JP2015230761A - Method for manufacturing secondary battery - Google Patents

Method for manufacturing secondary battery Download PDF

Info

Publication number
JP2015230761A
JP2015230761A JP2014115067A JP2014115067A JP2015230761A JP 2015230761 A JP2015230761 A JP 2015230761A JP 2014115067 A JP2014115067 A JP 2014115067A JP 2014115067 A JP2014115067 A JP 2014115067A JP 2015230761 A JP2015230761 A JP 2015230761A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode body
secondary battery
electrolytic solution
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014115067A
Other languages
Japanese (ja)
Inventor
邦光 山本
Kunimitsu Yamamoto
邦光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014115067A priority Critical patent/JP2015230761A/en
Publication of JP2015230761A publication Critical patent/JP2015230761A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a secondary battery which enables the suppression of the precipitation of charged carriers.SOLUTION: A method for manufacturing a secondary battery 100 having of an electrolyte, an excessive electrolyte 70 remaining in a battery case 10 without being impregnated into an electrode body 20, which the present invention offers, comprises the steps of: encasing the electrode body 20 having a positive electrode 30 and a negative electrode 40, and an electrolyte absorber 60 in the battery case 10, provided that the electrolyte absorber 60 is disposed so as not to be in contact with the electrode body 20; injecting the electrolyte into the battery case 10; using the electrolyte absorber 60 to absorb, of the injected electrolyte, the excessive electrolyte 70 remaining without being impregnated into the electrode body 20; and initially charging the electrode body 20.

Description

本発明は、電極体と電解液とを備えた二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a secondary battery including an electrode body and an electrolytic solution.

リチウムイオン二次電池(例えば特許文献1)等の二次電池は、例えば、電気を駆動源として利用する車両に搭載される電源、或いはパソコンや携帯端末その他の電気製品等に用いられている。特に軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。   A secondary battery such as a lithium ion secondary battery (for example, Patent Document 1) is used in, for example, a power source mounted on a vehicle that uses electricity as a drive source, a personal computer, a portable terminal, or other electrical products. In particular, a lithium ion secondary battery that is lightweight and has a high energy density is preferably used as a high-output power source for mounting on a vehicle.

この種のリチウムイオン二次電池等の二次電池では、初期充電の際に電解液の一部が分解され、活物質(例えば黒鉛粒子等の負極活物質)の表面にその分解物からなる被膜、すなわちSEI(Solid Electrolyte Interphase)膜が形成され得る。SEI膜は活物質を保護するともに電荷担体(例えばリチウムイオン二次電池の場合、Liイオン)が直接析出電位に曝されることを防止する役割を果たすが、該SEI膜の形成には活物質が曝される電位と温度条件が整っていることが必要とされる。   In a secondary battery such as this type of lithium ion secondary battery, a part of the electrolytic solution is decomposed during initial charging, and a coating made of the decomposition product on the surface of the active material (eg, negative electrode active material such as graphite particles). That is, a SEI (Solid Electrolyte Interface) film can be formed. The SEI film protects the active material and prevents charge carriers (for example, Li ions in the case of a lithium ion secondary battery) from being directly exposed to the deposition potential. It is required that the potential and temperature conditions to be exposed to are in place.

特開2013−084483号公報JP2013-084483A

ところで、リチウムイオン二次電池等の二次電池では、製造時には電解液が電極体の各部に適切に行き渡って(典型的には該電極体の全体に十分に浸透して)いたとしても、長期間もしくはハイレートでの使用等によって該電解液が部分的に足りなくする箇所(いわゆる「液枯れ」現象)が生じることがある。液枯れを防止する方法としては、例えば、電解液不足が生じないように、電池製造時に予め過剰量の電解液(余剰電解液)を電池内に収容しておくことが考えられる。   By the way, in a secondary battery such as a lithium ion secondary battery, even when the electrolyte is properly distributed to each part of the electrode body at the time of manufacturing (typically, the electrode body has sufficiently penetrated the entire electrode body) There may be a portion where the electrolyte is partially insufficient (so-called “liquid withdrawing” phenomenon) due to a period or use at a high rate. As a method for preventing liquid withering, for example, it is conceivable to store an excessive amount of electrolytic solution (excess electrolytic solution) in the battery in advance at the time of manufacturing the battery so as not to cause shortage of the electrolytic solution.

しかし、本発明者の検討によると、電解液不足が生じないように予め余剰電解液を電池内に収容した二次電池では、初期充電の開始時(初期段階)に、電極体のうち余剰電解液とすでに接触している箇所(例えば余剰電解液に浸った電極体の下方側の一部)が、他の箇所よりも温度上昇が小さくなり、延いてはSEI膜の形成温度に達しない場合がある。そのため、余剰電解液と接触している箇所では活物質表面にSEI膜が十分に形成されず、電荷担体(例えばLiイオン)が直接析出電位に曝された結果、電荷担体の析出が生じるという問題があった。本発明は上記課題を解決するものである。   However, according to the study of the present inventor, in the secondary battery in which the surplus electrolyte is previously stored in the battery so as not to cause the electrolyte shortage, the surplus electrolysis of the electrode body is started at the start of the initial charge (initial stage). When the temperature of a part already in contact with the liquid (for example, a part of the lower side of the electrode body immersed in excess electrolyte solution) is smaller than that of the other part and thus does not reach the SEI film formation temperature. There is. For this reason, the SEI film is not sufficiently formed on the surface of the active material at the place where it is in contact with the surplus electrolyte, and charge carriers (for example, Li ions) are directly exposed to the deposition potential, resulting in the deposition of charge carriers. was there. The present invention solves the above problems.

