JP7476447B2 - Method for preparing gypsum composition for wood-based fire-resistant coating - Google Patents
Method for preparing gypsum composition for wood-based fire-resistant coating Download PDFInfo
- Publication number
- JP7476447B2 JP7476447B2 JP2020201799A JP2020201799A JP7476447B2 JP 7476447 B2 JP7476447 B2 JP 7476447B2 JP 2020201799 A JP2020201799 A JP 2020201799A JP 2020201799 A JP2020201799 A JP 2020201799A JP 7476447 B2 JP7476447 B2 JP 7476447B2
- Authority
- JP
- Japan
- Prior art keywords
- gypsum
- fire
- layer
- water
- load
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010440 gypsum Substances 0.000 title claims description 146
- 229910052602 gypsum Inorganic materials 0.000 title claims description 146
- 230000009970 fire resistant effect Effects 0.000 title claims description 58
- 239000000203 mixture Substances 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 8
- 239000002023 wood Substances 0.000 title description 41
- 239000011248 coating agent Substances 0.000 title description 11
- 238000000576 coating method Methods 0.000 title description 11
- 239000000463 material Substances 0.000 claims description 91
- 239000010410 layer Substances 0.000 claims description 72
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 239000011247 coating layer Substances 0.000 claims description 23
- 230000000903 blocking effect Effects 0.000 claims description 9
- 238000009415 formwork Methods 0.000 claims description 9
- 238000011049 filling Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000003638 chemical reducing agent Substances 0.000 claims description 5
- 238000012360 testing method Methods 0.000 description 31
- 238000004458 analytical method Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 239000012790 adhesive layer Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000004566 building material Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 239000011505 plaster Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000218645 Cedrus Species 0.000 description 2
- 241000218691 Cupressaceae Species 0.000 description 2
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 2
- 241000018646 Pinus brutia Species 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000011490 mineral wool Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 235000014466 Douglas bleu Nutrition 0.000 description 1
- 241000218683 Pseudotsuga Species 0.000 description 1
- 235000005386 Pseudotsuga menziesii var menziesii Nutrition 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/24—Structural elements or technologies for improving thermal insulation
- Y02A30/244—Structural elements or technologies for improving thermal insulation using natural or recycled building materials, e.g. straw, wool, clay or used tires
Landscapes
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
Description
本発明は、木質系構造材に対する耐火技術に関する。 The present invention relates to fire resistance technology for wood-based structural materials.
木材は、なじみがある素材であって、古来より住宅などの建築に利用されてきており、戦後造林された森林資源も充実してきている。一方、木材は、可燃性材料であって、単木では品質にばらつきがあることなど建築材料としては使いにくい点がある。
集成材などにして、均一性の高い木質系素材も開発され、大型建築にも利用可能となっている。可燃性対策も各種検討されている。例えば、難燃薬剤を含浸させる方法や難燃材や耐火材で被覆する方法などがある。
一方、平成22年に「公共建築物等における木材の利用の促進に関する法律」が施行されたことに伴い、建築物への木材利用の機運が高まっている。
Wood is a familiar material that has been used since ancient times for the construction of houses and other buildings, and forest resources have been planted since the postwar period, making it an abundant source of wood. However, wood is a flammable material, and there is variation in the quality of individual pieces of wood, making it difficult to use as a building material.
Highly uniform wood-based materials have also been developed, such as laminated lumber, and can be used in large-scale buildings. Various measures against flammability are also being considered. For example, there are methods of impregnating the material with fire-retardant chemicals and methods of covering the material with fire-retardant or fire-resistant materials.
On the other hand, with the enforcement of the "Law for Promoting the Use of Wood in Public Buildings, etc." in 2010, momentum for the use of wood in buildings is growing.
可燃性対策に関する従来の提案をいくつか紹介する。
特許文献1(特開2012-136939号公報)には、荷重支持部の外隅部に難燃化処理材を配置し、米松などの外周材を設けて、耐火性能を向上させる提案がなされている。
特許文献2(特開2006-218707号公報)には、内層集成材と外層集成材をエポキシ樹脂、イソシアネート樹脂、又はウレタン樹脂の接着剤で接合し、かつ内層集成材にレゾルシノール樹脂接着剤を用いた木質系構造材が提案されている。
特許文献3(特開2005-53195号公報)には、荷重支持層の外側にモルタルや金属などの不燃材を配置した複合木質構造材が提案されている。
特許文献4(特開2012-180700号公報)には、木質部の外側に発泡層と金属膜を複数層設ける技術が開示されている。
特許文献5(特開2017-2614号公報)には、荷重支持部と燃代層との隙間に流動状の石こうを上から流し込んで充填し、充填後に石こうが硬化することで燃止層を形成して燃代層の燃焼熱が燃止層に効果的に吸収されるようにした耐火性の木質柱が開示されている。
本出願人は、特許文献6(特開2018-135643号公報)として、荷重支持部と、荷重支持部の周囲に被覆された湿式の耐火被覆層と、耐火被覆層の外側に周設された仕上げ木材層とを備える木質耐火部材であって、ロックウールとセメント、水を主成分とする吹付けロックウール、または白セメント、水酸化アルミニウム、炭酸カルシウムを主成分とする吹付けセラミック系耐火被覆材を湿式耐火被覆材とし、荷重支持部と耐火被覆層との間、および、耐火被覆層と仕上げ木材層との間に、水分遮断層を形成した木質耐火部材を提案している。
本出願人は、また、特許文献7(特開2019-78044号公報)として、木質荷重支持部と、木質荷重支持部の外側面に設けられる水分遮断層と、水分遮断層を被覆する発泡性耐火被覆層と、発泡性耐火被覆層の外側に設けられた仕上げ木材層とを備え、耐火被覆層に配置された連結部材に仕上げ木材層を固定した木質耐火部材を提案している。
Some conventional proposals for flammability countermeasures are introduced below.
Patent Document 1 (JP 2012-136939 A) proposes improving fire resistance by placing a flame retardant material on the outer corners of the load-supporting part and providing an outer periphery material such as Douglas fir.
Patent Document 2 (JP 2006-218707 A) proposes a wood-based structural material in which an inner layer laminated timber and an outer layer laminated timber are joined with an adhesive made of an epoxy resin, an isocyanate resin, or a urethane resin, and a resorcinol resin adhesive is used for the inner layer laminated timber.
Patent Document 3 (JP 2005-53195 A) proposes a composite wooden structural material in which a non-combustible material such as mortar or metal is arranged on the outside of a load-bearing layer.
Patent Document 4 (JP 2012-180700 A) discloses a technique for providing multiple foam layers and metal films on the outside of a wood part.
