JP2022086223A - Method for manufacturing non-aqueous electrolyte secondary battery - Google Patents

Method for manufacturing non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2022086223A
JP2022086223A JP2020198128A JP2020198128A JP2022086223A JP 2022086223 A JP2022086223 A JP 2022086223A JP 2020198128 A JP2020198128 A JP 2020198128A JP 2020198128 A JP2020198128 A JP 2020198128A JP 2022086223 A JP2022086223 A JP 2022086223A
Authority
JP
Japan
Prior art keywords
battery
battery assembly
chamber
active material
injection hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020198128A
Other languages
Japanese (ja)
Other versions
JP7198257B2 (en
Inventor
尊 原
Takashi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020198128A priority Critical patent/JP7198257B2/en
Publication of JP2022086223A publication Critical patent/JP2022086223A/en
Application granted granted Critical
Publication of JP7198257B2 publication Critical patent/JP7198257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a method for manufacturing a non-aqueous electrolyte secondary battery having an excellent battery performance and capable of effectively removing a gas generated when a film is formed.SOLUTION: A method for manufacturing a non-aqueous electrolyte secondary battery includes a housing step (S10), a constructing step (S20), a first charging step (S30), a sealing step (S40), and a second charging step (S50). The housing step houses an electrode body 20 including a positive electrode 50 including a positive electrode active material layer 54, a negative electrode 60 including a negative electrode active material layer 64, a first separator 71, and a second separator 72 in a battery case 30 in which a liquid injection hole 37 is formed. The constructing step constructs a battery assembly 100A by injecting a non-aqueous electrolyte 10 into the battery case 30. The first charging step arranges a battery assembly 100A in which the liquid injection hole 37 is opened inside a chamber 90 and charges the battery assembly 100A with a first pressure inside the chamber 90 being lower than a second pressure inside the battery case 30. The sealing step seals the liquid injection hole 37. The second charging step further charges the battery assembly 100A in which the liquid injection hole 37 is sealed.SELECTED DRAWING: Figure 1

Description

本発明は、非水電解液二次電池の製造方法に関する。 The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery.

一般に、リチウムイオン二次電池等の非水電解液二次電池では、初期充電の際に非水電解液の一部が分解され、負極活物質層の表面にその分解物を含む皮膜(即ち、Solid Electrolyte Interface膜、以下SEI膜とする。)が形成される。SEI膜は負極活物質層を保護する役割を果たすと共に、負極活物質層と非水電解液との界面を安定化し、電池性能(例えばサイクル特性)を向上させ得る。 Generally, in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, a part of the non-aqueous electrolyte is decomposed at the time of initial charging, and a film (that is, a film) containing the decomposed product is formed on the surface of the negative electrode active material layer. A Solid Electrolyte Interface film, hereinafter referred to as an SEI film) is formed. The SEI film plays a role of protecting the negative electrode active material layer, stabilizes the interface between the negative electrode active material layer and the non-aqueous electrolytic solution, and can improve the battery performance (for example, cycle characteristics).

ところで、負極活物質層の表面に上記皮膜が形成されるときには、同時に非水電解液の一部が分解されてガスが発生する。発生したガスは、電極体の内部に残存することがある。電極体の内部にガスが残存するということは、かかる部分において非水電解液が存在していないことになり、該部分において皮膜が形成されなくなる虞がある。この結果、電池性能が低下するという問題が生じ得る。 By the way, when the film is formed on the surface of the negative electrode active material layer, a part of the non-aqueous electrolytic solution is decomposed at the same time to generate gas. The generated gas may remain inside the electrode body. If the gas remains inside the electrode body, it means that the non-aqueous electrolytic solution does not exist in such a portion, and there is a possibility that a film will not be formed in the portion. As a result, there may be a problem that the battery performance is deteriorated.

皮膜形成の際に発生するガスを除去する従来技術として、特許文献1および特許文献2が挙げられる。特許文献1には、初期充電を行った後に発電要素が収容される収容空間に溜まったガスを外部に排出し、さらに収容空間を真空引きする技術が開示されている。また、特許文献2には、真空チャンバー内に満たされた非水電解液中に電池エレメントが配置された状態で予備充電を行うことによって、発生したガスを非水電解液から外部に放出させる技術が開示されている。また、特許文献3には、切れ目加工を施した熱収縮部材を電極捲回体と円筒缶との間に設けることで、電極捲回体と電池缶との間のガス流路を確保することを目的とした技術が開示されている。 Patent Document 1 and Patent Document 2 are examples of conventional techniques for removing gas generated during film formation. Patent Document 1 discloses a technique of discharging the gas accumulated in the accommodation space in which the power generation element is accommodated after the initial charge to the outside, and further evacuating the accommodation space. Further, Patent Document 2 describes a technique of discharging the generated gas from the non-aqueous electrolytic solution to the outside by performing precharging in a state where the battery element is arranged in the non-aqueous electrolytic solution filled in the vacuum chamber. Is disclosed. Further, in Patent Document 3, a heat-shrinkable member having been cut is provided between the electrode winding body and the cylindrical can to secure a gas flow path between the electrode winding body and the battery can. The technology for the purpose of is disclosed.

