JP2022089421A - Preparation method of gypsum composition for woody fire resistive covering - Google Patents

Preparation method of gypsum composition for woody fire resistive covering Download PDF

Info

Publication number
JP2022089421A
JP2022089421A JP2020201799A JP2020201799A JP2022089421A JP 2022089421 A JP2022089421 A JP 2022089421A JP 2020201799 A JP2020201799 A JP 2020201799A JP 2020201799 A JP2020201799 A JP 2020201799A JP 2022089421 A JP2022089421 A JP 2022089421A
Authority
JP
Japan
Prior art keywords
gypsum
water
fireproof
layer
wood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020201799A
Other languages
Japanese (ja)
Other versions
JP7476447B2 (en
Inventor
重彰 馬場
Shigeaki Baba
達朗 鈴木
Tatsuro Suzuki
由華 池畠
Yuka Ikehata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2020201799A priority Critical patent/JP7476447B2/en
Publication of JP2022089421A publication Critical patent/JP2022089421A/en
Application granted granted Critical
Publication of JP7476447B2 publication Critical patent/JP7476447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/244Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires

Landscapes

  • Building Environments (AREA)
  • Laminated Bodies (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

To provide a gypsum composition with excellent workability for forming a gypsum layer in several centimeters at an outer periphery of a woody column or beam, and a fire resistive structural material using the gypsum.SOLUTION: A preparation method of a gypsum composition for a woody fire resistive covering, includes making an adjustment so that a hardening start time is equal to or greater than 30 minutes and a density of a gypsum hardening body is equal to or greater than 1.2 g/cm3, where the gypsum composition comprises gypsum, water and a delaying agent and/or a water reducing agent.SELECTED DRAWING: Figure 12

Description

本発明は、木質系構造材に対する耐火技術に関する。 The present invention relates to a fireproof technique for wood-based structural materials.

木材は、なじみがある素材であって、古来より住宅などの建築に利用されてきており、戦後造林された森林資源も充実してきている。一方、木材は、可燃性材料であって、単木では品質にばらつきがあることなど建築材料としては使いにくい点がある。
集成材などにして、均一性の高い木質系素材も開発され、大型建築にも利用可能となっている。可燃性対策も各種検討されている。例えば、難燃薬剤を含浸させる方法や難燃材や耐火材で被覆する方法などがある。
一方、平成22年に「公共建築物等における木材の利用の促進に関する法律」が施行されたことに伴い、建築物への木材利用の機運が高まっている。
Wood is a familiar material and has been used for construction of houses and the like since ancient times, and the forest resources that have been planted after the war have been enriched. On the other hand, wood is a flammable material, and it is difficult to use it as a building material because the quality of single wood varies.
Highly uniform wood-based materials have also been developed, such as laminated lumber, and can be used for large-scale buildings. Various measures against flammability are also being considered. For example, there are a method of impregnating with a flame retardant and a method of covering with a flame retardant material or a refractory material.
On the other hand, with the enforcement of the "Act on Promotion of Wood Use in Public Buildings" in 2010, the momentum for wood use in buildings is increasing.

可燃性対策に関する従来の提案をいくつか紹介する。
特許文献1(特開2012-136939号公報)には、荷重支持部の外隅部に難燃化処理材を配置し、米松などの外周材を設けて、耐火性能を向上させる提案がなされている。
特許文献2(特開2006-218707号公報)には、内層集成材と外層集成材をエポキシ樹脂、イソシアネート樹脂、又はウレタン樹脂の接着剤で接合し、かつ内層集成材にレゾルシノール樹脂接着剤を用いた木質系構造材が提案されている。
特許文献3(特開2005-53195号公報)には、荷重支持層の外側にモルタルや金属などの不燃材を配置した複合木質構造材が提案されている。
特許文献4(特開2012-180700号公報)には、木質部の外側に発泡層と金属膜を複数層設ける技術が開示されている。
特許文献5(特開2017-2614号公報)には、荷重支持部と燃代層との隙間に流動状の石こうを上から流し込んで充填し、充填後に石こうが硬化することで燃止層を形成して燃代層の燃焼熱が燃止層に効果的に吸収されるようにした耐火性の木質柱が開示されている。
本出願人は、特許文献6(特開2018-135643号公報)として、荷重支持部と、荷重支持部の周囲に被覆された湿式の耐火被覆層と、耐火被覆層の外側に周設された仕上げ木材層とを備える木質耐火部材であって、ロックウールとセメント、水を主成分とする吹付けロックウール、または白セメント、水酸化アルミニウム、炭酸カルシウムを主成分とする吹付けセラミック系耐火被覆材を湿式耐火被覆材とし、荷重支持部と耐火被覆層との間、および、耐火被覆層と仕上げ木材層との間に、水分遮断層を形成した木質耐火部材を提案している。
本出願人は、また、特許文献7(特開2019-78044号公報)として、木質荷重支持部と、木質荷重支持部の外側面に設けられる水分遮断層と、水分遮断層を被覆する発泡性耐火被覆層と、発泡性耐火被覆層の外側に設けられた仕上げ木材層とを備え、耐火被覆層に配置された連結部材に仕上げ木材層を固定した木質耐火部材を提案している。
Here are some conventional suggestions for flammability measures.
Patent Document 1 (Japanese Unexamined Patent Publication No. 2012-136939) proposes to improve fire resistance by arranging a flame-retardant-treated material in the outer corner of a load-bearing portion and providing an outer peripheral material such as Douglas-fir. There is.
In Patent Document 2 (Japanese Unexamined Patent Publication No. 2006-218707), the inner layer laminated wood and the outer layer laminated wood are bonded with an epoxy resin, isocyanate resin, or urethane resin adhesive, and a resorcinol resin adhesive is used for the inner layer laminated wood. Wood-based structural materials that have been used have been proposed.
Patent Document 3 (Japanese Unexamined Patent Publication No. 2005-53195) proposes a composite wood structural material in which a noncombustible material such as mortar or metal is arranged on the outside of a load bearing layer.
Patent Document 4 (Japanese Unexamined Patent Publication No. 2012-180700) discloses a technique for providing a plurality of foam layers and a metal film on the outside of a xylem.
In Patent Document 5 (Japanese Unexamined Patent Publication No. 2017-2614), a fluid gypsum is poured from above into the gap between the load support portion and the combustion allowance layer to fill the gap, and the gypsum hardens after filling to form a combustion stop layer. A fire-resistant wood column is disclosed that is formed so that the combustion heat of the fuel allowance layer is effectively absorbed by the combustion stop layer.
According to Patent Document 6 (Japanese Unexamined Patent Publication No. 2018-135643), the applicant has provided a load support portion, a wet refractory coating layer coated around the load support portion, and the outer periphery of the fire resistance coating layer. A wood refractory member with a finished wood layer, rock wool and cement, sprayed rock wool mainly composed of water, or a sprayed ceramic refractory coating mainly composed of white cement, aluminum hydroxide, and calcium carbonate. We propose a wood fireproof member in which a wet fireproof coating material is used and a moisture blocking layer is formed between the load support portion and the fireproof coating layer and between the fireproof coating layer and the finished wood layer.
The applicant also referred to Patent Document 7 (Japanese Unexamined Patent Publication No. 2019-78044) as a wood-based load support portion, a moisture-blocking layer provided on the outer surface of the wood-based load support portion, and an effervescent layer that covers the moisture-blocking layer. We propose a wood fireproof member that includes a fireproof coating layer and a finished wood layer provided outside the foamable fireproof coating layer, and the finished wood layer is fixed to a connecting member arranged in the fireproof coating layer.

