JP2022079235A - 密閉型電池の製造方法 - Google Patents

密閉型電池の製造方法 Download PDF

Info

Publication number
JP2022079235A
JP2022079235A JP2020190309A JP2020190309A JP2022079235A JP 2022079235 A JP2022079235 A JP 2022079235A JP 2020190309 A JP2020190309 A JP 2020190309A JP 2020190309 A JP2020190309 A JP 2020190309A JP 2022079235 A JP2022079235 A JP 2022079235A
Authority
JP
Japan
Prior art keywords
case
injection port
liquid injection
manufacturing
check valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020190309A
Other languages
English (en)
Other versions
JP7249983B2 (ja
Inventor
優文 門井
Masafumi Kadoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020190309A priority Critical patent/JP7249983B2/ja
Publication of JP2022079235A publication Critical patent/JP2022079235A/ja
Application granted granted Critical
Publication of JP7249983B2 publication Critical patent/JP7249983B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】車両用の密閉型電池の製造において、初期充電中の仮封止の開放によるケース内への異物の侵入を防止できる技術を提供する。【解決手段】ここに開示される製造方法は、仮封止部材をケース10に取り付けて注液口18を封止する仮封止工程と、電池組立体を初期充電する初期充電工程とを備えている。そして、ここに開示される製造方法では、仮封止部材として、注液口18を封止する封止栓52と、封止栓52を注液口18に向かって付勢する弾性部材54と、封止栓52および弾性部材54を収容する外装体56とを備えた逆止弁50が用いられている。かかる構成の逆止弁50は、初期充電工程でケース10内圧が上昇した場合に封止栓52を開放してケース10内を減圧できる。そして、ケース10内圧が低下すると、弾性部材54からの付勢力によって封止栓52が注液口18を封止するため、ケース10内への異物の侵入を防止できる。【選択図】図4

