JP2022074741A - Temperature-type valve device, cooling device and refrigeration cycle system - Google Patents

Temperature-type valve device, cooling device and refrigeration cycle system Download PDF

Info

Publication number
JP2022074741A
JP2022074741A JP2020185060A JP2020185060A JP2022074741A JP 2022074741 A JP2022074741 A JP 2022074741A JP 2020185060 A JP2020185060 A JP 2020185060A JP 2020185060 A JP2020185060 A JP 2020185060A JP 2022074741 A JP2022074741 A JP 2022074741A
Authority
JP
Japan
Prior art keywords
temperature
valve
adsorbent
refrigerant
valve device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020185060A
Other languages
Japanese (ja)
Other versions
JP7332565B2 (en
Inventor
純一 横田
Junichi Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2020185060A priority Critical patent/JP7332565B2/en
Priority to CN202111235848.9A priority patent/CN114440501B/en
Publication of JP2022074741A publication Critical patent/JP2022074741A/en
Application granted granted Critical
Publication of JP7332565B2 publication Critical patent/JP7332565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Abstract

To reduce man-hours of assembling work by easily arranging adsorption materials in a sealed chamber, and to stabilize the control of valve-opening by optimizing temperature sensing responsiveness to a temperature change, in a temperature-type valve device having a drive actuator.SOLUTION: A temperature-type valve device 10 has a drive actuator 2 for displacing a valve body 3 according to a pressure difference between a sealed chamber 23 and a decompressed chamber 22. The opening of the valve is controlled by the drive actuator 2. A charge gas 4 is sealed into the sealed chamber 23 of the drive actuator 2, and an adsorption material 52 is installed therein, the amount of the charge gas 4 adsorbed by the adsorption material 52 to change according to the temperature. The temperature of a temperature sensing object is sensed by a flat plate part 2B1 of a lower lid 2B. The adsorption material 52 is covered as a whole by a partitioning member 51, and the adsorption material 52 is provided in contact with the flat plate part 2B1 via the partitioning member 51.SELECTED DRAWING: Figure 1

Description

本発明は、密閉室と均圧室との圧力差に応じて弁体を変位させる駆動アクチュエータを有し、前記駆動アクチュエータによって弁開度を制御する温度式弁装置及び冷却装置並びに冷凍サイクルシステムに関する。 The present invention relates to a temperature valve device and a cooling device, and a refrigerating cycle system, which have a drive actuator that displaces the valve body according to the pressure difference between the closed chamber and the pressure equalizing chamber and controls the valve opening degree by the drive actuator. ..

従来、温度式弁装置として、例えば特開昭61-140763号公報(特許文献1)に開示された温度式膨張弁がある。この温度式膨張弁は、上側ダイヤフラム室(密閉室)と下側ダイヤフラム室(均圧室)とを区画するダイヤフラム(駆動アクチュエータ)と、上側ダイヤフラム室にキャピラリチューブを介して連通された感温筒と、を備え、上側ダイヤフラム室、キャピラリチューブおよび感温筒の内部にガスが封入されるとともに、感温筒の内部にガスを吸着する活性炭(吸着材)が設けられたものである。 Conventionally, as a temperature type valve device, for example, there is a temperature type expansion valve disclosed in Japanese Patent Application Laid-Open No. 61-140763 (Patent Document 1). This temperature type expansion valve has a diaphragm (drive actuator) that separates the upper diaphragm chamber (sealed chamber) and the lower diaphragm chamber (pressure equalizing chamber), and a temperature sensing cylinder that communicates with the upper diaphragm chamber via a capillary tube. The gas is sealed inside the upper diaphragm chamber, the capillary tube, and the temperature-sensitive cylinder, and activated carbon (adsorbent) that adsorbs the gas is provided inside the temperature-sensitive cylinder.

特開昭61-140763号公報Japanese Unexamined Patent Publication No. 61-140763

前記特許文献1の温度式膨張弁では、感温筒とキャピラリチューブの接続部分に金網が設けられ、活性炭(吸着材)がキャピラリチューブ内に入ることを防止するようにしているが、活性炭が感温筒の内壁に直接接触しているため、温度変化に対する感温応答が速くなり過ぎる可能性がある。このため、従来の温度式膨張弁では、弁の作動が急になることでハンチングが発生しやすく、弁開度の制御が不安定になりやすいという問題がある。 In the temperature type expansion valve of Patent Document 1, a wire mesh is provided at the connection portion between the temperature sensitive tube and the capillary tube to prevent the activated carbon (adsorbent) from entering the capillary tube, but the activated carbon feels. Since it is in direct contact with the inner wall of the hot cylinder, the temperature-sensitive response to temperature changes may become too fast. Therefore, in the conventional temperature type expansion valve, there is a problem that hunting tends to occur due to the sudden operation of the valve, and the control of the valve opening degree tends to become unstable.

本発明は、密閉室と均圧室との圧力差に応じて弁体を変位させる駆動アクチュエータを有し、前記駆動アクチュエータによって弁開度を制御する温度式弁装置において、密閉室(感温筒内も含む)に吸着材を配置しやすくして組立作業の工数を削減するとともに、温度変化に対する感温応答を適正にして弁開度の制御を安定させることを課題とする。 The present invention has a drive actuator that displaces the valve body according to the pressure difference between the closed chamber and the pressure equalizing chamber, and is a temperature type valve device that controls the valve opening degree by the drive actuator. It is an object to reduce the number of assembly work by facilitating the placement of the adsorbent in (including the inside) and to stabilize the control of the valve opening by appropriately adjusting the temperature-sensitive response to the temperature change.

本発明の温度式弁装置は、密閉室と均圧室との圧力差に応じて弁体を変位させる駆動アクチュエータを有し、前記駆動アクチュエータによって弁開度を制御する温度式弁装置であって、外気と区画されて前記密閉室を含む密閉空間には、封入媒体が封入されるとともに、温度に応じて前記封入媒体を吸着する吸着量が変化する吸着材が設置され、当該密閉空間を区画する区画壁の一部によって感温対象の温度を感知する感温部が構成され、前記吸着材は、前記封入媒体を通過させ前記吸着材を通過させない仕切り部材によって全体が覆われるとともに、該仕切り部材を介して前記密閉空間の前記感温部の内壁に熱的に接触して設けられていることを特徴とする。 The temperature type valve device of the present invention is a temperature type valve device that has a drive actuator that displaces the valve body according to the pressure difference between the closed chamber and the pressure equalizing chamber, and controls the valve opening degree by the drive actuator. In the closed space including the closed chamber, which is partitioned from the outside air, an encapsulating medium is enclosed and an adsorbent that changes the amount of adsorption that adsorbs the enclosed medium according to the temperature is installed to partition the enclosed space. A temperature-sensitive portion that senses the temperature of the temperature-sensitive object is configured by a part of the partition wall, and the adsorbent is entirely covered with a partition member that allows the encapsulation medium to pass through and does not pass through the adsorbent, and the partition. It is characterized in that it is provided in thermal contact with the inner wall of the temperature sensitive portion of the closed space via a member.

この際、前記仕切り部材は、不織布を含んで構成されていることを特徴とする温度式弁装置が好ましい。 At this time, a temperature valve device characterized in that the partition member is composed of a non-woven fabric is preferable.

また、前記仕切り部材および前記吸着材の一部には、前記区画壁から離隔する逃し部が設けられていることを特徴とする温度式弁装置が好ましい。 Further, a temperature valve device characterized in that a relief portion separated from the partition wall is provided in a part of the partition member and the adsorbent is preferable.