ここで提案される製造方法は、電解液のうち電極体に含浸されずに残った余剰電解液を電池ケース内に有する二次電池の製造方法である。この製造方法は、正極および負極を有する電極体と、電解液吸収体とを電池ケースに収容することを包含する(収容工程)。ここで前記電解液吸収体は前記電極体と接触しないように配置される。また、前記電池ケース内に電解液を注液することを包含する(注液工程)。さらに、前記注液された電解液のうち前記電極体に含浸されずに残った余剰電解液を前記電解液吸収体に吸収させることを包含する(吸収工程)。そして、前記吸収工程の後、前記電極体に対して初期充電を行うことを包含する(初期充電工程)。   The manufacturing method proposed here is a method for manufacturing a secondary battery in which a surplus electrolytic solution remaining without being impregnated in an electrode body is contained in a battery case. This manufacturing method includes accommodating an electrode body having a positive electrode and a negative electrode and an electrolyte solution absorber in a battery case (accommodating step). Here, the electrolyte solution absorber is disposed so as not to contact the electrode body. Further, the method includes pouring an electrolytic solution into the battery case (a pouring step). Furthermore, the electrolyte solution absorber is made to absorb the excess electrolyte solution which was not impregnated in the electrode body among the injected electrolyte solution (absorption process). And it includes performing initial charge with respect to the said electrode body after the said absorption process (initial charge process).

かかる製造方法によれば、初期充電の開始時(初期段階)に余剰電解液が電解液吸収体に吸収されているため、余剰電解液が電極体と接触していない。そのため、初期充電の開始時に余剰電解液が電極体と接触していることに起因して電荷担体(例えばLiイオン)が析出する事象を解消または緩和することができる。   According to this manufacturing method, since the surplus electrolyte is absorbed by the electrolyte absorber at the start (initial stage) of the initial charge, the surplus electrolyte is not in contact with the electrode body. Therefore, it is possible to eliminate or alleviate an event in which charge carriers (for example, Li ions) are precipitated due to the surplus electrolyte solution contacting the electrode body at the start of initial charging.

本発明の一実施形態に係る二次電池を示す断面模式図である。It is a cross-sectional schematic diagram which shows the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る二次電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the secondary battery which concerns on one Embodiment of this invention. 比較例のLi析出の有無を示す図である。It is a figure which shows the presence or absence of Li precipitation of a comparative example. 実施例のLi析出の有無を示す図である。It is a figure which shows the presence or absence of Li precipitation of an Example. 実施例および比較例の余剰電解液量を示すグラフである。It is a graph which shows the excess electrolyte solution amount of an Example and a comparative example.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。ここで開示される二次電池を製造する方法の好適な実施形態の一つとして、リチウムイオン二次電池を製造する方法を例にして詳細に説明するが、本発明の適用対象をかかる種類の二次電池に限定することを意図したものではない。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor. The “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between positive and negative electrodes. As a preferred embodiment of a method for producing a secondary battery disclosed herein, a method for producing a lithium ion secondary battery will be described in detail as an example. It is not intended to be limited to secondary batteries.

図1は、本実施形態に係るリチウムイオン二次電池(二次電池)100を模式的に示す断面図である。図1に示すように、このリチウムイオン二次電池100は、金属製(例えばアルミニウム製。また、樹脂製又はラミネートフィルム製も好適である。)の電池ケース10を備える。電池ケース(外容器)10は、上端が開放された有底の扁平な箱型形状(典型的には直方体形状)のケース本体(外装ケース)12と、該ケース本体12の開口部を塞ぐ蓋体14とを備える。電池ケース10の上面(すなわち蓋体14)には、捲回電極体(電極体)20の正極シート(正極)30と電気的に接続する正極端子50および該捲回電極体20の負極シート40と電気的に接続する負極端子52が設けられている。   FIG. 1 is a cross-sectional view schematically showing a lithium ion secondary battery (secondary battery) 100 according to the present embodiment. As shown in FIG. 1, the lithium ion secondary battery 100 includes a battery case 10 made of metal (for example, made of aluminum, and also preferably made of resin or laminate film). A battery case (outer container) 10 includes a case body (exterior case) 12 having a flat bottomed box shape (typically a rectangular parallelepiped shape) with an open upper end, and a lid for closing the opening of the case body 12. And a body 14. On the upper surface (that is, the lid body 14) of the battery case 10, a positive electrode terminal 50 electrically connected to the positive electrode sheet (positive electrode) 30 of the wound electrode body (electrode body) 20 and a negative electrode sheet 40 of the wound electrode body 20. A negative electrode terminal 52 is provided to be electrically connected to.

電池ケース10には、電解液が注液されている。液枯れを防止する観点から、電池ケース10に注液される電解液量は、該電解液が電極体20の全体に行きわたった(浸透した)状態を実現し、さらにいくらかの電解液が余剰分として残るだけの分量であるとよい。つまり、電池ケース10に注液された電解液は、電極体20内に含浸された電極体内電解液(図示せず)と、電極体20に含浸されずに残った余剰電解液70とを含んでいる。余剰電解液70と電極体内電解液とは相互に流通可能な状態であるとよい。この実施形態では、余剰電解液70は重力により電池ケース10の下部に滞留する。この下方に溜まった余剰電解液70が電極体20の下方側の一部を浸し得る程度の電解液使用量とすることが好ましい。なお、電池ケース10の蓋体14には、電極体20に電解液を注液するための注液口(図示せず)が形成されている。注液口は図示しない封止栓によって封止されている。   An electrolytic solution is injected into the battery case 10. From the viewpoint of preventing liquid drainage, the amount of the electrolyte injected into the battery case 10 realizes a state in which the electrolyte has spread (permeated) the entire electrode body 20, and some electrolyte is excessive. The amount should be enough to remain as minutes. That is, the electrolyte injected into the battery case 10 includes an electrode internal electrolyte (not shown) impregnated in the electrode body 20 and an excess electrolyte 70 remaining without being impregnated in the electrode body 20. It is out. The excess electrolyte solution 70 and the electrolyte solution in the electrode may be in a state in which they can circulate with each other. In this embodiment, the excess electrolyte solution 70 stays in the lower part of the battery case 10 due to gravity. It is preferable that the amount of electrolyte used is such that the excess electrolyte 70 accumulated below can soak a part of the lower side of the electrode body 20. In addition, a liquid injection port (not shown) for injecting an electrolyte solution into the electrode body 20 is formed in the lid body 14 of the battery case 10. The liquid injection port is sealed with a sealing stopper (not shown).