Description

本発明は、密閉型電池の製造方法に関する。
現在、リチウムイオン二次電池等の二次電池は、様々な分野において広く用いられている。例えば、二次電池は、ハイブリッド自動車、プラグインハイブリッド自動車、電気自動車などの車両駆動用電源などに用いられる。かかる二次電池の一形態に、密閉されたケース内に電解液と電極体を収容した密閉型電池が挙げられる。この種の密閉型電池のケースには、電解液を注液する注液口が形成されている。
上記構成の密閉型電池では、充放電によって電解液が分解してガスが発生することがある。この分解ガスによってケース内圧が上昇しすぎると、ケースの変形などの不具合が生じるおそれがある。このため、密閉型電池には、ケース内圧が上昇した際に開弁して分解ガスを排出する一方で、内圧が低下した際に閉塞してケースを密閉する封口装置(逆止弁)が取り付けられることがある。この種の逆止弁の一例が特許文献1に記載されている。
しかし、種々の理由によって、車載用の密閉型電池には、上記構成の逆止弁を取り付けることが困難である。例えば、逆止弁を取り付けた電池を車両に搭載すると、走行中の振動等によって逆止弁から電解液が漏出するおそれがある。このため、車載用の密閉型電池では、特許文献1に記載されたような逆止弁ではなく、ケース内圧が過剰に上昇した際に開放される安全弁(薄肉部)が設けられることがある(特許文献2参照)。
特開2011-222137号公報 特開2018-32605号公報
ところで、充放電に伴う分解ガスは、製造工程における初期充電で最も多く発生する。ここで、車載用の密閉型電池の場合には、電解液の漏出防止のためにケースを完全に密閉する必要があるため、当該ケースの完全密閉(本封止)を行う前に、初期充電で生じた分解ガスを排出することが求められる。一方で、初期充電中にケースを開放し続けると、水分や金属片などの異物がケース内に侵入するおそれがある。このような異物が侵入した電池は、電池性能が大きく低下して不良品として廃棄されるため、製造工程における歩留まり低下の原因となる。かかる点を考慮し、車載用の密閉型電池の製造では、着脱可能な仮封止部材で注液口を仮封止した状態で初期充電を行い、仮封止を解除して分解ガスを排出した後に、注液口を本封止するという工程が採用されている。しかし、近年では電池性能の向上(例えば高容量化)に伴って初期充電における分解ガスの発生量が増加しているため、初期充電中のケース内圧の過剰な上昇によって仮封止部材が外れてケース内に異物が侵入するという事故が頻発するようになった。
本発明は、かかる問題を解決するためになされたものであり、車両用の密閉型電池の製造において、初期充電中の仮封止の開放によるケース内への異物の侵入を防止できる技術を提供することを目的とする。
上記目的を実現するべく、本発明によって以下の構成の密閉型電池の製造方法(以下、単に「製造方法」ともいう)が提供される。
ここに開示される製造方法は、電極体と電解液を収容するケースと、当該ケースを貫通する注液口とを備えた密閉型電池を製造する方法である。かかる製造方法は、ケースの内部に電極体が収容された電池組立体を構築する組立体構築工程と、注液口を介してケースの内部に電解液を注液する注液工程と、着脱可能の仮封止部材をケースに取り付けて注液口を封止する仮封止工程と、電池組立体を所定の電圧まで充電する初期充電工程と、仮封止部材をケースから取り外して注液口を開放する仮封止開放工程と、ケースに本封止部材を溶接して注液口を封止する本封止工程とを備えている。そして、ここに開示される製造方法では、仮封止部材として、注液口を封止する封止栓と、封止栓を注液口に向かって付勢する弾性部材と、封止栓および弾性部材を収容する外装体とを備えた逆止弁が用いられている。
ここに開示される製造方法では、仮封止部材として逆止弁を用いているため、初期充電工程で多量の分解ガスが発生したとしても、逆止弁の封止栓を開放して分解ガスをケース外に排出できる。そして、ケース内圧が低下すると、弾性部材からの付勢力によって封止栓が注液口を再び封止するため、ケース内への異物の侵入を防止できる。さらに、ここに開示される製造方法では、初期充電工程を実施した後の本封止工程において、ケースに本封止部材を溶接して注液口を封止している。これによって、ケースを完全に密閉できるため、振動等による電解液の漏出が防止された密閉型電池を製造できる。以上の通り、ここに開示される製造方法によると、車両搭載用電池に適した密閉型電池を高い歩留まりで効率よく製造できる。
また、ここに開示される製造方法の一態様では、本封止部材は板状の部材である。車両等の設置スペースに厳しい制約がある装置に密閉型電池を使用する場合、逆止弁のようなケース外側に向かって突出する突起物を本封止部材として取り付けることが困難である。これに対して、ここに開示される製造方法では、本態様のように本封止部材として板状部材を使用できる。このため、ケース外側に突出する部品の点数を減らし、製造後の密閉型電池を狭いスペースに容易に設置できる。また、板状部材のような単純な構造の本封止部材を使用することによって、本封止部材の内部に電解液が浸透してケース外部に漏れ出ることを確実に防止できる。
また、ここに開示される製造方法の一態様では、逆止弁の外装体に板状の係止部が形成され、かつ、注液口の周囲におけるケース外面に、係止部を保持する保持空間を有した固定部材が取り付けられている。そして、本態様では、仮封止工程において、係止部を保持空間に嵌め込むことによって仮封止部材をケースに取り付けて注液口を封止する。かかる構成を採用することによって逆止弁の着脱を容易に行うことができる。
また、上記保持空間を有する固定部材を用いる態様において、固定部材は、ケースの上面に接着された板状の底部と、底部の注液口に近接した側の端部から高さ方向に立ち上がる立ち上り部と、立ち上り部の上端からケースの上面に沿うように注液口に向かって延びた上部とを備えていることが好ましい。かかる構成の固定部材では、上部の底面とケースの上面との間に保持空間が形成される。
また、上記構造の固定部材を採用した態様では、固定部材の上部の底面が傾斜しており、当該上部の底面とケースの上面との間に、正面視における一端から他端に向かって高さ寸法が連続的に小さくなるテーパ状の保持空間が形成されていることが好ましい。これによって、ケース外面に逆止弁を十分に密着させることができるため、製造工程における電解液の漏出や異物の侵入を好適に防止できる。
また、ここに開示される製造方法の一態様では、仮封止開放工程においてケース外面から固定部材を取り外す。これによって、ケース外側に向かって突出する部品の点数を減らすことができるため、製造後の密閉型電池を狭いスペースに設置することが容易になる。