また、入口ポート、弁ポート、出口ポートを備え、前記均圧室には、前記出口ポート側の圧力が導入されることを特徴とする温度式弁装置が好ましい。 Further, a temperature type valve device including an inlet port, a valve port, and an outlet port, wherein the pressure on the outlet port side is introduced into the pressure equalizing chamber is preferable.

本発明の冷却装置は、冷媒を送出してシステム配管を循環させる冷媒送出手段と、前記冷媒を放熱する第1熱交換機と、前記冷媒の流量を制御する流量制御弁と、冷却対象を冷却する第2熱交換機と、を含む冷却装置であって、前記温度式弁装置が、前記流量制御弁として用いられていることを特徴とする。 The cooling device of the present invention cools a refrigerant delivery means that sends out a refrigerant to circulate the system piping, a first heat exchanger that dissipates heat from the refrigerant, a flow control valve that controls the flow rate of the refrigerant, and a cooling target. A cooling device including a second heat exchanger, characterized in that the temperature valve device is used as the flow control valve.

本発明の冷凍サイクルシステムは、冷媒を送出してシステム配管を循環させる冷媒送出手段と、前記冷媒を放熱する第1熱交換機と、前記冷媒の流量を制御する温度式膨張弁と、冷却対象を冷却する第2熱交換機と、を含む冷凍サイクルシステムであって、前記温度式弁装置が、前記温度式膨張弁として用いられていることを特徴とする。 The refrigeration cycle system of the present invention includes a refrigerant delivery means that sends out a refrigerant to circulate the system piping, a first heat exchanger that dissipates the refrigerant, a temperature expansion valve that controls the flow rate of the refrigerant, and a cooling target. A refrigeration cycle system including a second heat exchanger for cooling, wherein the temperature valve device is used as the temperature expansion valve.

本発明の温度式弁装置及び冷却装置並びに冷凍サイクルシステムによれば、吸着材が仕切り部材で覆われることで、密閉室(感温筒内も含む)に吸着材を配置しやすくなり組立作業の工数を削減することができる。また、仕切り部材を介して吸着材が感温部に熱的に接触することで、温度変化に対する感温応答が速くなり過ぎず、弁開度の制御を安定させることができる。 According to the temperature valve device, the cooling device, and the refrigeration cycle system of the present invention, the adsorbent is covered with the partition member, so that the adsorbent can be easily placed in the closed chamber (including the inside of the temperature sensitive cylinder), and the assembly work can be performed. The man-hours can be reduced. Further, since the adsorbent is in thermal contact with the temperature sensitive portion via the partition member, the temperature sensitive response to the temperature change does not become too fast, and the control of the valve opening degree can be stabilized.

本発明の第1実施形態の温度式弁装置の縦断面図である。It is a vertical sectional view of the temperature type valve device of 1st Embodiment of this invention. 第1実施形態の温度式弁装置の要部拡大縦断面図及び作用を説明する図である。It is a figure which explains the operation and the enlarged vertical sectional view of the main part of the temperature type valve device of 1st Embodiment. 本発明の第2実施形態の温度式弁装置の縦断面図である。It is a vertical sectional view of the temperature type valve device of the 2nd Embodiment of this invention. 第2実施形態の温度式弁装置における吸着材内包体の平断面図である。It is a plan sectional view of the adsorbent inclusion body in the temperature type valve device of 2nd Embodiment. 第2実施形態の温度式弁装置におけるチャージガスの封止構造の変形例1及び変形例2を示す図である。It is a figure which shows the modification 1 and modification 2 of the charge gas sealing structure in the temperature type valve device of 2nd Embodiment. 第2実施形態の温度式弁装置におけるチャージガスの封止構造の変形例3変形例を示す図である。It is a figure which shows the modification 3 modification of the charge gas sealing structure in the temperature type valve device of 2nd Embodiment. 第2実施形態の温度式弁装置におけるチャージガスの封止構造の変形例4変形例を示す図である。It is a figure which shows the modification 4 modification of the charge gas sealing structure in the temperature type valve device of 2nd Embodiment. 本発明の第1実施形態及び第2実施形態の温度式弁装置を用いた冷却装置の要部を示す図である。It is a figure which shows the main part of the cooling apparatus which used the temperature type valve apparatus of 1st Embodiment and 2nd Embodiment of this invention. 本発明の第3実施形態の温度式弁装置の縦断面図である。It is a vertical sectional view of the temperature type valve device of the 3rd Embodiment of this invention. 本発明の第3実施形態の温度式弁装置を用いた冷凍サイクルシステムの要部を示す図である。It is a figure which shows the main part of the refrigeration cycle system using the temperature type valve device of the 3rd Embodiment of this invention.

次に、本発明の温度式弁装置及び冷却装置並びに冷凍サイクルシステムの実施形態を図面を参照して説明する。図1は第1実施形態の温度式弁装置の縦断面図、図2は第1実施形態の温度式弁装置の要部拡大縦断面図及び作用を説明する図である。以下の説明における「上下」の概念は図1乃至図3及び図9の図面における上下に対応しており、一点鎖線で示す軸線Lは後述の弁ポート13の中心線であるとともに、弁体3の移動方向に対応している。また、冷媒は矢印の方向に流れる。 Next, an embodiment of the temperature valve device, the cooling device, and the refrigeration cycle system of the present invention will be described with reference to the drawings. FIG. 1 is a vertical cross-sectional view of the temperature valve device of the first embodiment, and FIG. 2 is an enlarged vertical cross-sectional view of a main part of the temperature valve device of the first embodiment and a diagram for explaining the operation. The concept of "upper and lower" in the following description corresponds to the upper and lower parts in the drawings of FIGS. 1 to 3 and 9, and the axis L indicated by the alternate long and short dash line is the center line of the valve port 13 described later and the valve body 3. Corresponds to the moving direction of. Also, the refrigerant flows in the direction of the arrow.

図1に示すように、温度式弁装置10は、金属製の弁ハウジング1を有し、弁ハウジング1には、弁室1Rと、一次側継手10aに接続される第1ポート11と、二次側継手10bに接続される第2ポート12とが形成されている。第1ポート11は弁室1Rに連通され、弁室1Rと第2ポート12との間に弁ポート13が形成されている。また、弁ハウジング1には、弁ポート13が閉となっても弁室1Rと第2ポート12とを連通するためのブリード流路14と、第2ポート12と後述の均圧室22とを連通する均圧路15とが形成されている。さらに、弁ハウジング1には、弁ポート13の軸線L上で第2ポートから均圧室22側に開口するガイド孔16が形成され、このガイド孔16は軸線Lを中心とする円筒状の形状をしている。 As shown in FIG. 1, the temperature type valve device 10 has a metal valve housing 1, and the valve housing 1 includes a valve chamber 1R, a first port 11 connected to a primary side joint 10a, and two. A second port 12 connected to the next side joint 10b is formed. The first port 11 communicates with the valve chamber 1R, and the valve port 13 is formed between the valve chamber 1R and the second port 12. Further, in the valve housing 1, a bleed flow path 14 for communicating the valve chamber 1R and the second port 12 even when the valve port 13 is closed, and the second port 12 and the pressure equalizing chamber 22 described later are provided. A pressure equalizing path 15 that communicates is formed. Further, the valve housing 1 is formed with a guide hole 16 that opens from the second port to the pressure equalizing chamber 22 side on the axis L of the valve port 13, and the guide hole 16 has a cylindrical shape centered on the axis L. I am doing.