特開2012-136939号公報Japanese Unexamined Patent Publication No. 2012-136939 特開2006-218707号公報Japanese Unexamined Patent Publication No. 2006-218707 特開2005-053195号公報Japanese Unexamined Patent Publication No. 2005-053195 特開2012-180700号公報Japanese Unexamined Patent Publication No. 2012-180700 特開2017-2614号公報Japanese Unexamined Patent Publication No. 2017-2614 特開2018-135643号公報Japanese Unexamined Patent Publication No. 2018-135643 特開2019-78044号公報Japanese Unexamined Patent Publication No. 2019-78044

本発明者等は、木質の耐火構造材として、木質の荷重支持部の外周面に石こう層を設けた木質系の耐火構造材を研究し開発している。本発明は、耐火性を発揮する石こう組成と長大な柱や梁の外周に数センチの石こう層を形成する施工性に優れた石こう組成を明らかにすることと、その石こうを用いた耐火構造材を開発することを目的とする。 The present inventors have researched and developed a wood-based fire-resistant structural material in which a gypsum layer is provided on the outer peripheral surface of a wood-based load-bearing portion as a wood-based fire-resistant structural material. The present invention clarifies a gypsum composition exhibiting fire resistance and a gypsum composition excellent in workability that forms a gypsum layer of several centimeters on the outer circumference of a long column or beam, and a fire resistant structural material using the gypsum. The purpose is to develop.

本発明の主な解決手段は次のとおりである。
1.石膏と水と遅延材及び/又は減水材を含む石こう組成物であって、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm以上となるように調整することを特徴とする木質系耐火被覆用の石こう組成物の調合方法。
2.さらに減水材を重量比3~10を含むことを特徴とする1.記載の木質系耐火被覆用の石こう組成物の調合方法。
3.荷重支持部の外周に耐火被覆層を設けた建物の耐火構造部材(柱、梁)であって、
荷重を負担する木質の荷重支持部と、
荷重支持部の表面に設けられた水分遮断層と、
水分遮断層の外側に設けられたラス金網層と、
ラス金網層の外側に設けられた耐火被覆層と、
を備え、
耐火被覆層は、石膏と水と遅延材及び/又は減水材を含む石こう組成物であって、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm以上に調整された石こう組成物を含む石こう系硬化体で形成されていること、
を特徴とする耐火構造材。
4.耐火被覆層が60mm以上であって、耐火時間が2時間以上であることを特徴とする3.記載の耐火構造材。
5.3.又は4.記載の耐火構造材において、木質の荷重支持部の表面に水分遮断層とラス金網層を形成し、その外周に60mm以上の隙間を開けて型枠を設け、該隙間に石膏と水と遅延材及び/又は減水材を含む石こう組成物であって、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm以上に調整された石こう組成物を充填して、硬化させて建物の耐火構造材を製造する方法。
The main solutions of the present invention are as follows.
1. 1. A gypsum composition containing gypsum, water, a retarder and / or a water reducing material, adjusted so that the curing start time is 30 minutes or more and the density of the cured gypsum is 1.2 g / cm 3 or more. A method for formulating a gypsum composition for a wood-based fireproof coating.
2. 2. Further, the water reducing material is characterized by containing a weight ratio of 3 to 10. The method for formulating a gypsum composition for a wood-based refractory coating as described.
3. 3. It is a fireproof structural member (column, beam) of a building with a fireproof coating layer provided on the outer circumference of the load support part.
A wooden load support that bears the load,
Moisture blocking layer provided on the surface of the load support part,
A lath wire mesh layer provided on the outside of the moisture blocking layer,
A fireproof coating layer provided on the outside of the lath wire mesh layer,
Equipped with
The fireproof coating layer is a gypsum composition containing gypsum, water, a retarding material and / or a water reducing material, and the curing start time is 30 minutes or more, and the density of the cured gypsum body is adjusted to 1.2 g / cm 3 or more. Being formed of a gypsum-based hardened body containing the gypsum composition,
A fireproof structural material characterized by.
4. 3. The fireproof coating layer is 60 mm or more, and the fireproof time is 2 hours or more. The fireproof structural material described.
5.3. Or 4. In the above-mentioned fireproof structural material, a moisture blocking layer and a lath wire mesh layer are formed on the surface of a wooden load support portion, a formwork is provided with a gap of 60 mm or more on the outer periphery thereof, and gypsum, water and a retarding material are provided in the gap. And / or a gypsum composition containing a water reducing material, wherein the gypsum composition having a curing start time of 30 minutes or more and the density of the gypsum cured product adjusted to 1.2 g / cm 3 or more is filled and cured. A method of manufacturing fireproof structural materials for buildings.