また、ここに開示される製造方法の一態様では、注液口の周囲におけるケース外面に、レーザによる粗面処理が施された接着領域が形成されており、当該ケース外面の接着領域と固定部材の底部とが接着される。このように、レーザによる粗面処理を施したケース外面と固定部材の底部とを接触させると、ナノアンカー効果によって固定部材とケース外面とが接着される。これによって、初期充電工程において外れにくく、かつ、仮封止開放工程において取り外しやすい固定部材を設けることができる。
また、ここに開示される製造方法の一態様では、接着領域は、テーパ状の保持空間の両端部のうち、高さ寸法が相対的に大きくなる方の端部に隣接した底部と接着されるように形成されている。これによって、仮封止開放工程において固定部材を取り外すことが更に容易になる。
密閉型電池の内部構造を模式的に示す一部断面図である。 一実施形態に係る製造方法を説明するフローチャートである。 組立体構築工程で構築された電池組立体を模式的に示す一部断面図である。 仮封止工程において逆止弁が取り付けられた注液口の近傍を模式的に示す断面斜視図である。 一実施形態に係る製造方法において使用される逆止弁の側面図である。 一実施形態に係る製造方法において使用される逆止弁の平面図である。 一実施形態に係る製造方法において使用される逆止弁の底面図である。 図5中のVIII-VIII矢視図である。 固定部材が取り付けられた注液口の近傍を模式的に示す側面断面図である。 固定部材が取り付けられた注液口の近傍を模式的に示す平面図である。 固定部材が取り付けられた注液口の近傍を模式的に示す底面図である。 ケース上面に取り付けられた固定部材を模式的に示す正面図である。
以下、ここに開示される技術の一実施形態について、図面を参照しつつ詳細に説明する。なお、本明細書において特に言及している事項以外の事柄であって、ここに開示される技術の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。ここに開示される技術は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
また、以下の図面においては、同じ作用を奏する部材・部位に同じ符号を付して説明している。さらに、各図における寸法関係(長さ、幅、厚み等)は実際の寸法関係を反映するものではない。また、各図に記載の符号Xは「幅方向」を示しており、符号Yは「奥行方向」を示しており、符号Zは「高さ方向」を示している。但し、これらの方向は、説明の便宜上定めたものであり、使用中や製造中の密閉型電池の設置態様を限定することを意図したものではない。
本明細書において、「二次電池」とは、電解質を介して正極と負極との間を電荷担体が移動することによって充放電を繰り返し実施できる蓄電デバイス一般をいう。かかる「二次電池」は、リチウムイオン二次電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池の他、電気二重層キャパシタ等のキャパシタなどを包含する。そして、「密閉型電池」とは、密閉されたケース内に電極体と電解液が収容された二次電池をいう。すなわち、ここに開示される密閉型電池の製造方法は、特定の種類の電池を製造する方法に限定されず、密閉型電池の構造を有した二次電池全般の製造に広く適用できる。
1.密閉型電池の構造
先ず、ここに開示される製造方法の製造対象である密閉型電池の構造の一例を説明する。図1は、密閉型電池の内部構造を模式的に示す正面図である。図1に示すように、この密閉型電池1では、密閉されたケース10の内部に電極体20と電解液30が収容されており、当該ケース10を貫通する注液口18が設けられている。かかる密閉型電池1は、ケース10の内部に電極体20と電解液30を収容した後に、本封止部材19で注液口18を封止することによって構築される。以下、密閉型電池1を構成する各部材について具体的に説明する。
(1)ケース
ケース10は、扁平な角形のケースである。このケース10には、略矩形状の内部空間10aが形成されており、当該内部空間10aに電極体20と電解液30が収容される。そして、ケース10は、内部空間10aに連なる開口部が上面に形成された箱型のケース本体14と、該ケース本体14の開口部を塞ぐ板状の蓋体12とを備えている。このケース本体14と蓋体12は、レーザ溶接等によって接合されている。また、この密閉型電池1のケース10(蓋体12)には、一対の電極端子40が取り付けられている。各々の電極端子40は、高さ方向Zに延びる長尺な導電部材であり、その下端部40aは、ケース10の内部で電極体20に接続されている。一方、電極端子40の上端部40bは、ケース10の外部に露出している。また、ケース10(蓋体12)には安全弁16が形成されている。この安全弁16は、蓋体12の他の部分よりも厚みが薄くなるように形成された薄肉部である。分解ガス等の発生によってケース10の内圧が所定レベル以上に上昇した場合に、この安全弁16が開裂することによってケース10の大きな変形などを防止できる。また、上述した通り、この密閉型電池1には、ケース10(蓋体12)を貫通する注液口18が設けられている。詳しくは後述するが、本実施形態に係る製造方法では、この注液口18を介してケース10内に電解液30を注液する。また、本実施形態では、板状の本封止部材19をケース10に溶接することによって注液口18が封止されている。なお、ケースを構成する各部材の素材は、一般的な密閉型電池のケースに使用され得るものを特に制限なく使用でき、ここに開示される技術を限定するものではないため詳細な説明を省略する。
(2)電極体
上述の通り、電極体20は、ケース10の内部に収容されている。詳しい図示は省略するが、この電極体20は、セパレータを介して複数枚の電極(正極および負極)を対向させることによって形成される。例えば、正極は、箔状の導電部材である正極集電体と、当該正極集電体の表面(例えば両面)に付与された正極活物質層とを備えている。一方、負極は、箔状の導電部材である負極集電体と、当該負極集電体の表面(例えば両面)に付与された負極活物質層とを備えている。そして、電極体20の幅方向Xの中心部には、正極活物質層と負極活物質層とが対向したコア部22が形成されている。このコア部22は、充放電反応が生じる主な場となる。また、電極体20の幅方向Xの一方の側縁部には、正極集電体が露出した正極接続部24が形成されている。さらに、他方の側縁部には、負極集電体が露出した負極接続部26が形成されている。そして、正極接続部24と負極接続部26の各々は、電極端子40の下端部40aに接続される。