弁室1R、弁ポート13、第2ポート12及びガイド孔16内には弁体3が配設されている。弁体3は、弁室1R内に配置されるフランジ部31と、弁ポート12内に配置される円錐状のニードル部32と、ガイド孔16の内周面に対してクリアランスを有して嵌挿された作動軸33とを有している。これにより、弁体3はガイド孔16内に軸線L方向に移動自在に収容され、軸線L方向の移動によりニードル部32が弁ポート13の開度を調整する。また、弁ハウジング1の上部には、金属部材で構成された調整ねじ17が螺合され、この調整ねじ17と弁体3のフランジ部31との間には調整ばね18が配設されている。 A valve body 3 is arranged in the valve chamber 1R, the valve port 13, the second port 12, and the guide hole 16. The valve body 3 is fitted with a clearance between the flange portion 31 arranged in the valve chamber 1R, the conical needle portion 32 arranged in the valve port 12, and the inner peripheral surface of the guide hole 16. It has an inserted working shaft 33. As a result, the valve body 3 is movably housed in the guide hole 16 in the axis L direction, and the needle portion 32 adjusts the opening degree of the valve port 13 by the movement in the axis L direction. Further, an adjusting screw 17 made of a metal member is screwed onto the upper portion of the valve housing 1, and an adjusting spring 18 is arranged between the adjusting screw 17 and the flange portion 31 of the valve body 3. ..

弁ハウジング1の下部に構成された駆動アクチュエータ2は、薄型円盤状の上蓋2Aと下蓋2Bとによりケース体を構成している。そして、上蓋2Aと下蓋2Bの間にダイヤフラム21を備えており、上蓋2Aの内側でダイヤフラム21の上部空間は均圧室22となり、下蓋2Bの内側でダイヤフラム21の下部空間は密閉室23となっている。均圧室22内には当金24がダイヤフラム21に当接するように配設されており、この当金24に弁体3の作動軸33が接続されている。密閉室23内には、チャージガス4(引き出し線の先端を白丸で表示)が封入されるとともに、吸着材内包体5が配設されている。 The drive actuator 2 configured in the lower part of the valve housing 1 constitutes a case body by a thin disk-shaped upper lid 2A and a lower lid 2B. A diaphragm 21 is provided between the upper lid 2A and the lower lid 2B. Inside the upper lid 2A, the upper space of the diaphragm 21 becomes a pressure equalizing chamber 22, and inside the lower lid 2B, the lower space of the diaphragm 21 is a closed chamber 23. It has become. The buck metal 24 is arranged in the pressure equalizing chamber 22 so as to abut on the diaphragm 21, and the operating shaft 33 of the valve body 3 is connected to the buck metal 24. A charge gas 4 (the tip of the lead wire is indicated by a white circle) is sealed in the closed chamber 23, and an adsorbent inclusion body 5 is arranged.

チャージガス4は、下蓋2Bに設けた導入管25を介して密閉室23内に充填され、その充填後、導入管25の端部を閉塞して封入したものである。また、チャージガス4は二酸化炭素を主成分ガスとして、これに漏れ検知ガスとしてのヘリウムを混入した組合わせガスである「封入媒体」を構成している。吸着材内包体5は、不織布等の袋状の仕切り部材51内に粒状の活性炭等の吸着材52を内包したものである。すなわち、吸着材52はその全体が仕切り部材51によって覆われている。そして、吸着材52は、チャージガス4に対して、二酸化炭素のみに吸着・脱着特性を示す。これにより、チャージガス4は、冷却すると吸着量が増加して前記密閉室23内の圧力が減少し、加熱すると吸着量が減少して前記密閉室23内の圧力が増加するような温度-圧力特性を持つ。即ち、温度に応じて前記吸着材52が、前記チャージガス4を吸着する吸着量が変化する。 The charge gas 4 is filled in the closed chamber 23 via the introduction pipe 25 provided in the lower lid 2B, and after the filling, the end portion of the introduction pipe 25 is closed and sealed. Further, the charge gas 4 constitutes a "enclosed medium" which is a combination gas in which carbon dioxide is used as a main component gas and helium as a leak detection gas is mixed therein. The adsorbent inclusion body 5 contains an adsorbent 52 such as granular activated carbon in a bag-shaped partition member 51 such as a non-woven fabric. That is, the entire adsorbent 52 is covered with the partition member 51. The adsorbent 52 exhibits adsorbing / desorbing characteristics only for carbon dioxide with respect to the charge gas 4. As a result, when the charge gas 4 is cooled, the amount of adsorption increases and the pressure in the closed chamber 23 decreases, and when heated, the amount of adsorption decreases and the pressure in the closed chamber 23 increases. Has characteristics. That is, the amount of adsorption by the adsorbent 52 to adsorb the charge gas 4 changes according to the temperature.

ここで、この第1実施形態では、密閉室23は外気と区画された「密閉空間」を構成しており、下蓋2Bは、この密閉室23(密閉空間)を区画する「区画壁」となっている。また、この下蓋2Bの平板部2B1は、感温対象A(図2参照)に接触されてこの感温対象Aの温度を感知する「感温部」を構成している。また、図2に示すように、仕切り部材51は、チャージガス4(封入媒体)を通過させるが、吸着材52は通過させないように作用して吸着材52が密閉室23内の下蓋2Bとダイヤフラム21の間に入り、ダイヤフラム21の変位を阻害するのを防止する。そして、吸着材52は、仕切り部材51を介して感温部である下蓋2Bの平板部2B1の内壁2B1aに接触して設けられている。これにより、吸着材52は感温部に熱的に接触している。 Here, in this first embodiment, the closed chamber 23 constitutes a "closed space" partitioned from the outside air, and the lower lid 2B is referred to as a "partition wall" for partitioning the closed chamber 23 (closed space). It has become. Further, the flat plate portion 2B1 of the lower lid 2B constitutes a "temperature sensitive portion" that is in contact with the temperature sensitive target A (see FIG. 2) and senses the temperature of the temperature sensitive target A. Further, as shown in FIG. 2, the partition member 51 allows the charge gas 4 (encapsulation medium) to pass through, but acts so as not to allow the adsorbent 52 to pass through, so that the adsorbent 52 and the lower lid 2B in the closed chamber 23 pass through. It enters between the diaphragm 21 and prevents the displacement of the diaphragm 21 from being hindered. The adsorbent 52 is provided in contact with the inner wall 2B1a of the flat plate portion 2B1 of the lower lid 2B which is the temperature sensitive portion via the partition member 51. As a result, the adsorbent 52 is in thermal contact with the temperature sensitive portion.

以上の構成により、一次側継手10aに導入された冷媒は、第1ポート11から弁室1Rに流入し、弁室1Rからブリード流路14、第2ポート12及び均圧路15を介して均圧室22に導入される。また、第2ポート12の冷媒は二次側継手10bから流出する。これにより、弁ポート13が全閉状態でも、所定の冷媒流量が得られる。 With the above configuration, the refrigerant introduced into the primary side joint 10a flows into the valve chamber 1R from the first port 11 and equalizes from the valve chamber 1R through the bleed flow path 14, the second port 12, and the pressure equalizing passage 15. It is introduced into the compression chamber 22. Further, the refrigerant of the second port 12 flows out from the secondary side joint 10b. As a result, a predetermined refrigerant flow rate can be obtained even when the valve port 13 is fully closed.