Patent Document 5 (JP 2017-2614 A) discloses a fire-resistant wooden pillar in which fluid gypsum is poured from above into the gap between the load-bearing part and the fuel substitute layer to fill it, and the gypsum hardens after filling to form a fire-stopping layer so that the combustion heat of the fuel substitute layer is effectively absorbed by the fire-stopping layer.
The present applicant has proposed in Patent Document 6 (JP 2018-135643 A) a wood fire-resistant component comprising a load-supporting part, a wet fire-resistant coating layer covering the periphery of the load-supporting part, and a finishing wood layer provided around the outside of the fire-resistant coating layer, in which the wet fire-resistant coating material is sprayed rock wool containing rock wool, cement, and water as its main components, or a sprayed ceramic fire-resistant coating material containing white cement, aluminum hydroxide, and calcium carbonate as its main components, and in which moisture-blocking layers are formed between the load-supporting part and the fire-resistant coating layer, and between the fire-resistant coating layer and the finishing wood layer.
The present applicant has also proposed in Patent Document 7 (JP 2019-78044 A) a wood fire-resistant component comprising a wood load-supporting part, a moisture-blocking layer provided on the outer surface of the wood load-supporting part, an intumescent fire-resistant coating layer that covers the moisture-blocking layer, and a finishing wood layer provided on the outside of the intumescent fire-resistant coating layer, in which the finishing wood layer is fixed to a connecting member arranged on the fire-resistant coating layer.
本発明者等は、木質の耐火構造材として、木質の荷重支持部の外周面に石こう層を設けた木質系の耐火構造材を研究し開発している。本発明は、耐火性を発揮する石こう組成と長大な柱や梁の外周に数センチの石こう層を形成する施工性に優れた石こう組成を明らかにすることと、その石こうを用いた耐火構造材を開発することを目的とする。 The inventors have been researching and developing a fire-resistant wooden structural material in which a gypsum layer is provided on the outer periphery of the load-bearing part of the wooden structure. The objectives of the present invention are to identify a gypsum composition that exhibits fire resistance and a gypsum composition that is easy to apply and that forms a gypsum layer several centimeters thick on the outer periphery of long columns and beams, and to develop a fire-resistant structural material that uses this gypsum.
本発明の主な解決手段は次のとおりである。
1.荷重支持部の外周に耐火被覆層を設けた建物の耐火構造材であって、
当該耐火構造材は長さ3~10mの柱又は梁であり、
荷重を負担する木質の荷重支持部と、
荷重支持部の表面に設けられた水分遮断層と、
水分遮断層の外側に設けられたラス金網層と、
ラス金網層の外側に設けられた耐火被覆層と、
を備え、
耐火被覆層は、石膏と水と遅延材を含む石こう組成物であって、石膏:水:遅延材が重量比において、100:30~50:0.01~1.0であり、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm3以上に調整された石こう組成物で充填形成されていること、を特徴とする耐火構造材。
2.石こう組成物の組成は、さらに、石膏の重量100に対して、減水材を重量比3~10の範囲で含むことを特徴とする1.の記載の耐火構造材。
3.耐火被覆層が60mm以上であって、耐火時間が2時間以上であることを特徴とする1.または2.に記載の耐火構造材。
4.1.から3.のいずれかに記載の耐火構造材において、木質の荷重支持部の表面に水分遮断層とラス金網層を形成し、その外周に60mm以上の隙間を開けて型枠を設け、該隙間に石膏と水と遅延材を含む石こう組成物であって、石膏:水:遅延材が重量比において、100:30~50:0.01~1.0であり、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm3以上に調整された石こう組成物を充填して、硬化させて耐火被覆層を形成して建物の耐火構造材を製造する方法。
5.石こう組成物の組成は、さらに、石膏の重量100に対して、減水材を重量比3~10の範囲で含むことを特徴とする4.に記載の建物の耐火構造材を製造する方法。
The main solutions of the present invention are as follows.
1. A fire-resistant structural material for a building that has a fire-resistant coating layer on the outer periphery of the load-bearing part,
The fire-resistant structural material is a column or beam with a length of 3 to 10 m,
A wooden load-bearing part that bears the load;
A moisture blocking layer provided on a surface of the load supporting portion;
A wire mesh layer provided on the outside of the moisture blocking layer;
A fire-resistant coating layer provided on the outside of the lath wire mesh layer;
Equipped with
The fire-resistant coating layer is a gypsum composition containing gypsum, water, and a retarder , in which the weight ratio of gypsum:water:retarder is 100:30 to 50:0.01 to 1.0, the hardening start time is 30 minutes or more, and the density of the gypsum hardened body is adjusted to 1.2 g/cm3 or more.
2. The fireproof structural material according to 1., characterized in that the gypsum composition further contains a water-reducing material in a weight ratio of 3 to 10 parts by weight per 100 parts by weight of gypsum.
3. The fireproof structural material according to 1. or 2. , characterized in that the fireproof coating layer is 60 mm or more in thickness and has a fireproof time of 2 hours or more.
4. A method for producing a fire-resistant structural material for a building, comprising forming a moisture blocking layer and a lath wire mesh layer on the surface of a wooden load-bearing part in the fire-resistant structural material according to any one of 1. to 3., setting a formwork around the periphery of the formed part with a gap of 60 mm or more, filling the gap with a gypsum composition containing gypsum, water and a retarder , wherein the weight ratio of gypsum:water:retarder is 100:30 to 50:0.01 to 1.0, the hardening start time is 30 minutes or more and the density of the gypsum hardened body is adjusted to 1.2 g/cm3 or more, and hardening the composition to form a fire-resistant coating layer .
5. The method for producing a fire-resistant structural material for a building according to 4., characterized in that the gypsum composition further contains a water-reducing material in a weight ratio of 3 to 10 per 100 parts by weight of gypsum.