なお、電極体20を構成する各部材(正極、負極およびセパレータ等)の素材は、一般的な二次電池で使用され得る材料を特に制限なく使用でき、ここに開示される技術を限定するものではないため詳細な説明を省略する。また、電極体20の詳細な構造も特に限定されない。具体的には、電極体の具体的な構造の一例として、セパレータを介して長尺な帯状の電極を積層させた積層体を捲回した捲回電極体や、セパレータを介して矩形の電極シートを複数枚積層した積層型電極体などが挙げられる。しかし、本実施形態における電極体20の構造は、特に限定されず、捲回電極体であってもよいし、積層型電極体であってもよい。
(3)電解液
電解液30は、電極体20と共にケース10の内部に収容されている。また、電解液30は、その大部分が電極体20の内部(正極と負極との極間)に浸透している。なお、電解液30の一部は、余剰電解液32として電極体20の外部(電極体20とケース10との間)に存在していてもよい。これによって、電極体20内部の電解液30が不足した際に、余剰電解液32を電極体20の内部に供給できる。なお、電解液30は、非水溶媒に支持塩を溶解させることによって調製される。これらの電解液30の成分は、一般的な二次電池で使用され得るものを特に制限なく使用でき、ここに開示される技術を限定するものではないため詳細な説明を省略する。
2.密閉型電池の製造方法
次に、ここに開示される密閉型電池の製造方法の一実施形態について説明する。図2は、本実施形態に係る製造方法を説明するフローチャートである。図2に示すように、本実施形態に係る製造方法は、組立体構築工程S10と、注液工程S20と、仮封止工程S30と、初期充電工程S40と、仮封止開放工程S50と、本封止工程S60とを少なくとも備えている。以下、各々の工程について説明する。
(1)組立体構築工程S10
図3は、組立体構築工程で構築された電池組立体を模式的に示す一部断面図である。図3に示すように、本工程では、ケース10の内部に電極体20が収容された電池組立体100を構築する。かかる電池組立体100を構築する際の手順の一例は、次の通りである。先ず、一対の電極端子40が取り付けられた蓋体12と電極体20とを準備する。そして、一方の電極端子40の下端部40aを電極体20の正極接続部24と接続し、他方の電極端子40の下端部40aを電極体20の負極接続部26と接続する。なお、ここでは、抵抗溶接、超音波接合、レーザ溶接などの従来公知の接続手段を特に制限なく使用できる。そして、上面が開口した箱状のケース本体14を準備し、当該開口部からケース本体14の内部に電極体20を挿入した後に、ケース本体14の開口部を蓋体12で塞ぐ。そして、蓋体12とケース本体14との接触界面をレーザ溶接などで接合し、ケース10を形成する。これによって、ケース10の内部空間10aに電極体20が収容された電池組立体100が構築される。
(2)注液工程S20
本工程では、注液口18を介してケース10の内部に電解液を注液する。一例として、本工程では、次のような手順に従って電解液を注液することが好ましい。先ず、ケース10の注液口18にノズルを取り付け、当該ノズルからケース10内を吸引する減圧処理を行う。これによって、電極体20の内部(正極と負極の極間)を含めたケース10内部が負圧になる。そして、注液口18にノズルを取り付けたまま、当該ノズルからケース10内に電解液を注液する。これによって、負圧となった電極体20内部に電解液が吸引されるため、電解液の浸透時間を大幅に短縮できる。なお、本工程は、ケース10の内部に電解液を注液できればよく、その具体的な手順は特に限定されない。例えば、積層型電極体等の電解液が浸透しやすい電極体を採用している場合には、上述した減圧処理を行わずに電解液を注液してもよい。
(3)仮封止工程S30
本工程では、着脱可能の仮封止部材をケース10に取り付けて注液口18を封止する。後述する仮封止開放工程S50を実施するまでの間、着脱可能な部材で注液口18を仮封止することによって、製造工程におけるケース10内への異物(例えば、水分、金属片など)の侵入を防止できる。この結果、不良品の発生を抑制して密閉型電池の製造における歩留まり低下を防止できる。そして、本実施形態に係る製造方法は、仮封止部材として逆止弁50を用いることによって特徴付けられる。以下、本実施形態において用いられる逆止弁50について説明する。
(a)逆止弁の構造
図4~図8は、本実施形態に係る製造方法において使用される逆止弁を説明する図である。具体的には、図4は、逆止弁50が取り付けられた注液口18の近傍を模式的に示す断面斜視図である。また、図5は本実施形態において使用される逆止弁50の側面図であり、図6は平面図であり、図7は底面図である。そして、図8は、図5中のVIII-VIII矢視図である。
図4~図8に示すように、この逆止弁50は、注液口18を封止する封止栓52と、封止栓52を注液口18に向かって付勢する弾性部材54と、封止栓52および弾性部材54を収容する外装体56とを備えている。具体的には、本実施形態における逆止弁50は、内部空間51を有する円柱状の外装体56を備えている。この外装体56の底面には、円形の開口部57が設けられている。そして、この逆止弁50は、外装体56の開口部57とケース10の注液口18とが連通するようにケース10(蓋体12)の外側に取り付けられる。そして、外装体56の内部には、外装体56の開口部57よりも大きな直径を有した球形の封止栓52が収容されている。そして、弾性部材54は、高さ方向Zに延びるバネ状の部材であり、その下端54aが封止栓52に接触している。また、弾性部材54の上端54bは、外装体56の内部空間51の上面51aと接触している。この逆止弁50では、弾性部材54からの付勢力によって封止栓52が注液口18に押し付けられ、注液口18が閉塞する。一方で、分解ガスの発生によって、ケース10の内圧が弾性部材54からの付勢力よりも強くなると、封止栓52が上昇して注液口18が開放される。すなわち、上記構成の逆止弁50を取り付けることによって、ケース内圧の変化に応じて注液口18を開閉できる。
(b)逆止弁の着脱構造
上述した通り、本実施形態に係る製造方法では、仮封止部材(逆止弁50)を着脱可能な状態でケース10に取り付ける。図4に示すように、本実施形態では、逆止弁50をケース10に着脱可能に取り付けるために、固定部材60と呼ばれる部材をケース10の外面に設けている。以下、固定部材60を用いた逆止弁50の着脱構造を具体的に説明する。図9~図12は、固定部材60が取り付けられた注液口18の近傍を模式的に示す図面である。具体的には、図9は側面図であり、図10は平面図であり、図11は底面図であり、図12は正面図である。
