JP2022090693A - 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム - Google Patents

地熱発電に用いる熱交換器及びこれを利用する地熱発電システム Download PDF

Info

Publication number
JP2022090693A
JP2022090693A JP2020203143A JP2020203143A JP2022090693A JP 2022090693 A JP2022090693 A JP 2022090693A JP 2020203143 A JP2020203143 A JP 2020203143A JP 2020203143 A JP2020203143 A JP 2020203143A JP 2022090693 A JP2022090693 A JP 2022090693A
Authority
JP
Japan
Prior art keywords
geothermal
power generation
water
pipe
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020203143A
Other languages
English (en)
Other versions
JP6896137B1 (ja
Inventor
徹 田渕
Toru Tabuchi
かづみ 眞嶋
Kazumi Majima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hybrid Energy Corp
Original Assignee
Hybrid Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hybrid Energy Corp filed Critical Hybrid Energy Corp
Priority to JP2020203143A priority Critical patent/JP6896137B1/ja
Application granted granted Critical
Publication of JP6896137B1 publication Critical patent/JP6896137B1/ja
Publication of JP2022090693A publication Critical patent/JP2022090693A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】総発電量を増大させることを可能とする発電システムを提供する。【解決手段】外側を外周セメントで密閉して地中に埋設するケーシング管2と、ケーシング管との間で空気を入れた断熱層4を得るために上部の地熱低温帯Tとなる領域の一部または全部の内側に設ける内管3と、ケーシング管深部の地熱高温帯Nに注水する注水管7と、気体5と液体6の境界Kとなる水面より下方まで伸ばされた取水管8と、ケーシング管内の水位Pを監視する水位計13と、ケーシング管内の気体をコンプレッサー9により加圧するとともに、液体を圧送するための送風管11とを備えて水位を維持する構成を採用した。【選択図】図1