1.本発明は、石膏、水、及び遅延材を含む石こうの組成を硬化開始時間30分以上、石こう硬化体の密度を1.2g/cm以上に調整することにより、耐火性と良好な施工性を実現できる。
2.硬化開始時間30分以上、硬化体の密度1.2g/cm以上の石こう組成は、重量比で石膏:水:遅延材(:減水材)=100:30~50:0.01~1.0(:3~10)が適切である。遅延材は、0.03~0.3重量%が好ましい。特に、遅延材の添加量は0.3重量%で可使時間の確保には十分であって、それ以上添加する必要性は小さい。
この発明によれば、耐火被覆層を形成する石こう硬化体を、石膏、水、遅延材に必要に応じて減水材を追加し、調合後に攪拌することで、硬化開始時間に影響を及ぼす水分量を攪拌過程で所定量に調整することが可能となる。この発明によって、目標とする密度、硬化開始時間を適宜設定できることとなる。
柱や梁などの構造材は、3m以上の長さがあって、薄い石こう層を設けることとなるので、準備時間など含めると硬化開始前のハンドリングできる時間として、製造現場として30分以上確保することが必要となる。
3.荷重支持部の外周に数センチの充填用の隙間を設けた型枠に、石こう組成物を充填して密度1.2g/cm以上の石こう層を形成した耐火構造材を製造することができる。柱材や梁材を木質系の耐火構造部材として構築することで、木材を主要な荷重支持材として利用できる。水分遮断層を設けることにより、30~50%の水を含有する充填された石こう組成物からの水分が木質層に移行しないので、木質層の膨潤が防止され、石こうが水和硬化する水分量が局所的に変化して石こうの硬化及び材質のバラツキが発生することを防止することができる。
4.この発明によれば、石膏、水、及び遅延材を所定の重量比で調合し、攪拌後に充填して硬化させた石こう硬化体を形成して耐火被覆層を形成することで、必要な耐火性能を満足する密度を確保でき、かつ液状の石こうが硬化を始める時間の閾値30分以上を確保できる。よって、耐火被覆層を石こう硬化体で形成できるために、木質の荷重支持部の横断面が矩形状や円形状であっても木質の荷重支持部と耐火被覆層とが密着された木質系の耐火構造部材が実現可能である。本発明の耐火構造材は、2時間以上の耐火性能を発揮できる。
5.本発明の木質系耐火構造部材は、荷重支持部の表面に水分遮断層とラス金網層が設けられ、その外側に石こう組成物を充填して石こう層が形成される。水分遮断層が、荷重支持部である木質材へ水分が移行することを防止するとともに、石こう組成物中の水分濃度が保持されて硬化した石こう層が均一にできる。さらに、ラス金網によって石こうの付着を確保している。このラス金網は石こう層の表面にも設けることができ、表面側のラス金網層は石こう層が熱被ばくによって、干割れして脱落することを防止することができる。本発明は、最外層に燃代層となる木材層を必要としない耐火構造部材であるので、付着や火災に直接接する被ばく対策上、ラス金網を用いることは有用である。
1. 1. The present invention adjusts the composition of gypsum containing gypsum, water, and retarder to a hardening start time of 30 minutes or more and the density of the hardened gypsum to 1.2 g / cm 3 or more to achieve fire resistance and good workability. Can be realized.
2. 2. Gypsum composition with a curing start time of 30 minutes or more and a cured body density of 1.2 g / cm 3 or more is based on a weight ratio of gypsum: water: retarding material (: water reducing material) = 100: 30 to 50: 0.01 to 1. 0 (: 3 to 10) is appropriate. The delay material is preferably 0.03 to 0.3% by weight. In particular, the amount of the retarder added is 0.3% by weight, which is sufficient for securing the pot life, and the need for further addition is small.
According to the present invention, the hardened gypsum forming the fire-resistant coating layer is added with a water-reducing material as needed to gypsum, water, and a retarding material, and stirred after preparation to affect the curing start time. Can be adjusted to a predetermined amount in the stirring process. According to the present invention, the target density and the curing start time can be appropriately set.
Structural materials such as columns and beams have a length of 3 m or more, and a thin gypsum layer will be provided, so if preparation time is included, 30 minutes or more will be secured as a handling time before the start of hardening. Is required.
3. 3. It is possible to manufacture a fire-resistant structural material in which a gypsum composition is filled in a formwork having a gap for filling of several centimeters on the outer periphery of the load-bearing portion to form a gypsum layer having a density of 1.2 g / cm 3 or more. .. By constructing pillars and beams as wood-based fireproof structural members, wood can be used as the main load-bearing material. By providing the water blocking layer, the water from the filled gypsum composition containing 30 to 50% of water does not transfer to the wood layer, so that the swelling of the wood layer is prevented and the amount of water that the gypsum is hydrated and hardened. Can be prevented from locally changing to cause hardening of gypsum and variation in material.
4. According to the present invention, gypsum, water, and a retarding material are mixed in a predetermined weight ratio, and after stirring, they are filled and hardened to form a hardened gypsum body to form a fireproof coating layer, thereby forming a required fireproof performance. It is possible to secure a density that satisfies the above, and a threshold of 30 minutes or more for the time when the liquid gypsum starts to harden. Therefore, since the fire-resistant coating layer can be formed of a hardened gypsum, even if the cross section of the wood-based load-bearing portion is rectangular or circular, the wood-based load-bearing portion and the fire-resistant coating layer are in close contact with each other. Fireproof structural members are feasible. The fire-resistant structural material of the present invention can exhibit a fire-resistant performance of 2 hours or more.
5. In the wood-based fireproof structural member of the present invention, a moisture blocking layer and a lath wire mesh layer are provided on the surface of a load-bearing portion, and a gypsum composition is filled on the outside thereof to form a gypsum layer. The moisture blocking layer prevents moisture from migrating to the wood material which is the load supporting portion, and the moisture concentration in the gypsum composition is maintained to form a hardened gypsum layer uniformly. Furthermore, the adhesion of gypsum is secured by the lath wire mesh. This lath wire mesh can also be provided on the surface of the gypsum layer, and the lath wire mesh layer on the surface side can prevent the gypsum layer from drying up and falling off due to heat exposure. Since the present invention is a fire-resistant structural member that does not require a wood layer as a fuel allowance layer as the outermost layer, it is useful to use a lath wire mesh as a measure against radiation exposure that comes into direct contact with adhesion or fire.

耐火構造材の例を示す図Diagram showing an example of fireproof structural material 木柱表面の対角位置に関する表面最高温度を示す図The figure which shows the surface maximum temperature about the diagonal position of the wooden pillar surface 木柱表面の対辺位置に関する表面最高温度を示す図The figure which shows the surface maximum temperature about the opposite side position of the wooden pillar surface 石こうの熱伝導率を示す図Diagram showing the thermal conductivity of gypsum 石こうの比熱を示す図Figure showing the specific heat of gypsum 実験1の結果とチューニングした熱定数での解析結果との比較を示す図The figure which shows the comparison between the result of Experiment 1 and the analysis result with the tuned thermal constant. 木柱表面の温度を示す図Figure showing the temperature of the surface of the wooden pillar 石こう密度(1.4g/cm3)での木柱断面温度分布を示す図Figure showing the cross-sectional temperature distribution of wooden pillars at gypsum density (1.4 g / cm 3 ) 耐火構造材の実施例を示す図The figure which shows the example of the fire-resistant structural material 実施例の耐火構造材の施工例を示す図The figure which shows the construction example of the fireproof structural material of an Example 耐火試験 加熱温度変化を示す図Fire resistance test Figure showing changes in heating temperature 耐火試験 荷重支持部の表面温度変化を示す図Fire resistance test The figure showing the surface temperature change of the load support part

<発明の概略>
本発明は、木質系の耐火構造材の製造に用いる石こう系の組成物に関する発明である。
建築分野において、石こうは板体が一般的に耐火材料として用いられている。耐火性の観点から大型建築の構造材として木材の利用は困難であったが、石こうやモルタルなどの不燃材で木材を被覆して、耐火性を向上させる方法も提案されている。
火災による構造材の崩壊防止のため、積載荷重に応じて材料の許容温度がある。木造材では260℃程度になる。本発明者等は、木質系荷重支持部の周囲に石こう層を設けることにより、木材の温度を260℃以下に抑えることができる耐火構造材(図1参照)を提案している。石膏は100℃で熱分解を始め、結晶水を放出するので、この現象を利用して、木材の温度上昇を抑制している。
大型の建物に用いられる木製の柱や梁は、積載荷重などの強度を満足するには、太さ50cm以上、長さ3~10m程度の角材や円柱材が必要で、その周囲に石こう被覆層を60mm以上形成する必要がある。
<Outline of the invention>
The present invention relates to a gypsum-based composition used for producing a wood-based fire-resistant structural material.
In the field of construction, gypsum plate is generally used as a refractory material. Although it was difficult to use wood as a structural material for large buildings from the viewpoint of fire resistance, a method of covering the wood with a non-combustible material such as gypsum or mortar to improve fire resistance has also been proposed.
In order to prevent the structural material from collapsing due to a fire, there is an allowable temperature of the material according to the load. For wooden materials, the temperature is about 260 ° C. The present inventors have proposed a fireproof structural material (see FIG. 1) capable of suppressing the temperature of wood to 260 ° C. or lower by providing a gypsum layer around a wood-based load support portion. Since gypsum begins to thermally decompose at 100 ° C. and releases water of crystallization, this phenomenon is used to suppress the temperature rise of wood.
For wooden columns and beams used in large buildings, square timbers and columns with a thickness of 50 cm or more and a length of about 3 to 10 m are required to satisfy the strength such as load capacity, and a gypsum covering layer is required around them. It is necessary to form 60 mm or more.