特開2001-283923号公報Japanese Unexamined Patent Publication No. 2001-283923 特開平11-31531号公報Japanese Unexamined Patent Publication No. 11-31531 特開2012-114006号公報Japanese Unexamined Patent Publication No. 2012-114006

しかしながら、特許文献1に記載の技術では、電極体の内部に残存するガスを効果的に除去することができず、電池性能の低下を抑制することができない。即ち、負極活物質層のうちガスと接触している部分は非水電解液がほとんど含侵しないため、初期充電の際にSEI膜が十分に形成されない虞がある。 However, the technique described in Patent Document 1 cannot effectively remove the gas remaining inside the electrode body, and cannot suppress the deterioration of the battery performance. That is, since the non-aqueous electrolytic solution hardly impregnates the portion of the negative electrode active material layer that is in contact with the gas, there is a possibility that the SEI film is not sufficiently formed during the initial charging.

本発明は、上記事情に鑑みてなされたものであり、皮膜形成時に発生するガスを効果的に除去して電池性能に優れる非水電解液二次電池の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a non-aqueous electrolytic solution secondary battery having excellent battery performance by effectively removing a gas generated during film formation.

本発明により、正極活物質層を含む正極と負極活物質層を含む負極とセパレータとを含む電極体を、注液孔が形成された電池ケースに収容する収容工程と、前記電池ケースに非水電解液を注液して電池組立体を構築する構築工程と、前記注液孔が開放された前記電池組立体をチャンバーの内部に配置して、前記チャンバーの内部の第1圧力が前記電池ケースの内部の第2圧力より低い状態で前記電池組立体を充電する第1充電工程と、前記注液孔を封止する封止工程と、前記注液孔が封止された前記電池組立体をさらに充電する第2充電工程と、を含む、非水電解液二次電池の製造方法。 INDUSTRIAL APPLICABILITY According to the present invention, an accommodating step of accommodating an electrode body including a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and a separator in a battery case having a liquid injection hole, and a non-water-free battery case. The construction process of injecting an electrolytic solution to construct a battery assembly and the battery assembly having an open injection hole are arranged inside the chamber, and the first pressure inside the chamber is the battery case. A first charging step of charging the battery assembly in a state of being lower than the second pressure inside, a sealing step of sealing the injection hole, and the battery assembly in which the injection hole is sealed. A method for manufacturing a non-aqueous electrolyte secondary battery, comprising a second charging step of further charging.

上記構成では、チャンバーの内部に配置された電池組立体の電池ケースの注液孔は開放されている。即ち、チャンバーの内部と電池ケースの内部(即ち電極体)とは注液孔を介して連通した状態である。ここで、第1充電工程では、チャンバーの内部の第1圧力が電池ケースの内部の第2圧力より低い状態で電池組立体を充電するため、電池ケースの内部において非水電解液の分解により発生したガスは、より圧力の低いチャンバーの内部へと移動する。即ち、電池ケースの内部において発生したガスは、電極体の内部に滞留する間もなくチャンバーの内部へと排出される。これにより、負極活物質層の全体に亘って非水電解液が含侵するため、第1充電工程の際に負極活物質層の全体に亘って皮膜を好適に形成することができる。従って、電池性能に優れた非水電解液二次電池を製造することができる。 In the above configuration, the liquid injection hole of the battery case of the battery assembly arranged inside the chamber is open. That is, the inside of the chamber and the inside of the battery case (that is, the electrode body) are in a state of communicating with each other through the liquid injection holes. Here, in the first charging step, since the battery assembly is charged in a state where the first pressure inside the chamber is lower than the second pressure inside the battery case, it is generated by the decomposition of the non-aqueous electrolytic solution inside the battery case. The resulting gas moves into the lower pressure chamber. That is, the gas generated inside the battery case is discharged to the inside of the chamber shortly after staying inside the electrode body. As a result, the non-aqueous electrolytic solution infiltrates the entire negative electrode active material layer, so that a film can be suitably formed over the entire negative electrode active material layer during the first charging step. Therefore, it is possible to manufacture a non-aqueous electrolytic solution secondary battery having excellent battery performance.

ここに開示される製造方法の好ましい一態様では、上記第1充電工程において、上記チャンバーの内部の上記第1圧力が負圧になるように上記チャンバーの内部を真空引きしながら、上記電池組立体を充電する。これにより、非水電解液の分解により発生したガスが電極体の内部に残留することをより確実に抑止することができる。 In a preferred embodiment of the manufacturing method disclosed herein, in the first charging step, the battery assembly is evacuated while the inside of the chamber is evacuated so that the first pressure inside the chamber becomes a negative pressure. To charge. As a result, it is possible to more reliably prevent the gas generated by the decomposition of the non-aqueous electrolytic solution from remaining inside the electrode body.