Description

本発明は、地熱発電に用いる熱交換器に関し、詳しくは、地熱エネルギーを高効率で取り出すことができる地熱交換器と、これを利用して得られる熱水を循環する循環水槽等を備えた地熱発電システムに関する。
地熱エネルギーを利用して発電する地熱発電は、高温のマグマ層を熱源とするものであり、半永久的な熱エネルギーとすることができるとともに、発電の過程において温室効果ガスを発生しないことから、化石燃料の代替手段として注目されている。
従来の地熱発電では、地熱帯をボーリングし、地熱帯に存在する自然の蒸気や熱水を自然の圧力を利用して取り出し発電を行っている。そのため、取り出された蒸気と熱水には、地熱帯特有の硫黄その他の不純物が多量に含まれている。この不純物はスケールとなって、熱井戸や配管類、あるいはタービン等に付着する。スケールが付着すると、経年的に発電出力が減少し長期間の使用が困難となる。
このスケールによる問題を解決するために、地上から水を送り、エネルギーを採取する方式を採用した地熱交換器が、特許文献1、特許文献2に記載されている。また、地熱エネルギーを有効に取り出すことを目的として、地下においてフラッシュ率を向上させる手段を備えた地熱交換器に関する発明が、特許文献3に記載されている。
特許第4927136号公報 特許第5731051号公報 特許第6176890号公報
特許文献1、2、及び3において開示されたいずれの方式においても、地下に埋設された二重管式の地熱交換器を使用しており、これによって生じる共通する欠点は、全行程に水が充填され低温帯を含む地下を通過するため、地熱エネルギーがこの全行程の水に及んでしまい地上に到達するときには、多くの地熱エネルギーを失ってしまうというものである。また、地熱開発においては、全国に圧倒的に多く存在する、約180℃以下の中低温地熱帯を対象とした地熱発電システムの開発が重要であり、この中低温地帯を熱源として用いる場合には、地熱エネルギーの温度をできる限り有効にかつ安定して採取すると共にバイオマス等の再生可能エネルギーとの直接連携により発電総量を増大させることも課題となっている。
上記の課題を解決するために、本発明は、地中から熱エネルギーを取り出すための地熱交換器であって、外側を外周セメントで密閉して地中に埋設するケーシング管と、前記ケーシング管との間で空気を入れた断熱層を得るために上部の地熱低温帯となる領域の一部または全部の内側に設ける内管と、前記ケーシング管深部の地熱高温帯に注水する注水管と、気体と液体の境界となる水面より下方まで伸ばされた取水管と、前記ケーシング管内の水位を監視する水位計と、前記ケーシング管内の前記気体をコンプレッサーにより加圧するとともに、前記液体を圧送するための送風管とを備えて前記水位を維持する構成を採用した。
また、本発明は、前記取水管が、請求項1に記載の地熱交換器の深部地熱エネルギーを効率よく取水できるのに必要な内径を備えるとともに、該地熱交換器から第一循環水槽までの間の流路を絞ることによって流速を上げる構成を採用することもできる。
また、本発明は、前記取水管により前記地熱高温帯から得た熱水の圧力と温度を安定させるために熱水を循環する装置を備えた前記熱交換器であって、前記熱交換器に、第一循環水槽と、第二循環水槽と、熱水加熱器と、第一ポンプを備え、前記第一循環水槽は、半地下に備えられるとともに蒸発を押さえるために加圧する圧力装置を有し、前記第二循環水槽、前記熱水加熱器、及び前記第一ポンプを経由して前記熱水を循環させる循環装置を備える構成を採用することもできる。
また、本発明は、タービン出口の蒸気を復水器で復水とし、増圧器、前記第二循環水槽、熱水加熱器で加熱後、一部の復水は前記第1ポンプを経由し前記地熱交換器に戻すことで、地下の地熱高温帯領域を冷やすことが少なく熱交換の高効率を維持でき、さらに実用期間を長く保つことができる構成を含む前記地熱交換器を利用した発電システムとすることもできる。
また、本発明は、前記発電システムにおいて、他の余剰熱供給施設と直接連携して稼働することを含む構成を採用することもできる。
また、本発明は、前記地熱交換器を利用した発電のためのシステムにおいて、他の発電装置からの余剰電力を組み合わせることを含む構成を採用することもできる。
本発明によれば、約180℃以下の中低温の地熱帯において、効率良く熱交換を行うことができ、地熱開発の対象となる場所の数を増やして、地熱エネルギー採取量を増やすことが可能になる。さらに、バイオマス等の再生可能エネルギーと直接連携することにより総発電量を増大する地熱発電システムの効果は大きい。本発明は、従来の地熱発電から見ると今までに考えられない程の膨大な出力増大が望め、バイオマス発電側から見ても単独の発電に比べバイオマス燃料の乾燥や発電過程での地熱エネルギーの基礎熱利用等を得ることで熱効率が向上し全体としてCo2の削減に寄与できるという優れた効果を発揮するものである。
また、本発明に係る熱交換器によれば、ケーシング管と内管の間の断熱層で遮熱され、さらに熱伝導率の低い気体中を通過することで、熱水の温度低下が抑えられるという従来の熱交換器にはない優れた効果を発揮するものである。