一方、駆動アクチュエータ2の下蓋2Bにおける平板部2B1(感温部)の感知温度に応じて密閉室23内のチャージガス4の圧力が上昇または低下すると、ダイヤフラム21が変位する。そして、このダイヤフラム21の変位に伴い、弁体3の作動軸33(及び当金24)が軸線L方向に移動し、弁ポート13と弁体3のニードル部32との隙間すなわち弁開度が変化する。この弁開度に応じて一次側継手10aから二次側継手10bに流れる冷媒の流量が制御される。なお、調整ねじ17のねじ込み量を調整することで、弁体3の作動軸33及び当金24がダイヤフラム21を押圧する力を調整し、密閉室23内のチャージガスの圧力に応じて弁ポート13が開き始める圧力を調整することができる。圧力調整後は、調整ねじ17の上端の外周部と、弁ハウジング1の上部内周面の調整ねじ17勘合部とを溶接等で全周を固着し気密封止する。 On the other hand, when the pressure of the charge gas 4 in the closed chamber 23 rises or falls according to the sensed temperature of the flat plate portion 2B1 (temperature sensitive portion) in the lower lid 2B of the drive actuator 2, the diaphragm 21 is displaced. Then, with the displacement of the diaphragm 21, the operating shaft 33 (and the balance 24) of the valve body 3 moves in the axis L direction, and the gap between the valve port 13 and the needle portion 32 of the valve body 3, that is, the valve opening degree is increased. Change. The flow rate of the refrigerant flowing from the primary side joint 10a to the secondary side joint 10b is controlled according to the valve opening degree. By adjusting the screwing amount of the adjusting screw 17, the force with which the operating shaft 33 and the deposit 24 of the valve body 3 press the diaphragm 21 is adjusted, and the valve port is adjusted according to the pressure of the charge gas in the closed chamber 23. The pressure at which 13 begins to open can be adjusted. After adjusting the pressure, the outer peripheral portion of the upper end of the adjusting screw 17 and the fitting portion of the adjusting screw 17 on the upper inner peripheral surface of the valve housing 1 are fixed and airtightly sealed on the entire circumference by welding or the like.

図3は第2実施形態の温度式弁装置の縦断面図、図4は第2実施形態の温度式弁装置における吸着材内包体の平断面図であり、以下の各実施形態において第1実施形態と同様な部材、同様な要素には同じ符号を付記して詳細な説明は省略する。この第2実施形態の温度式弁装置10′において第1実施形態と異なる点は、駆動アクチュエータ2′の構成である。駆動アクチュエータ2′は、第1実施形態と同様な上蓋2Aと、第1実施形態とは形状の異なる下蓋2B′とによりケース体を構成している。そして、上蓋2Aと下蓋2B′の間にダイヤフラム21を備えており、上蓋2Aの内側は均圧室22で、下蓋2B′の内側でダイヤフラム21の下部空間は密閉室23′となっている。密閉室23′内には、チャージガス4が封入されるとともに、第1実施形態とは形状の異なる吸着材内包体5′が配設されている。 FIG. 3 is a vertical cross-sectional view of the temperature valve device of the second embodiment, FIG. 4 is a plan sectional view of the adsorbent inclusion body in the temperature valve device of the second embodiment, and is the first embodiment in each of the following embodiments. The same reference numerals are added to the same members and similar elements as in the form, and detailed description thereof will be omitted. The difference between the temperature valve device 10'of the second embodiment and the first embodiment is the configuration of the drive actuator 2'. The drive actuator 2'consists of a case body with an upper lid 2A similar to that of the first embodiment and a lower lid 2B'having a shape different from that of the first embodiment. A diaphragm 21 is provided between the upper lid 2A and the lower lid 2B'. The inside of the upper lid 2A is a pressure equalizing chamber 22, and the lower space of the diaphragm 21 is a closed chamber 23'inside the lower lid 2B'. There is. The charge gas 4 is sealed in the closed chamber 23', and the adsorbent inclusion body 5', which has a different shape from that of the first embodiment, is arranged.

下蓋2B′の中央には、外部から見て窪んだ凹部26を有しており、この凹部26の内側端部には外部から密閉室23′内に連通する開口26aが形成されている。また、吸着材内包体5′の中央には、外部から見て窪んだ逃し部53′を有しており、下蓋2B′の凹部26をこの逃し部53′内に配置するようにして、吸着材内包体5′が密閉室23′内に配設されている。そして、下蓋2B′の開口26aを介して密閉室23′内にチャージガス4が封入され、ボール状の栓体27を溶接等で固着することにより封止されている。吸着材内包体5′は、不織布等の袋状の仕切り部材51′内に粒状の活性炭等の吸着材52を内包したものである。すなわち、吸着材52はその全体が仕切り部材51′によって覆われている。なお、チャージガス4と吸着材52の作用効果は第1実施形態と同様である。また、この第2実施形態の温度式弁装置10′の動作も第1実施形態と同様である。 The lower lid 2B'has a recess 26 recessed when viewed from the outside, and an opening 26a communicating with the inside of the closed chamber 23'from the outside is formed at the inner end of the recess 26. Further, a relief portion 53'that is recessed when viewed from the outside is provided in the center of the adsorbent inner package 5', and the recess 26 of the lower lid 2B'is arranged in the relief portion 53'. The adsorbent inclusion body 5'is arranged in the closed chamber 23'. Then, the charge gas 4 is sealed in the closed chamber 23'through the opening 26a of the lower lid 2B', and the ball-shaped plug 27 is sealed by fixing by welding or the like. The adsorbent inclusion body 5'includes an adsorbent 52 such as granular activated carbon in a bag-shaped partition member 51'such as a non-woven fabric. That is, the entire adsorbent 52 is covered with the partition member 51'. The action and effect of the charge gas 4 and the adsorbent 52 are the same as those in the first embodiment. Further, the operation of the temperature valve device 10'of the second embodiment is the same as that of the first embodiment.

この第2実施形態も、第1実施形態と同様に、密閉室23′は外気と区画された「密閉空間」を構成しており、下蓋2B′は、この密閉室23′(密閉空間)を区画する「区画壁」となっている。また、この下蓋2B′の凹部26の周囲の平板部2B1′は「感温部」であり、感温対象Aに接触されてこの感温対象Aの温度を感知する「感温部」を構成している。また、仕切り部材51′は、チャージガス4(封入媒体)を通過させるが、吸着材52は通過させないように作用する。そして、吸着材52は、仕切り部材51′を介して感温部である下蓋2B′の平板部2B1′の内壁2B1a′に接触して設けられている。これにより、吸着材52は感温部に熱的に接触している。 In this second embodiment as well, as in the first embodiment, the closed chamber 23'consists of a "closed space" separated from the outside air, and the lower lid 2B'is the closed chamber 23'(closed space). It is a "compartment wall" that divides the space. Further, the flat plate portion 2B1'around the recess 26 of the lower lid 2B'is a "temperature sensitive portion", and is a "temperature sensitive portion" that is in contact with the temperature sensitive target A and senses the temperature of the temperature sensitive target A. It is composed. Further, the partition member 51'acts so as to allow the charge gas 4 (encapsulation medium) to pass through, but not to allow the adsorbent 52 to pass through. The adsorbent 52 is provided in contact with the inner wall 2B1a'of the flat plate portion 2B1'of the lower lid 2B', which is a temperature-sensitive portion, via the partition member 51'. As a result, the adsorbent 52 is in thermal contact with the temperature sensitive portion.