ここに開示される製造方法の好ましい一態様では、上記第1充電工程において、上記電池組立体をSOCが10%~20%になるまで充電する。非水電解液の分解により発生するガスの大部分は、SOCが10%~20%に至る間に発生する。このため、第1充電工程において、電池組立体をSOCが10%~20%になるまで充電することにより、ガスの大部分を取り除くことができ、電極体の内部に残留し得るガスを低減することができる。 In a preferred embodiment of the manufacturing method disclosed herein, in the first charging step, the battery assembly is charged until the SOC reaches 10% to 20%. Most of the gas generated by the decomposition of the non-aqueous electrolyte is generated between 10% and 20% SOC. Therefore, in the first charging step, by charging the battery assembly until the SOC reaches 10% to 20%, most of the gas can be removed, and the gas that may remain inside the electrode body is reduced. be able to.

ここに開示される製造方法の好ましい一態様では、上記正極活物質層は、正極活物質としてリチウム遷移金属酸化物を含み、上記非水電解液は、電解質としてのリチウム塩と、上記リチウム塩を溶解するカーボネート系溶媒と、を含む。かかる構成によると、非水電解液の分解がより進行して、より多くのガスが発生し得る。このため、上記製造方法によると、より多く発生したガスをより確実に取り除くことができる。 In a preferred embodiment of the production method disclosed herein, the positive electrode active material layer contains a lithium transition metal oxide as the positive electrode active material, and the non-aqueous electrolyte solution contains a lithium salt as an electrolyte and the lithium salt. Includes a soluble carbonate-based solvent. According to such a configuration, the decomposition of the non-aqueous electrolytic solution may proceed more and more gas may be generated. Therefore, according to the above manufacturing method, more gas generated can be removed more reliably.

一実施形態に係るリチウムイオン二次電の製造方法の各工程を示すフローチャートである。It is a flowchart which shows each process of the manufacturing method of the lithium ion secondary electric | cylinder which concerns on one Embodiment. 一実施形態に係るチャンバー内に電池組立体が配置された状態を示す模式図である。It is a schematic diagram which shows the state which the battery assembly is arranged in the chamber which concerns on one Embodiment. 一実施形態に係るリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery which concerns on one Embodiment.

以下、図面を参照しながら、ここで開示される技術の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the techniques disclosed herein will be described with reference to the drawings. It should be noted that matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention (for example, general configurations and manufacturing processes of batteries that do not characterize the present invention) are in the art. It can be grasped as a design matter of a person skilled in the art based on the prior art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいう。また、非水電解液二次電池とは、非水系の電解液中に含まれる電解質イオンを電荷担体として利用する二次電池をいう。以下、非水電解液二次電池の製造方法の一例としてリチウムイオン二次電池の製造方法を例に、本技術について説明する。なお、本明細書において「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。 In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged. The non-aqueous electrolyte secondary battery refers to a secondary battery that uses electrolyte ions contained in a non-aqueous electrolyte as a charge carrier. Hereinafter, the present technology will be described by taking as an example a method for manufacturing a lithium ion secondary battery as an example of a method for manufacturing a non-aqueous electrolyte secondary battery. In the present specification, the "lithium ion secondary battery" refers to a secondary battery that uses lithium ions as a charge carrier and realizes charge / discharge by the transfer of charges accompanying the lithium ions between the positive and negative electrodes.

図1に示すように、本実施形態に係るリチウムイオン二次電池(非水電解液二次電池)100の製造方法は、電極体20を電池ケース30に収容する収容工程S10と、電池組立体100Aを構築する構築工程S20と、電池組立体100Aを充電する第1充電工程S30と、封止工程S40と、電池組立体100Aをさらに充電する第2充電工程S50と、を含む。 As shown in FIG. 1, the method for manufacturing a lithium ion secondary battery (non-aqueous electrolyte secondary battery) 100 according to the present embodiment includes a housing step S10 in which the electrode body 20 is housed in the battery case 30 and a battery assembly. It includes a construction step S20 for constructing 100A, a first charging step S30 for charging the battery assembly 100A, a sealing step S40, and a second charging step S50 for further charging the battery assembly 100A.

まず、収容工程S10について説明する。収容工程S10では、正極活物質層54を含む正極50と負極活物質層64を含む負極60と第1セパレータ71と、第2セパレータ72とを含む電極体20を、注液孔37が形成された電池ケース30に収容する。 First, the accommodating step S10 will be described. In the accommodating step S10, a liquid injection hole 37 is formed in the electrode body 20 including the positive electrode 50 including the positive electrode active material layer 54, the negative electrode 60 including the negative electrode active material layer 64, the first separator 71, and the second separator 72. It is housed in the battery case 30.