また、本発明に係る熱交換器を利用した発電システムによれば、約180℃以下の中低温地熱帯を用いても、効率良く熱交換を行うことができ、さらにバイオマス等の再生可能エネルギーとの直接連携で総発電量を増大することにより、地熱開発の対象となる場所が格段に増え、地熱エネルギー採取量を増やすことが可能になるという優れた効果を発揮する。
また、本発明に係る熱交換器を利用した発電システムによれば、バイオマスの火力等により加熱された蒸気が発電装置で利用された後、復水器で復水となり、第二循環水槽、再生可能エネルギーの利用による熱水加熱器を経由し地熱交換器に戻されることで、地下の地熱高温体領域を冷やすことが少なく熱交換の高効率を維持でき、さらに実用期間を長く保つことができるという優れた効果を発揮するものである。
また、本発明に係る熱交換器を利用した発電システムによれば、地熱交換器により採取された熱水や蒸気は、バイオマス火力等の再生可能エネルギーにより加熱された後、蒸気タービンや熱交換器等で利用される直前に熱水・蒸気調整器で圧力と温度の最終調整を行う構成を採用することにより、発電装置へ供給する熱水や蒸気の圧力及び温度の安定化を図ることが可能となるという優れた効果を発揮するものである。
本発明に係る地熱交換器を利用した発電システム例の全体構成を示す実施例説明図である。 本発明に係る地熱交換器の基本的な構成を示す基本構成説明図である。 従来の地熱発電に用いられている地熱生産井及び地熱交換器と本発明に係る地熱交換器との比較を示す比較説明図である。 本発明に係る地熱交換器を利用した発電システムの概要を示す概要説明模式図である。
以下に、本発明に係る地熱交換器の基本構成について図面に基づいて説明する。図1は、本発明に係る地熱交換器を用いた発電システム全体の構成を示す実施例説明図であり、図2は、本発明に係る地熱交換器の基本的な構成を示す基本構成説明図である。但し、発電システム全体はあくまでも実施例であって、これらの構成に限定されるものではなく、技術的思想の創作として本発明と同様の効果が得られる範囲内において変更可能である。
本発明に係る地熱交換器1は、ケーシング管2、内管3、断熱層4、気体5、液体6等の配置により地下深部の熱エネルギーを効率よく地上に採取する地熱交換器である。具体的には、地中に設けられる閉鎖された前記ケーシング管2の外周を前記外周セメント12で密閉し、前記地熱交換器1の上部地熱低温帯には、前記ケーシング管2の内側に内管3を設け前記ケーシング管2との間に空気を入れ断熱層4とする。前記内管3(一部前記ケーシング管2)の内側には、深部の地熱高温帯Nの領域にのみ予め水処理装置14で処理された液体6が満たされ、その水面から上部はコンプレッサー9と圧力計10で制御された気体5を充満させ、液体6の蒸発を抑える。また、前記内管3(一部前記ケーシング管2)の内側にほぼ管底まで伸ばされた注水管7と、水面よりやや下方まで伸ばされた取水管8、および前記気体5の圧力を調整できるコンプレッサー9からの送風菅11を配置し、水位を監視できる水位計13と併せて地熱交換器1内の液体6の量を制御するものである。なお、前記取水管8により高温地熱帯から熱を得て熱水Hとなった液体6は半地下に備えられた第一循環水槽17に送られ圧力装置18で蒸発が抑えられ第二循環水槽25、熱水加熱器15、第一ポンプ16を経由し地熱交換機1との間で循環する構成の循環装置と組み合わされることが好適である。
ケーシング管2は、掘削した穴に挿入し、接続部を介して内部が密閉されるように連結される管材である。
内管3は、前記ケーシング管2との間に空気を入れて断熱層4とするために上部の地熱低温帯Tの領域において前記ケーシング管2の内側に設けるものであり、係る断熱層4が地表に近い低温帯に配置されることで、深部で熱せられた熱水Hが冷却されにくくするものである。
断熱層4は、前記ケーシング管2の内側に内管3を配置することで得られる空気の層である。係る断熱層4が地表に近い低温帯に配置されることで、深部で熱せられた熱水Hが冷却されないよう断熱するものである。
気体5は、物質の状態のひとつであり、一定の形と体積を持たず、自由に流動し圧力の増減で体積が容易に変化する状態のことである。また、気体5とは、地球の大気圏の最下層を構成している気体で、人類が暮らしている中で身の回りにあるものをいう。一般に、無色透明で複数の気体の混合物からなり、その組成は約8割が窒素、約2割が酸素でほぼ一定である。なお、気体5はコンプレッサーにより加圧されて体積を縮小させた空気となる。
液体6は、スケール等の発生を回避すべく純水を用いる。例えば、一般的な水道水の中に存在する不純物として塩類、残留塩素、溶解性でない微粒子、有機物、電解しないガスなどがあるが、純水は、これらのうち主に塩類や残留塩素がほとんどすべて除去された状態の水であり、水道水レベルの水を単にフィルターなどでろ過、または活性炭を通しただけの水は、液体6には含まれないものである。
注水管7は、前記地熱交換器1の内部の管底近くまで挿入され、液体6をケーシング2内へ注入するための管である。