ここで、図4において仮想線(二点鎖線)は栓体27と下蓋2B′の一部(凹部26)を示しており、後述の変形例の図6と図7についても同様である。この実施形態2では、栓体27は下蓋2B′の凹部26内において、「感温部」である平板部2B1′よりも奥にあるため、平板部2B1′を感温対象Aに接触するとき、栓体27が感温対象Aと干渉することがない。この例では栓体27はボール状であるが、例えば円錐部を有する切削部品等でもよい。また、区画壁である下蓋2B′の凹部26と、吸着材内包体5′の逃し部53′とが離間されて配置されているので、吸着材内包体5′の仕切り部材51′は栓体27の溶接時熱の影響を受けることはない。従って仕切り部材51′が溶接時の熱で破損して、吸着材52が密閉室23′内に流出するのを防止することができる。 Here, in FIG. 4, the virtual line (dashed-dotted line) shows a part (recessed portion 26) of the plug body 27 and the lower lid 2B', and the same applies to FIGS. 6 and 7 of the modified examples described later. In the second embodiment, since the plug 27 is located deeper than the flat plate portion 2B1'which is the "temperature sensitive portion" in the recess 26 of the lower lid 2B', the flat plate portion 2B1'contacts the temperature sensitive target A. At that time, the plug body 27 does not interfere with the temperature sensitive object A. In this example, the plug 27 is ball-shaped, but may be, for example, a cutting part having a conical portion. Further, since the recess 26 of the lower lid 2B'which is the partition wall and the relief portion 53'of the adsorbent inclusion body 5'are arranged apart from each other, the partition member 51'of the adsorbent inclusion body 5'is plugged. It is not affected by the welding heat of the body 27. Therefore, it is possible to prevent the partition member 51 ′ from being damaged by the heat during welding and the adsorbent 52 from flowing out into the closed chamber 23 ′.

図5は第2実施形態における駆動アクチュエータ2′に対するチャージガス4の封止構造の変形例1及び2を示す図である。なお、この変形例1及び2において、図3に対応する要素については図3と同符号を付記する。図5(A)の変形例1は、下蓋2B′の凹部26において、開口26aの周囲にバーリング部26a1を形成し、栓体27をこのバーリング部26a1に当接させたものである。図5(B)の変形例2は、下蓋2B′の凹部26′をテーパ状にしたもので、このテーパ状の内部で栓体27を開口26a′に当接させたものである。 FIG. 5 is a diagram showing modified examples 1 and 2 of the sealing structure of the charge gas 4 with respect to the drive actuator 2'in the second embodiment. In addition, in these modified examples 1 and 2, the same reference numerals as those of FIG. 3 are added to the elements corresponding to FIG. In the modified example 1 of FIG. 5A, a burring portion 26a1 is formed around the opening 26a in the recess 26 of the lower lid 2B', and the plug 27 is brought into contact with the burring portion 26a1. In the second modification of FIG. 5B, the recess 26'of the lower lid 2B'is tapered, and the plug 27 is brought into contact with the opening 26a'in the tapered interior.

図6及び図7は、第2実施形態におけるチャージガス4の封止構造の変形例3及び4を示す図である。図6の変形例3は、下蓋2B′の底部の外周に凹部26″を設け、この凹部26″の開口26a″に栓体27を当接させたものである。この場合も、区画壁である下蓋2B′の凹部26″と、吸着材内包体5′の逃し部53′とが離間されて配置されているので、吸着材内包体5′の仕切り部材51′は栓体27の溶接時熱の影響を受けることはない。図7の変形例4は、下蓋2B′の側部の一部を平坦にしてDカットの形状にし、この平坦部分に栓体27を当接させたものである。そして、この下蓋2B′の形状に合わせて吸着材内包体5″もDカットの形状にしたものである。これにより、吸着材内包体5″には平坦な逃し部53″が形成されている。なお、封止構造の変形例3に図7のDカットの形状の吸着材内包体5″を使用してもよく、栓体27の当接(溶接)部から吸着材内包体5″の逃し部53″が離間していれば、吸着材内包体5″の逃がし部53″の形状は特に問わない。 6 and 7 are views showing modified examples 3 and 4 of the sealing structure of the charge gas 4 in the second embodiment. In the modified example 3 of FIG. 6, a recess 26 ″ is provided on the outer periphery of the bottom portion of the lower lid 2B ′, and the stopper body 27 is brought into contact with the opening 26a ″ of the recess 26 ″. Since the recess 26 ″ of the lower lid 2B ′ and the relief portion 53 ′ of the adsorbent inclusion body 5 ′ are arranged apart from each other, the partition member 51 ′ of the adsorbent inclusion body 5 ′ is the plug 27. It is not affected by the heat during welding. In the modified example 4 of FIG. 7, a part of the side portion of the lower lid 2B'is flattened into a D-cut shape, and the plug 27 is brought into contact with the flat portion. The adsorbent inclusion body 5 ″ is also formed into a D-cut shape in accordance with the shape of the lower lid 2B ′. As a result, a flat relief portion 53 ″ is formed in the adsorbent inclusion body 5 ″. In addition, the adsorbent inclusion body 5 "in the D-cut shape of FIG. 7 may be used in the modification 3 of the sealing structure, and the adsorbent inclusion body 5" may be used from the abutting (welded) portion of the plug 27. As long as the relief portions 53 ″ are separated from each other, the shape of the relief portion 53 ″ of the adsorbent inclusion body 5 ″ is not particularly limited.

図8は第1実施形態及び第2実施形態の温度式弁装置10,10′を用いた冷却装置の要部を示す図である。図8における冷却装置は、後述する図10の気化熱により冷却する一般的な冷凍サイクルシステムとは異なり、冷やした冷媒液をポンプで循環させ対象物を冷却するシステムのことである。 FIG. 8 is a diagram showing a main part of a cooling device using the temperature valve devices 10 and 10'of the first embodiment and the second embodiment. The cooling device in FIG. 8 is a system in which a cooled refrigerant liquid is circulated by a pump to cool an object, unlike a general refrigeration cycle system in which cooling is performed by the heat of vaporization of FIG. 10 described later.

図8において、10,10′は第1及び第2実施形態の温度式弁装置、100は「冷媒送出手段」としてのポンプ、200は「第1熱交換器」としての放熱器、300は「第2熱交換器」としての冷却器(例えば、コールドプレート)であり、これらは配管で環状に接続することにより冷却装置を構成している。温度式弁装置10,10′は、前記のように、ダイヤフラム式の駆動アクチュエータ2,2′を有している。温度式弁装置10,10′の一次側継手10aは冷却器300の出口側配管に接続され、温度式弁装置10の二次側継手10bは放熱器200の入口側配管に接続されている。そして、冷却器300は冷却対象である感温対象A(電気自動車やハイブリッド車搭載のモータ・インバータ等の発熱部品や、大型コンピュータシステムやサーバ等のCPU等)に接触して配置されている。 In FIG. 8, 10 and 10'are temperature valve devices of the first and second embodiments, 100 is a pump as a "refrigerant delivery means", 200 is a radiator as a "first heat exchanger", and 300 is a "first heat exchanger". It is a cooler (for example, a cold plate) as a "second heat exchanger", and these are connected in a ring shape by a pipe to form a cooling device. As described above, the temperature valve devices 10 and 10'have a diaphragm type drive actuators 2 and 2'. The primary side joint 10a of the temperature type valve device 10, 10'is connected to the outlet side pipe of the cooler 300, and the secondary side joint 10b of the temperature type valve device 10 is connected to the inlet side pipe of the radiator 200. The cooler 300 is arranged in contact with a temperature-sensitive target A (a heat-generating component such as a motor / inverter mounted on an electric vehicle or a hybrid vehicle, a CPU such as a large computer system or a server), which is a cooling target.