図2に示すように、電池ケース30の形状は、扁平な角形である。電池ケース30は、一側面に開口部30Hを有する箱型の本体31と、該本体31の開口部30Hを塞ぐ板状の蓋体32とを備える。電池ケース30の蓋体32には、外部接続用の正極外部端子42および負極外部端子44と、安全弁36とが設けられている。安全弁36は、電池ケース30の内圧が所定レベル以上に上昇した場合に、該内圧を開放する。また、電池ケース30の蓋体32には、非水電解液10を電池ケース30の内部に注入するための注液孔37が設けられている。電池ケース30の材質は、軽量で熱伝導性が良い材質が望ましい。一例として、本実施形態の電池ケース30の材質には、熱伝導性が高く且つ適度な剛性を有するアルミニウムが用いられている。しかし、電池ケース30の構成を変更することも可能である。例えば、電池ケース30として、可撓性を有するラミネートが用いられてもよい。 As shown in FIG. 2, the shape of the battery case 30 is a flat square shape. The battery case 30 includes a box-shaped main body 31 having an opening 30H on one side surface, and a plate-shaped lid 32 that closes the opening 30H of the main body 31. The lid 32 of the battery case 30 is provided with a positive electrode external terminal 42 and a negative electrode external terminal 44 for external connection, and a safety valve 36. The safety valve 36 releases the internal pressure when the internal pressure of the battery case 30 rises above a predetermined level. Further, the lid 32 of the battery case 30 is provided with a liquid injection hole 37 for injecting the non-aqueous electrolytic solution 10 into the inside of the battery case 30. The material of the battery case 30 is preferably a material that is lightweight and has good thermal conductivity. As an example, aluminum having high thermal conductivity and appropriate rigidity is used as the material of the battery case 30 of the present embodiment. However, it is also possible to change the configuration of the battery case 30. For example, a flexible laminate may be used as the battery case 30.

電極体20は、長尺状の正極50、長尺状の第1セパレータ71、長尺状の負極60、および長尺状の第2セパレータ72が重ね合わされて捲回されている。詳細には、正極50は、長尺状の正極集電体52と、正極集電体52の片面または両面(本実施形態では両面)に、長手方向に沿って形成された正極活物質層54と、を含む。負極60は、長尺状の負極集電体62と、負極集電体62の片面または両面(本実施形態では両面)に、長手方向に沿って形成された負極活物質層64と、を含む。露出部52A,62Aは、電極体20の捲回軸の方向の両端部の各々に位置する。露出部52Aは、正極活物質層54が形成されずに正極集電体52が露出した部分である。露出部52Aには、正極集電端子43が接合される。正極集電端子43には、正極外部端子42が電気的に接続される。また、露出部62Aは、負極活物質層64が形成されずに負極集電体62が露出した部分である。露出部62Aには、負極集電端子45が接合される。負極集電端子45には、負極外部端子44が電気的に接続される。なお、電極体20は、捲回電極体でなく、正極、負極、およびセパレータが積層された積層電極体であってもよい。 The electrode body 20 is wound by superimposing a long positive electrode 50, a long first separator 71, a long negative electrode 60, and a long second separator 72. Specifically, the positive electrode 50 has a long positive electrode current collector 52 and a positive electrode active material layer 54 formed along one side or both sides (both sides in this embodiment) of the positive electrode current collector 52 along the longitudinal direction. And, including. The negative electrode 60 includes a long negative electrode current collector 62 and a negative electrode active material layer 64 formed along the longitudinal direction on one side or both sides (both sides in this embodiment) of the negative electrode current collector 62. .. The exposed portions 52A and 62A are located at both ends of the electrode body 20 in the direction of the winding axis. The exposed portion 52A is a portion where the positive electrode current collector 52 is exposed without forming the positive electrode active material layer 54. A positive electrode current collecting terminal 43 is joined to the exposed portion 52A. A positive electrode external terminal 42 is electrically connected to the positive electrode current collecting terminal 43. Further, the exposed portion 62A is a portion where the negative electrode current collector 62 is exposed without forming the negative electrode active material layer 64. A negative electrode current collector terminal 45 is joined to the exposed portion 62A. A negative electrode external terminal 44 is electrically connected to the negative electrode current collector terminal 45. The electrode body 20 may be a laminated electrode body in which a positive electrode, a negative electrode, and a separator are laminated, instead of the wound electrode body.

正極50および負極60には、従来のリチウムイオン二次電池に用いられているものと同様のものを特に制限なく使用することができる。典型的な一態様を以下に示す。 As the positive electrode 50 and the negative electrode 60, the same ones used in the conventional lithium ion secondary battery can be used without particular limitation. A typical aspect is shown below.

正極50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54に含まれる正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。 Examples of the positive electrode current collector 52 constituting the positive electrode 50 include aluminum foil and the like. Examples of the positive electrode active material contained in the positive electrode active material layer 54 include lithium transition metal oxides (eg, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O). 4 , LiNi 0.5 Mn 1.5 O 4 , etc.), lithium transition metal phosphate compounds (eg, LiFePO 4 , etc.) and the like. The positive electrode active material layer 54 may contain components other than the active material, such as a conductive material and a binder. As the conductive material, for example, carbon black such as acetylene black (AB) or other carbon material (eg, graphite or the like) can be preferably used. As the binder, for example, polyvinylidene fluoride (PVDF) or the like can be used.