水と混ぜて攪拌した流動性のある石こうは短時間に硬化していまい、狭く長い隙間に充填する建築構造材には向いていない。水を多く添加すると硬化開始時間が長くなることは知られているが、耐火性への影響は不明であった。
本発明は、耐火性に影響する石こうの密度を明らかにし、木質系荷重支持部の外周に形成する石こう層の施工性(充填作業などに要する可使時間)を満足できる石こうの検討を行った。
検討の結果、石こう密度は1.2g/cm以上必要であり、石こうの硬化開始時間は30分以上必要であることが判明した。
本発明では、この密度と硬化開始時間を満足する石こうの組成を提案する。
その石こうの組成は、石膏:水:遅延材が重量比において、100:30~50、:0.01~1.0である。遅延材は、好ましくは0.03~0.3重量%である。さらに、減水材を重量比3~10の範囲で含むことが望ましい。
この石こう組成物を混合攪拌して、型枠で覆った木質系荷重支持部の隙間に充填して、硬化させて耐火構造材を製造する。3m以上の長さを有する柱や梁の表面に60~90mmの厚さにむらなく被覆するには、長時間流動性を確保する必要がある。
Fluid gypsum mixed with water and agitated will harden in a short time and is not suitable for building structural materials that fill narrow and long gaps. It is known that the curing start time becomes longer when a large amount of water is added, but the effect on fire resistance is unknown.
The present invention clarified the density of gypsum that affects fire resistance, and investigated gypsum that can satisfy the workability (usable time required for filling work, etc.) of the gypsum layer formed on the outer periphery of the wood-based load bearing portion. ..
As a result of the examination, it was found that the gypsum density should be 1.2 g / cm 3 or more, and the gypsum hardening start time should be 30 minutes or more.
The present invention proposes a gypsum composition that satisfies this density and curing start time.
The composition of the gypsum is 100: 30 to 50,: 0.01 to 1.0 in terms of weight ratio of gypsum: water: retarder. The delay material is preferably 0.03 to 0.3% by weight. Further, it is desirable to include the water reducing material in the range of the weight ratio of 3 to 10.
This gypsum composition is mixed and stirred, filled in the gaps of the wood-based load-bearing portion covered with a formwork, and cured to produce a fireproof structural material. In order to evenly cover the surface of columns and beams having a length of 3 m or more with a thickness of 60 to 90 mm, it is necessary to ensure long-term fluidity.

例えば、500cm長、60cm角、石こう層65mmの柱を想定すると、充填石こう流動物が約900リットルとなり、準備する石こう流動物は約1mとなり、30分以内に充填するには、充填速度30リットル/分が必要になる。柱の全面にむらなく石こうを被覆する必要があるので、調合時間及び十分な作業時間が必要となる。さらに、混合装置に付着あるいは残存した石こう組成物が硬化する前に清掃して、次回に備える必要があることを考慮すると、調合後の硬化開始時間は、さらに長い時間が必要になる。 For example, assuming a pillar with a length of 500 cm, a square of 60 cm, and a gypsum layer of 65 mm, the filled gypsum fluid is about 900 liters, the gypsum fluid to be prepared is about 1 m 3 , and the filling speed is 30 to fill within 30 minutes. Requires liters / minute. Since it is necessary to evenly cover the entire surface of the pillar with gypsum, preparation time and sufficient working time are required. Further, considering that the gypsum composition adhering to or remaining on the mixing device needs to be cleaned before it hardens and prepared for the next time, the hardening start time after the preparation needs to be longer.

なお用語について次のように使用する。
「石膏」は化合物名称として、「石こう」は硬化体を示す。「石こう組成物」は、「石膏、水、遅延材、減水材」などの石こう硬化体の組成を示す。「石こう組成物」を攪拌した流動物を「石こう流動物」という。
The terms are used as follows.
"Gypsum" is a compound name, and "gypsum" is a cured product. The "gypsum composition" indicates the composition of a hardened gypsum such as "gypsum, water, retarder, and water reducing material". The fluid obtained by stirring the "gypsum composition" is called "gypsum fluid".

<耐火構造材について>
本発明の耐火構造材は、木質系の荷重支持部の周囲に石こう層を形成して、耐火性を備えた柱や梁などの構造材である。
荷重支持部は、一本の樹木でも良いが、強度等の性質をそろえることができ、大きさも自由に設計できる集成材が適している。集成材を構成する樹種は、杉、桧、松、米桧、米松など一般に利用されている樹種を利用できる。
石こう層は、建築耐火基準をクリアする層厚を設ける。現状では、検討した結果、本発明では、2時間耐火をクリアするには、約60~80mm程度設けることが必要であることが判明した。
本発明では、耐火構造として、石こう層の外側に燃代層を設ける必要がない。ただし、鉄筋コンクリート柱のように外装材を設けることができることは、一般建築材と同様である。
また、本発明の耐火構造材では、荷重支持部の周囲に遮水材、付着材などを設けて、その外周に石こう層を形成することによって、荷重支持部へ水分が移行することを防止し、荷重支持部への石こうの付着性を高めることができる。
<About fireproof structural materials>
The fire-resistant structural material of the present invention is a structural material such as a column or a beam having fire resistance by forming a gypsum layer around a load-bearing portion of a wooden system.
The load-bearing part may be a single tree, but laminated lumber that can have properties such as strength and can be freely designed in size is suitable. As the tree species constituting the laminated lumber, commonly used tree species such as cedar, cypress, pine, rice cypress, and rice pine can be used.
The gypsum layer shall have a layer thickness that clears the building fire resistance standards. At present, as a result of examination, it has been found that in the present invention, it is necessary to provide about 60 to 80 mm in order to clear the fire resistance for 2 hours.
In the present invention, as a fireproof structure, it is not necessary to provide a fuel allowance layer on the outside of the gypsum layer. However, it is the same as general building materials that exterior materials can be provided like reinforced concrete columns.
Further, in the fireproof structural material of the present invention, a water-impervious material, an adhesive material, or the like is provided around the load-bearing portion, and a gypsum layer is formed on the outer periphery thereof to prevent moisture from migrating to the load-bearing portion. , It is possible to improve the adhesion of gypsum to the load support part.

<組成要素について>
1.石膏
石膏は、医療、建築・土木分野などで幅広く使用されている材料であって、半水石膏などの種類の石膏が使用できる。
石こうは加熱されると,結晶水の分解及び水分の蒸発による潜熱で吸熱効果が働き、約100℃~120℃の範囲で温度上昇が抑制される。
<Composition elements>
1. 1. Gypsum Gypsum is a material widely used in the fields of medicine, construction, civil engineering, etc., and types of gypsum such as semi-hydrated gypsum can be used.
When gypsum is heated, it has an endothermic effect due to the latent heat generated by the decomposition of water of crystallization and the evaporation of water, and the temperature rise is suppressed in the range of about 100 ° C to 120 ° C.