上記電解液としては、従来からリチウムイオン二次電池に用いられる電解液と同様のものを特に限定なく使用することができる。かかる電解液は、典型的には、適当な非水溶媒(有機溶媒)に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選択される一種又は二種以上を用いることができる。また、上記支持塩(支持電解質)としては、例えば、LiPF,LiBF等のリチウム塩を用いることができる。さらに上記非水電解液に、ジフルオロリン酸塩(LiPO)やリチウムビスオキサレートボレート(LiBOB)を溶解させてもよい。 As said electrolyte solution, the thing similar to the electrolyte solution conventionally used for a lithium ion secondary battery can be used without limitation. Such an electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent (organic solvent). Examples of the non-aqueous solvent include one or more selected from ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and the like. Can be used. Further, as the supporting salt (supporting electrolyte), for example, it can be used lithium salts such as LiPF 6, LiBF 4. Further, difluorophosphate (LiPO 2 F 2 ) or lithium bisoxalate borate (LiBOB) may be dissolved in the non-aqueous electrolyte.

電池ケース10には、電解液吸収体60が収容されている。電解液吸収体60は、後述する初期充電の前後において、電解液のうち電極体20に含浸されずに残った余剰電解液70を吸収するための部材である。電解液吸収体60は、電極体20と接触しないように該電極体20と距離をあけて配置されているとよい。この実施形態では、電解液吸収体60は、蓋体14の内面に固定されている。   An electrolytic solution absorber 60 is accommodated in the battery case 10. The electrolyte solution absorber 60 is a member for absorbing the excess electrolyte solution 70 remaining in the electrolyte solution without being impregnated in the electrolyte solution before and after the initial charging described later. The electrolyte solution absorber 60 may be disposed at a distance from the electrode body 20 so as not to contact the electrode body 20. In this embodiment, the electrolytic solution absorber 60 is fixed to the inner surface of the lid body 14.

本実施形態で用いられる電解液吸収体60としては、電極体20に含浸されずに残った余剰電解液70を十分に吸収し得るものでることが好ましい。また、電解液と反応することなく電気化学的に安定である電解液吸収体60を用いることが好ましい。さらに、後述する初期充電時の電池内圧の上昇にともない余剰電解液70を放出し得る電解液吸収体60であることが好ましい。このような条件を満たす電解液吸収体60を特に制限なく用いることができる。かかる電解液吸収体60としては、ポリマー材料からなる多孔体等を使用することができる。具体的には、ウレタンをスポンジ状に加工したものを適宜使用し得る。この実施形態では、電解液吸収体60はウレタンスポンジからなる。   The electrolytic solution absorber 60 used in the present embodiment is preferably one that can sufficiently absorb the excess electrolytic solution 70 that remains without being impregnated in the electrode body 20. Moreover, it is preferable to use the electrolytic solution absorber 60 which is electrochemically stable without reacting with the electrolytic solution. Furthermore, it is preferable that the electrolyte solution absorber 60 be capable of releasing the surplus electrolyte solution 70 as the battery internal pressure during initial charging described later increases. The electrolytic solution absorber 60 satisfying such conditions can be used without particular limitation. As the electrolytic solution absorber 60, a porous body made of a polymer material or the like can be used. Specifically, urethane processed into a sponge shape can be used as appropriate. In this embodiment, the electrolytic solution absorber 60 is made of urethane sponge.

電池ケース10内に収容する電解液吸収体60の収容量は、電池ケース10内に注液された電解液のうち、電極体20に含浸されずに残った余剰電解液70を実質的に全て吸収することができる量であればよい。   The amount of the electrolytic solution absorber 60 accommodated in the battery case 10 is substantially the same as the excess electrolytic solution 70 remaining without being impregnated in the electrode body 20 out of the electrolytic solution injected into the battery case 10. Any amount that can be absorbed is acceptable.

次に、上記リチウムイオン二次電池(二次電池)100の製造方法の好ましい一態様について図2〜図5を参照しつつ説明する。
ここで開示される二次電池の製造方法は、正極30および負極40を有する電極体20と、電解液吸収体60とを電池ケース10に収容すること(収容工程);電池ケース10内に電解液を注液すること(注液工程);注液された電解液のうち電極体20に含浸されずに残った余剰電解液70を電解液吸収体60に吸収させること(吸収工程);電極体20に対して初期充電を行うこと(初期充電工程);を包含する。以下、各工程を詳述する。
Next, a preferred embodiment of a method for producing the lithium ion secondary battery (secondary battery) 100 will be described with reference to FIGS.
The method for manufacturing a secondary battery disclosed herein includes housing the electrode body 20 having the positive electrode 30 and the negative electrode 40 and the electrolyte solution absorber 60 in the battery case 10 (accommodating step); Injecting the liquid (injection step); causing the electrolyte solution absorber 60 to absorb the surplus electrolyte 70 remaining without being impregnated in the electrode body 20 among the injected electrolyte (absorption step); Performing initial charging of the body 20 (initial charging step). Hereinafter, each process is explained in full detail.