1.本発明は、石膏、水、及び遅延材を含む石こうの組成を硬化開始時間30分以上、石こう硬化体の密度を1.2g/cm3以上に調整することにより、耐火性と良好な施工性を実現できる。
2.硬化開始時間30分以上、硬化体の密度1.2g/cm3以上の石こう組成は、重量比で石膏:水:遅延材(:減水材)=100:30~50:0.01~1.0(:3~10)が適切である。遅延材は、0.03~0.3重量%が好ましい。特に、遅延材の添加量は0.3重量%で可使時間の確保には十分であって、それ以上添加する必要性は小さい。
この発明によれば、耐火被覆層を形成する石こう硬化体を、石膏、水、遅延材に必要に応じて減水材を追加し、調合後に攪拌することで、硬化開始時間に影響を及ぼす水分量を攪拌過程で所定量に調整することが可能となる。この発明によって、目標とする密度、硬化開始時間を適宜設定できることとなる。
柱や梁などの構造材は、3m以上の長さがあって、薄い石こう層を設けることとなるので、準備時間など含めると硬化開始前のハンドリングできる時間として、製造現場として30分以上確保することが必要となる。
3.荷重支持部の外周に数センチの充填用の隙間を設けた型枠に、石こう組成物を充填して密度1.2g/cm3以上の石こう層を形成した耐火構造材を製造することができる。柱材や梁材を木質系の耐火構造部材として構築することで、木材を主要な荷重支持材として利用できる。水分遮断層を設けることにより、30~50%の水を含有する充填された石こう組成物からの水分が木質層に移行しないので、木質層の膨潤が防止され、石こうが水和硬化する水分量が局所的に変化して石こうの硬化及び材質のバラツキが発生することを防止することができる。
4.この発明によれば、石膏、水、及び遅延材を所定の重量比で調合し、攪拌後に充填して硬化させた石こう硬化体を形成して耐火被覆層を形成することで、必要な耐火性能を満足する密度を確保でき、かつ液状の石こうが硬化を始める時間の閾値30分以上を確保できる。よって、耐火被覆層を石こう硬化体で形成できるために、木質の荷重支持部の横断面が矩形状や円形状であっても木質の荷重支持部と耐火被覆層とが密着された木質系の耐火構造部材が実現可能である。本発明の耐火構造材は、2時間以上の耐火性能を発揮できる。
5.本発明の木質系耐火構造部材は、荷重支持部の表面に水分遮断層とラス金網層が設けられ、その外側に石こう組成物を充填して石こう層が形成される。水分遮断層が、荷重支持部である木質材へ水分が移行することを防止するとともに、石こう組成物中の水分濃度が保持されて硬化した石こう層が均一にできる。さらに、ラス金網によって石こうの付着を確保している。このラス金網は石こう層の表面にも設けることができ、表面側のラス金網層は石こう層が熱被ばくによって、干割れして脱落することを防止することができる。本発明は、最外層に燃代層となる木材層を必要としない耐火構造部材であるので、付着や火災に直接接する被ばく対策上、ラス金網を用いることは有用である。
1. In the present invention, the composition of the gypsum containing gypsum, water, and a retarder is adjusted to a hardening start time of 30 minutes or more, and the density of the gypsum hardened body is adjusted to 1.2 g/cm3 or more , thereby realizing fire resistance and good workability.
2. For a gypsum composition with a hardening start time of 30 minutes or more and a hardened body density of 1.2 g/cm3 or more, the appropriate weight ratio is gypsum:water:retardant (:water-reducing agent) = 100:30-50:0.01-1.0 (:3-10). The retardant is preferably 0.03-0.3% by weight. In particular, an amount of 0.3% by weight of retardant is sufficient to ensure a usable time, and there is little need to add more.
According to this invention, the gypsum hardened body that forms the fire-resistant coating layer is mixed with gypsum, water, and a retarder, and a water-reducing agent is added as necessary, and then the mixture is stirred, so that the amount of water that affects the hardening start time can be adjusted to a predetermined amount during the stirring process. This invention makes it possible to appropriately set the target density and hardening start time.
Structural materials such as pillars and beams are more than 3m long and will have a thin layer of gypsum applied, so the manufacturing site needs to ensure that they have at least 30 minutes, including preparation time, to handle the material before it starts to harden.
3. A fireproof structural material can be manufactured by filling a formwork with a gap of several centimeters around the periphery of the load-bearing part with a gypsum composition to form a gypsum layer with a density of 1.2 g/cm3 or more . By constructing pillars and beams as wood-based fireproof structural members, wood can be used as the main load-bearing material. By providing a moisture barrier layer, moisture from the filled gypsum composition containing 30 to 50% water does not migrate to the wood layer, preventing swelling of the wood layer and preventing localized changes in the amount of moisture required for hydration and hardening of the gypsum, which can lead to variations in the hardening of the gypsum and its material.
4. According to this invention, gypsum, water, and a retarder are mixed in a predetermined weight ratio, and then the mixture is stirred and filled to form a gypsum hardened body, which is then hardened to form a fire-resistant coating layer. This ensures a density that satisfies the required fire resistance, and also ensures a threshold time of 30 minutes or more for liquid gypsum to start hardening. Therefore, since the fire-resistant coating layer can be formed from a gypsum hardened body, even if the cross section of the wooden load-bearing part is rectangular or circular, a wood-based fire-resistant structural member in which the wooden load-bearing part and the fire-resistant coating layer are in close contact with each other can be realized. The fire-resistant structural material of the present invention can exhibit a fire resistance of more than two hours.
5. In the wood-based fireproof structural member of the present invention, a moisture barrier layer and a wire mesh layer are provided on the surface of the load-bearing part, and a gypsum composition is filled on the outside to form a gypsum layer. The moisture barrier layer prevents moisture from migrating to the wood material that is the load-bearing part, and the moisture concentration in the gypsum composition is maintained to make the hardened gypsum layer uniform. Furthermore, the wire mesh ensures the adhesion of the gypsum. This wire mesh can also be provided on the surface of the gypsum layer, and the wire mesh layer on the surface side can prevent the gypsum layer from drying cracking and falling off due to heat exposure. Since the present invention is a fireproof structural member that does not require a wood layer as a fuel substitute layer on the outermost layer, it is useful to use a wire mesh in terms of measures against adhesion and exposure to direct contact with fire.
<発明の概略>
本発明は、木質系の耐火構造材の製造に用いる石こう系の組成物に関する発明である。
建築分野において、石こうは板体が一般的に耐火材料として用いられている。耐火性の観点から大型建築の構造材として木材の利用は困難であったが、石こうやモルタルなどの不燃材で木材を被覆して、耐火性を向上させる方法も提案されている。
火災による構造材の崩壊防止のため、積載荷重に応じて材料の許容温度がある。木造材では260℃程度になる。本発明者等は、木質系荷重支持部の周囲に石こう層を設けることにより、木材の温度を260℃以下に抑えることができる耐火構造材(図1参照)を提案している。石膏は100℃で熱分解を始め、結晶水を放出するので、この現象を利用して、木材の温度上昇を抑制している。
大型の建物に用いられる木製の柱や梁は、積載荷重などの強度を満足するには、太さ50cm以上、長さ3~10m程度の角材や円柱材が必要で、その周囲に石こう被覆層を60mm以上形成する必要がある。
<Summary of the Invention>
The present invention relates to a gypsum-based composition for use in the manufacture of wood-based fire-resistant structural materials.