図4に示すように、本実施形態では、注液口18の周囲におけるケース10の外面に、一対の固定部材60が設けられている。そして、この固定部材60の保持空間Sに逆止弁50の一部(係止部58)を嵌め込むことによって、逆止弁50をケース10に取り付けて注液口18を封止する。具体的には、図9に示すように、各々の固定部材60は、側面視において略S字状に形成された部材である。具体的には、固定部材60は、ケース10の上面に接着された板状の底部62と、当該底部62の注液口18に近接した側の端部から高さ方向Zに立ち上がる立ち上り部64と、立ち上り部64の上端からケース10の上面に沿うように注液口18に向かって延びた上部66とから構成されている。すなわち、固定部材60の上部66は、ケース10の上面から離間しており、当該上部66の底面66aとケース10の上面との間に保持空間Sが形成される。そして、図9~図11に示すように、本実施形態では、注液口18を挟んで保持空間Sが対向するように、一対の固定部材60がケース10外面に取り付けられている。一方、図4~図8に示すように、本実施形態における逆止弁50の外装体56には、板状の係止部58が一対設けられている。この一対の係止部58の各々は、逆止弁50の中心軸Cを挟んで対称となるように外装体56の外方に突出している。
そして、本実施形態における仮封止工程S30では、封止栓52を注液口18の上方に配置した状態で逆止弁50を回転させることによって、逆止弁50の係止部58の各々を固定部材60の保持空間Sに嵌め込む。これによって、仮封止部材(逆止弁50)をケース10の外面に取り付けて注液口18を封止できる。このように、固定部材60の保持空間Sに逆止弁50の係止部58を嵌め込むという構成を採用することによって、逆止弁50の着脱が容易になるため製造効率の向上に貢献できる。具体的には、逆止弁50の寸法を認識した上で、固定部材60の取り付け位置を予め調節しておくことによって、視認が困難な逆止弁50の中心軸Cと注液口18との軸合わせを容易に行うことができる。
さらに、図12に示すように、本実施形態で用いられている固定部材60は、正面視において上部66の底面66aが傾斜していることが好ましい。具体的には、この固定部材60の上部66の底面66aは、奥行方向Yの一端から他端(図12中の右側から左側)に向かって高さが低くなるように所定の傾斜角θで傾斜している。これによって、固定部材60の上部66とケース10の上面との間に、正面視における一方の端部S1から他方の端部S2に向かって高さ寸法が連続的に小さくなるテーパ状の保持空間Sが形成される。そして、かかる保持空間Sの一方の端部S1から他方の端部S2に向かって逆止弁50の係止部58を嵌め込むことによって、上部66の底面66aの傾斜に沿って逆止弁50を下降させながら、ケース10に逆止弁50を取り付けることができる。これによって、逆止弁50とケース10の上面とを十分に密着させることができるため、電解液の漏出や異物の侵入を好適に防止できる。なお、このようなテーパ状の保持空間Sを形成する固定部材60を用いる場合には、図5に示すように、逆止弁50の係止部58の上面59も傾斜させた方が好ましい。これによって、上部66の底面66aの傾斜に沿って逆止弁50の係止部58を摺動させることが容易になる。
(4)初期充電工程S40
次に、本実施形態では、逆止弁50で注液口18が仮封止された電池組立体100を所定の電圧まで充電する初期充電工程S40を実施する。具体的には、電池組立体100の電極端子40の各々に外部充電装置の電極を接続し、常温(例えば20℃~30℃程度)で所定の電圧まで充電する。このときの充電処理の一例として、端子間電圧(正極-負極間の電圧)が所定値(例えば4.3V~4.8V)に到達するまで0.1C~10C程度の定電流充電を行った後、SOC(State of Charge)が60%~100%程度になるまで定電圧充電を行う定電流定電圧充電(CC-CV充電)が挙げられる。但し、本工程における充電処理の条件は、特に限定されず、製造対称である密閉型電池の規格に応じて適宜変更することができる。さらに、本工程において充電処理を実施する回数も特に限定されない。例えば、本工程では、充電処理と放電処理とを組み合わせた充放電サイクルを複数回繰り返してもよい。
そして、上述した通り、密閉型電池の製造において初期充電を行うと、ケース10内の電解液30の一部が分解して炭化水素ガス等の分解ガスが発生し、ケース10の内圧が急激に上昇する。ここで、図4に示すように、仮封止部材として逆止弁50を注液口18に取り付けていると、ケース10内圧の上昇によって逆止弁50の封止栓52が押し上げられて注液口18が開放される。このように、本実施形態に係る製造方法では、ケース10内のガス抜きを適切に行うことができるため、内圧上昇によるケース10の変形や安全弁16(図3参照)の開裂を適切に防止できる。そして、本実施形態では、分解ガスが排出されてケース10内圧が低下すると、弾性部材54からの付勢力によって封止栓52が注液口18を再び封止する。このため、本実施形態では、注液口18の開放による異物の侵入も適切に防止できる。
(5)仮封止開放工程S50
次に、本工程では、仮封止部材(逆止弁50)をケース10から取り外して注液口18を開放する。なお、本工程を実施した後の電池組立体100は、清浄かつ乾燥した環境(クリーンベンチ等)に配置することが好ましい。これによって、後述の本封止工程S60を実施する前にケース10内に異物が侵入することを防止できる。また、本工程を実施した後、直ちに次工程(本封止工程S60)を実施してもよい。このような手段を採った場合も、異物混入を適切に防止できる。具体的には、ケース10から逆止弁50を取り外してから60秒以内(より好適には30秒以内、さらに好適には20秒以内)に本封止工程S60を実施することが好ましい。これによって、異物混入をより好適に防止し、不良品の発生による歩留まり低下を防止できる。
なお、本実施形態のように、逆止弁50着脱用の固定部材60がケース10に取り付けられている場合には、この固定部材60を本工程において取り外した方が好ましい。これによって、ケース10の外側に向かって突出する部品の点数が少なくなるため、密閉型電池の省スペース化に更に貢献できる。このとき、固定部材60とケース10とは、ナノアンカー効果によって接着されていることが好ましい。これによって、初期充電工程S40の実施中にケース10表面から固定部材60を外れにくくできると共に、本工程においてケース10から固定部材を容易に取り外すことができる。なお、上述したナノアンカー効果による接着は、ケース10表面に対してレーザによる粗面処理を施すことによって生じさせることができる。より具体的には、図11および図12に示すように、注液口18の周囲におけるケース10外面に、レーザによる粗面処理が施された接着領域Aを形成し、当該接着領域Aと固定部材60の底部62とを接触させることによって、ナノアンカー効果による接着を行うことができる。