2.水
水は、水道水、工業用水など通常の水を使用することができる。
2. 2. As the water, ordinary water such as tap water and industrial water can be used.

3.遅延材
遅延材は、石膏の硬化遅延のために使用される。アミノ酸、クエン酸、ホウ砂などを使用することができる。
3. 3. Delay material Delay material is used to delay the curing of gypsum. Amino acids, citric acid, borax and the like can be used.

4.減水材
減水材は、石こう打設時の流動性向上のために使用される。ナフタレン、スルホン酸などを使用することができる。
4. Water-reducing material Water-reducing material is used to improve the fluidity during gypsum placement. Naphthalene, sulfonic acid and the like can be used.

<試験例>
石膏、水、遅延材、減水材、遅延材を表1に示す組成に配合した石こうについて、硬化開始時間と密度を評価した。
使用した材料は次のとおりである。
石膏:半水石こうβ型 水;水道水
減水材:ナフタレン系減水材
遅延材:アミノ酸系遅延材
<Test example>
The curing start time and density were evaluated for gypsum in which gypsum, water, retarding material, water reducing material, and retarding material were blended into the composition shown in Table 1.
The materials used are as follows.
Gypsum: Semi-water gypsum β-type water; Tap water Water reduction material: Naphthalene-based water reduction material Delay material: Amino acid-based delay material

Figure 2022089421000002
Figure 2022089421000002

(1)調合例1、2は、水の比率が50重量%では、減水材を添加しても、硬化開始時間が20分以内と、充填施工には硬化が早すぎて不適当である。
(2)この試験した遅延材を0.1重量%以上添加しても、硬化開始時間の延長には影響しない。
(1) Formulation Examples 1 and 2 are unsuitable for filling work because the curing start time is within 20 minutes even if the water reducing material is added when the ratio of water is 50% by weight.
(2) Even if 0.1% by weight or more of this tested retarder is added, it does not affect the extension of the curing start time.

<解析確認について>
試験結果に基づいて、さらに、密度と硬化性能について解析を行った。
木柱端の対辺位置、木柱端の対角位置での最高温度を図2、3に示す。
図2から対角温度が260℃以下となる石こうの密度は1.2g/cm以上、図3から対辺温度が260℃以下となる石こう密度は約0.9以上となる。この解析によっても、石こう密度が1.2g/cm以上必要であることが明らかとなった。
<About analysis confirmation>
Based on the test results, further analysis was performed on density and curing performance.
Figures 2 and 3 show the maximum temperature at the opposite side of the wooden pillar end and the diagonal position of the wooden pillar end.
From FIG. 2, the density of gypsum having a diagonal temperature of 260 ° C. or less is 1.2 g / cm 3 or more, and from FIG. 3, the density of gypsum having a diagonal temperature of 260 ° C. or less is about 0.9 or more. This analysis also revealed that the gypsum density should be 1.2 g / cm 3 or more.

<解析について>
1.解析について
石こうで被覆した木柱の温度予測を熱伝導解析により実施し、石こう密度の相違が木柱表面温度に与える影響を検討する。検討方針は以下の通りとする。
(1)加熱実験を実施した石こう被覆60mmの試験体から、石こうの熱定数を計測する。その石こう被覆60mmの実験試験体の熱定数に基づき、解析対象の木柱の石こう厚さ65mmにおける熱定数を推定する。
(2)解析対象の木柱は、石こう被覆厚さを65mmとし、石こうの比重(密度1.2g/cm3)を計算変数として、石こうの密度と木材表面温度との関係を検討する。
(3)石こう厚さ65mm(密度1.33g/cm3)の実験結果(実験2)と、石こう厚さ65mmの計算結果(密度1.2g/cm3)とを比較し、解析の妥当性を検討する。
<About analysis>
1. 1. About the analysis The temperature of the wooden pillar covered with gypsum is predicted by heat conduction analysis, and the effect of the difference in gypsum density on the surface temperature of the wooden pillar is examined. The examination policy is as follows.
(1) The thermal constant of gypsum is measured from a test piece having a gypsum coating of 60 mm in which a heating experiment was carried out. Based on the thermal constant of the experimental test piece having a gypsum coating of 60 mm, the thermal constant of the gypsum thickness of the wooden pillar to be analyzed is estimated at 65 mm.
(2) For the wooden pillar to be analyzed, the gypsum coating thickness is 65 mm, and the relationship between the gypsum density and the wood surface temperature is examined using the gypsum specific gravity (density 1.2 g / cm 3 ) as a calculation variable.
(3) The validity of the analysis was examined by comparing the experimental results (experiment 2) with a stone thickness of 65 mm (density 1.33 g / cm 3 ) and the calculation results (density 1.2 g / cm 3 ) with a stone thickness of 65 mm. do.

2.熱伝導解析方法
2.1 熱伝導解析に使用した熱定数
木柱のサイズを□120mmとし、石こう厚さを60mmとした試験体に対して、石こうの熱定数をチューニングする。
計算で使用する木柱の熱定数は、熱伝導率を0.107W/mK、比熱を1.356kJ/kgK、密度を0.37g/cm3とし、一定とした。また、木材の含水率を10%とした。
計算で使用する石こうの熱伝導率を図4、比熱を図5に示す。密度は、試験体から実測した1.22g/cm3とした。
2. 2. Thermal conduction analysis method 2.1 Thermal constant used for thermal conduction analysis The thermal constant of gypsum is tuned for a test piece with a wooden pillar size of □ 120 mm and a gypsum thickness of 60 mm.
The thermal constants of the wooden columns used in the calculation were constant, with the thermal conductivity set to 0.107 W / mK, the specific heat set to 1.356 kJ / kgK, and the density set to 0.37 g / cm 3 . The moisture content of wood was set to 10%.
The thermal conductivity of gypsum used in the calculation is shown in FIG. 4, and the specific heat is shown in FIG. The density was 1.22 g / cm 3 measured from the test piece.

2.2 試験結果に対する蒸発潜熱のチューニング
石こうは加熱されると、結晶水の分解及び水分の蒸発による潜熱で吸熱効果が働き、約100℃~120℃の範囲で温度上昇が抑制される。
そこで、石こうの潜熱量を水の蒸発潜熱で表現し、その蒸発潜熱量を変数としてパラメトリックスタディーを実施し、実験1の木柱表面温度が概ね一致するように検討した。
想定した石こうの蒸発潜熱量を質量比で20%とした場合の結果を図6に示す。実験結果をチューニングしたこれらの熱定数を使用し、以降の解析を実施する。
2.2 Tuning of latent heat of vaporization for test results When gypsum is heated, the endothermic effect is exerted by the latent heat of decomposition of water of crystallization and evaporation of water, and the temperature rise is suppressed in the range of about 100 ° C to 120 ° C.
Therefore, the latent heat of vaporization was expressed by the latent heat of vaporization of water, and a parametric study was conducted with the latent heat of vaporization as a variable, and it was examined so that the surface temperature of the wooden pillar in Experiment 1 would be almost the same.
FIG. 6 shows the results when the assumed latent heat of vaporization of gypsum is 20% by mass ratio. Subsequent analyzes will be carried out using these thermal constants tuned from the experimental results.

