Q2の値が6×10-2以下であることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を提供することができる。
[2]の発明によれば、溶湯形成工程、鋳造工程、均質化熱処理工程、鍛造工程、溶体化処理工程、焼き入れ処理工程および時効処理工程が含まれることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。
[3]の発明によれば、各処理工程における処理条件が所定の範囲内に設定されることで、より一層、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。
本発明のアルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法について説明する。
なお、以下に示す実施形態は例示に過ぎず、本発明はこれらの例示した実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲において適宜変更することができる。
本実施形態のアルミニウム合金鍛造品1は、Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.3質量%、Si:0.60質量%~1.45質量%、Mn:0.03質量%~1.0質量%、Fe:0.2質量%~0.4質量%、Cr:0.03質量%~0.4質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなり、この鍛造品1の断面について、X線回折測定で得られるX線回折パターンにおけるAlFeMnSi相の回折ピークの積分強度を「Q1」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q2」(cps・deg)としたとき、Q1/Q2の値が6×10-2以下であることを特徴とする。
このように、各元素の含有量が所定の範囲内に設定され、Q1/Q2の値が6×10-2以下であることで、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を提供することができる。
本実施形態のアルミニウム合金鍛造品1の製造方法は、溶湯形成工程、鋳造工程、均質化熱処理工程、鍛造工程、溶体化処理工程、焼き入れ処理工程および時効処理工程をこの順に行うことで、例えば図1に示すようなアルミニウム合金鍛造品1を製造するものである。以下、各工程について説明する。
(溶湯形成工程)
溶湯形成工程は、原料を溶解して組成を調製したアルミニウム合金溶湯を得る工程である。
溶湯形成工程は、原料を溶解して組成を調製したアルミニウム合金溶湯を得る工程である。
本実施形態では、Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.3質量%、Si:0.60質量%~1.45質量%、Mn:0.03質量%~1.0質量%、Fe:0.2質量%~0.4質量%、Cr:0.03質量%~0.4質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなる6000系アルミニウム合金の溶湯を得る(調製する)。このアルミニウム合金の溶湯においては、Zn含有率が0質量%(Zn非含有)であってもよく、またZr含有率が0質量%(Zr非含有)であってもよい。
(鋳造工程)
鋳造工程は、溶湯形成工程で得られたアルミニウム合金溶湯を鋳造加工することによって鋳造品を得る工程である。
鋳造工程は、溶湯形成工程で得られたアルミニウム合金溶湯を鋳造加工することによって鋳造品を得る工程である。
鋳造品を得るための連続鋳造法としては、特に限定されるものではないが、様々な公知の連続鋳造法(垂直型連続鋳造法、水平型連続鋳造法等)を挙げることができる。垂直型連続鋳造法としては、ホットトップ鋳造法等が用いられる。以下では、連続鋳造法の一例としてホットトップ鋳造装置を用いたホットトップ鋳造法によってアルミニウム合金連続鋳造材を製造する場合(即ちアルミニウム合金の溶湯をホットトップ鋳造法によって連続鋳造してアルミニウム合金連続鋳造材を製造する場合)について簡単に説明する。
ホットトップ鋳造装置は、モールド(鋳型)、溶湯受容器(ヘッダー)等を具備している。モールドは、その内部に充満された冷却水により冷却されている。受容器は、一般に耐火物製であり、モールドの上側に設置されている。受容器内のアルミニウム合金溶湯は、冷却されたモールド内に下方向に注入されると共に、モールドから噴出された冷却水により所定の冷却速度で冷却されて凝固し、更に水槽内の水(その温度:約20℃)に浸されて完全に凝固する。これにより棒状等の長尺な連続鋳造材が得られる。
(均質化熱処理工程)
均質化熱処理工程は、鋳造工程で得られた鋳造材に対して均質化熱処理を行うことによって、凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出および準安定相の平衡相への変化を行う工程である。
均質化熱処理工程は、鋳造工程で得られた鋳造材に対して均質化熱処理を行うことによって、凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出および準安定相の平衡相への変化を行う工程である。
本実施形態では、鋳造工程で得られた鋳造品を370℃~560℃の温度で、4時間~10時間保持する均質化熱処理を行う。この温度範囲で均質化熱処理を施すことにより、鋳塊の均質化と溶質原子の溶入化が十分になされるため、その後の時効処理によって必要とされる十分な強度が得られるものとなる。
(鍛造工程)
鍛造工程は、均質化熱処理工程後に得られた鍛造用ビレットを加熱し、プレス機で圧力をかけて金型成型する工程である。