取水管8は、地熱によって熱せられた熱水Hを取り出すための管で、気体5と液体6の境界水面よりやや下側に先端が位置することが望ましい。
コンプレッサー9は、所謂空気圧縮機であって、熱水Hが沸騰により気化しないように地熱交換器1内を加圧し、併せて圧力により取水管8を通して地上に熱水Hを送り出す働きを兼ねる。地熱交換器1内の水面高による液体6の水量変化及び熱水温度の変化に対応した自動制御をすることが望ましい。なお、180度時の水の飽和蒸気圧は1.0MPaにも達する。従って、この圧力と同等以上の圧力を水に対して加圧しなければキャビテーション(沸騰)を生じてしまう。そのため、係る加圧が可能な性能を備えるコンプレッサー9とする。
圧力計10は、前記地熱交換器1内の圧力を前記コンプレッサー9で圧縮した際の前記地熱交換器1内の圧力を連続して計測する装置である。
送風管11は、前記地熱交換器1内の気体5の領域内にコンプレッサーにより加圧された空気を送るための管である。
外周セメント12は、前記ケーシング管2の固定や地下層からの暴噴防止などを目的として掘削孔と前記ケーシング管2の隙間に充填するセメントである。
水位計13は、前記地熱交換器1内の水位を連続して計測する装置である。図1では一点鎖線で地表面(GL)から地熱高温帯領域まで示しているが、実際には数千メートルに及ぶこともあるため、気体5と液体6の境界Kとなる水位Pを跨ぐ範囲のみとしてもよい。
水位Pは、ケーシング管2内における液体6の水位であって、注水管8から注水される液体6と取水管8から取水される液体6により変動を示すもので、係る水位Pは水位計13で監視し、コンプレッサー9と圧力計10を介して所定の高さとなるように制御される。
水処理装置14は、前記地熱交換器1内に注水する水を純化する装置である。イオン交換樹脂を利用した生成方法などを採用したもの等を用い、水道水や地下水に含まれる多様な不純物を取り除く装置である。
熱水加熱器15は、前記地熱交換器1と地上の循環水槽との循環する熱水H及びバイオマス燃焼等の熱供給施設20等で利用した後の再利用熱水Hを加熱する装置である。
第一ポンプ16は、前記水処理装置14からの水及び循環する熱水Hを前記地熱交換器1に注水管7を通して注水させるポンプ装置である。
第一循環水槽17は、前記地熱交換器1からの熱水Hを一旦溜めてから前記地熱交換器1と循環し、且つバイオマス燃焼等の熱供給施設20で利用する熱水Hを溜め、供給する水槽である。
圧力装置18は、前記第一循環水槽17内の熱水が気化しないよう圧力を加える装置である。
第2ポンプ19は、前記第一循環水槽17からバイオマス燃焼等の熱供給施設20に熱水Hを送るポンプ装置である。
バイオマス燃焼等の熱供給施設20は、バイオマス燃料等の燃焼ボイラー、ガス化炉、ガスタービン、ガスエンジン、排熱回収ボイラーなどの熱供給施設の総称である。
熱水・蒸気調整器21は、前記バイオマス燃焼等の熱供給施設20により加熱された熱水Hの温度、圧力を安定させるための再生可能エネルギーを使った熱水Hまたは蒸気の調整装置である。
複合発電装置22は、蒸気タービン発電、バイナリー発電等の余剰熱を利用する複合発電の総称である。
復水器23は、前記バイオマス燃焼等の熱供給施設20での利用が蒸気の場合、利用後の蒸気を冷却し凝縮して水に戻す装置である。
増圧器24は、前記復水器23で復水となった水を加圧する装置である。
第二循環水槽25は、前記地熱交換器1と第一循環水槽17を循環する熱水H及び前記バイオマス燃焼等の熱供給施設20の利用後の熱水Hを一旦溜め前記熱水加熱器15を経て前記地熱交換器1及び前記バイオマス燃焼等の熱供給施設20に送るための水槽である。
また、前記第一循環水槽17からの熱水Hを、第二ポンプ19によりバイオマス燃焼等の熱供給施設20に直接連携し、蒸気利用の場合はさらに高温の蒸気となり熱水・蒸気調整器21を経由し、蒸気・バイナリー・ORC(オーガニックランキンサイクル)等の複合発電装置22で発電する。その後蒸気は復水器23で復水になり増圧器24で増圧され第二循環水槽25に送られ地熱交換器1と第一循環水槽17を循環する熱水と混合し、一部の熱水は地熱交換機1に戻され、残りはバイオマス燃焼等の熱供給施設20に送られ再利用されるという構成を採用することも好適である。
また、前記第一循環水槽17からの熱水Hを、第二ポンプ19によりバイオマス燃焼等の熱供給施設20に直接連携し、熱水利用の場合はさらに高温の熱水Hとなり、熱水・蒸気調整器21を経由し、蒸気・バイナリー・ORC(オーガニックランキンサイクル)等の複合発電装置22で発電する。その後熱水Hは第二循環水槽25に送られ地熱交換器1と第一循環水槽17を循環する熱水Hと混合し、一部の熱水Hは地熱交換機1に戻され、残りはバイオマス燃焼等の熱供給施設20に送られ再利用されるという構成を採用することも好適である。
また、本発明に係る地熱交換器1を利用した発電システムSにおいて、バイオマス等の再生可能エネルギーを利用する手段として、その他の火力または再生可能エネルギー発電の余剰電力等と組み合わせる構成を採用することも好適である。