放熱器200は冷媒(冷水やフッ素系不活性液体等)の熱を放熱し、この放熱により冷やされた冷媒はポンプ100により冷却器300に流される。冷却器300から流出する冷媒は温度式弁装置10,10′に流入される。そして、温度式弁装置10,10′において、駆動アクチュエータ2,2′で感知した冷却器300の温度に応じて冷媒の流量を制御し、その冷媒を放熱器200に流す。これにより、冷却器300を介して感温対象A(熱源)が冷却される。 The radiator 200 dissipates the heat of the refrigerant (cold water, a fluorine-based inert liquid, etc.), and the refrigerant cooled by the heat dissipates to the cooler 300 by the pump 100. The refrigerant flowing out of the cooler 300 flows into the temperature valve devices 10, 10'. Then, in the temperature valve devices 10 and 10', the flow rate of the refrigerant is controlled according to the temperature of the cooler 300 sensed by the drive actuators 2 and 2', and the refrigerant flows to the radiator 200. As a result, the temperature sensitive object A (heat source) is cooled via the cooler 300.

図9は第3実施形態の温度式弁装置20の縦断面図であり、この温度式弁装置20は温度式膨張弁を構成している。この第3実施形態の温度式弁装置20において第1実施形態と異なる点は、駆動アクチュエータ6の構成である。駆動アクチュエータ6は、上蓋6Aと下蓋6Bとによりケース体を構成している。そして、上蓋6Aと下蓋6Bの間にダイヤフラム61を備えており、下蓋6Bの内側でダイヤフラム61の下部空間は第1実施形態と同様な均圧室22となり、上蓋6Aの内側でダイヤフラム61の上部空間は密閉室63となっている。また、第1実施形態と同様に均圧室22内には当金24がダイヤフラム21に当接するように配設されており、この当金24に弁体3の作動軸33が接続されている。 FIG. 9 is a vertical cross-sectional view of the temperature type valve device 20 of the third embodiment, and the temperature type valve device 20 constitutes a temperature type expansion valve. The difference between the temperature valve device 20 of the third embodiment and the first embodiment is the configuration of the drive actuator 6. The drive actuator 6 constitutes a case body by the upper lid 6A and the lower lid 6B. A diaphragm 61 is provided between the upper lid 6A and the lower lid 6B, and the lower space of the diaphragm 61 inside the lower lid 6B becomes a pressure equalizing chamber 22 similar to that of the first embodiment, and the diaphragm 61 is inside the upper lid 6A. The upper space of is a closed chamber 63. Further, as in the first embodiment, the deposit 24 is arranged in the pressure equalizing chamber 22 so as to abut against the diaphragm 21, and the operating shaft 33 of the valve body 3 is connected to the deposit 24. ..

駆動アクチュエータ6の第1密閉室63は、キャピラリチューブ7によって筒状の感温筒8と接続されている。感温筒8の内部は第2密閉室81となっており、この密閉室81内には、チャージガス4が封入されるとともに、吸着材内包体9が配設されている。チャージガス4は、感温筒の端部に設けた導入管82を介して第2密閉室81内に充填し、その充填後、導入管82の端部を閉塞して封入したものである。これにより、チャージガス4は、感温筒8の第2密閉室81と、キャピラリチューブ7の内部と、駆動アクチュエータ6の第1密閉室63とに充填されている。感温筒8の内部に配設された吸着材内包体9は、不織布等の袋状の仕切り部材91内に活性炭等の吸着材92を内包したものである。すなわち、吸着材92はその全体が仕切り部材51′によって覆われている。なお、チャージガス4と吸着材92の作用効果は第1実施形態と同様である。 The first closed chamber 63 of the drive actuator 6 is connected to the tubular temperature-sensitive cylinder 8 by a capillary tube 7. The inside of the temperature sensitive cylinder 8 is a second closed chamber 81, and the charge gas 4 is sealed in the closed chamber 81, and the adsorbent inclusion body 9 is arranged in the closed chamber 81. The charge gas 4 is filled in the second closed chamber 81 via an introduction pipe 82 provided at the end of the temperature sensitive cylinder, and after the filling, the end of the introduction pipe 82 is closed and sealed. As a result, the charge gas 4 is filled in the second closed chamber 81 of the temperature sensitive cylinder 8, the inside of the capillary tube 7, and the first closed chamber 63 of the drive actuator 6. The adsorbent inclusion body 9 disposed inside the temperature sensitive cylinder 8 contains an adsorbent 92 such as activated carbon in a bag-shaped partition member 91 such as a non-woven fabric. That is, the entire adsorbent 92 is covered with the partition member 51'. The action and effect of the charge gas 4 and the adsorbent 92 are the same as those in the first embodiment.

ここで、この第3実施形態では、駆動アクチュエータ6の第1密閉室63と、キャピラリチューブ7の内部と、感温筒8の第2密閉室81とが、外気と区画された「密閉空間」を構成しており、上蓋6Aとキャピラリチューブ7と感温筒8の外壁は、上記密閉空間を区画する「区画壁」となっている。また、この感温筒8の外壁は、感温対象である後述の蒸発器出口配管(図10参照)に接触されてこの蒸発器出口配管の温度を感知する「感温部」を構成している。また、仕切り部材91は、第1実施形態と同様にチャージガス4(封入媒体)を通過させるが、吸着材92は通過させないように作用して吸着材92がキャピラリチューブ7内に入り、キャピラリチューブ7の内径を閉塞するのを防止する。そして、吸着材92は、仕切り部材91を介して感温部である感温筒8の側壁の内周面に接触して設けられている。これにより、吸着材92は感温部に熱的に接触している。 Here, in the third embodiment, the "closed space" in which the first closed chamber 63 of the drive actuator 6, the inside of the capillary tube 7, and the second closed chamber 81 of the temperature sensing cylinder 8 are separated from the outside air. The outer wall of the upper lid 6A, the capillary tube 7, and the temperature sensing tube 8 is a "partitioning wall" that partitions the enclosed space. Further, the outer wall of the temperature sensing cylinder 8 constitutes a "temperature sensing portion" that is in contact with a later-described evaporator outlet pipe (see FIG. 10), which is a temperature sensing target, and senses the temperature of the evaporator outlet piping. There is. Further, the partition member 91 allows the charge gas 4 (encapsulation medium) to pass through as in the first embodiment, but acts so as not to allow the adsorbent 92 to pass through, so that the adsorbent 92 enters the capillary tube 7 and the adsorbent tube enters the capillary tube 7. Prevents the inner diameter of 7 from being blocked. The adsorbent 92 is provided in contact with the inner peripheral surface of the side wall of the temperature sensitive cylinder 8 which is a temperature sensitive portion via the partition member 91. As a result, the adsorbent 92 is in thermal contact with the temperature sensitive portion.

以上の構成により、感温筒8の外壁の感知温度に応じて、密閉室81、キャピラリチューブ7の内部及び駆動アクチュエータ6の密閉室63のチャージガス4の圧力が上昇または低下すると、ダイヤフラム61が変位する。そして、このダイヤフラム61の変位に伴い、弁体3の作動軸33(及び当金24)が軸線L方向に移動し、弁ポート13と弁体3のニードル部32との隙間すなわち弁開度が変化する。この弁開度に応じて一次側継手10aから二次側継手10bに流れる冷媒の流量が制御される。 With the above configuration, when the pressure of the charge gas 4 in the closed chamber 81, the inside of the capillary tube 7 and the closed chamber 63 of the drive actuator 6 increases or decreases according to the sensed temperature of the outer wall of the temperature sensitive cylinder 8, the diaphragm 61 is displaced. Displace. Then, with the displacement of the diaphragm 61, the operating shaft 33 (and the balance 24) of the valve body 3 moves in the axis L direction, and the gap between the valve port 13 and the needle portion 32 of the valve body 3, that is, the valve opening degree is increased. Change. The flow rate of the refrigerant flowing from the primary side joint 10a to the secondary side joint 10b is controlled according to the valve opening degree.