負極60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64に含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。なかでも、黒鉛が好ましい。黒鉛は、天然黒鉛であっても人工黒鉛であってもよく、非晶質炭素材料で被覆されていてもよい。負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。 Examples of the negative electrode current collector 62 constituting the negative electrode 60 include copper foil and the like. As the negative electrode active material contained in the negative electrode active material layer 64, a carbon material such as graphite, hard carbon, or soft carbon can be used. Of these, graphite is preferable. The graphite may be natural graphite, artificial graphite, or may be coated with an amorphous carbon material. The negative electrode active material layer 64 may contain components other than the active material, such as a binder and a thickener. As the binder, for example, styrene butadiene rubber (SBR) or the like can be used. As the thickener, for example, carboxymethyl cellulose (CMC) or the like can be used.

第1セパレータ71および第2セパレータ72としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン製の多孔性シート(フィルム)が好適に使用され得る。かかる多孔性シートは、単層構造であってもよく、二層以上の積層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。第1セパレータ71および第2セパレータ72の表面には、耐熱層(HRL)が設けられていてもよい。 As the first separator 71 and the second separator 72, a porous sheet (film) made of polyolefin such as polyethylene (PE) or polypropylene (PP) can be preferably used. The porous sheet may have a single-layer structure or a laminated structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). A heat-resistant layer (HRL) may be provided on the surfaces of the first separator 71 and the second separator 72.

次に、構築工程S20について説明する。構築工程S20では、電池ケース30に非水電解液10を注液して電池組立体100Aを構築する。非水電解液10は、電池ケース30の蓋体32に形成された注液孔37を介して電池ケース30の内部(即ち本体31)に注液される。例えば、電池ケース30の内部の圧力を大気圧よりも低下させた状態で、非水電解液10の注液が行われる。注液が完了すると、電池ケース30の内部の圧力は、大気圧以上の圧力に戻される。非水電解液10は、通常、有機溶媒(非水溶媒)および支持塩含有する。 Next, the construction step S20 will be described. In the construction step S20, the non-aqueous electrolytic solution 10 is injected into the battery case 30 to construct the battery assembly 100A. The non-aqueous electrolytic solution 10 is injected into the inside of the battery case 30 (that is, the main body 31) through the injection holes 37 formed in the lid 32 of the battery case 30. For example, the non-aqueous electrolytic solution 10 is injected in a state where the pressure inside the battery case 30 is lower than the atmospheric pressure. When the injection is completed, the pressure inside the battery case 30 is returned to a pressure equal to or higher than the atmospheric pressure. The non-aqueous electrolyte 10 usually contains an organic solvent (non-aqueous solvent) and a supporting salt.

非水溶媒は、リチウムイオン二次電池用電解液の非水溶媒として用いられている公知のものを使用することができ、その具体例としては、カーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等が挙げられる。なかでも、カーボネート類が好ましい。カーボネート類(カーボネート系溶媒)の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等が挙げられる。これらは単独で、または2種以上を組み合わせて用いることができる。非水溶媒は、支持塩(電解質)を溶解する。 As the non-aqueous solvent, a known one used as a non-aqueous solvent for the electrolytic solution for a lithium ion secondary battery can be used, and specific examples thereof include carbonates, ethers, esters, nitriles, and the like. Examples thereof include solvents and lactones. Of these, carbonates are preferable. Examples of carbonates (carbonate-based solvents) include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like. These can be used alone or in combination of two or more. The non-aqueous solvent dissolves the supporting salt (electrolyte).

支持塩は、主たる電解質として用いられ、例えば、LiPF、LiBF、LiClO等のリチウム塩が好適に用いられる。かかる支持塩の含有量は、本発明の効果を著しく損なわない限り、特に限定されない。例えば、支持塩としてLiPFを用いる場合、LiPFのモル含有量は、0.5mol/L~3.0mol/L(好ましくは0.5mol/L~1.5mol/L、例えば1mol/L)に調整される。このように非水電解液中のLiPFの含有量を調整することによって、非水電解液中の総イオン含有量と電解液の粘性を適度なバランスにすることができるため、イオン伝導度を過度に低下させることなく、入出力特性を向上させることができる。 The supporting salt is used as the main electrolyte, and for example, lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 are preferably used. The content of the supporting salt is not particularly limited as long as the effect of the present invention is not significantly impaired. For example, when LiPF 6 is used as the supporting salt, the molar content of LiPF 6 is 0.5 mol / L to 3.0 mol / L (preferably 0.5 mol / L to 1.5 mol / L, for example, 1 mol / L). Is adjusted to. By adjusting the content of LiPF 6 in the non-aqueous electrolytic solution in this way, the total ion content in the non-aqueous electrolytic solution and the viscosity of the electrolytic solution can be appropriately balanced, so that the ionic conductivity can be adjusted. The input / output characteristics can be improved without excessively deteriorating.