鍛造工程は、均質化熱処理工程後に得られた鍛造用ビレットを加熱し、プレス機で圧力をかけて金型成型する工程である。
本実施形態では、均質化熱処理後の鋳塊に加熱温度450℃~560℃で鍛造加工を行って鍛造品(例えば自動車のサスペンションアーム部品等)を得る。この時、鍛造素材の鍛造の開始温度は450℃~560℃とする。開始温度が450℃未満になると変形抵抗が高くなって十分な加工ができなくなり、560℃を超えると鍛造割れや共晶融解等の欠陥が発生し易くなるためである。
(溶体化処理工程)
溶体化処理工程は、鍛造工程で導入された歪みを緩和し、溶質元素の固溶を行う工程である。
溶体化処理工程は、鍛造工程で導入された歪みを緩和し、溶質元素の固溶を行う工程である。
本実施形態では、鍛造工程後の鍛造品の温度を20℃まで下げた後、室温になってから加熱を始め、20℃~500℃までの温度範囲全域において昇温速度が常に5.0℃/min以上で昇温させ、530℃~560℃で0.3時間~3時間以内保持することで溶体化処理を行う。
昇温速度が5.0℃/min未満ではMg2Siが粗大析出してしまい、また、処理温度が530℃未満では溶体化が進まず時効析出による高強度化を実現できなくなり、処理温度が560℃を超えると溶質元素の固溶がより促進されるものの、共晶融解や再結晶が生じ易くなるためである。
(焼き入れ処理工程)
焼き入れ処理工程は、溶体化処理工程によって得られた固溶状態を急速に冷却せしめて過飽和固溶体を形成する熱処理である。
焼き入れ処理工程は、溶体化処理工程によって得られた固溶状態を急速に冷却せしめて過飽和固溶体を形成する熱処理である。
本実施形態では、溶体化処理後5秒~60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間、水槽内で焼き入れ処理を行う。
(時効処理工程)
時効処理工程は、アルミニウム合金鍛造品を比較的低温で加熱保持し過飽和に固溶した元素を析出させて、適度な硬さを付与するための熱処理である。
時効処理工程は、アルミニウム合金鍛造品を比較的低温で加熱保持し過飽和に固溶した元素を析出させて、適度な硬さを付与するための熱処理である。
本実施形態では、焼き入れ処理工程後の鍛造品に180℃~220℃の温度で0.5時間~1.5時間加熱して時効処理を行う。処理温度が180℃未満あるいは処理時間が0.5時間未満では引張強度を向上させるMg2Si系析出物が十分に成長できなくなり、処理温度が220℃を超えるとMg2Si系析出物が粗大になり過ぎて引張強度を十分に向上させることができないためである。
上述したように、本発明のアルミニウム合金鍛造品の製造方法は各元素の含有量が所定の範囲内に設定され、各処理工程における処理条件が所定の範囲内に設定されることで、より一層、常温において優れた機械的特性を有すると共に、再結晶粒が発生し難いアルミニウム合金鍛造品を製造することができる。
次に、上述した本発明に係るアルミニウム合金鍛造品およびその製造方法における「アルミニウム合金」の組成について以下詳述する。前記アルミニウム合金は、Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.3質量%、Si:0.60質量%~1.45質量%、Mn:0.03質量%~1.0質量%、Fe:0.2質量%~0.4質量%、Cr:0.03質量%~0.4質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金である。
Siは、Mgと共存してMg2Si系析出物を形成し、最終製品の強度向上に寄与する。Siは、後述するMgの量に対してMg2Siを生成する量を越えて過剰に添加することにより、時効処理後の最終製品の強度をさらに高めるため、Siの含有量は0.60質量%以上が望ましい。一方、1.45質量%を越えると、Siの粒界析出が多くなり、粒界脆化が生じ易く、鋳塊の塑性加工性、および最終製品の靭性を低下させるのみならず、鋳塊の晶出物の平均粒径が所定の上限を越える恐れがある。したがって、Siの含有量は、0.60質量%~1.45質量%の範囲にする必要がある。
Mgは、Siと共存してMg2Si系析出物を形成し、最終製品の強度向上に寄与する。Mgの含有量が0.6質量%よりも少ないと、析出強化の効果が少なくなる恐れがある。一方、1.3質量%を越えると、鋳塊の塑性加工性、および最終製品の靭性を低下させるのみならず、鋳塊の晶出物の平均粒径が所定の上限を越えるおそれがある。したがって、Mgの含有量は、0.6質量%~1.3質量%の範囲にする必要がある。
Cuは、Mg2Si系析出物の見かけの過飽和量を増加させ、Mg2Si析出量を増加させることにより、最終製品の時効硬化を著しく促進させる。Cuの含有量が0.15質量%よりも少ないと、析出強化として効果があるQ相(Al-Cu-Mg-Si)が生成しにくいため、機械的特性が低下することとなる。一方、Cuの含有量が1.0質量%を越えると、鋳塊の鍛造加工性、および最終製品の靭性を低下させ、さらに耐食性を著しく低下させる恐れがある。したがって、Cuの含有量は、0.15質量%~1.0質量%の範囲にする必要がある。
MnはAlMnSi相として晶出し、晶出しないMnは、析出して再結晶を抑制する。この再結晶を抑制する作用により、塑性加工後も結晶粒を微細にし、最終製品の靭性向上および耐食性向上の効果がもたらされる。Mnの含有量が0.03質量%よりも少ないと、上記した効果が少なくなる恐れがある。一方、1.0質量%を越えると、巨大金属間化合物が生じ、この発明の鋳塊組織が満たされなくなる恐れがある。したがって、Mnの含有量は、0.03質量%~1.0質量%の範囲にする必要がある。