3.石こうの密度による木柱温度への影響
木柱(□120mm)および石こう厚さを65mmとし、上記の熱定数を使用して(石こうの密度以外)、石こうの密度を計算変数として熱伝導解析を実施する。なお、石っこうの厚さに基づく熱履歴の解析なので、木柱の大きさには関係しないので、120mm角の柱材を試験体とした。
木柱表面温度の時刻歴を図7、石こうの密度と木柱表面の最高温度との関係を図2、3に示す。また、熱伝導解析結果の一例として、石こうの密度が1.4g/cm3の断面温度分布を図8に示す。
図7に示すように、石こうの密度が大きくなるに従い、木柱表面の最高温度が低下する事が分かる。これは、主に以下の理由による。
・個体の熱伝導では熱伝導率λを比熱cと密度ρで除した熱拡散率(=λ/(ρc))が小さいほど熱を伝えにくい。よって、石こうの密度が大きい程、木材表面温度は低くなる。
・石こうでは結晶水を分解させるために熱量を必要とする。石こうの密度が大きいほどこの潜熱に大きな熱量を要するため、石こうの密度が大きい程、木材表面温度は低くなる。
3. 3. Effect of gypsum density on gypsum temperature The heat conduction analysis is performed using the gypsum density as a calculation variable, using the above thermal constants (other than gypsum density) with the gypsum thickness (□ 120 mm) and gypsum thickness set to 65 mm. implement. Since the analysis of the heat history is based on the thickness of the stone, it is not related to the size of the wooden pillar, so a 120 mm square pillar material was used as the test piece.
The time history of the wooden pillar surface temperature is shown in FIG. 7, and the relationship between the gypsum density and the maximum temperature of the wooden pillar surface is shown in FIGS. 2 and 3. As an example of the heat conduction analysis result, FIG. 8 shows a cross-sectional temperature distribution in which the density of gypsum is 1.4 g / cm 3 .
As shown in FIG. 7, it can be seen that the maximum temperature of the surface of the wooden pillar decreases as the density of gypsum increases. This is mainly due to the following reasons.
-In the heat conduction of an individual, the smaller the thermal diffusivity (= λ / (ρc)) obtained by dividing the thermal conductivity λ by the specific heat c and the density ρ, the more difficult it is to transfer heat. Therefore, the higher the density of gypsum, the lower the wood surface temperature.
・ Gypsum requires a large amount of heat to decompose water of crystallization. The higher the density of gypsum, the larger the amount of heat required for this latent heat. Therefore, the higher the density of gypsum, the lower the wood surface temperature.

試験体の温度分布が示された図8によると、表面温度が800℃あるいは1000℃になっても、荷重支持部の木材表面は260℃以下となっており、荷重支持部の損傷、劣化が生じず、十分な強度を保っており、耐火性があることがわかる。 According to FIG. 8 showing the temperature distribution of the test piece, even if the surface temperature reaches 800 ° C. or 1000 ° C., the wood surface of the load-bearing part is 260 ° C. or less, and the load-bearing part is damaged or deteriorated. It can be seen that it does not occur, maintains sufficient strength, and has fire resistance.

4.計算結果と実験結果との比較
実験2で、木柱□120mm、石こう厚さ65mmの載荷加熱実験を実施した。実験結果と解析結果の比較を図2、3に示す。
解析結果は、実験結果と概ね一致している。
4. Comparison of calculation results and experimental results In Experiment 2, a loading heating experiment with a wooden pillar □ 120 mm and a gypsum thickness of 65 mm was carried out. A comparison of the experimental results and the analysis results is shown in FIGS.
The analysis results are generally in agreement with the experimental results.

図9に、柱材である耐火構造材の横断面例を示す。(a)は分解図、(b)は横断面を示している。
荷重を負担するスギの集成材からなる荷重支持部2と、荷重支持部2の外周面に設けられた水分遮断層3とラス金網5と、ラス金網5の外側に設けられた石こう層4と、石こう層4の表面側に設けられた第2ラス金網6と、石こう層4を貫通して一端が荷重支持部2の表面に接合し、他端が第2ラス金網6に接合する連結材7および表面塗装8から構成されている。
なお、耐火構造材である柱材の上下端は、スラブや梁に挿入されるので、石こう層は設けられない。
なお、荷重支持部に熱電対を取り付けた耐火構造材1を用いて、加熱試験を行い耐火性能を確認を行った。
FIG. 9 shows an example of a cross section of a fireproof structural material which is a pillar material. (A) is an exploded view, and (b) is a cross section.
A load support portion 2 made of a laminated material of cedar that bears a load, a moisture blocking layer 3 and a lath wire mesh 5 provided on the outer peripheral surface of the load support portion 2, and a gypsum layer 4 provided on the outside of the lath wire mesh 5. , A connecting material that penetrates the gypsum layer 4 and joins the second lath wire mesh 6 provided on the surface side of the gypsum layer 4 to the surface of the load support portion 2 and the other end to the second lath wire mesh 6. It is composed of 7 and surface coating 8.
Since the upper and lower ends of the pillar material, which is a fireproof structural material, are inserted into the slab or the beam, no gypsum layer is provided.
A heating test was conducted using the fire-resistant structural material 1 having a thermocouple attached to the load-bearing portion to confirm the fire-resistant performance.

なお、連結材7は、荷重支持部2の表面に直に接合する必要はなく、表面側のラス金網6を支えることができる接合強度を得ることができれば水分遮断層3を介して設けることもできる。
また、ラス金網6は付着層に、第2ラス金網は第2付着層に該当する。連結材7には乾燥した石こうが用いられ、水分遮断層3はキシラデコール コンゾランによって形成されている。
The connecting material 7 does not need to be directly bonded to the surface of the load supporting portion 2, and may be provided via the moisture blocking layer 3 if the bonding strength capable of supporting the lath wire mesh 6 on the surface side can be obtained. can.
Further, the lath wire mesh 6 corresponds to the adhesive layer, and the second lath wire mesh corresponds to the second adhesive layer. Dried gypsum is used for the connecting material 7, and the moisture blocking layer 3 is formed of xyladecol conzorane.

本実施例の柱材の仕様は次のとおりである。
全長:3300mm、縦横:250mm角、
荷重支持部;120mm角、(なお、本実施例では、耐火性能を確認するためのものであるので、荷重支持部の大きさは120mm角で十分であるとした)
耐火被覆層:石こう層厚65mm(石こう100重量部、水45重量部、減水材3重量部、遅延材0.1重量部)、石こう密度1.33g/cm
連結材:50mm角、65mm長、
水分遮断層:キシラデコール コンゾラン(塗布量250g/m)、
付着層(第2付着層):ラス金網、
表面塗装:キシラデコールインテリアファイントップコート(塗布量500g/m
The specifications of the pillar material of this embodiment are as follows.
Overall length: 3300 mm, length and width: 250 mm square,
Load-bearing part; 120 mm square (In this embodiment, since it is for confirming fire resistance, the size of the load-bearing part is assumed to be 120 mm square).
Fire-resistant coating layer: Gypsum layer thickness 65 mm (100 parts by weight of gypsum, 45 parts by weight of water, 3 parts by weight of water-reducing material, 0.1 parts by weight of delay material), gypsum density 1.33 g / cm 3
Connecting material: 50 mm square, 65 mm long,
Moisture blocking layer: Xyladecol Conzolan (coating amount 250 g / m 2 ),
Adhesive layer (second adherent layer): Lath wire mesh,
Surface coating: Xyla decor interior fine top coat (application amount 500g / m 2 )