In the field of construction, gypsum sheets are generally used as fire-resistant materials. From the viewpoint of fire resistance, it has been difficult to use wood as a structural material for large buildings, but methods have been proposed to improve fire resistance by covering wood with non-combustible materials such as gypsum and mortar.
To prevent structural materials from collapsing due to fire, there is an allowable temperature for materials depending on the load they can carry. For wooden materials, this is around 260°C. The inventors have proposed a fire-resistant structural material (see Figure 1) that can keep the temperature of wood below 260°C by providing a gypsum layer around the wooden load-bearing parts. Gypsum begins to decompose thermally at 100°C, releasing water of crystallization, and this phenomenon is used to keep the temperature of the wood from rising.
In order to meet the strength requirements for load-bearing capacity, etc., the wooden pillars and beams used in large buildings need to be square or cylindrical timber or materials with a diameter of 50 cm or more and a length of about 3 to 10 m, and a gypsum covering layer of 60 mm or more needs to be formed around them.
水と混ぜて攪拌した流動性のある石こうは短時間に硬化していまい、狭く長い隙間に充填する建築構造材には向いていない。水を多く添加すると硬化開始時間が長くなることは知られているが、耐火性への影響は不明であった。
本発明は、耐火性に影響する石こうの密度を明らかにし、木質系荷重支持部の外周に形成する石こう層の施工性(充填作業などに要する可使時間)を満足できる石こうの検討を行った。
検討の結果、石こう密度は1.2g/cm3以上必要であり、石こうの硬化開始時間は30分以上必要であることが判明した。
本発明では、この密度と硬化開始時間を満足する石こうの組成を提案する。
その石こうの組成は、石膏:水:遅延材が重量比において、100:30~50、:0.01~1.0である。遅延材は、好ましくは0.03~0.3重量%である。さらに、減水材を重量比3~10の範囲で含むことが望ましい。
この石こう組成物を混合攪拌して、型枠で覆った木質系荷重支持部の隙間に充填して、硬化させて耐火構造材を製造する。3m以上の長さを有する柱や梁の表面に60~90mmの厚さにむらなく被覆するには、長時間流動性を確保する必要がある。
Fluid gypsum mixed with water and stirred hardens in a short time, making it unsuitable for use as a building structural material to fill narrow, long gaps. It is known that adding more water increases the hardening time, but the effect on fire resistance was unknown.
The present invention clarified the density of gypsum, which affects fire resistance, and investigated gypsum that satisfies the workability (potable time required for filling work, etc.) of the gypsum layer to be formed on the periphery of a wood-based load-bearing part.
As a result of the investigation, it was found that the gypsum density must be 1.2 g/ cm3 or more, and the time required for the gypsum to start hardening must be 30 minutes or more.
The present invention proposes a gypsum composition that satisfies the density and hardening start time requirements.
The composition of the gypsum is gypsum:water:retardant in a weight ratio of 100:30-50:0.01-1.0. The retardant is preferably 0.03-0.3% by weight. It is also desirable to include a water-reducing material in a weight ratio of 3-10.
This gypsum composition is mixed and stirred, filled into gaps in wood-based load-bearing parts covered with formwork, and hardened to produce fire-resistant structural materials. In order to evenly coat the surfaces of pillars and beams with lengths of 3 m or more to a thickness of 60 to 90 mm, it is necessary to ensure fluidity for a long period of time.
例えば、500cm長、60cm角、石こう層65mmの柱を想定すると、充填石こう流動物が約900リットルとなり、準備する石こう流動物は約1m3となり、30分以内に充填するには、充填速度30リットル/分が必要になる。柱の全面にむらなく石こうを被覆する必要があるので、調合時間及び十分な作業時間が必要となる。さらに、混合装置に付着あるいは残存した石こう組成物が硬化する前に清掃して、次回に備える必要があることを考慮すると、調合後の硬化開始時間は、さらに長い時間が必要になる。 For example, assuming a column of 500 cm long, 60 cm square, and 65 mm gypsum layer, the filling gypsum fluid will be about 900 liters, and the amount of gypsum fluid to be prepared will be about 1 m3, and a filling speed of 30 liters/minute will be required to fill within 30 minutes. Since the entire surface of the column needs to be evenly covered with gypsum, mixing time and sufficient work time are required. Furthermore, considering that the gypsum composition attached or remaining on the mixing device needs to be cleaned before it hardens in preparation for the next time, the hardening start time after mixing is even longer.
なお用語について次のように使用する。
「石膏」は化合物名称として、「石こう」は硬化体を示す。「石こう組成物」は、「石膏、水、遅延材、減水材」などの石こう硬化体の組成を示す。「石こう組成物」を攪拌した流動物を「石こう流動物」という。
The following terms are used:
"Gypsum" is the name of the compound, and "gypsum" refers to the hardened body. "Gypsum composition" refers to the composition of the hardened gypsum body, including "gypsum, water, retarder, water-reducing agent," etc. The fluid that is created by stirring the "gypsum composition" is called "gypsum fluid."
<耐火構造材について>
本発明の耐火構造材は、木質系の荷重支持部の周囲に石こう層を形成して、耐火性を備えた柱や梁などの構造材である。
荷重支持部は、一本の樹木でも良いが、強度等の性質をそろえることができ、大きさも自由に設計できる集成材が適している。集成材を構成する樹種は、杉、桧、松、米桧、米松など一般に利用されている樹種を利用できる。
石こう層は、建築耐火基準をクリアする層厚を設ける。現状では、検討した結果、本発明では、2時間耐火をクリアするには、約60~80mm程度設けることが必要であることが判明した。
本発明では、耐火構造として、石こう層の外側に燃代層を設ける必要がない。ただし、鉄筋コンクリート柱のように外装材を設けることができることは、一般建築材と同様である。
また、本発明の耐火構造材では、荷重支持部の周囲に遮水材、付着材などを設けて、その外周に石こう層を形成することによって、荷重支持部へ水分が移行することを防止し、荷重支持部への石こうの付着性を高めることができる。
<Fire-resistant structural materials>
The fire-resistant structural material of the present invention is a structural material such as a pillar or beam that has a gypsum layer formed around a load-bearing part of a wood base, and thus has fire resistance.
The load-bearing part can be a single tree, but laminated timber is more suitable because it can be made to have uniform strength and other properties and can be designed to any size. Commonly used tree species such as cedar, cypress, pine, American cypress, and American pine can be used to make laminated timber.
The gypsum layer is provided with a thickness that satisfies the building fire resistance standard. As a result of investigation, it has been found that in the present invention, a thickness of about 60 to 80 mm is required to satisfy the two-hour fire resistance standard.