CrもAlCrSi相として晶出し、晶出しないCrは、析出して再結晶を抑制する。この再結晶を抑制する作用により、塑性加工後も結晶粒を微細にし、最終製品の靭性向上および耐食性向上の効果がもたらされる。Crの含有量が0.03質量%よりも少ないと、上記した効果が少なくなる恐れがある。一方、0.4質量%を越えると、巨大金属間化合物が生じ、この発明の鋳塊組織が満たされなくなる恐れがある。したがって、Crの含有量は、0.03質量%~0.4質量%の範囲にする必要がある。
Feは、合金中でAl、Siと結合して晶出するとともに、結晶粒粗大化を防止する。Fe含有量が0.2質量%より少ないと上記した効果が得られなくなる恐れがある。また、Feが0.4質量%を越えると、粗大な金属間化合物を生成するようになり、塑性加工性が悪化する恐れがある。したがって、Feの含有量は、0.2質量%~0.4質量%にする必要がある。
Znは不純物として扱われ、0.25質量%を超えるとアルミの腐食自体を促進し、耐食性を劣化させるため、0.25質量%以下にする必要がある。
Zrは不純物として扱われ、0.05質量%を超えると、Al-Ti-B系合金の結晶粒微細化効果が弱められ、塑性加工後の加工品の強度低下を招くため、0.05質量%以下にする必要がある。
Tiは、結晶粒の微細化を図る上で有効な合金元素であり、かつ、連続鋳造棒に鋳塊割れなどが発生するのを防止する。Tiの含有量が0.012質量%よりも少ないと、微細化効果が得られず、一方、0.035質量%を越えると、粗大なTi化合物が晶出し、靭性を劣化させる恐れがある。したがって、Tiの含有量は、0.012質量%~0.035質量%の範囲にする必要がある。
BもTiと同様に、結晶粒微細化に有効な元素であり、0.0001質量%よりも少ないと、その効果が得られず、一方、0.03質量%を越えると、靭性を劣化させる恐れがある。したがって、Bの含有量は、0.0001質量%~0.03質量%の範囲にする必要がある。
次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
<実施例1~12>
表1に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表1に示す条件で均質化熱処理を行った。得られた鋳造材を表1に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
表1に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表1に示す条件で均質化熱処理を行った。得られた鋳造材を表1に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
次に、表1に示す条件で昇温、溶体化処理を行った後、表1に示す焼き入れ処理を行い、その後時効処理を行ってアルミニウム合金鍛造品1を得た。
<比較例1~5>
表2に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表2に示す条件で均質化熱処理を行った。得られた鋳造材を表2に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
表2に示す合金組成のアルミニウム合金で直径54mmの断面円形の連続鋳造材を作製し、表2に示す条件で均質化熱処理を行った。得られた鋳造材を表2に示す条件で鍛造加工を行って図1に示す自動車のサスペンションアーム部品の形状に塑性加工した。
次に、表2に示す条件で昇温、溶体化処理を行った後、表2に示す焼き入れ処理を行い、その後時効処理を行ってアルミニウム合金鍛造品1を得た。
また、焼き入れ開始は鍛造品全体が水についた時点とする。
上記のようにして得られた各アルミニウム合金鍛造品について下記評価法に基づいて評価を行った。
<常温での耐力評価法>
得られたアルミニウム合金鍛造品から、標点間距離25.4mm、平行部直径6.4mmの引張試験片を採取し、該引張試験片の常温(25℃)引張試験を行うことによって、耐力を測定し、下記判定基準に基づいて評価した。
得られたアルミニウム合金鍛造品から、標点間距離25.4mm、平行部直径6.4mmの引張試験片を採取し、該引張試験片の常温(25℃)引張試験を行うことによって、耐力を測定し、下記判定基準に基づいて評価した。
(判定基準)
「◎」…常温での耐力が360MPa以上である
「○」…常温での耐力が340MPa以上360MPa未満である
「△」…常温での耐力が320MPa以上340MPa未満である
「×」…常温での耐力が320MPa未満である。
「◎」…常温での耐力が360MPa以上である
「○」…常温での耐力が340MPa以上360MPa未満である
「△」…常温での耐力が320MPa以上340MPa未満である
「×」…常温での耐力が320MPa未満である。
表1から明らかなように、本発明の製造方法で製造された実施例1~12のアルミニウム合金鍛造品は、常温での耐力に優れていた。
これに対し、表2に示すように、本発明の規定範囲を逸脱する比較例1~5のアルミニウム合金鍛造品では、常温での耐力に劣っていた。
<アルミニウム合金鍛造品のAl相及びAlFeMnSi相の回折ピークの積分強度測定法>
各アルミニウム合金鋳造材、各アルミニウム合金押出材について株式会社リガク製X線回折装置(SmartLab)を用いてX線回折測定を行った。なお、鍛造品より10mm×10mm×厚さ2mmの板状体を採取して、これをX線回折測定試料として用いた。X線回折測定により得られたX線回折パターンにおいてAl相の(200)面の回折ピークを同定し、該Al相の(200)面の回折ピーク強度の積分値(回折ピークの積分強度Q2)を求めると共に、AlFeMnSi相の回折ピークを同定し、このAlFeMnSi相の回折ピーク強度の積分値(回折ピークの積分強度Q1)を求め、これらよりQ1/Q2の値を求めた。これらの結果を表1および2に示した。