図10に本実施例の製造工程を示す。
第1工程:荷重支持部2を準備し、外周面にキシラデコール コンゾランを250g/m塗布して、水分遮断層3を形成する。
なお、試験用に荷重支持部の一部に溝を切って、熱電対を設置したのちに水分遮断層を形成する。
第2工程:ラス網を荷重支持部2の表面にステープラーで取り付けて付着層を形成する。
第3工程:荷重支持部2の表面に接着剤で連結材7を取り付ける。この場合、部分的にラス金網を切除して連結材を荷重支持部に接着する。
第4工程:連結材7の外端に第2のラス金網6とその外周に型枠9を設置する。第2ラス金網は型枠9内面に連結材部分を切除して仮接着してある。連結材7は型枠用のスペーサとしても機能する。
第5工程:石こうを充填して硬化させて耐火被覆層4を形成し、型枠9を脱型する。
第6工程:脱型後の表面にキシラデコールインテリアファイントップコートを塗布量500g/mを塗布して、表面塗装8を形成して仕上げ層とする。
FIG. 10 shows the manufacturing process of this embodiment.
First step: The load support portion 2 is prepared, and 250 g / m 2 of xyladecol conzorane is applied to the outer peripheral surface to form the moisture blocking layer 3.
A groove is cut in a part of the load support portion for the test, a thermocouple is installed, and then a moisture blocking layer is formed.
Second step: A lath net is attached to the surface of the load support portion 2 with a stapler to form an adhesive layer.
Third step: The connecting material 7 is attached to the surface of the load supporting portion 2 with an adhesive. In this case, the lath wire mesh is partially cut off and the connecting material is adhered to the load supporting portion.
Fourth step: A second lath wire mesh 6 is installed at the outer end of the connecting member 7, and a formwork 9 is installed on the outer periphery thereof. The second lath wire mesh is temporarily bonded to the inner surface of the mold 9 by cutting off the connecting material portion. The connecting material 7 also functions as a spacer for the formwork.
Fifth step: Gypsum is filled and hardened to form a refractory coating layer 4, and the formwork 9 is demolded.
Sixth step: A coating amount of 500 g / m 2 is applied to the surface after demolding to form a surface coating 8 to form a finishing layer.

<耐火試験>
この実施例で作成した柱材を試験体として、耐火試験を行った。耐火試験は、(一般財団)建材試験センターの防耐火性能試験・評価業務方法書の規定に準じて行った。
加熱炉の加熱温度変化を図11に示す。
加熱は、120分間の間に1000℃以上に達するように加熱し、その後480分まで放熱した。加熱温度は実線表記、放熱中の温度は点線で表記した。
試験体の温度は、荷重支持部である木材の角部と辺央部を測定した。複数個所測定したが、同様の結果であったので、それぞれ1か所の温度変化を図12に示す。
<Fire resistance test>
A fire resistance test was conducted using the pillar material prepared in this example as a test body. The fire resistance test was conducted in accordance with the provisions of the fire resistance performance test / evaluation work method manual of the Building Materials Testing Center (General Foundation).
FIG. 11 shows a change in the heating temperature of the heating furnace.
The heating was carried out so as to reach 1000 ° C. or higher within 120 minutes, and then heat was dissipated until 480 minutes. The heating temperature is indicated by a solid line, and the temperature during heat dissipation is indicated by a dotted line.
The temperature of the test piece was measured at the corners and the center of the wood, which is the load bearing. Although the measurements were made at a plurality of locations, the same results were obtained, so the temperature change at each location is shown in FIG.

30分後加熱温度は800℃以上となっているが、試験体の角部の温度は100℃であり、さらに120分にかけて加熱温度は1100℃以上に達するが、試験体の温度は100℃を維持している。その後試験体の角部の温度は300分で約200℃に達して、その後緩やかに低下して150℃となった。
試験体の辺央部の温度は、30分後に100℃、120分でも100℃を維持し、その後上昇して330分で約175℃に達し、その後緩やかに低下して、150℃となった。
特に、加熱30分で試験体の温度が100℃に達すると、その後しばらく100℃であって、加熱後120分以上を維持していることは、石こうの断熱と石こうに含まれる結晶水が蒸発する気化熱によって、試験体の表面温度の上昇が防止されていることが確認された。
加熱後の試験体の表面には、浅いひびがみられたが、石こうは剥落しておらず、切断した切断面には、荷重支持部に達するひび割れは観察されなかった。切断面観察でも、荷重支持部は炭化していなかった。
この結果、この試験体は、十分に2時間耐火を満足することを確認することができた。
なお、石こう層を70mmとした試験体でも同様の耐火試験を行った結果、試験体の100℃維持時間が延びることと、試験体の最高温度が角部も辺央部も175℃以下に抑えられることが、確認できている。
After 30 minutes, the heating temperature is 800 ° C. or higher, but the temperature of the corners of the test piece is 100 ° C., and the heating temperature reaches 1100 ° C. or higher over 120 minutes, but the temperature of the test piece is 100 ° C. Maintaining. After that, the temperature of the corner of the test piece reached about 200 ° C. in 300 minutes, and then gradually decreased to 150 ° C.
The temperature of the central part of the test piece was maintained at 100 ° C. after 30 minutes and 100 ° C. even at 120 minutes, then increased to about 175 ° C. in 330 minutes, and then gradually decreased to 150 ° C. ..
In particular, when the temperature of the test piece reaches 100 ° C in 30 minutes of heating, the temperature is 100 ° C for a while and the temperature is maintained for 120 minutes or more after heating, which means that the heat insulation of the stone and the water of crystallization contained in the stone evaporate. It was confirmed that the heat of vaporization prevented the surface temperature of the test piece from rising.
Shallow cracks were observed on the surface of the test piece after heating, but gypsum was not peeled off, and no cracks reaching the load bearing part were observed on the cut surface. Even when observing the cut surface, the load bearing part was not carbonized.
As a result, it was confirmed that this test piece sufficiently satisfied the fire resistance for 2 hours.
As a result of conducting the same fire resistance test on the test piece with a gypsum layer of 70 mm, the maintenance time of the test piece at 100 ° C was extended, and the maximum temperature of the test piece was suppressed to 175 ° C or less in both the corners and the central part. It has been confirmed that it will be done.