図3は、従来の地熱発電に用いられる地熱生産井及び地熱交換器との比較を示す比較説明図であり、図3(a)はフラッシュ発電を示し、図3(b)は二重管構造における従来の地熱交換器を示し、図3(c)は本発明にかかる地熱交換器を示している。なお、発電機構自体に関しては図3では省略している。
図3(a)に示すとおり、フラッシュ発電では主に200度以上の地熱高温帯Nによる発電に適するものであり、深部熱水若しくは深部熱水から分離した蒸気を利用して直接タービンを回すものである。また、直接タービンを回すもの以外として、比較的に低温地熱帯Tでも利用可能な二次媒体を使うバイナリー発電もあるが、熱エネルギーの採取手段の構成としては同様である。なお、このようなフラッシュ発電等では、生産井Xと還元井Yを分けてボーリングする必要があり、また、セパレーター(気水分離器)を用いて蒸気と熱水に分け、熱水は還元井から地下に戻されるため、熱水の熱エネルギーを有効活用については、熱効率的に問題があるといえる。また、直接地熱流体の蒸気を利用する為、蒸気に含まれる硫黄分などによりスケール生成の問題を含むものといえる。
生産井Xは、図3(a)に示したフラッシュ発電に用いられ、深部に存在する地熱貯留層までボーリングして地熱流体を直接取り出す管路である。なお、図3(b)に示すとおり、二重管式の地熱交換器は深部から地表までの全工程で地熱の影響を受けるものである。
還元井Yは、セパレーター(気水分離器)により蒸気と熱水に分けられた内の熱水分と蒸気を復水にしたものを地下に戻す管路である。
図3(b)は、図3(a)に示したフラッシュ発電での問題点を解決すべく開発された熱交換器であり特許文献1から3に示されているような二重管式の循環型地熱交換器である。但し、係る従来型の二重管式の循環型地熱交換器は、全行程に水が充填されることから、地熱エネルギーが全行程の水に及んでしまい、水が下降する際も上昇する際も低温帯も通過するため、地上に到達するときは多くの地熱エネルギーを失ってしまう。従って、約180度以下の中低温地熱帯を対象とすることが困難である。
図3(c)は、本発明に係る地熱交換器1である。上記の図3(a)図3(b)に示す従来式の熱交換器と比較して大きく相違する点を以下に説明する。
本発明に係る地熱交換器1では、約180度以下の中低温の地熱帯においても効率よく熱交換を行う事ができ、地熱開発の対象となる場所を増加させ、地熱エネルギー採取量を増やすことを可能とするものである。具体的には、地中において高温の地熱帯から熱水Hを取り出す際、低温の地熱帯を通過する領域における温度低下を避けるべく、係る領域については加圧された気体を充填して熱伝導をしにくくするものである。即ち、従来技術では直接蒸気を取り出すか、若しくは水を充満させて地熱からの熱エネルギーを得るものであったため、低温域での熱伝導によるロスを生じるものであった。これに対し、本発明では液体6と気体5という異なる状態を利用している点が大きく異なっている。図3(c)が示すように、ケーシング2内において地熱高温帯Nの領域には液体6(クロスハッチングで示す)、地熱低温帯Tの領域には気体5(ハッチング無し)というように、液体6と気体5との境界Kを水位Pの近傍に設けている。また、使用する液体6については基本的に循環するものであるため、液体6の処理効率が良いという長所がある。
更に、地熱低温帯Tの領域を熱水Hが通過する際、該熱水Hの温度低下を極力避けるべく、取水管8においては、深部の地熱エネルギーを効率よく取り出すのに必要な内径を備えるとともに、図面には示していないが、流速を高めるために、取水管8の流路を絞るという構成を採用することも有効である。
図4は、本発明に係る地熱交換器1を利用した発電システムの部分的な構成を説明するための構成説明図であり、図4(a)は、特許請求の範囲に記載される請求項3の発電システムの構成例を示し、図4(b)は、請求項4に記載の発電システムの構成例を示している。
図4(a)に示されるのは、請求項3に係る発明のとおり本発明に係る地熱交換器を利用するとともに、熱水Hを循環する装置を含んだ発電システムを示している。具体的には、第一循環水槽17と、第二循環水槽25と、熱水加熱器15と、前記第一循環水槽17は、半地下に備えられるとともに蒸発を抑えるために加圧する圧力装置18を備え、前記第二循環水槽25、前記熱水加熱器15、及び前記第一ポンプ16を経由して前記熱水Hを循環させる構成を含むものである。なお、発電機構そのものについては、限定されるものではないため、図面には示していないが、火力やバイオマス等の再生可能エネルギーと直接連携を図ることにより、発電総量を増加させることを可能とするものである。
図4(b)には、例えば蒸気タービン式の発電装置へ熱水H又は熱水Hから発生した蒸気を利用する場合において、タービン出口の蒸気を復水器23で復水とし、増圧器24、前記第二循環水槽25、熱水加熱器15で加熱後、一部の復水は前記第1ポンプ16を経由し前記地熱交換器1に戻すというものである。そうすることによって、地下の地熱高温帯N領域を冷やすことが少なくなり、熱交換の高効率を維持できる。さらには、実用期間を長く保つことができることとなる。なお、図4(b)では、熱水Hの循環装置の一部を省略している。