収容工程では、図2に示すように、正極30と負極40とを有する電極体20と、電解液吸収体60とを電池ケース10に収容する。この際、電解液吸収体60は、電極体20と接触しないように配置される。ここでは、電解液吸収体60を蓋体14の内面に固定することによって、電極体20と接触しないように配置されている。例えば、ケース本体12内に電極体20を収容し、ケース本体12の開口部を蓋体14で塞ぎ、溶接等で封止するとよい。   In the housing step, as shown in FIG. 2, the electrode body 20 having the positive electrode 30 and the negative electrode 40 and the electrolytic solution absorber 60 are housed in the battery case 10. At this time, the electrolytic solution absorber 60 is disposed so as not to contact the electrode body 20. Here, the electrolytic solution absorber 60 is fixed to the inner surface of the lid body 14 so as not to contact the electrode body 20. For example, the electrode body 20 may be accommodated in the case body 12, the opening of the case body 12 may be closed with the lid body 14, and sealed by welding or the like.

注液工程では、図3に示すように、電池ケース10内に電解液を注液する。この実施形態では、蓋体14に形成された図示しない注液口から電池ケース10内に電解液を注液する。このとき、電解液の注液量は、該電解液が電極体20の全体に行きわたるとともに、さらにいくらかの電解液が余剰分として残るだけの分量に設定するとよい。そして、所定量の電解液が注液された電池ケース10の注液口(図示せず)を溶接等によって封止栓で封止する。この時点で、ケース本体12には、注液された電解液のうち電極体20に含浸されずに残った余剰電解液70が存在し得る。   In the liquid injection process, an electrolyte solution is injected into the battery case 10 as shown in FIG. In this embodiment, an electrolytic solution is injected into the battery case 10 from a liquid injection port (not shown) formed in the lid body 14. At this time, the injection amount of the electrolytic solution may be set to an amount that allows the electrolytic solution to reach the entire electrode body 20 and that some electrolytic solution remains as a surplus. Then, a liquid injection port (not shown) of the battery case 10 into which a predetermined amount of electrolytic solution has been injected is sealed with a sealing plug by welding or the like. At this time, in the case main body 12, there can be an excess electrolytic solution 70 that remains without being impregnated in the electrode body 20 among the injected electrolytic solution.

吸収工程では、注液された電解液のうち電極体20に含浸されずに残った余剰電解液70を電解液吸収体60に吸収させる。ここでは、図4(a)に示すように、電池ケース10を蓋体14が底となるように180°回転(上下反転)させることにより、余剰電解液70を蓋体14の内面に移動させる。そして、図4(b)に示すように、該余剰電解液70を蓋体14の内面に固定された電解液吸収体60に吸収させる。余剰電解液70を電解液吸収体60に吸収させるのに要する時間は凡そ15秒〜20秒程度であればよい。   In the absorption step, the electrolyte solution absorber 60 absorbs the excess electrolyte solution 70 remaining without being impregnated in the electrode body 20 among the injected electrolyte solution. Here, as shown in FIG. 4A, the excess electrolyte solution 70 is moved to the inner surface of the lid body 14 by rotating the battery case 10 180 degrees so that the lid body 14 is at the bottom (upside down). . Then, as shown in FIG. 4B, the excess electrolyte solution 70 is absorbed by the electrolyte solution absorber 60 fixed to the inner surface of the lid body 14. The time required for the excess electrolyte solution 70 to be absorbed by the electrolyte absorber 60 may be about 15 to 20 seconds.

初期充電工程では、上記吸収工程の後、電極体20に対して初期充電を行う。ここでは、図5(a)に示すように、電池ケース10を再び180°回転(上下反転)させることにより、余剰電解液70を吸収した電解液吸収体60を電極体20の上方に配置する。そして、電極体20に対して、常温域で所定の電圧値まで充電処理を行う。典型的には、正極30(正極端子50)と負極40(負極端子52)の間に外部電源を接続し、所定の電圧まで充電(典型的には定電流定電圧充電)を行うとよい。ここで初期充電工程における常温域とは、典型的には常温とされる温度領域をいい、20℃±15℃を指すものとする。また、初期充電処理における正負極端子間の電圧(典型的には最高到達電圧)は、使用する活物質や非水溶媒の種類等によっても異なり得るが、電池のSOC(State of Charge:充電深度)が満充電時(典型的には電池の定格容量)の凡そ80%以上(典型的には90〜105%)の範囲にあるときに示し得る電圧範囲とすればよい。初期充電処理における充電レートは、従来の電池を初期充電するときに一般的に採用され得る従来公知の充電レートと同様でよく、例えば0.1〜10C程度とするとよい。   In the initial charging step, the electrode body 20 is initially charged after the absorption step. Here, as shown in FIG. 5 (a), the battery case 10 is again rotated 180 ° (inverted vertically), so that the electrolytic solution absorber 60 that has absorbed the excess electrolytic solution 70 is disposed above the electrode body 20. . Then, the electrode body 20 is charged to a predetermined voltage value in the normal temperature range. Typically, an external power source is connected between the positive electrode 30 (positive electrode terminal 50) and the negative electrode 40 (negative electrode terminal 52), and charging to a predetermined voltage (typically constant current and constant voltage charging) is performed. Here, the normal temperature region in the initial charging step refers to a temperature region that is typically normal temperature, and refers to 20 ° C. ± 15 ° C. In addition, the voltage between the positive and negative terminals (typically the highest voltage reached) in the initial charging process may vary depending on the active material used, the type of non-aqueous solvent, and the like, but the SOC (State of Charge) of the battery ) May be a voltage range that can be shown when it is in the range of about 80% or more (typically 90 to 105%) of the fully charged state (typically the rated capacity of the battery). The charging rate in the initial charging process may be the same as a conventionally known charging rate that can be generally adopted when initially charging a conventional battery, and may be about 0.1 to 10 C, for example.