図10において、20は第3実施形態の温度式弁装置、400は「冷媒送出手段」としての圧縮機、500は「第1熱交換器」としての凝縮器、600は「第2熱交換器」としての蒸発器であり、これらは配管で環状に接続することにより冷凍サイクルシステムを構成している。温度式弁装置20の一次側継手10aは凝縮器500の出口側配管に接続され、温度式弁装置20の二次側継手は蒸発器600の入口側配管に接続されている。そして、蒸発器600は冷却対象である空調や冷蔵用の室内雰囲気中等に配置され、この蒸発器600の出口側配管に感温筒8が取り付けられている。 In FIG. 10, 20 is a temperature valve device according to a third embodiment, 400 is a compressor as a “refrigerant delivery means”, 500 is a condenser as a “first heat exchanger”, and 600 is a “second heat exchanger”. These are the evaporators, which are connected in a ring shape by piping to form a refrigeration cycle system. The primary side joint 10a of the temperature type valve device 20 is connected to the outlet side pipe of the condenser 500, and the secondary side joint of the temperature type valve device 20 is connected to the inlet side pipe of the evaporator 600. The evaporator 600 is arranged in an air conditioner or a room atmosphere for refrigeration, which is a cooling target, and a temperature sensitive cylinder 8 is attached to an outlet side pipe of the evaporator 600.

圧縮機400は冷凍サイクルシステムを流れる冷媒を圧縮し、圧縮された冷媒は凝縮器500で凝縮液化され、温度式弁装置20に流入される。温度式弁装置20は膨張弁であり、流入される冷媒を減圧(膨張)して蒸発器600に流入させる。蒸発器600は冷媒を蒸発気化し、図示しないアキュムレータ等を介して気相冷媒が圧縮機400に循環される。そして、蒸発器600は、冷媒を蒸発気化することで、発熱体や空気等から熱を吸収する。これにより発熱体、または空気等が冷却される。 The compressor 400 compresses the refrigerant flowing through the refrigeration cycle system, and the compressed refrigerant is condensed and liquefied by the condenser 500 and flows into the temperature valve device 20. The temperature valve device 20 is an expansion valve, and the inflowing refrigerant is depressurized (expanded) and flows into the evaporator 600. The evaporator 600 evaporates and vaporizes the refrigerant, and the vapor phase refrigerant is circulated to the compressor 400 via an accumulator or the like (not shown). Then, the evaporator 600 absorbs heat from a heating element, air, or the like by evaporating and vaporizing the refrigerant. This cools the heating element, air, and the like.

以上、本発明の実施の形態について図面を参照して詳述し、その他の実施形態についても詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 The embodiments of the present invention have been described in detail with reference to the drawings, and other embodiments have also been described in detail. However, the specific configuration is not limited to these embodiments, and the present invention is not limited to these embodiments. It is included in the present invention even if there is a design change or the like within a range that does not deviate from the gist.

例えば、仕切り部材51は、不織布以外にSUSや樹脂等のメッシュを用いてもよいし、これらを組合せて用いてもよい。しかしながら、不織布はメッシュの場合と比較して柔軟性を有しているため自由な形態が得られやすい。そのため、吸着剤内包体は仕切り部材として不織布を含んで構成することが望ましい。また、吸着材52は、粒状の活性炭以外に成形体とした活性炭や、粒状または成形体としたセラミック等を用いてもよい。また、本実施形態では、感温部に吸着材内包体5(5′,5″)が直接接触させて熱的に接触させているが、システムの制御より、温度変化に対する感温応答を更に遅らせたい場合には、感温部と吸着材内包体5(5′,5″)の間に、金属板や樹脂シート等を入れる等して、他の部材を介して間接接触させて熱的に接触させると好ましい。 For example, the partition member 51 may use a mesh such as SUS or resin in addition to the non-woven fabric, or may be used in combination thereof. However, since the non-woven fabric has flexibility as compared with the case of the mesh, it is easy to obtain a free form. Therefore, it is desirable that the adsorbent inclusion body includes a non-woven fabric as a partition member. Further, as the adsorbent 52, in addition to the granular activated carbon, activated carbon as a molded body, ceramic as a granular or molded body, or the like may be used. Further, in the present embodiment, the adsorbent inclusion body 5 (5', 5 ") is in direct contact with the temperature sensitive portion to be thermally contacted, but the temperature sensitive response to the temperature change is further controlled by the control of the system. If you want to delay it, insert a metal plate, resin sheet, etc. between the temperature sensitive part and the adsorbent inclusion body 5 (5', 5 ") and make indirect contact through other members to heat it. It is preferable to bring it into contact with.

1 弁ハウジング
1R 弁室
10a 一次側継手
10b 二次側継手
11 第1ポート
12 第2ポート
13 弁ポート
2 駆動アクチュエータ
2A 上蓋
2B 下蓋
2B1 平板部
21 ダイヤフラム
22 均圧室
23 密閉室
24 当金
L 軸線
3 弁体
4 チャージガス
5 吸着材内包体
51 仕切り部材
52 吸着材
10 温度式弁装置
2′ 駆動アクチュエータ
2B′ 下蓋
23′ 密閉室
26 凹部
5′ 吸着材内包体
51′ 仕切り部材
53′ 逃し部
5″ 吸着材内包体
53″ 逃し部
10′ 温度式弁装置
2B1′ 平板部
100 ポンプ
200 放熱器
300 冷却器
6 駆動アクチュエータ
6A 上蓋
6B 下蓋
61 ダイヤフラム
63 第1密閉室
7 キャピラリチューブ
8 感温筒
81 第2密閉室
9 吸着材内包体
91 仕切り部材
92 吸着材
20 温度式弁装置
400 圧縮機
500 凝縮器
600 蒸発器
1 Valve housing 1R Valve chamber 10a Primary side joint 10b Secondary side joint 11 1st port 12 2nd port 13 Valve port 2 Drive actuator 2A Upper lid 2B Lower lid 2B1 Flat plate 21 Diaphragm 22 Pressure equalizing chamber 23 Sealed chamber 24 Axis 3 Valve body 4 Charge gas 5 Adsorbent inclusion body 51 Partition member 52 Adsorbent 10 Temperature valve device 2 ′ Drive actuator 2B ′ Lower lid 23 ′ Sealed chamber 26 Recess 5 ′ Adsorbent inclusion body 51 ′ Partition member 53 ′ Part 5 ″ Adsorbent inclusion body 53 ″ Relief part 10 ′ Temperature valve device 2B1 ′ Flat plate part 100 Pump 200 Radiator 300 Cooler 6 Drive actuator 6A Upper lid 6B Lower lid 61 Diaphragm 63 First closed chamber 7 Capillary tube 8 Temperature sensitive Cylinder 81 2nd closed chamber 9 Adsorbent inclusion body 91 Partition member 92 Adsorbent 20 Temperature valve device 400 Compressor 500 Condenser 600 Evaporator

Claims (6)