また、図11および図12に示すように、ケース10と固定部材60との接着領域Aは、固定部材60の底面視において、テーパ状の保持空間Sの両端S1、S2のうち、高さ寸法が相対的に大きくなる方の端部S1と隣接した底部62と接着されるように形成されていると好ましい。このように接着された固定部材60は、高さ寸法が小さな端部S2から大きな端部S1(図12中の左側から右側)に向かって力を加えると、テコの原理によってケース10から容易に取り外すことができる。一方で、テーパ状の保持空間Sが形成された場合には、高さ寸法が大きな端部S1から他方の端部S2(図12中の右側から左側)に向かって逆止弁50の係止部58が挿入される。このときには、テコの原理でお大きくなった力が接着領域Aに掛からないため、係止部58を嵌め込む際の力で固定部材60が外れることを防止できる。
(6)本封止工程S60
本工程では、ケース10に本封止部材19を溶接して注液口18を封止する。これによって、密閉されたケース10内に電極体20と電解液30が収容された密閉型電池1(図1参照)が構築される。このとき、本実施形態に係る製造方法では、ケース10に本封止部材19を溶接している。これによって、ケース10を完全に密閉できるため、振動等による電解液30の漏出を防止できる。なお、本封止部材19の形状は、注液口18を封止できれば、特に限定されない。但し、本封止部材19は、図1に示すような板状部材であると好ましい。これによって、ケース外側に突出する部品の点数を減らし、製造後の密閉型電池1を狭いスペースに設置することが容易になる。また、板状部材のような単純な構造の本封止部材19を使用することによって、本封止部材19の内部に電解液30が浸透してケース10外部に漏れ出ることを確実に防止できる。なお、密閉型電池1の更なる省スペース化の観点から、本封止部材19は、ケース10の表面から突出した他の部材(電極端子40の上端部40bなど)よりも薄くなるように形成されていることが好ましい。
以上の通り、本実施形態に係る製造方法では、仮封止部材として逆止弁50を用いているため、初期充電工程S40において多量の分解ガスが発生したとしても、仮封止部材の不可逆的な開放による不良品の発生を適切に防止できる。さらに、本実施形態では、初期充電工程S40において発生した分解ガスを充分に排出できるため、その後の本封止工程S60において、簡単な構造の本封止部材19で注液口18を完全に密閉できる。これによって、製造後の密閉型電池1の注液口18から電解液が漏出することを確実に防止できる。
3.他の実施形態
ここに開示される製造方法は、上述の実施形態に限定されず、種々の実施形態を包含する。以下、ここに開示される製造方法の他の実施形態について説明する。
例えば、ここに開示される製造方法において使用される逆止弁は、図4~図8にて例示した形状に限定されない。例えば、外装体の外形は、円柱状に限定されず、角柱状であってもよい。また、封止栓の形状も、球形に限定されない。封止栓の他の例として、高さ方向に伸びる弁軸と、当該弁軸の下端に取り付けられた弁体とを備えた弁状の部材等が挙げられる。また、弾性部材も、バネ状の部材に限定されない。例えば、天然ゴムや合成ゴムなどの弾性樹脂を外装体の内部空間に充填し、これを弾性部材として機能させることもできる。
また、上述の実施形態では、固定部材60の保持空間Sに逆止弁50の係止部58を嵌め込むことによって、逆止弁50をケース10に取り付けている。しかしながら、ここに開示される技術において、逆止弁をケースに取り付ける手段は特に限定されない。例えば、ケースから逆止弁を容易に取り外すことができれば、ケースの表面に逆止弁を直接接着してもよい。但し、逆止弁の再利用によるコスト低減という観点からは、上述の実施形態のように、固定部材を用いて逆止弁をケースに取り付けた方が好ましい。また、上述の実施形態では、固定部材をケースに取り付ける手段の一例として、ナノアンカー効果による接着を挙げている。しかし、固定部材や逆止弁をケースに取り付ける手段は特に限定されない。固定部材や逆止弁を着脱可能にケースに取り付ける手段の他の例として熱可塑性の接着剤が挙げられる。かかる熱可塑性の接着剤を使用した場合には、仮封止開放工程において注液口の周囲を加熱することによって、固定部材や逆止弁を容易にケースから取り外すことができる。また、注液口の側壁と逆止弁の外装体にネジ溝を形成し、注液口と逆止弁とを螺合させるという構成を採用することもできる。
また、ここに開示される製造方法は、図2中の5つの工程S10~S50以外の工程を含んでいてもよい。例えば、初期充電工程S40を実施する前に、電解液が注液された電池組立体を静置して電極体の内部に電解液を浸透させる浸透工程を設けてもよい。これによって、電解液の浸透が充分でない電極体に対して初期充電を行うことによる性能低下を防止できる。なお、ケース内部への異物の侵入を防止するという観点から、この浸透工程は仮封止工程S30の後に実施した方が好ましい。
また、注液工程S20を実施する前に、ケース内を加熱・減圧する乾燥工程を実施してもよい。これによって、ケース内へ侵入した水分を除去できるため、水分侵入による性能低下をより確実に防止できる。なお、乾燥工程を実施している間、電池組立体の注液口は、逆止弁によって仮封止されていると好ましい。換言すると、乾燥工程を実施する態様では、注液工程S20の前後においても仮封止工程と仮封止開放工程を実施することが好ましい。これによって、乾燥工程中のケース内への異物侵入を防止した上で、ケース内で気化した水分を適切に排出できる。
以上、本発明の実施形態について説明した。しかし、上述の説明は例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、上述の説明にて例示した具体例を様々に変形、変更したものが含まれる。
1 密閉型電池
10 ケース
10a 内部空間
12 蓋体
14 ケース本体
16 安全弁
18 注液口
19 本封止部材
20 電極体
22 コア部
24 正極接続部
26 負極接続部
30 電解液
32 余剰電解液
40 電極端子
50 逆止弁
51 内部空間
52 封止栓
54 弾性部材
56 外装体
57 開口部
58 係止部
60 固定部材
62 底部
64 立ち上り部
66 上部
100 電池組立体
A 接着領域
C 中心軸
S 保持空間
θ 傾斜角