In the present invention, there is no need to provide a fuel substitute layer on the outside of the gypsum layer as a fire-resistant structure. However, like general building materials, exterior materials can be provided, such as reinforced concrete columns.
Furthermore, in the fire-resistant structural material of the present invention, by providing a water-proofing material, adhesive material, etc. around the load-bearing part and forming a gypsum layer around its outer periphery, it is possible to prevent moisture from migrating into the load-bearing part and to increase the adhesion of the gypsum to the load-bearing part.
<組成要素について>
1.石膏
石膏は、医療、建築・土木分野などで幅広く使用されている材料であって、半水石膏などの種類の石膏が使用できる。
石こうは加熱されると,結晶水の分解及び水分の蒸発による潜熱で吸熱効果が働き、約100℃~120℃の範囲で温度上昇が抑制される。
<Composition elements>
1. Gypsum Gypsum is a material that is widely used in the medical, architectural and civil engineering fields, and various types of gypsum, such as gypsum hemihydrate, can be used.
When gypsum is heated, the heat absorption effect occurs due to the decomposition of water of crystallization and the latent heat produced by the evaporation of water, and the temperature rise is suppressed to a range of approximately 100°C to 120°C.
2.水
水は、水道水、工業用水など通常の水を使用することができる。
2. Water: Normal water such as tap water or industrial water can be used.
3.遅延材
遅延材は、石膏の硬化遅延のために使用される。アミノ酸、クエン酸、ホウ砂などを使用することができる。
3. Retarders Retarders are used to delay the setting of gypsum. Amino acids, citric acid, borax, etc. can be used.
4.減水材
減水材は、石こう打設時の流動性向上のために使用される。ナフタレン、スルホン酸などを使用することができる。
4. Water-reducing materials Water-reducing materials are used to improve the fluidity of gypsum when it is poured. Naphthalene, sulfonic acid, etc. can be used.
<試験例>
石膏、水、遅延材、減水材、遅延材を表1に示す組成に配合した石こうについて、硬化開始時間と密度を評価した。
使用した材料は次のとおりである。
石膏:半水石こうβ型 水;水道水
減水材:ナフタレン系減水材
遅延材:アミノ酸系遅延材
<Test Example>
The hardening start time and density were evaluated for gypsum containing gypsum, water, retarder, water-reducing material, and retarder in the composition shown in Table 1.
The materials used are as follows:
Gypsum: Hemihydrate β-type Water: Tap water Water-reducing material: Naphthalene-based water-reducing material Retarder: Amino acid-based retarder
(1)調合例1、2は、水の比率が50重量%では、減水材を添加しても、硬化開始時間が20分以内と、充填施工には硬化が早すぎて不適当である。
(2)この試験した遅延材を0.1重量%以上添加しても、硬化開始時間の延長には影響しない。
(1) In Mixing Examples 1 and 2, when the water ratio is 50% by weight, even when a water-reducing agent is added, the hardening start time is within 20 minutes, which is too fast for filling application.
(2) Adding more than 0.1% by weight of the tested retarder does not affect the extension of the curing start time.
<解析確認について>
試験結果に基づいて、さらに、密度と硬化性能について解析を行った。
木柱端の対辺位置、木柱端の対角位置での最高温度を図2、3に示す。
図2から対角温度が260℃以下となる石こうの密度は1.2g/cm3以上、図3から対辺温度が260℃以下となる石こう密度は約0.9以上となる。この解析によっても、石こう密度が1.2g/cm3以上必要であることが明らかとなった。
<About analysis confirmation>
Based on the test results, further analysis was carried out on density and hardening performance.
The maximum temperatures at the opposite side and diagonal positions of the wooden pole end are shown in Figures 2 and 3.
2, the density of gypsum at which the diagonal temperature is 260° C. or less is 1.2 g/ cm3 or more, and from FIG. 3, the density of gypsum at which the diagonal temperature is 260° C. or less is approximately 0.9 or more. This analysis also made it clear that a gypsum density of 1.2 g/ cm3 or more is necessary.
<解析について>
1.解析について
石こうで被覆した木柱の温度予測を熱伝導解析により実施し、石こう密度の相違が木柱表面温度に与える影響を検討する。検討方針は以下の通りとする。
(1)加熱実験を実施した石こう被覆60mmの試験体から、石こうの熱定数を計測する。その石こう被覆60mmの実験試験体の熱定数に基づき、解析対象の木柱の石こう厚さ65mmにおける熱定数を推定する。
(2)解析対象の木柱は、石こう被覆厚さを65mmとし、石こうの比重(密度1.2g/cm3)を計算変数として、石こうの密度と木材表面温度との関係を検討する。
(3)石こう厚さ65mm(密度1.33g/cm3)の実験結果(実験2)と、石こう厚さ65mmの計算結果(密度1.2g/cm3)とを比較し、解析の妥当性を検討する。
About the analysis
1. About the analysis The temperature of the wooden pole covered with gypsum is predicted by heat conduction analysis, and the effect of the difference in gypsum density on the surface temperature of the wooden pole is examined. The investigation policy is as follows.
(1) The thermal constants of the gypsum are measured from the 60 mm gypsum-coated test specimen used in the heating experiment. Based on the thermal constants of the 60 mm gypsum-coated test specimen, the thermal constants of the wooden pillar to be analyzed at a gypsum thickness of 65 mm are estimated.
(2) The wooden pole to be analyzed has a gypsum coating thickness of 65 mm, and the specific gravity of gypsum (density 1.2 g/cm 3 ) is used as a calculation variable to examine the relationship between the density of gypsum and the surface temperature of the wood.
(3) The experimental results (Experiment 2) for a plaster thickness of 65 mm (density 1.33 g/cm 3 ) are compared with the calculated results for a plaster thickness of 65 mm (density 1.2 g/cm 3 ) to examine the validity of the analysis.
2.熱伝導解析方法
2.1 熱伝導解析に使用した熱定数
木柱のサイズを□120mmとし、石こう厚さを60mmとした試験体に対して、石こうの熱定数をチューニングする。
計算で使用する木柱の熱定数は、熱伝導率を0.107W/mK、比熱を1.356kJ/kgK、密度を0.37g/cm3とし、一定とした。また、木材の含水率を10%とした。
計算で使用する石こうの熱伝導率を図4、比熱を図5に示す。密度は、試験体から実測した1.22g/cm3とした。
2. Heat conduction analysis method 2.1 Thermal constants used in heat conduction analysis The thermal constants of the gypsum are tuned for a test specimen with a wooden pillar size of 120 mm and a gypsum thickness of 60 mm.
The thermal constants of the wooden pole used in the calculations were set constant as follows: thermal conductivity 0.107 W/mK, specific heat 1.356 kJ/kgK, density 0.37 g/ cm3 . The moisture content of the wood was set to 10%.