密閉室と均圧室との圧力差に応じて弁体を変位させる駆動アクチュエータを有し、前記駆動アクチュエータによって弁開度を制御する温度式弁装置であって、
外気と区画されて前記密閉室を含む密閉空間には、封入媒体が封入されるとともに、温度に応じて前記封入媒体を吸着する吸着量が変化する吸着材が設置され、当該密閉空間を区画する区画壁の一部によって感温対象の温度を感知する感温部が構成され、
前記吸着材は、前記封入媒体を通過させ前記吸着材を通過させない仕切り部材によって全体が覆われるとともに、該仕切り部材を介して前記密閉空間の前記感温部の内壁に熱的に接触して設けられていることを特徴とする温度式弁装置。
It is a temperature type valve device that has a drive actuator that displaces the valve body according to the pressure difference between the closed chamber and the pressure equalizing chamber, and controls the valve opening degree by the drive actuator.
An encapsulating medium is enclosed in the enclosed space that is partitioned from the outside air and includes the enclosed chamber, and an adsorbent that changes the amount of adsorption that adsorbs the enclosed medium according to the temperature is installed to partition the enclosed space. A temperature-sensitive part that senses the temperature of the temperature-sensitive object is constructed by a part of the partition wall.
The adsorbent is entirely covered with a partition member that allows the adsorbent to pass through the encapsulation medium but does not pass through the adsorbent, and is provided in thermal contact with the inner wall of the temperature-sensitive portion of the enclosed space via the partition member. A temperature valve device characterized by being installed.
前記仕切り部材は、不織布を含んで構成されていることを特徴とする請求項1に記載の温度式弁装置。 The temperature valve device according to claim 1, wherein the partition member is composed of a non-woven fabric. 前記仕切り部材および前記吸着材の一部には、前記区画壁から離隔する逃し部が設けられていることを特徴とする請求項1または2に記載の温度式弁装置。 The temperature valve device according to claim 1 or 2, wherein the partition member and a part of the adsorbent are provided with a relief portion separated from the partition wall. 入口ポート、弁ポート、出口ポートを備え、前記均圧室には、前記出口ポート側の圧力が導入されることを特徴とする請求項1乃至3のいずれか一項に記載の温度式弁装置。 The temperature valve device according to any one of claims 1 to 3, further comprising an inlet port, a valve port, and an outlet port, wherein the pressure on the outlet port side is introduced into the pressure equalizing chamber. .. 冷媒を送出してシステム配管を循環させる冷媒送出手段と、前記冷媒を放熱する第1熱交換機と、前記冷媒の流量を制御する流量制御弁と、冷却対象を冷却する第2熱交換機と、を含む冷却装置であって、請求項1乃至4のいずれか一項に記載の温度式弁装置が、前記流量制御弁として用いられていることを特徴とする冷却装置。 A refrigerant delivery means that sends out the refrigerant to circulate the system piping, a first heat exchanger that dissipates the refrigerant, a flow control valve that controls the flow rate of the refrigerant, and a second heat exchanger that cools the cooling target. A cooling device including, wherein the temperature type valve device according to any one of claims 1 to 4 is used as the flow control valve. 冷媒を送出してシステム配管を循環させる冷媒送出手段と、前記冷媒を放熱する第1熱交換機と、前記冷媒の流量を制御する温度式膨張弁と、冷却対象を冷却する第2熱交換機と、を含む冷凍サイクルシステムであって、請求項1乃至4のいずれか一項に記載の温度式弁装置が、前記温度式膨張弁として用いられていることを特徴とする冷凍サイクルシステム。 A refrigerant delivery means that sends out the refrigerant to circulate the system piping, a first heat exchanger that dissipates the refrigerant, a thermal expansion valve that controls the flow rate of the refrigerant, and a second heat exchanger that cools the cooling target. A refrigeration cycle system comprising the above, wherein the temperature valve device according to any one of claims 1 to 4 is used as the temperature expansion valve.
JP2020185060A 2020-11-05 2020-11-05 Temperature type valve device, cooling device and refrigeration cycle system Active JP7332565B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020185060A JP7332565B2 (en) 2020-11-05 2020-11-05 Temperature type valve device, cooling device and refrigeration cycle system
CN202111235848.9A CN114440501B (en) 2020-11-05 2021-10-22 Temperature valve device, cooling device, and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020185060A JP7332565B2 (en) 2020-11-05 2020-11-05 Temperature type valve device, cooling device and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2022074741A true JP2022074741A (en) 2022-05-18
JP7332565B2 JP7332565B2 (en) 2023-08-23

Family

ID=81362611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020185060A Active JP7332565B2 (en) 2020-11-05 2020-11-05 Temperature type valve device, cooling device and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7332565B2 (en)
CN (1) CN114440501B (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924017B1 (en) * 1970-12-11 1974-06-20
JPH0613945B2 (en) * 1984-12-11 1994-02-23 日本電装株式会社 Expansion valve for refrigeration equipment
US4819443A (en) 1987-06-30 1989-04-11 Fujikoki America, Inc. Expansion valve
JP3100768B2 (en) 1992-06-26 2000-10-23 関西電力株式会社 Distributed fuel cell power plant and operation control method thereof
JPH09133436A (en) * 1995-11-08 1997-05-20 Mitsubishi Heavy Ind Ltd Temperature type expansion valve and air-conditioning device for vehicle using the valve
JP4119273B2 (en) 2003-02-13 2008-07-16 株式会社 イトウ Paper sheet storage case and storage product
CN2790576Y (en) * 2005-01-18 2006-06-28 展佑自动化机械有限公司 Active carbon sealing bag
JP4924017B2 (en) 2006-12-27 2012-04-25 カシオ計算機株式会社 Position detection apparatus and position detection method
CN101255931A (en) * 2007-02-26 2008-09-03 邓永林 Inner temperature-sensing thermostatic expansion valve bellows
JP5684841B2 (en) 2013-02-19 2015-03-18 本田技研工業株式会社 Sunshade device for vehicle
JP6011498B2 (en) * 2013-09-11 2016-10-19 株式会社デンソー Expansion valve
JP7294063B2 (en) 2019-10-30 2023-06-20 住友金属鉱山株式会社 Oxide single crystal growth method

Also Published As

Publication number Publication date
JP7332565B2 (en) 2023-08-23
CN114440501A (en) 2022-05-06
CN114440501B (en) 2024-04-30

Similar Documents

Publication Publication Date Title
JP4062129B2 (en) Vapor compression refrigerator
US20060150650A1 (en) Expansion valve for refrigerating cycle
JP3637651B2 (en) Thermal expansion valve
JP6149237B2 (en) Vehicle air conditioner and expansion valve
JP6011498B2 (en) Expansion valve
JPH1016542A (en) Receiver having expansion mechanism
JP2007139208A (en) Expansion valve for refrigerating cycle
JP2002054861A (en) Thermostatic expansion valve
JP2002054860A (en) Thermostatic expansion valve
KR101734265B1 (en) expansion valve of car air-conditioning system and car air-conditioning system including the same
JP2022074741A (en) Temperature-type valve device, cooling device and refrigeration cycle system
JP6007369B2 (en) Control valve
JP2007278616A (en) Expansion device
JP2008164239A (en) Pressure regulation valve
JP2007298273A (en) Vapor compression type refrigerator
JP2007315727A (en) Expansion valve
JP2008196774A (en) Pressure control valve
JPH09133436A (en) Temperature type expansion valve and air-conditioning device for vehicle using the valve
JP3987983B2 (en) Thermal expansion valve
JP7453947B2 (en) Cooling system
JP2009227027A (en) Waterproof structure for vehicle
CN105822770A (en) Two-way thermal expansion valve
JP7328945B2 (en) Temperature type valve device, cooling device and refrigeration cycle system
JP2012220140A (en) Expansion valve
JP7045345B2 (en) Expansion valve and refrigeration cycle system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7332565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150