Claims (8)

  1. 電極体と電解液を収容するケースと、当該ケースを貫通する注液口とを備えた密閉型電池の製造方法であって、
    前記ケースの内部に電極体が収容された電池組立体を構築する組立体構築工程と、
    前記注液口を介して前記ケースの内部に前記電解液を注液する注液工程と、
    着脱可能の仮封止部材を前記ケースに取り付けて前記注液口を封止する仮封止工程と、
    前記電池組立体を所定の電圧まで充電する初期充電工程と、
    前記仮封止部材を前記ケースから取り外して前記注液口を開放する仮封止開放工程と、
    前記ケースに本封止部材を溶接して前記注液口を封止する本封止工程と
    を備え、
    前記仮封止部材として、
    前記注液口を封止する封止栓と、
    前記封止栓を前記注液口に向かって付勢する弾性部材と、
    前記封止栓および前記弾性部材を収容する外装体と
    を備えた逆止弁が用いられている、製造方法。
  2. 前記本封止部材は板状の部材である、請求項1に記載の製造方法。
  3. 前記逆止弁の前記外装体に板状の係止部が形成され、かつ、前記注液口の周囲における前記ケース外面に、前記係止部を保持する保持空間を有した固定部材が取り付けられており、
    前記仮封止工程において、前記係止部を前記保持空間に嵌め込むことによって、前記仮封止部材を前記ケースに取り付けて前記注液口を封止する、請求項1または2に記載の製造方法。
  4. 前記固定部材は、前記ケースの上面に接着された板状の底部と、前記底部の前記注液口に近接した側の端部から高さ方向に立ち上がる立ち上り部と、前記立ち上り部の上端からケースの上面に沿うように前記注液口に向かって延びた上部とを備えており、
    前記上部の底面と前記ケースの上面との間に前記保持空間が形成されている、請求項3に記載の製造方法。
  5. 前記固定部材の上部の底面が傾斜しており、当該上部の底面と前記ケースの上面との間に、正面視における一端から他端に向かって高さ寸法が連続的に小さくなるテーパ状の保持空間が形成されている、請求項4に記載の製造方法。
  6. 前記仮封止開放工程において前記ケース外面から前記固定部材を取り外す、請求項5に記載の製造方法。
  7. 前記注液口の周囲における前記ケース外面に、レーザによる粗面処理が施された接着領域が形成されており、当該ケース外面の接着領域と前記固定部材の前記底部とが接着される、請求項6に記載の製造方法。
  8. 前記接着領域は、前記テーパ状の保持空間の両端部のうち、高さ寸法が相対的に大きくなる方の端部に隣接した底部と接着されるように形成されている、請求項7に記載の製造方法。
JP2020190309A 2020-11-16 2020-11-16 密閉型電池の製造方法 Active JP7249983B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020190309A JP7249983B2 (ja) 2020-11-16 2020-11-16 密閉型電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020190309A JP7249983B2 (ja) 2020-11-16 2020-11-16 密閉型電池の製造方法