1 地熱交換器
2 ケーシング管
3 内管
4 断熱層
5 気体
6 液体
7 注水管
8 取水管
9 コンプレッサー
10 圧力計
11 送風管
12 外周セメント
13 水位計
14 水処理装置
15 熱水加熱器
16 第一ポンプ
17 第一循環水槽
18 圧力装置
19 第二ポンプ
20 バイオマス燃焼等の熱供給施設
21 熱水・蒸気調整器
22 複合発電装置
23 復水器
24 増圧器
25 第二圧力循環水槽
H 熱水
K 境界
S 発電システム
N 地熱高温帯
T 地熱低温帯
X 生産井
Y 還元井
P 水位




本発明によれば、約180℃以下の中低温の地熱帯において、効率良く熱交換を行うことができ、地熱開発の対象となる場所の数を増やして、地熱エネルギー採取量を増やすことが可能になる。さらに、バイオマス等の再生可能エネルギーと直接連携することにより総発電量を増大する地熱発電システムの効果は大きい。本発明は、従来の地熱発電から見ると今までに考えられない程の膨大な出力増大が望め、バイオマス発電側から見ても単独の発電に比べバイオマス燃料の乾燥や発電過程での地熱エネルギーの基礎熱利用等を得ることで熱効率が向上し全体としてC の削減に寄与できるという優れた効果を発揮するものである。