The thermal conductivity of the gypsum used in the calculation is shown in Figure 4, and the specific heat is shown in Figure 5. The density was 1.22 g/ cm3 , which was measured from a test specimen.
2.2 試験結果に対する蒸発潜熱のチューニング
石こうは加熱されると、結晶水の分解及び水分の蒸発による潜熱で吸熱効果が働き、約100℃~120℃の範囲で温度上昇が抑制される。
そこで、石こうの潜熱量を水の蒸発潜熱で表現し、その蒸発潜熱量を変数としてパラメトリックスタディーを実施し、実験1の木柱表面温度が概ね一致するように検討した。
想定した石こうの蒸発潜熱量を質量比で20%とした場合の結果を図6に示す。実験結果をチューニングしたこれらの熱定数を使用し、以降の解析を実施する。
2.2 Tuning the latent heat of vaporization for test results When gypsum is heated, the heat absorption effect occurs due to the latent heat produced by the decomposition of water of crystallization and the evaporation of water, suppressing the temperature rise to a range of approximately 100°C to 120°C.
Therefore, the latent heat of gypsum was expressed as the latent heat of vaporization of water, and a parametric study was conducted using the latent heat of vaporization as a variable to ensure that the surface temperature of the wooden pillar in
The results when the assumed latent heat of vaporization of gypsum is set to 20% by mass ratio are shown in Figure 6. The subsequent analysis is carried out using these thermal constants tuned based on the experimental results.
3.石こうの密度による木柱温度への影響
木柱(□120mm)および石こう厚さを65mmとし、上記の熱定数を使用して(石こうの密度以外)、石こうの密度を計算変数として熱伝導解析を実施する。なお、石っこうの厚さに基づく熱履歴の解析なので、木柱の大きさには関係しないので、120mm角の柱材を試験体とした。
木柱表面温度の時刻歴を図7、石こうの密度と木柱表面の最高温度との関係を図2、3に示す。また、熱伝導解析結果の一例として、石こうの密度が1.4g/cm3の断面温度分布を図8に示す。
図7に示すように、石こうの密度が大きくなるに従い、木柱表面の最高温度が低下する事が分かる。これは、主に以下の理由による。
・個体の熱伝導では熱伝導率λを比熱cと密度ρで除した熱拡散率(=λ/(ρc))が小さいほど熱を伝えにくい。よって、石こうの密度が大きい程、木材表面温度は低くなる。
・石こうでは結晶水を分解させるために熱量を必要とする。石こうの密度が大きいほどこの潜熱に大きな熱量を要するため、石こうの密度が大きい程、木材表面温度は低くなる。
3. Effect of gypsum density on wooden pillar temperature With a wooden pillar (120mm square) and gypsum thickness of 65mm, a heat conduction analysis was carried out using the thermal constants above (except for the density of gypsum) and the density of gypsum as a calculation variable. Note that since this is an analysis of the thermal history based on the thickness of the gypsum, it is not related to the size of the wooden pillar, so a 120mm square pillar material was used as the test specimen.
The time history of the surface temperature of the wooden pole is shown in Figure 7, and the relationship between the density of the gypsum and the maximum temperature of the surface of the wooden pole is shown in Figures 2 and 3. As an example of the results of the heat conduction analysis, the cross-sectional temperature distribution when the density of the gypsum is 1.4 g/ cm3 is shown in Figure 8.
As shown in Figure 7, as the density of the gypsum increases, the maximum temperature of the wooden pole surface decreases. This is mainly due to the following reasons.
・In terms of solid thermal conduction, the smaller the thermal diffusivity (= λ/(ρc)), calculated by dividing the thermal conductivity λ by the specific heat c and density ρ, the harder it is to transfer heat. Therefore, the higher the density of the gypsum, the lower the surface temperature of the wood.
- Gypsum requires heat to decompose the water of crystallization. The greater the density of the gypsum, the greater the heat required for this latent heat, so the greater the density of the gypsum, the lower the surface temperature of the wood.
試験体の温度分布が示された図8によると、表面温度が800℃あるいは1000℃になっても、荷重支持部の木材表面は260℃以下となっており、荷重支持部の損傷、劣化が生じず、十分な強度を保っており、耐火性があることがわかる。 Figure 8 shows the temperature distribution of the test specimen, and even when the surface temperature reaches 800°C or 1000°C, the wood surface of the load-bearing part remains below 260°C, which indicates that the load-bearing part is not damaged or deteriorated, retains sufficient strength, and is fire-resistant.
4.計算結果と実験結果との比較
実験2で、木柱□120mm、石こう厚さ65mmの載荷加熱実験を実施した。実験結果と解析結果の比較を図2、3に示す。
解析結果は、実験結果と概ね一致している。
4. Comparison of calculation results and experimental results In
The analytical results are generally consistent with the experimental results.
図9に、柱材である耐火構造材の横断面例を示す。(a)は分解図、(b)は横断面を示している。
荷重を負担するスギの集成材からなる荷重支持部2と、荷重支持部2の外周面に設けられた水分遮断層3とラス金網5と、ラス金網5の外側に設けられた石こう層4と、石こう層4の表面側に設けられた第2ラス金網6と、石こう層4を貫通して一端が荷重支持部2の表面に接合し、他端が第2ラス金網6に接合する連結材7および表面塗装8から構成されている。
なお、耐火構造材である柱材の上下端は、スラブや梁に挿入されるので、石こう層は設けられない。
なお、荷重支持部に熱電対を取り付けた耐火構造材1を用いて、加熱試験を行い耐火性能を確認を行った。
9 shows an example of a cross section of a fire-resistant structural material that is a pillar material, where (a) is an exploded view and (b) shows the cross section.
It is composed of a load-
In addition, since the upper and lower ends of the pillar material, which is a fire-resistant structural material, are inserted into the slab or beam, no gypsum layer is provided.
In addition, a heating test was carried out using the fire-resistant
なお、連結材7は、荷重支持部2の表面に直に接合する必要はなく、表面側のラス金網6を支えることができる接合強度を得ることができれば水分遮断層3を介して設けることもできる。
また、ラス金網6は付着層に、第2ラス金網は第2付着層に該当する。連結材7には乾燥した石こうが用いられ、水分遮断層3はキシラデコール コンゾランによって形成されている。
In addition, the connecting
The
本実施例の柱材の仕様は次のとおりである。
全長:3300mm、縦横:250mm角、
荷重支持部;120mm角、(なお、本実施例では、耐火性能を確認するためのものであるので、荷重支持部の大きさは120mm角で十分であるとした)
耐火被覆層:石こう層厚65mm(石こう100重量部、水45重量部、減水材3重量部、遅延材0.1重量部)、石こう密度1.33g/cm3
連結材:50mm角、65mm長、
水分遮断層:キシラデコール コンゾラン(塗布量250g/m2)、
付着層(第2付着層):ラス金網、
表面塗装:キシラデコールインテリアファイントップコート(塗布量500g/m2)
The specifications of the pillar material in this embodiment are as follows.