次に、第1充電工程S30について説明する。第1充電工程S30では、注液孔37が開放された電池組立体100Aをチャンバー90の内部に配置して、チャンバー90の内部の第1圧力が電池ケース30の内部の第2圧力より低い状態で電池組立体100Aを充電する。 Next, the first charging step S30 will be described. In the first charging step S30, the battery assembly 100A in which the injection hole 37 is opened is arranged inside the chamber 90, and the first pressure inside the chamber 90 is lower than the second pressure inside the battery case 30. Charges the battery assembly 100A with.

図2に示すように、チャンバー90は内部に電池組立体100Aを配置可能な大きさに形成されている。電池組立体100Aは、チャンバー90の内部に配置されたり、チャンバー90の内部から取り出したりすることができる。チャンバー90には、排気口90Hが形成されている。排気口90Hには、真空ポンプ92が設けられている。真空ポンプ92は、チャンバー90の内部を真空引きするように構成されている。真空ポンプ92が駆動することでチャンバー90の内部は負圧(例えば、低真空、中真空、高真空。)になる。また、チャンバー90の内部には、電池組立体100Aを充電する充電装置(図示せず)が設けられている。 As shown in FIG. 2, the chamber 90 is formed in a size capable of arranging the battery assembly 100A inside. The battery assembly 100A can be arranged inside the chamber 90 or removed from the inside of the chamber 90. An exhaust port 90H is formed in the chamber 90. A vacuum pump 92 is provided at the exhaust port 90H. The vacuum pump 92 is configured to evacuate the inside of the chamber 90. When the vacuum pump 92 is driven, the inside of the chamber 90 becomes a negative pressure (for example, low vacuum, medium vacuum, high vacuum). Further, a charging device (not shown) for charging the battery assembly 100A is provided inside the chamber 90.

ここで、注液孔37が開放された電池組立体100Aがチャンバー90の内部に配置されたとき、即ち真空ポンプ92を駆動する前のチャンバー90の内部の第1圧力は、大気圧に等しい。また、真空ポンプ92を駆動する前の電池ケース30の内部の第2圧力は、例えば、大気圧に等しい。第1充電工程S30では、真空ポンプ92を駆動してチャンバー90の内部を真空引きすることによって、チャンバー90の内部の第1圧力が電池ケース30の内部の第2圧力より小さくなるようにする。本実施形態では、チャンバー90の内部の第1圧力が負圧になるようにチャンバー90の内部を真空引きする。そして、チャンバー90の内部の第1圧力が電池ケース30の内部の第2圧力より低い状態で電池組立体100Aを充電する。第1充電工程S30では、電池組立体100AをSOCが10%~20%(例えば15%)になるまで充電する。第1充電工程S30では、電池組立体100Aを例えば3.7Vになるまで充電する。第1充電工程S30では、好ましくは、真空ポンプ92によってチャンバー90の内部を真空引きしながら、電池組立体100Aを充電する。電池組立体100Aを充電することによって、非水電解液10の一部が分解されて負極活物質層64に皮膜(SEI膜)が形成されるとともにガスが電極体20に発生するが、発生したガスは真空ポンプ92によって電池ケース30の外部へと排出される。電池組立体100Aの充電中にはガスが発生し続けるが、真空ポンプ92によってチャンバー90の内部を真空引きし続けることで、電極体20にガスが残留することが抑制される。即ち、電極体20の全体に亘って非水電解液10が含侵するため、負極活物質層64に形成される皮膜にムラが発生することが抑制される。 Here, when the battery assembly 100A in which the injection hole 37 is opened is arranged inside the chamber 90, that is, the first pressure inside the chamber 90 before driving the vacuum pump 92 is equal to the atmospheric pressure. Further, the second pressure inside the battery case 30 before driving the vacuum pump 92 is, for example, equal to atmospheric pressure. In the first charging step S30, the vacuum pump 92 is driven to evacuate the inside of the chamber 90 so that the first pressure inside the chamber 90 becomes smaller than the second pressure inside the battery case 30. In the present embodiment, the inside of the chamber 90 is evacuated so that the first pressure inside the chamber 90 becomes a negative pressure. Then, the battery assembly 100A is charged in a state where the first pressure inside the chamber 90 is lower than the second pressure inside the battery case 30. In the first charging step S30, the battery assembly 100A is charged until the SOC reaches 10% to 20% (for example, 15%). In the first charging step S30, the battery assembly 100A is charged until it reaches, for example, 3.7V. In the first charging step S30, the battery assembly 100A is preferably charged while the inside of the chamber 90 is evacuated by the vacuum pump 92. By charging the battery assembly 100A, a part of the non-aqueous electrolytic solution 10 is decomposed to form a film (SEI film) on the negative electrode active material layer 64, and gas is generated on the electrode body 20, but it is generated. The gas is discharged to the outside of the battery case 30 by the vacuum pump 92. Gas continues to be generated during charging of the battery assembly 100A, but by continuing to evacuate the inside of the chamber 90 by the vacuum pump 92, it is suppressed that gas remains in the electrode body 20. That is, since the non-aqueous electrolytic solution 10 invades the entire electrode body 20, it is possible to suppress the occurrence of unevenness in the film formed on the negative electrode active material layer 64.