初期充電の開始時には、図5(a)に示すように、電解液のうち電極体20に含浸されずに残った余剰電解液70が電解液吸収体60に吸収されているため、余剰電解液70が電極体20と接触していない。そのため、初期充電の開始時には、余剰電解液70が電極体20と接触していない状態で初期充電が行われる。また、初期充電が進行すると、電解液の分解等に起因して電池ケース10内にガスが発生し、電池内の圧力(内圧)が上昇する。この内圧上昇により、ウレタンスポンジからなる電解液吸収体60が圧縮され、電解液吸収体60から余剰電解液70が放出される(図5(b)参照)。放出された余剰電解液70は電池ケース10の下部に滞留し、電極体20と接触する(図5(c)参照)。このようにして、電解液のうち電極体20に含浸されずに残った余剰電解液70を電池ケース10内に有する二次電池が作製され得る。その後、必要に応じて、ガス抜きや品質検査等の工程を行ってもよい。   At the start of the initial charging, as shown in FIG. 5A, the excess electrolyte 70 remaining without being impregnated in the electrode body 20 of the electrolyte is absorbed by the electrolyte absorber 60. 70 is not in contact with the electrode body 20. Therefore, at the start of initial charging, initial charging is performed in a state where the excess electrolyte solution 70 is not in contact with the electrode body 20. Further, when the initial charging proceeds, gas is generated in the battery case 10 due to decomposition of the electrolytic solution and the pressure in the battery (internal pressure) increases. Due to the increase in the internal pressure, the electrolytic solution absorber 60 made of urethane sponge is compressed, and the excess electrolytic solution 70 is released from the electrolytic solution absorber 60 (see FIG. 5B). The discharged excess electrolytic solution 70 stays in the lower part of the battery case 10 and comes into contact with the electrode body 20 (see FIG. 5C). In this way, a secondary battery having the excess electrolyte solution 70 remaining in the electrolyte solution without being impregnated in the electrode body 20 in the battery case 10 can be manufactured. Then, you may perform processes, such as degassing and a quality inspection, as needed.

かかる製造方法によると、電極体20に含浸されずに残った余剰電解液70を電解液吸収体60に吸収させた後、電極体20に対して初期充電を行うので、初期充電の開始時(初期段階)には余剰電解液70が電極体20と接触していない。そのため、初期充電の開始時に余剰電解液70が電極体20と接触していることに起因して電荷担体(ここではLiイオン)が析出する事象を防止することができる。   According to this manufacturing method, after the excess electrolytic solution 70 remaining without being impregnated in the electrode body 20 is absorbed by the electrolytic solution absorber 60, the electrode body 20 is initially charged. In the initial stage, the excess electrolyte solution 70 is not in contact with the electrode body 20. Therefore, it is possible to prevent an event in which charge carriers (Li ions in this case) are deposited due to the surplus electrolyte 70 being in contact with the electrode body 20 at the start of initial charging.

また、上記実施形態では、電解液吸収体60は、初期充電時の内圧の上昇にともない余剰電解液70を放出し得るように構成されているので、初期充電後には、余剰電解液70が電極体20と再び接触する。このように余剰電解液70を電極体20に接触させることによって、長期間もしくはハイレートでの使用等によって電極体20に液枯れが生じることを抑制することができる。   Moreover, in the said embodiment, since the electrolyte solution absorber 60 is comprised so that the excess electrolyte solution 70 can be discharge | released with the raise of the internal pressure at the time of initial charge, after the initial charge, the excess electrolyte solution 70 is electrode. It comes into contact with the body 20 again. By bringing the excess electrolyte solution 70 into contact with the electrode body 20 in this manner, it is possible to prevent the electrode body 20 from being drained due to long-term use or use at a high rate.

なお、捲回電極体(電極体)20を構成する材料および部材自体は、従来のリチウムイオン二次電池に備えられる電極体と同様でよく、特に制限はない。例えば、捲回電極体20は、捲回電極体20を組み立てる前段階において長尺状(帯状)のシート構造を有している。   In addition, the material and member itself which comprise the winding electrode body (electrode body) 20 may be the same as the electrode body with which the conventional lithium ion secondary battery is equipped, and there is no restriction | limiting in particular. For example, the wound electrode body 20 has a long (strip-shaped) sheet structure in a stage before assembling the wound electrode body 20.