Claims (6)

  1. 地中から熱エネルギーを取り出すための地熱交換器であって、
    外側を外周セメント(12)で密閉して地中に埋設するケーシング管(2)と、
    前記ケーシング管(2)との間で空気を入れた断熱層(4)を得るために上部の地熱低温帯(T)となる領域の一部または全部の内側に設ける内管(3)と、
    前記ケーシング管(2)深部の地熱高温帯(N)に注水する注水管(7)と、
    気体(5)と液体(6)の境界(K)となる水面より下方まで伸ばされた取水管(8)と、
    前記ケーシング管(2)内の水位(P)を監視する水位計(13)と、
    前記ケーシング管(2)内の前記気体(5)をコンプレッサー(9)により加圧するとともに、前記液体を圧送するための送風管(11)とを備えて前記水位(P)を維持することを特徴とする地熱交換器(1)
  2. 前記取水管(8)が、請求項1に記載の地熱交換器(1)の深部地熱エネルギーを効率よく取水できるのに必要な内径を備えるとともに、該地熱交換器(1)から第一循環水槽までの間の流路を絞ることによって流速を上げることを特徴とする請求項1に記載の地熱交換器(1)。
  3. 前記取水管(8)により前記地熱高温帯(N)から得た熱水(H)の圧力と温度を安定させるために熱水(H)を循環する装置を備え、前記地熱交換器(1)を利用する発電システムであって、
    第一循環水槽(17)と、
    第二循環水槽(25)と、
    熱水加熱器(15)と、
    第一ポンプ(16)とを有し、
    前記第一循環水槽(17)は、半地下に備えられるとともに蒸発を押さえるために加圧する圧力装置(18)を備え、
    前記第二循環水槽(25)、前記熱水加熱器(15)、及び前記第一ポンプ(16)を経由して前記熱水(H)を循環させる構成を含むことを特徴とする請求項1又は請求項2に記載の地熱交換器(1)を利用する発電システム(S)。
  4. タービン出口の蒸気を復水器(23)で復水とし、増圧器(24)、前記第二循環水槽(25)、熱水加熱器(15)で加熱後、一部の復水は前記第1ポンプ(16)を経由し前記地熱交換器(1)に戻すことで、地下の地熱高温帯(N)領域を冷やすことが少なく熱交換の高効率を維持でき、さらに実用期間を長く保つことができる構成を含むことを特徴とする請求項1又は請求項2に記載の地熱交換器(1)を利用する発電システム(S)。
  5. 前記地熱交換器1を利用した発電のためのシステムにおいて、
    他の余剰熱供給施設(20)と直接連携して稼働する構成を含むことを特徴とする請求項3又は請求項4に記載の発電システム(S)。
  6. 前記地熱交換器(1)を利用した発電のためのシステムにおいて、
    他の発電装置からの余剰電力を組み合わせて稼働する構成を含むことを特徴とする請求項3から請求項5の何れかに記載の発電システム(S)。