次に、封止工程S40について説明する。封止工程S40では、第1充電工程S30において充電された電池組立体100Aをチャンバー90から取り出す。そして、注液孔37を封止する。本実施形態では、注液孔37に封止部材38(図3参照)を溶接することにより注液孔37を封止する。 Next, the sealing step S40 will be described. In the sealing step S40, the battery assembly 100A charged in the first charging step S30 is taken out from the chamber 90. Then, the liquid injection hole 37 is sealed. In the present embodiment, the liquid injection hole 37 is sealed by welding the sealing member 38 (see FIG. 3) to the liquid injection hole 37.

次に、第2充電工程S50について説明する。第2充電工程S50では、注液孔37が封止された電池組立体100Aをさらに充電する。第2充電工程S50は、通常大気圧下で行われるものであり、チャンバー90の内部では行われない。第2充電工程S50では、電池組立体100AをSOCが100%になるまで充電する。第2充電工程S50では、電池組立体100Aを例えば3.7Vから4.2Vになるまで充電する。以上のようにして、図3に示すように、電極体20と、非水電解液10と、電池ケース30とを備えた密閉型のリチウムイオン二次電池100が製造される。上記製造方法によって製造されたリチウムイオン二次電池100は、第1充電工程S30においてチャンバー90の内部を真空引きしながら電池組立体100Aを充電しているため、非水電解液10の分解によって発生したガスが電池ケース30の内部(即ち電極体20の内部)から除去されて、負極活物質層64の全体に亘って皮膜が好適に形成されており、優れた電池性能を発揮することができる。 Next, the second charging step S50 will be described. In the second charging step S50, the battery assembly 100A in which the injection hole 37 is sealed is further charged. The second charging step S50 is usually performed under atmospheric pressure, and is not performed inside the chamber 90. In the second charging step S50, the battery assembly 100A is charged until the SOC reaches 100%. In the second charging step S50, the battery assembly 100A is charged from, for example, 3.7V to 4.2V. As described above, as shown in FIG. 3, a sealed lithium ion secondary battery 100 including the electrode body 20, the non-aqueous electrolytic solution 10, and the battery case 30 is manufactured. Since the lithium ion secondary battery 100 manufactured by the above manufacturing method charges the battery assembly 100A while vacuuming the inside of the chamber 90 in the first charging step S30, it is generated by the decomposition of the non-aqueous electrolytic solution 10. The generated gas is removed from the inside of the battery case 30 (that is, the inside of the electrode body 20), and a film is suitably formed over the entire negative electrode active material layer 64, so that excellent battery performance can be exhibited. ..

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定
するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、
変更したものが含まれる。
Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims are variously modified with the specific examples illustrated above.
Includes modified ones.

上述した実施形態では、第1充電工程S30において、真空ポンプ92を駆動してチャンバー90の内部を真空引きしながら電池組立体100Aを充電していたが、例えば、チャンバー90の内部の圧力が十分に負圧である場合には、真空ポンプ92を駆動せずに電池組立体100Aを充電しても、電池ケース30からガスを排出することができる。 In the above-described embodiment, in the first charging step S30, the battery assembly 100A is charged while driving the vacuum pump 92 to evacuate the inside of the chamber 90. For example, the pressure inside the chamber 90 is sufficient. When the pressure is negative, the gas can be discharged from the battery case 30 even if the battery assembly 100A is charged without driving the vacuum pump 92.

10 非水電解液
20 電極体
30 電池ケース
37 注液孔
50 正極
60 負極
64 負極活物質層
90 チャンバー
92 真空ポンプ
100 リチウムイオン二次電池(非水電解液二次電池)
100A 電池組立体
10 Non-aqueous electrolyte 20 Electrode body 30 Battery case 37 Injection hole 50 Positive electrode 60 Negative electrode 64 Negative electrode active material layer 90 Chamber 92 Vacuum pump 100 Lithium ion secondary battery (non-aqueous electrolyte secondary battery)
100A battery assembly

Claims (4)