1・・・・・・耐火構造材
2・・・・・・荷重支持部
3・・・・・・水分遮断層
4・・・・・・石こう層
41・・・・湿式耐火被覆材

5・・・・・・付着層
6・・・・・・第2付着層(第2金網層)
7・・・・・・連結材(スペーサ)
71・・・・・乾式耐火被覆材
8・・・・・・表面塗装
9・・・・・・型枠
1 ... Fireproof structural material 2 ... Load support 3 ... Moisture blocking layer 4 ... Gypsum layer 41 ... Wet fireproof coating material

5 ... Adhesive layer 6 ... Second adhesive layer (second wire mesh layer)
7 ... Connecting material (spacer)
71 ・ ・ ・ ・ ・ Dry fireproof coating material 8 ・ ・ ・ ・ ・ ・ Surface coating 9 ・ ・ ・ ・ ・ ・ Formwork

Claims (5)

石膏と水と遅延材及び/又は減水材を含む石こう組成物であって、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm以上となるように調整することを特徴とする木質系耐火被覆用の石こう組成物の調合方法。 A gypsum composition containing gypsum, water, a retarder and / or a water reducing material, adjusted so that the curing start time is 30 minutes or more and the density of the cured gypsum is 1.2 g / cm 3 or more. A method for formulating a gypsum composition for a wood-based fireproof coating. さらに減水材を重量比3~10を含むことを特徴とする請求項1記載の木質系耐火被覆用の石こう組成物の調合方法。 The method for formulating a gypsum composition for a wood-based refractory coating according to claim 1, further comprising a water-reducing material having a weight ratio of 3 to 10. 荷重支持部の外周に耐火被覆層を設けた建物の耐火構造部材(柱、梁)であって、
荷重を負担する木質の荷重支持部と、
荷重支持部の表面に設けられた水分遮断層と、
水分遮断層の外側に設けられたラス金網層と、
ラス金網層の外側に設けられた耐火被覆層と、
を備え、
耐火被覆層は、石膏と水と遅延材及び/又は減水材を含む石こう組成物であって、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm以上に調整された石こう組成物を含む石こう系硬化体で形成されていること、
を特徴とする耐火構造材。
It is a fireproof structural member (column, beam) of a building with a fireproof coating layer provided on the outer circumference of the load support part.
A wooden load support that bears the load,
Moisture blocking layer provided on the surface of the load support part,
A lath wire mesh layer provided on the outside of the moisture blocking layer,
A fireproof coating layer provided on the outside of the lath wire mesh layer,
Equipped with
The fireproof coating layer is a gypsum composition containing gypsum, water, a retarding material and / or a water reducing material, and the curing start time is 30 minutes or more, and the density of the cured gypsum body is adjusted to 1.2 g / cm 3 or more. Being formed of a gypsum-based hardened body containing the gypsum composition,
A fireproof structural material characterized by.
耐火被覆層が60mm以上であって、耐火時間が2時間以上であることを特徴とする請求項3記載の耐火構造材。 The fireproof structural material according to claim 3, wherein the fireproof coating layer is 60 mm or more and the fireproof time is 2 hours or more. 請求項3又は請求項4記載の耐火構造材において、木質の荷重支持部2の表面に水分遮断層とラス金網層を形成し、その外周に60mm以上の隙間を開けて型枠を設け、該隙間に石膏と水と遅延材及び/又は減水材を含む石こう組成物であって、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm以上に調整された石こう組成物を充填して、硬化させて建物の耐火構造材を製造する方法。 In the fireproof structural material according to claim 3 or 4, a moisture blocking layer and a gypsum wire mesh layer are formed on the surface of a wooden load support portion 2, and a formwork is provided on the outer periphery thereof with a gap of 60 mm or more. A gypsum composition containing gypsum, water, a retarding material and / or a water reducing material in the gap, and the hardening start time is 30 minutes or more, and the density of the hardened gypsum is adjusted to 1.2 g / cm 3 or more. A method of filling a composition and curing it to produce a fireproof structural material for a building.
JP2020201799A 2020-12-04 2020-12-04 Method for preparing gypsum composition for wood-based fire-resistant coating Active JP7476447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020201799A JP7476447B2 (en) 2020-12-04 2020-12-04 Method for preparing gypsum composition for wood-based fire-resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201799A JP7476447B2 (en) 2020-12-04 2020-12-04 Method for preparing gypsum composition for wood-based fire-resistant coating

Publications (2)

Publication Number Publication Date
JP2022089421A true JP2022089421A (en) 2022-06-16
JP7476447B2 JP7476447B2 (en) 2024-05-01

Family

ID=81989506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201799A Active JP7476447B2 (en) 2020-12-04 2020-12-04 Method for preparing gypsum composition for wood-based fire-resistant coating

Country Status (1)

Country Link
JP (1) JP7476447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974514A (en) * 2023-01-09 2023-04-18 南京工业大学 Crop gypsum composite material covering plate for improving fire resistance of light wall and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648989B2 (en) 2015-06-12 2020-02-19 株式会社竹中工務店 Wood structural members
JP6621123B1 (en) 2019-04-15 2019-12-18 株式会社工芸社・ハヤタ Building member and method for manufacturing building member
JP2020180443A (en) 2019-04-24 2020-11-05 大成建設株式会社 Fireproof structural member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115974514A (en) * 2023-01-09 2023-04-18 南京工业大学 Crop gypsum composite material covering plate for improving fire resistance of light wall and application thereof

Also Published As

Publication number Publication date
JP7476447B2 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
US9249053B2 (en) Composite wall panel with low thermal conductivity and sufficient strength for structural use
Palomar et al. Lime–cement mortars for coating with improved thermal and acoustic performance
AU2016240394B2 (en) A construction board and a method of manufacture
US20180354849A1 (en) High-performance concrete comprising aerogel pellets
US20100101457A1 (en) Low embodied energy sheathing panels and methods of making same
Li et al. Properties of lightweight concrete composed of magnesia phosphate cement and expanded polystyrene aggregates
JP2022089421A (en) Preparation method of gypsum composition for woody fire resistive covering
JP7369848B2 (en) Fireproof structural components
Beh et al. Development of lightweight fire resistant sandwich panel
JP2016113830A (en) Exterior insulation fireproof wall structure for wood building
FR3026759A1 (en) PREFABRICATED CONCRETE ELEMENT OR INSULATION MORTAR AND METHOD OF MANUFACTURING THE SAME
Walker et al. Influence of the type of binder on the properties of lime-hemp concrete
KR0138273B1 (en) Method of making constructional dry wall panel
JP7393760B2 (en) Cement paste, mortar, method for producing mortar, and fire-resistant wooden structural components
RU2687816C1 (en) Construction slab (versions)
JP7360136B2 (en) Plate-shaped building materials, laminates, and manufacturing methods for plate-shaped building materials
RU2814955C1 (en) Method for forming facade light plaster system
JP6619895B2 (en) Fireproof outer wall structure of wooden building
CN106522462A (en) High-strength high-strain low-heat-conductivity-coefficient thermal-insulation/sound-insulation/fireproof integrated board and preparation method thereof
Zach et al. Development of thermal insulation plasters for insulating and sanitation of building constructions
JP2915800B2 (en) Exterior insulation panels and exterior insulation structures for wooden buildings
JP6849302B2 (en) Lightweight cellular concrete panel
Proskurovskis et al. Energy-efficient expanded clay concrete wall block
Zach et al. DEVELOPMENT OF ADVANCED THERMAL AND ACOUSTIC INSULATION MATERIALS BASED ON FOAM GLASS AGGREGATE
TR2022017823A2 (en) ROUGH PLASTER CONSISTENT OF ORGANIC MATERIALS AND ITS PRODUCTION METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240321

R150 Certificate of patent or registration of utility model

Ref document number: 7476447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150