正極シート30は、図1に示すように、長尺シート状の箔状の正極集電体32の両面に正極活物質を含む正極活物質層が保持された構造を有している。ただし、正極活物質層は正極シート30の幅方向の一方の側縁には付着されず、正極集電体を一定の幅にて露出させた正極活物質層非形成部33が形成されている。負極シート40も正極シート30と同様に、長尺シート状の箔状の負極集電体42の両面に負極活物質を含む負極活物質層が保持された構造を有している。ただし、負極活物質層は負極シート40の幅方向の一方の側縁には付着されず、負極集電体を一定の幅にて露出させた負極活物質層非形成部43が形成されている。   As shown in FIG. 1, the positive electrode sheet 30 has a structure in which a positive electrode active material layer containing a positive electrode active material is held on both surfaces of a long sheet-like foil-shaped positive electrode current collector 32. However, the positive electrode active material layer is not attached to one side edge of the positive electrode sheet 30 in the width direction, and the positive electrode active material layer non-forming portion 33 is formed in which the positive electrode current collector is exposed with a certain width. . Similarly to the positive electrode sheet 30, the negative electrode sheet 40 has a structure in which a negative electrode active material layer containing a negative electrode active material is held on both surfaces of a long sheet-like foil-shaped negative electrode current collector 42. However, the negative electrode active material layer is not attached to one side edge in the width direction of the negative electrode sheet 40, and the negative electrode active material layer non-forming portion 43 is formed in which the negative electrode current collector is exposed with a certain width. .

捲回電極体20を作製するに際しては、正極シート30と負極シート40とがセパレータシート(図示せず)を介して積層される。このとき、正極シート30の正極活物質層非形成部分33と負極シート40の負極活物質層非形成部分43とがセパレータシートの幅方向の両側からそれぞれはみ出すように、正極シート30と負極シート40とを幅方向にややずらして重ね合わせる。このように重ね合わせた積層体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平状の捲回電極体20が作製され得る。   In producing the wound electrode body 20, the positive electrode sheet 30 and the negative electrode sheet 40 are laminated via a separator sheet (not shown). At this time, the positive electrode sheet 30 and the negative electrode sheet 40 are so formed that the positive electrode active material layer non-formation part 33 of the positive electrode sheet 30 and the negative electrode active material layer non-formation part 43 of the negative electrode sheet 40 protrude from both sides in the width direction of the separator sheet. Are overlapped with a slight shift in the width direction. The laminated body thus stacked is wound, and then the obtained wound body is crushed from the side surface direction and ablated to produce the flat wound electrode body 20.

捲回電極体20の捲回軸方向における中央部分には、捲回コア部分(即ち正極シート30の正極活物質層と負極シート40の負極活物質層とセパレータシートとが密に積層された部分)が形成される。また、捲回電極体20の捲回軸方向の両端部には、正極シート30および負極シート40の電極活物質層非形成部分33、43がそれぞれ捲回コア部分から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層非形成部分)33および負極側はみ出し部分(すなわち負極活物質層形成部分)43には、正極リード端子54および負極リード端子56がそれぞれ付設されており、前述の正極端子50および負極端子52とそれぞれ電気的に接続される。   In the central portion of the wound electrode body 20 in the winding axis direction, a wound core portion (that is, a portion where the positive electrode active material layer of the positive electrode sheet 30, the negative electrode active material layer of the negative electrode sheet 40, and the separator sheet are densely laminated) ) Is formed. Moreover, the electrode active material layer non-formation portions 33 and 43 of the positive electrode sheet 30 and the negative electrode sheet 40 protrude outward from the wound core portion at both ends of the wound electrode body 20 in the winding axis direction. A positive electrode lead terminal 54 and a negative electrode lead terminal 56 are respectively attached to the positive electrode side protruding portion (namely, the positive electrode active material layer non-forming portion) 33 and the negative electrode side protruding portion (namely, the negative electrode active material layer forming portion) 43. The positive electrode terminal 50 and the negative electrode terminal 52 are electrically connected to each other.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。   EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<実施例>
正極活物質としてのLiNi1/3Mn1/3Co1/3と、バインダとしてのPVDFと、導電材としてのアセチレンブラックとの質量比が89:8:3となるように秤量し、これら材料をNMPに分散させてペースト状の正極活物質層形成用組成物を調製した。該組成物を厚さ15μmの正極集電体(アルミニウム箔)の両面に塗布し、乾燥することで正極集電体上に正極活物質層を備える正極シートを作製した。
<Example>
Weighing so that the mass ratio of LiNi 1/3 Mn 1/3 Co 1/3 O 2 as the positive electrode active material, PVDF as the binder, and acetylene black as the conductive material is 89: 8: 3, These materials were dispersed in NMP to prepare a paste-like composition for forming a positive electrode active material layer. The composition was applied to both sides of a positive electrode current collector (aluminum foil) having a thickness of 15 μm and dried to prepare a positive electrode sheet having a positive electrode active material layer on the positive electrode current collector.

一方、負極活物質としての黒鉛粒子と、結着材としてのSBRと、増粘剤としてのCMCとの質量比が98:1:1となるように秤量し、これら材料を水に分散させてペースト状の負極活物質層形成用組成物を調製した。該組成物を厚さ10μmの負極集電体(銅箔)の両面に塗布し、乾燥することで負極集電体上に負極活物質層を備える負極シートを作製した。   On the other hand, the graphite particles as the negative electrode active material, the SBR as the binder, and the CMC as the thickener are weighed so that the mass ratio is 98: 1: 1, and these materials are dispersed in water. A paste-like composition for forming a negative electrode active material layer was prepared. The composition was applied to both surfaces of a negative electrode current collector (copper foil) having a thickness of 10 μm and dried to prepare a negative electrode sheet having a negative electrode active material layer on the negative electrode current collector.