Publications (2)

Publication Number Publication Date
JP2022079235A true JP2022079235A (ja) 2022-05-26
JP7249983B2 JP7249983B2 (ja) 2023-03-31

Family

ID=81707387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020190309A Active JP7249983B2 (ja) 2020-11-16 2020-11-16 密閉型電池の製造方法

Country Status (1)

Country Link
JP (1) JP7249983B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102562U (ja) * 1991-02-05 1992-09-03 古河電池株式会社 シール形蓄電池の弁の抜け止め防止装置
JP2005222757A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池の仕上げ充放電ガス排出方法
JP2007323882A (ja) * 2006-05-31 2007-12-13 Toyota Motor Corp 密閉型電池及びその製造方法
JP2009181906A (ja) * 2008-01-31 2009-08-13 Toyota Motor Corp 密閉型電池製造方法
JP2015141757A (ja) * 2014-01-27 2015-08-03 株式会社豊田自動織機 蓄電装置の製造方法
JP2019029406A (ja) * 2017-07-26 2019-02-21 旭化成株式会社 密封型蓄電素子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04102562U (ja) * 1991-02-05 1992-09-03 古河電池株式会社 シール形蓄電池の弁の抜け止め防止装置
JP2005222757A (ja) * 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池の仕上げ充放電ガス排出方法
JP2007323882A (ja) * 2006-05-31 2007-12-13 Toyota Motor Corp 密閉型電池及びその製造方法
JP2009181906A (ja) * 2008-01-31 2009-08-13 Toyota Motor Corp 密閉型電池製造方法
JP2015141757A (ja) * 2014-01-27 2015-08-03 株式会社豊田自動織機 蓄電装置の製造方法
JP2019029406A (ja) * 2017-07-26 2019-02-21 旭化成株式会社 密封型蓄電素子の製造方法

Also Published As

Publication number Publication date
JP7249983B2 (ja) 2023-03-31

Similar Documents

Publication Publication Date Title
EP2393146B1 (en) Rechargeable battery and method of injecting electrolyte thereinto
JP5437007B2 (ja) 密閉電池の製造方法
JP5969356B2 (ja) 密閉型電池の製造方法,密閉型電池の封止部材および密閉型電池
US11588203B2 (en) Non-aqueous electrolyte secondary battery
EP3261151A1 (en) Battery pack and vehicle comprising same
EP4266481A1 (en) Battery cell, battery, and electric device
KR20140018014A (ko) 파우치형 이차전지의 제조방법
KR20140046174A (ko) 파우치형 이차전지 제조방법 및 파우치형 이차전지
KR102177819B1 (ko) 각형 이차전지의 제조 방법 및 제조 장치
KR102326441B1 (ko) 이차전지용 파우치의 실링 장치 및 실링 방법
KR101884405B1 (ko) 파우치형 이차전지의 실링방법
US20220029253A1 (en) Secondary battery and method for manufacturing same
JP2022079235A (ja) 密閉型電池の製造方法
CN111788717B (zh) 电池组装体、电池、盖体及壳体
JPH11329505A (ja) リチウムイオン二次電池の製造方法
US10707456B2 (en) Battery connecting unit and battery pack including the same
KR20150051467A (ko) 자가 밀봉성의 밀봉부재를 포함하는 이차전지
KR100658681B1 (ko) 이차 전지와 이차 전지의 단자
JP5992108B2 (ja) 二次電池ケース及び二次電池の製造方法
JP2007328940A (ja) 電池の製造方法及び弁部材
KR102234989B1 (ko) 각형 전지의 전해액 주입장치 및 이를 이용한 전해액 주입 방법
CN220066047U (zh) 顶盖组件、电池单体、电池及用电装置
CN114175333B (zh) 使用固定夹具制造袋形电池单元的方法及使用该方法制造的袋形电池单元
JP2018037187A (ja) 密閉型電池の製造方法
KR100624898B1 (ko) 리튬 이차전지

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230320

R150 Certificate of patent or registration of utility model

Ref document number: 7249983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150