JP2020203143A 2020-12-08 2020-12-08 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム Active JP6896137B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020203143A JP6896137B1 (ja) 2020-12-08 2020-12-08 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020203143A JP6896137B1 (ja) 2020-12-08 2020-12-08 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム

Publications (2)

Publication Number Publication Date
JP6896137B1 JP6896137B1 (ja) 2021-06-30
JP2022090693A true JP2022090693A (ja) 2022-06-20

Family

ID=76540419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020203143A Active JP6896137B1 (ja) 2020-12-08 2020-12-08 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム

Country Status (1)

Country Link
JP (1) JP6896137B1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076056A (zh) * 2022-06-15 2022-09-20 等熵循环(北京)新能源科技有限公司 一种利用中深层低温地能实现低温差多级发电系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543948A (ja) * 2010-11-16 2013-12-09 イナージオ エルエルシー エネルギー抽出のためのシステムおよび方法
JP2015031252A (ja) * 2013-08-06 2015-02-16 一般財団法人電力中央研究所 地熱発電設備
WO2016035770A1 (ja) * 2014-09-02 2016-03-10 国立大学法人京都大学 地熱交換器、液体輸送管、液体上昇用管、地熱発電設備及び地熱発電方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543948A (ja) * 2010-11-16 2013-12-09 イナージオ エルエルシー エネルギー抽出のためのシステムおよび方法
JP2015031252A (ja) * 2013-08-06 2015-02-16 一般財団法人電力中央研究所 地熱発電設備
WO2016035770A1 (ja) * 2014-09-02 2016-03-10 国立大学法人京都大学 地熱交換器、液体輸送管、液体上昇用管、地熱発電設備及び地熱発電方法

Also Published As

Publication number Publication date
JP6896137B1 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
US5661977A (en) System for geothermal production of electricity
AU700526B2 (en) System for geothermal production of electricity
JP2021107712A (ja) 地熱を発生させるプロセスおよび方法
US3470943A (en) Geothermal exchange system
US4201060A (en) Geothermal power plant
Noorollahi et al. Geothermal sea water desalination system (GSWDS) using abandoned oil/gas wells
US7891188B2 (en) Apparatus for producing power using geothermal liquid
JP4927136B2 (ja) 地熱発電装置
US20070245729A1 (en) Directional geothermal energy system and method
CA2984020A1 (en) Method for utilization of the inner energy of an aquifer fluid in a geothermal plant
KR20090035734A (ko) 발전소를 저공해 및 효과적으로 작동시키고 에너지를 저장 및 변환하기 위한 방법 및 장치
JP2011524484A (ja) 掘削された坑井内から発電するために地熱を獲得するシステム及び方法
JP6896137B1 (ja) 地熱発電に用いる熱交換器及びこれを利用する地熱発電システム
RU2014101101A (ru) Система и способ производства электроэнергии с применением гибридной геотермальной электростанции, содержащей атомную электростанцию
CN203655374U (zh) 基于有机朗肯循环的干热岩热能回收发电装置
KR101919534B1 (ko) 대심도 지열수 순환 장치와 순환 방법
US20090107143A1 (en) Apparatus and method for producing power using geothermal fluid
Shmeleva Geothermal energy production from oil and gas wells
Alkhasov et al. Evaluating the effect from constructing binary geothermal power units based on spent petroleum and gas boreholes in the south regions of Russia
KR101239777B1 (ko) 폐가스와 용융염의 열 교환을 이용한 지열 발전 시스템
CN208635363U (zh) 一种新型地热干热岩换热装置
Lewis et al. Kizildere II multiple-flash combined cycle: a novel approach for a Turkish resource
TWM527042U (zh) 地熱濕蒸氣發電系統
JP7320271B2 (ja) 地熱交換器および地熱発電装置
JP6403361B1 (ja) 地熱交換システムおよび地熱発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210608

R150 Certificate of patent or registration of utility model

Ref document number: 6896137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150