上記作製した正極シートおよび負極シートを、2枚のセパレータシート(ポリプロピレン/ポリエチレン/ポリプロピレンの三層構造)を介して扁平状に捲回し捲回電極体を作製した。そして、図2に示すように、該電極体20を電解液吸収体60とともに角型のケース本体12に収容して該ケース本体12の開口部を蓋体14で封止した。蓋体14の裏面には、電極体20と接触しないように、電解液吸収体60(ここではウレタンスポンジを使用した。)を固定した(収容工程)。次いで、図3に示すように、電池ケース内に電解液を注液した。電解液の注液量は、下方に溜まった余剰電解液70が捲回電極体20の下方側R部の一部を浸し得る程度の量とした。その後、24時間放置した(注液工程)。次いで、図4(a)および(b)に示すように、電池ケースを蓋体14が底となるように上下反転させ、余剰電解液70を電解液吸収体60に15秒間吸収させた(吸収工程)。そして、図5(a)〜(c)に示すように、電池ケースを再び上下反転させ、電極体20に対して初期充電を行った。初期充電は、1Cの充電レートで4.1Vまで定電流定電圧充電することにより行った(初期充電工程)。その後、所定のコンディショニング処理を経て、実施例に係るリチウムイオン二次電池を作製した。   The produced positive electrode sheet and negative electrode sheet were wound into a flat shape via two separator sheets (polypropylene / polyethylene / polypropylene three-layer structure) to produce a wound electrode body. Then, as shown in FIG. 2, the electrode body 20 was accommodated in the rectangular case body 12 together with the electrolyte absorber 60, and the opening of the case body 12 was sealed with the lid body 14. The electrolyte solution absorber 60 (urethane sponge was used here) was fixed to the back surface of the lid body 14 so as not to contact the electrode body 20 (accommodating step). Next, as shown in FIG. 3, an electrolyte solution was injected into the battery case. The amount of electrolyte solution injected was such that the excess electrolyte solution 70 accumulated below could immerse a part of the lower R portion of the wound electrode body 20. Then, it was left for 24 hours (injection process). Next, as shown in FIGS. 4A and 4B, the battery case is turned upside down so that the lid body 14 is at the bottom, and the excess electrolyte solution 70 is absorbed into the electrolyte solution absorber 60 for 15 seconds (absorption). Process). And as shown to Fig.5 (a)-(c), the battery case was turned upside down again and the electrode body 20 was initially charged. Initial charging was performed by constant current constant voltage charging to 4.1 V at a charging rate of 1 C (initial charging step). Then, the lithium ion secondary battery which concerns on an Example was produced through the predetermined conditioning process.

<比較例>
本例では、収容工程において電池ケース内に電解液吸収体60を配置せず、かつ、吸収工程を省略した。それ以外は実施例と同じ手順で比較例に係るリチウムイオン二次電池を作製した。
<Comparative example>
In this example, the electrolytic solution absorber 60 is not disposed in the battery case in the housing step, and the absorption step is omitted. Other than that produced the lithium ion secondary battery which concerns on a comparative example in the same procedure as an Example.

<Li析出の有無>
実施例および比較例の各電池について、初期充電後に電池の解体を行い、捲回電極体20の下方側R部(余剰電解液70が浸した部分)におけるLi析出の有無を目視にて確認した。ここでは、負極シートの最外周R部においてLi析出の有無を確認した。結果を図6(比較例)および図7(実施例)に示す。図6および図7に示すように、比較例ではLiの析出が認められたが、実施例ではLiの析出は認められなかった。この結果から、本製造方法を用いることにより、Liの析出を抑制し得ることが確認できた。
<Presence or absence of Li precipitation>
About each battery of an Example and a comparative example, the battery was disassembled after initial charge, and the presence or absence of Li precipitation in the lower side R part (part where the excess electrolyte solution 70 was immersed) of the wound electrode body 20 was confirmed visually. . Here, the presence or absence of Li precipitation was confirmed in the outermost periphery R part of the negative electrode sheet. The results are shown in FIG. 6 (Comparative Example) and FIG. 7 (Example). As shown in FIGS. 6 and 7, Li precipitation was observed in the comparative example, but no Li precipitation was observed in the examples. From this result, it was confirmed that precipitation of Li can be suppressed by using this production method.

<余剰電解液量の測定>
実施例および比較例の各電池について電池の解体を行い、捲回電極体20に染み込んでいない余剰電解液70の量を測定した。結果を図8に示す。余剰電解液量は、比較例が23cm、実施例が18cmとなり、何れも液枯れが生じない程度(概ね8cm以上)の余剰電解液量を確保することができた。
<Measurement of excess electrolyte amount>
The batteries of the examples and comparative examples were disassembled, and the amount of excess electrolyte solution 70 that did not soak into the wound electrode body 20 was measured. The results are shown in FIG. The surplus electrolyte amount was 23 cm 3 in the comparative example and 18 cm 3 in the example, and it was possible to secure the surplus electrolyte amount to such an extent that the liquid did not dry out (approximately 8 cm 3 or more).

以上、本発明の一実施形態に係る二次電池を説明したが、本発明に係る二次電池は、上述した何れの実施形態にも限定されず、種々の変更が可能である。   Although the secondary battery according to one embodiment of the present invention has been described above, the secondary battery according to the present invention is not limited to any of the above-described embodiments, and various modifications can be made.

上述したように、本発明は二次電池(例えば、リチウムイオン二次電池)の性能向上に寄与し得る。本発明は、ハイブリッド車や、電気自動車の駆動用電池など車両駆動電源用のリチウムイオン二次電池に好適である。すなわち、リチウムイオン二次電池は、例えば、自動車などの車両のモータ(電動機)を駆動させる車両駆動用電源として好適に利用され得る。車両駆動用電源は、複数の二次電池を組み合わせた組電池としてもよい。   As described above, the present invention can contribute to improving the performance of secondary batteries (for example, lithium ion secondary batteries). The present invention is suitable for a lithium ion secondary battery for a vehicle driving power source such as a driving battery for a hybrid vehicle or an electric vehicle. That is, for example, the lithium ion secondary battery can be suitably used as a vehicle driving power source for driving a motor (electric motor) of a vehicle such as an automobile. The power source for driving the vehicle may be an assembled battery in which a plurality of secondary batteries are combined.