各アルミニウム合金鋳造材、各アルミニウム合金押出材について株式会社リガク製X線回折装置(SmartLab)を用いてX線回折測定を行った。なお、鍛造品より10mm×10mm×厚さ2mmの板状体を採取して、これをX線回折測定試料として用いた。X線回折測定により得られたX線回折パターンにおいてAl相の(200)面の回折ピークを同定し、該Al相の(200)面の回折ピーク強度の積分値(回折ピークの積分強度Q2)を求めると共に、AlFeMnSi相の回折ピークを同定し、このAlFeMnSi相の回折ピーク強度の積分値(回折ピークの積分強度Q1)を求め、これらよりQ1/Q2の値を求めた。これらの結果を表1および2に示した。
表1に示すように、実施例1~12では、Q1/Q2の値は6×10-2より小さくなっていることがわかる。
これに対し、表2に示すように、比較例1~5では、Q1/Q2の値は6×10-2より大きくなっていることがわかる。
本発明に係るアルミニウム合金鍛造品の製造方法で得られた鍛造品は、常温における機械的強度に優れているので、例えば、自動車のサスペンションアーム部品等の足廻り材として好適に用いられるが、特にこのような用途に限定されるものではない。
1: アルミニウム合金鍛造品
Claims (3)
- Cu:0.15質量%~1.0質量%、Mg:0.6質量%~1.3質量%、Si:0.60質量%~1.45質量%、Mn:0.03質量%~1.0質量%、Fe:0.2質量%~0.4質量%、Cr:0.03質量%~0.4質量%、Ti:0.012質量%~0.035質量%、Bを0.0001質量%~0.03質量%を含有し、Zn含有率が0.25質量%以下、Zr含有率が0.05質量%以下であり、残部がAl及び不可避不純物からなるアルミニウム合金鍛造品であって、
前記鍛造品断面のX線回折測定で得られるX線回折パターンにおけるAlFeMnSi相の回折ピークの積分強度を「Q1」(cps・deg)とし、Al相の(200)面の回折ピークの積分強度を「Q2」(cps・deg)としたとき、Q1/Q2の値が6×10-2以下であることを特徴とするアルミニウム合金鍛造品。 - 請求項1に記載のアルミニウム合金鍛造品の製造方法であって、
溶湯を得る溶湯形成工程と、
前記溶湯形成工程で得られる溶湯を鋳造加工することにより鋳造品を得る鋳造工程と、
前記鋳造工程で得られる鋳造品に均質化熱処理を行う均質化熱処理工程と、
前記均質化熱処理工程後の鋳造品に鍛造加工を行って鍛造品を得る鍛造工程と、
前記鍛造工程で得られる鍛造品に溶体化処理を行う溶体化処理工程と、
前記溶体化処理工程後に焼き入れする焼き入れ処理工程と、
前記焼き入れ処理工程後の鍛造品に時効処理を行う時効処理工程とを含むことを特徴とするアルミニウム合金鍛造品の製造方法。 - 前記均質化熱処理工程は前記鋳造工程で得られる鋳造品に370℃~560℃の温度で4時間~10時間保持する均質化熱処理を行い、
前記鍛造工程は前記均質化熱処理工程後の鋳造品に加熱温度450℃~560℃で鍛造加工を行い、
前記溶体化処理工程は前記鍛造工程で得られる鍛造品に20℃~500℃までの昇温速度が5.0℃/min以上で昇温させ、530℃~560℃で0.3時間~3時間以内保持する溶体化処理を行い、
前記焼き入れ処理工程は前記溶体化処理工程後5秒~60秒以内に鍛造品の全ての表面が焼き入れ水に接触し、5分を超え40分以内の間水槽内で焼き入れを行い、
前記時効処理工程は前記焼き入れ処理工程後の鍛造品に180℃~220℃の温度で0.5時間~1.5時間加熱して時効処理を行うことを特徴とする請求項2に記載のアルミニウム合金鍛造品の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020206753A JP2022093988A (ja) | 2020-12-14 | 2020-12-14 | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 |
US17/548,769 US20220195573A1 (en) | 2020-12-14 | 2021-12-13 | Aluminum alloy forging and method of producing the same |
US18/426,624 US20240209488A1 (en) | 2020-12-14 | 2024-01-30 | Aluminum alloy forging and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020206753A JP2022093988A (ja) | 2020-12-14 | 2020-12-14 | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022093988A true JP2022093988A (ja) | 2022-06-24 |
Family
ID=82022103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020206753A Pending JP2022093988A (ja) | 2020-12-14 | 2020-12-14 | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 |
Country Status (2)
Country | Link |
---|---|
US (2) | US20220195573A1 (ja) |