Total length: 3300 mm, length and width: 250 mm square,
Load-bearing portion: 120 mm square (Note that, since this embodiment is intended to confirm fire resistance, it is deemed sufficient that the size of the load-bearing portion is 120 mm square)
Fireproof coating layer: gypsum layer thickness 65 mm (
Connecting material: 50 mm square, 65 mm long,
Moisture barrier layer: Xyladecor Consolan (coating amount 250 g/m 2 ),
Adhesive layer (second adhesive layer): lath wire mesh,
Surface coating: Xyladecor interior fine top coat (application amount 500 g/m 2 )
図10に本実施例の製造工程を示す。
第1工程:荷重支持部2を準備し、外周面にキシラデコール コンゾランを250g/m2塗布して、水分遮断層3を形成する。
なお、試験用に荷重支持部の一部に溝を切って、熱電対を設置したのちに水分遮断層を形成する。
第2工程:ラス網を荷重支持部2の表面にステープラーで取り付けて付着層を形成する。
第3工程:荷重支持部2の表面に接着剤で連結材7を取り付ける。この場合、部分的にラス金網を切除して連結材を荷重支持部に接着する。
第4工程:連結材7の外端に第2のラス金網6とその外周に型枠9を設置する。第2ラス金網は型枠9内面に連結材部分を切除して仮接着してある。連結材7は型枠用のスペーサとしても機能する。
第5工程:石こうを充填して硬化させて耐火被覆層4を形成し、型枠9を脱型する。
第6工程:脱型後の表面にキシラデコールインテリアファイントップコートを塗布量500g/m2を塗布して、表面塗装8を形成して仕上げ層とする。
FIG. 10 shows the manufacturing process of this embodiment.
First step: Prepare the load-
For testing purposes, a groove is cut in part of the load support portion, a thermocouple is installed, and then the moisture blocking layer is formed.
Second step: The lath net is attached to the surface of the load-
Third step: The connecting
Fourth step: A second
Fifth step: gypsum is filled and hardened to form the
Sixth step: After demolding, apply 500 g/ m2 of Xyladecor interior fine top coat to the surface to form
<耐火試験>
この実施例で作成した柱材を試験体として、耐火試験を行った。耐火試験は、(一般財団)建材試験センターの防耐火性能試験・評価業務方法書の規定に準じて行った。
加熱炉の加熱温度変化を図11に示す。
加熱は、120分間の間に1000℃以上に達するように加熱し、その後480分まで放熱した。加熱温度は実線表記、放熱中の温度は点線で表記した。
試験体の温度は、荷重支持部である木材の角部と辺央部を測定した。複数個所測定したが、同様の結果であったので、それぞれ1か所の温度変化を図12に示す。
<Fire resistance test>
The pillar material prepared in this example was used as a test specimen to carry out a fire resistance test. The fire resistance test was carried out in accordance with the provisions of the Fire Resistance Testing and Evaluation Procedure Manual of the Building Materials Testing Center (General Foundation).
The change in heating temperature of the heating furnace is shown in FIG.
The heating was performed so that the temperature reached 1000° C. or higher in 120 minutes, and then the heat was released for 480 minutes. The heating temperature is indicated by a solid line, and the temperature during heat release is indicated by a dotted line.
The temperature of the test specimen was measured at the corners and center of the sides of the wood, which are the load-bearing parts. Measurements were taken at multiple locations, but the results were similar, so the temperature change at one location is shown in Figure 12.
30分後加熱温度は800℃以上となっているが、試験体の角部の温度は100℃であり、さらに120分にかけて加熱温度は1100℃以上に達するが、試験体の温度は100℃を維持している。その後試験体の角部の温度は300分で約200℃に達して、その後緩やかに低下して150℃となった。
試験体の辺央部の温度は、30分後に100℃、120分でも100℃を維持し、その後上昇して330分で約175℃に達し、その後緩やかに低下して、150℃となった。
特に、加熱30分で試験体の温度が100℃に達すると、その後しばらく100℃であって、加熱後120分以上を維持していることは、石こうの断熱と石こうに含まれる結晶水が蒸発する気化熱によって、試験体の表面温度の上昇が防止されていることが確認された。
加熱後の試験体の表面には、浅いひびがみられたが、石こうは剥落しておらず、切断した切断面には、荷重支持部に達するひび割れは観察されなかった。切断面観察でも、荷重支持部は炭化していなかった。
この結果、この試験体は、十分に2時間耐火を満足することを確認することができた。
なお、石こう層を70mmとした試験体でも同様の耐火試験を行った結果、試験体の100℃維持時間が延びることと、試験体の最高温度が角部も辺央部も175℃以下に抑えられることが、確認できている。
After 30 minutes, the heating temperature was over 800°C, but the temperature of the corner of the test specimen was 100°C, and over a further 120 minutes, the heating temperature reached over 1100°C, but the temperature of the test specimen remained at 100°C. After that, the temperature of the corner of the test specimen reached about 200°C in 300 minutes, and then gradually decreased to 150°C.
The temperature at the center of the edge of the test specimen reached 100°C after 30 minutes, remained at 100°C even at 120 minutes, then rose to about 175°C at 330 minutes, and then gradually decreased to 150°C.
In particular, after the temperature of the test specimen reached 100°C after 30 minutes of heating, it remained at 100°C for some time thereafter and was maintained for more than 120 minutes after heating. This confirmed that the heat insulation of the gypsum and the heat of vaporization of the water of crystallization contained in the gypsum prevented the surface temperature of the test specimen from rising.
After heating, shallow cracks were observed on the surface of the test specimen, but the gypsum did not fall off, and no cracks reaching the load-bearing parts were observed on the cut surfaces. Inspection of the cut surfaces also showed that the load-bearing parts had not been carbonized.
As a result, it was confirmed that this test specimen fully satisfied the two-hour fire resistance requirement.
In addition, similar fire resistance tests were conducted on test specimens with a gypsum layer of 70 mm, and it was confirmed that the test specimens were able to maintain a temperature of 100°C for an extended period of time, and that the maximum temperature of the test specimens was kept below 175°C at both the corners and the center of the edges.