10 電池ケース
12 ケース本体
14 蓋体
20 捲回電極体
30 正極
40 負極
50 正極端子
52 負極端子
60 電解液吸収体
70 余剰電解液
100 二次電池
DESCRIPTION OF SYMBOLS 10 Battery case 12 Case main body 14 Cover body 20 Winding electrode body 30 Positive electrode 40 Negative electrode 50 Positive electrode terminal 52 Negative electrode terminal 60 Electrolyte absorber 70 Excess electrolyte 100 Secondary battery

Claims (1)

電解液のうち電極体に含浸されずに残った余剰電解液を電池ケース内に有する二次電池の製造方法であって:
正極および負極を有する電極体と、電解液吸収体とを電池ケースに収容する収容工程、ここで前記電解液吸収体は前記電極体と接触しないように配置される;
前記電池ケース内に電解液を注液する注液工程;
前記注液された電解液のうち前記電極体に含浸されずに残った余剰電解液を前記電解液吸収体に吸収させる吸収工程;および、
前記吸収工程の後、前記電極体に対して初期充電を行う初期充電工程;
を包含する、二次電池の製造方法。


A method for manufacturing a secondary battery having, in a battery case, a surplus electrolyte that remains without being impregnated in an electrode body among electrolytes,
A housing step of housing an electrode body having a positive electrode and a negative electrode and an electrolytic solution absorber in a battery case, wherein the electrolytic solution absorber is disposed so as not to contact the electrode body;
A liquid injection step of injecting an electrolyte into the battery case;
An absorption step of causing the electrolyte absorber to absorb excess electrolyte remaining without being impregnated in the electrode body among the injected electrolyte; and
An initial charging step of performing initial charging on the electrode body after the absorption step;
A method for manufacturing a secondary battery.


JP2014115067A 2014-06-03 2014-06-03 Method for manufacturing secondary battery Pending JP2015230761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115067A JP2015230761A (en) 2014-06-03 2014-06-03 Method for manufacturing secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115067A JP2015230761A (en) 2014-06-03 2014-06-03 Method for manufacturing secondary battery

Publications (1)

Publication Number Publication Date
JP2015230761A true JP2015230761A (en) 2015-12-21

Family

ID=54887451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115067A Pending JP2015230761A (en) 2014-06-03 2014-06-03 Method for manufacturing secondary battery

Country Status (1)

Country Link
JP (1) JP2015230761A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016125920A1 (en) * 2016-03-31 2017-04-27 株式会社小松製作所 Capacitor and capacitor module
WO2017204137A1 (en) * 2016-05-23 2017-11-30 株式会社Gsユアサ Electricity storage element, electricity storage device provided with electricity storage element, moving body provided with electricity storage element, and electricity storage system provided with electricity storage element
JP2019129029A (en) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN110612634A (en) * 2017-11-17 2019-12-24 株式会社Lg化学 Pressurization jig for monocell for gas analysis and gas analysis device comprising same
JP2020115405A (en) * 2019-01-17 2020-07-30 トヨタ自動車株式会社 Method for manufacturing lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016125920A1 (en) * 2016-03-31 2017-04-27 株式会社小松製作所 Capacitor and capacitor module
WO2017204137A1 (en) * 2016-05-23 2017-11-30 株式会社Gsユアサ Electricity storage element, electricity storage device provided with electricity storage element, moving body provided with electricity storage element, and electricity storage system provided with electricity storage element
CN110612634A (en) * 2017-11-17 2019-12-24 株式会社Lg化学 Pressurization jig for monocell for gas analysis and gas analysis device comprising same
JP2019129029A (en) * 2018-01-23 2019-08-01 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP7059644B2 (en) 2018-01-23 2022-04-26 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2020115405A (en) * 2019-01-17 2020-07-30 トヨタ自動車株式会社 Method for manufacturing lithium ion battery
JP7088038B2 (en) 2019-01-17 2022-06-21 トヨタ自動車株式会社 Lithium-ion battery manufacturing method

Similar Documents

Publication Publication Date Title
JP5924552B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5344236B2 (en) Method for manufacturing lithium secondary battery
CN105340120A (en) Lithium battery
JP6191882B2 (en) Sealed battery and manufacturing method thereof
JP6403285B2 (en) Lithium ion secondary battery
JP2015230761A (en) Method for manufacturing secondary battery
KR20140013133A (en) Method of manufactoring secondary battery
KR20160055097A (en) Nonaqueous electrolyte secondary battery
JP5905816B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2016081609A (en) Nonaqueous electrolyte secondary battery
JP2013084483A (en) Secondary battery and manufacturing method of the same
JP5147870B2 (en) Lithium ion battery and method for regenerating the same
CN106910933B (en) Lithium ion secondary battery
JP5987494B2 (en) Electricity storage element
JP5905817B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101833597B1 (en) Method of manufacturing lithium ion secondary battery
JP7071698B2 (en) Non-aqueous electrolyte lithium ion secondary battery
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
JP7365566B2 (en) Non-aqueous electrolyte secondary battery
JP2015002043A (en) Lithium ion secondary battery
JP6778396B2 (en) Non-aqueous electrolyte secondary battery
JP2016201231A (en) Nonaqueous electrolyte secondary battery
JP2015220216A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7198257B2 (en) Method for manufacturing non-aqueous electrolyte secondary battery
JP7025715B2 (en) How to reuse non-aqueous electrolyte secondary battery