正極活物質層を含む正極と負極活物質層を含む負極とセパレータとを含む電極体を、注液孔が形成された電池ケースに収容する収容工程と、
前記電池ケースに非水電解液を注液して電池組立体を構築する構築工程と、
前記注液孔が開放された前記電池組立体をチャンバーの内部に配置して、前記チャンバーの内部の第1圧力が前記電池ケースの内部の第2圧力より低い状態で前記電池組立体を充電する第1充電工程と、
前記注液孔を封止する封止工程と、
前記注液孔が封止された前記電池組立体をさらに充電する第2充電工程と、を含む、非水電解液二次電池の製造方法。
A storage step of accommodating a positive electrode including a positive electrode active material layer, a negative electrode including a negative electrode active material layer, and an electrode body including a separator in a battery case having a liquid injection hole formed therein.
The construction process of constructing a battery assembly by injecting a non-aqueous electrolyte solution into the battery case,
The battery assembly having the liquid injection hole opened is arranged inside the chamber, and the battery assembly is charged in a state where the first pressure inside the chamber is lower than the second pressure inside the battery case. The first charging process and
The sealing process for sealing the injection hole and
A method for manufacturing a non-aqueous electrolytic solution secondary battery, comprising a second charging step of further charging the battery assembly in which the injection hole is sealed.
前記第1充電工程において、前記チャンバーの内部の前記第1圧力が負圧になるように前記チャンバーの内部を真空引きしながら、前記電池組立体を充電する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein in the first charging step, the battery assembly is charged while evacuating the inside of the chamber so that the first pressure inside the chamber becomes a negative pressure. 前記第1充電工程において、前記電池組立体をSOCが10%~20%になるまで充電する、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein in the first charging step, the battery assembly is charged until the SOC reaches 10% to 20%. 前記正極活物質層は、正極活物質としてリチウム遷移金属酸化物を含み、
前記非水電解液は、電解質としてのリチウム塩と、前記リチウム塩を溶解するカーボネート系溶媒と、を含む、請求項1から3のいずれか一項に記載の製造方法。
The positive electrode active material layer contains a lithium transition metal oxide as a positive electrode active material.
The production method according to any one of claims 1 to 3, wherein the non-aqueous electrolyte solution contains a lithium salt as an electrolyte and a carbonate-based solvent that dissolves the lithium salt.
JP2020198128A 2020-11-30 2020-11-30 Method for manufacturing non-aqueous electrolyte secondary battery Active JP7198257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020198128A JP7198257B2 (en) 2020-11-30 2020-11-30 Method for manufacturing non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020198128A JP7198257B2 (en) 2020-11-30 2020-11-30 Method for manufacturing non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2022086223A true JP2022086223A (en) 2022-06-09
JP7198257B2 JP7198257B2 (en) 2022-12-28

Family

ID=81894508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020198128A Active JP7198257B2 (en) 2020-11-30 2020-11-30 Method for manufacturing non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7198257B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554910A (en) * 1991-08-28 1993-03-05 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous secondary battery
JPH10270072A (en) * 1997-03-21 1998-10-09 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP2010080105A (en) * 2008-09-24 2010-04-08 Panasonic Corp Method of manufacturing nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554910A (en) * 1991-08-28 1993-03-05 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous secondary battery
JPH10270072A (en) * 1997-03-21 1998-10-09 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP2010080105A (en) * 2008-09-24 2010-04-08 Panasonic Corp Method of manufacturing nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP7198257B2 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
US10461308B2 (en) Sealed battery and method of manufacture
KR101787254B1 (en) Secondary battery
KR101812420B1 (en) Degraded performance recovery method for lithium ion secondary battery
KR20140018014A (en) The manufacturing method of pouch type secondary battery
JP2017073223A (en) Method for manufacturing nonaqueous electrolyte secondary battery
KR20140013133A (en) Method of manufactoring secondary battery
KR20150039096A (en) Manufacturing method of nonaqueous electrolyte secondary battery
JP6836727B2 (en) Non-aqueous electrolyte Lithium ion secondary battery
JP5716455B2 (en) Battery manufacturing method, welding apparatus, and welding jig
JP2015230761A (en) Method for manufacturing secondary battery
JP7198257B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP4039197B2 (en) Laminated battery, module having a plurality of laminated batteries connected thereto, assembled battery having a plurality of connected modules, and vehicle equipped with the assembled battery
JP2018056045A (en) Lithium ion secondary battery
JP6895079B2 (en) Non-aqueous electrolyte secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP2012109048A (en) Regeneration method of nonaqueous electrolyte secondary battery
JP7373120B2 (en) Non-aqueous electrolyte secondary battery
JP7258002B2 (en) Method for producing nonaqueous electrolyte for lithium ion secondary battery and method for producing lithium ion secondary battery using the nonaqueous electrolyte
JP6963731B2 (en) Lithium ion secondary battery
JP6635320B2 (en) Non-aqueous electrolyte secondary battery
JP7079413B2 (en) How to manufacture a secondary battery
CN114583244B (en) Lithium ion secondary battery
JP6847785B2 (en) Separator wrinkle suppression method and lithium ion secondary battery manufacturing method in the initial charging method of lithium ion secondary battery
JP2022079876A (en) Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte rechargeable battery
JP2016201231A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221216

R150 Certificate of patent or registration of utility model

Ref document number: 7198257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150