JP (1) | JP2022093988A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016196494A1 (en) * | 2015-06-01 | 2016-12-08 | Hendrickson Usa, L.L.C. | Torque rod for vehicle suspension |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101365818B (zh) * | 2006-03-31 | 2011-03-23 | 株式会社神户制钢所 | 铝合金锻造构件及其制造方法 |
JP6224550B2 (ja) * | 2014-08-27 | 2017-11-01 | 株式会社神戸製鋼所 | 成形用アルミニウム合金板 |
-
2020
- 2020-12-14 JP JP2020206753A patent/JP2022093988A/ja active Pending
-
2021
- 2021-12-13 US US17/548,769 patent/US20220195573A1/en not_active Abandoned
-
2024
- 2024-01-30 US US18/426,624 patent/US20240209488A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20220195573A1 (en) | 2022-06-23 |
US20240209488A1 (en) | 2024-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6420553B2 (ja) | アルミニウム合金、アルミニウム合金線材、アルミニウム合金線材の製造方法、アルミニウム合金部材の製造方法、及びアルミニウム合金部材 | |
JP2022093990A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP2013525608A (ja) | 階層状の微細構造を有する損傷耐性アルミ材 | |
JP7528474B2 (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
TW201435092A (zh) | 高強度鋁鎂矽合金及其製程 | |
JP2021143374A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP2016079419A (ja) | アルミニウム合金連続鋳造材及びその製造方法 | |
US20240209488A1 (en) | Aluminum alloy forging and method of producing the same | |
US20240133010A1 (en) | Aluminum alloy forging and production method thereof | |
JP7528476B2 (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP7528473B2 (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP7528475B2 (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP7565728B2 (ja) | アルミニウム合金製鍛造部材及びその製造方法 | |
JP7459496B2 (ja) | アルミニウム合金鍛造材の製造方法 | |
JP5575028B2 (ja) | 高強度アルミニウム合金、高強度アルミニウム合金鋳物の製造方法および高強度アルミニウム合金部材の製造方法 | |
JP2021143375A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP2021143373A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP2022093986A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP2022093985A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP2022093987A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP5081791B2 (ja) | 自動車部品の製造方法 | |
JP2022093989A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
JP2022093991A (ja) | アルミニウム合金鍛造品およびアルミニウム合金鍛造品の製造方法 | |
CN116761904A (zh) | 铝合金挤压材料的制造方法 | |
JP7571376B2 (ja) | Al-Mg-Si系アルミニウム合金鍛造品の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20230131 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20230201 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20230307 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231003 |