1・・・・・・耐火構造材
2・・・・・・荷重支持部
3・・・・・・水分遮断層
4・・・・・・石こう層
41・・・・湿式耐火被覆材
5・・・・・・付着層
6・・・・・・第2付着層(第2金網層)
7・・・・・・連結材(スペーサ)
71・・・・・乾式耐火被覆材
8・・・・・・表面塗装
9・・・・・・型枠
1 ... Fireproof
5: Adhesive layer 6: Second adhesive layer (second wire mesh layer)
7: Connecting material (spacer)
71: Dry fireproof coating material 8: Surface coating 9: Formwork
Claims (5)
当該耐火構造材は長さ3~10mの柱又は梁であり、
荷重を負担する木質の荷重支持部と、
荷重支持部の表面に設けられた水分遮断層と、
水分遮断層の外側に設けられたラス金網層と、
ラス金網層の外側に設けられた耐火被覆層と、
を備え、
耐火被覆層は、石膏と水と遅延材を含む石こう組成物であって、石膏:水:遅延材が重量比において、100:30~50:0.01~1.0であり、硬化開始時間が30分以上であって石こう硬化体の密度が1.2g/cm3以上に調整された石こう組成物で充填形成されていること、を特徴とする耐火構造材。 A fire-resistant structural material for a building having a fire-resistant coating layer on the outer periphery of a load-bearing part,
The fire-resistant structural material is a column or beam with a length of 3 to 10 m,
A wooden load-bearing part that bears the load;
A moisture blocking layer provided on a surface of the load supporting portion;
A wire mesh layer provided on the outside of the moisture blocking layer;
A fire-resistant coating layer provided on the outside of the lath wire mesh layer;
Equipped with
The fire-resistant coating layer is a gypsum composition containing gypsum, water, and a retarder , in which the weight ratio of gypsum:water:retarder is 100:30 to 50:0.01 to 1.0, the hardening start time is 30 minutes or more, and the density of the gypsum hardened body is adjusted to 1.2 g/ cm3 or more. This fire-resistant structural material is characterized in that it is filled and formed with a gypsum composition .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020201799A JP7476447B2 (en) | 2020-12-04 | 2020-12-04 | Method for preparing gypsum composition for wood-based fire-resistant coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020201799A JP7476447B2 (en) | 2020-12-04 | 2020-12-04 | Method for preparing gypsum composition for wood-based fire-resistant coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022089421A JP2022089421A (en) | 2022-06-16 |
JP7476447B2 true JP7476447B2 (en) | 2024-05-01 |
Family
ID=81989506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020201799A Active JP7476447B2 (en) | 2020-12-04 | 2020-12-04 | Method for preparing gypsum composition for wood-based fire-resistant coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7476447B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115974514A (en) * | 2023-01-09 | 2023-04-18 | 南京工业大学 | Crop gypsum composite material covering plate for improving fire resistance of light wall and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002614A (en) | 2015-06-12 | 2017-01-05 | 株式会社竹中工務店 | Wooden structural member |
JP2020176376A (en) | 2019-04-15 | 2020-10-29 | 株式会社工芸社・ハヤタ | Building component and manufacturing method thereof |
JP2020180443A (en) | 2019-04-24 | 2020-11-05 | 大成建設株式会社 | Fireproof structural member |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853155B2 (en) * | 1975-07-07 | 1983-11-28 | サンエスセツコウ カブシキガイシヤ | How to prepare the base for floor finishing |
JPH07122322B2 (en) * | 1990-11-09 | 1995-12-25 | 株式会社竹中工務店 | Fireproof coating |
JP3486440B2 (en) * | 1993-12-24 | 2004-01-13 | 株式会社エーアンドエーマテリアル | Method for producing a gypsum-based cured product |
-
2020
- 2020-12-04 JP JP2020201799A patent/JP7476447B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002614A (en) | 2015-06-12 | 2017-01-05 | 株式会社竹中工務店 | Wooden structural member |
JP2020176376A (en) | 2019-04-15 | 2020-10-29 | 株式会社工芸社・ハヤタ | Building component and manufacturing method thereof |
JP2020180443A (en) | 2019-04-24 | 2020-11-05 | 大成建設株式会社 | Fireproof structural member |
Also Published As
Publication number | Publication date |
---|---|
JP2022089421A (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9249053B2 (en) | Composite wall panel with low thermal conductivity and sufficient strength for structural use | |
US20180354849A1 (en) | High-performance concrete comprising aerogel pellets | |
AU2016240394B2 (en) | A construction board and a method of manufacture | |
JP2014510854A (en) | Lightweight and low density fireproof gypsum panel | |
JP7476447B2 (en) | Method for preparing gypsum composition for wood-based fire-resistant coating | |
Dehkordi et al. | Application of pre-fabricated geopolymer permanent formworks (PGPFs): a novel approach to provide durability and mechanical strength of reinforced concrete | |
JP6497924B2 (en) | Outer insulation and fireproof outer wall structure of wooden building | |
JP7369848B2 (en) | Fireproof structural components | |
CA2060519C (en) | Heat insulator and structure using the same | |
Somi | Humidity intrusion effects on properties of autoclaved aerated concrete | |
FR3026759A1 (en) | PREFABRICATED CONCRETE ELEMENT OR INSULATION MORTAR AND METHOD OF MANUFACTURING THE SAME | |
Fouad | Cellular concrete | |
JP7393760B2 (en) | Cement paste, mortar, method for producing mortar, and fire-resistant wooden structural components | |
KR0138273B1 (en) | Method of making constructional dry wall panel | |
Jaber | Effect of glass wool addition on some properties of cement mortar | |
RU64237U1 (en) | SANDWICH PANEL | |
US20240254049A1 (en) | Mortar and construction material | |
Pessoa et al. | Preliminary study of the application of thermal mortar in 3D printed concrete walls | |
Pinkos | The effectiveness of hempcrete as an infill insulation in the Prairies compared to a standard building based on power consumption | |
Chang et al. | Application of low drying shrinkage ECC in the protection layer of thermal insulation wall | |
JP6619895B2 (en) | Fireproof outer wall structure of wooden building | |
Proskurovskis et al. | Energy-efficient expanded clay concrete wall block | |
Pivák et al. | THERMAL INSULATION REPAIR LIME PLASTER WITH PERLITE-FUNCTIONAL PARAMETERS AND SALT CRYSTALLIZATION RESISTANCE | |
Zach et al. | DEVELOPMENT OF ADVANCED THERMAL AND ACOUSTIC INSULATION MATERIALS BASED ON FOAM GLASS AGGREGATE | |
JP2915800B2 (en) | Exterior insulation panels and exterior insulation structures for wooden buildings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240319 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240321 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7476447 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |