JP7453947B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP7453947B2
JP7453947B2 JP2021141463A JP2021141463A JP7453947B2 JP 7453947 B2 JP7453947 B2 JP 7453947B2 JP 2021141463 A JP2021141463 A JP 2021141463A JP 2021141463 A JP2021141463 A JP 2021141463A JP 7453947 B2 JP7453947 B2 JP 7453947B2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
flow rate
recess
temperature sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021141463A
Other languages
Japanese (ja)
Other versions
JP2023034951A (en
Inventor
純一 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2021141463A priority Critical patent/JP7453947B2/en
Priority to CN202222185394.5U priority patent/CN217898995U/en
Publication of JP2023034951A publication Critical patent/JP2023034951A/en
Application granted granted Critical
Publication of JP7453947B2 publication Critical patent/JP7453947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Temperature-Responsive Valves (AREA)

Description

本発明は、流量調整弁の駆動エレメントを受熱部に接触させる冷却装置に関する。 The present invention relates to a cooling device that brings a drive element of a flow rate regulating valve into contact with a heat receiving part.

電気自動車やハイブリッド車にはモータやインバータ等の発熱を伴う発熱部品が搭載されている、あるいは、大型のコンピュータシステムやサーバ等にはCPUやメモリ等の発熱量の大きい発熱部品が搭載されている。 Electric vehicles and hybrid vehicles are equipped with heat-generating components such as motors and inverters, and large computer systems and servers are equipped with heat-generating components such as CPUs and memory that generate a large amount of heat. .

これらの発熱部品を冷却するために、構成部材が比較的少なく、軽量かつ信頼性の高い水冷式の冷却装置が採用されている。この水冷式の冷却装置は、冷やした冷媒をポンプで循環させ、対象物を冷却するものである。 In order to cool these heat-generating components, a water-cooled cooling device is used, which has a relatively small number of components, is lightweight, and has high reliability. This water-cooled cooling device uses a pump to circulate a cooled refrigerant to cool an object.

例えば、特許文献1(特に、図10参照)には、水冷式の冷却装置であって、冷媒を所定方向に送り出すポンプと、冷媒を通過させるとともに冷却対象から受熱する冷却器と、通過する冷媒の流量を調整する流量調整弁と、冷媒の熱を放熱する放熱器と、を備え、コントロールユニットが、温度計により検出した冷却器の出口温度に基づいて、流量調整弁の弁開度を制御するものが記載されている。 For example, Patent Document 1 (see especially FIG. 10) describes a water-cooled cooling device including a pump that sends out a refrigerant in a predetermined direction, a cooler that allows the refrigerant to pass through and receives heat from an object to be cooled, and a refrigerant that passes through the refrigerant. A control unit controls the valve opening degree of the flow rate adjustment valve based on the outlet temperature of the cooler detected by a thermometer. It describes what to do.

この水冷式の冷却装置は、コントロールユニットを介して、流量調整弁の弁開度を制御していることから、冷却対象の温度変化に対する弁開度の応答性が低くなっていた。そこで、電気的に流量調整弁の弁開度を制御するのではなく、冷却対象の温度を、流量調整弁に設けられる感温部が直接受熱して、流量調整弁の弁開度を制御することが考えられる。 Since this water-cooled cooling device controls the valve opening of the flow rate adjustment valve via the control unit, the responsiveness of the valve opening to changes in the temperature of the object to be cooled has been low. Therefore, instead of electrically controlling the valve opening of the flow rate adjustment valve, the temperature of the object to be cooled is directly received by a temperature sensing part installed in the flow rate adjustment valve, and the valve opening of the flow rate adjustment valve is controlled. It is possible that

ここで、水冷式ではないが、特許文献2(特に、図3参照)には、冷凍サイクルに用いられる流量調整弁であって、冷却対象である蒸発器の出口配管の温度を、感温部である駆動ユニットの上蓋が直接受熱して、流量調整弁の弁開度を制御するものが記載されている。具体的には、感温部である上蓋に、冷却対象である蒸発器の出口配管の形状に対応した凹部を設け、この上蓋の凹部を、蒸発器の出口配管に直接固定させることにより、冷却対象の温度変化に対する弁開度の応答性を高めようとするものである。 Here, although it is not a water-cooled type, Patent Document 2 (see especially FIG. 3) describes a flow rate regulating valve used in a refrigeration cycle, which uses a temperature sensing part to measure the temperature of the outlet piping of an evaporator to be cooled. A device is described in which the upper lid of the drive unit directly receives heat to control the valve opening degree of the flow rate regulating valve. Specifically, a recess corresponding to the shape of the outlet piping of the evaporator, which is the object to be cooled, is provided in the upper lid, which is the temperature-sensing part, and the recess of the upper lid is fixed directly to the outlet piping of the evaporator. This is intended to increase the responsiveness of the valve opening degree to changes in the temperature of the object.

しかしながら、特許文献2の流量調整弁は、主に、以下の2つの問題点を有していた。第1に、この流量調整弁は、上蓋の凹部のみを介して、冷却対象の温度を直接受熱しているが、上蓋における凹部以外の部分は、雰囲気温度の影響を強く受ける。このため、依然として、感温応答性に遅れを有しているという問題(以下、「従来の問題点(感温特性の遅れ)」という)が生じていた。第2に、上蓋に形成される凹部の深さは、上蓋の内部に配置されるダイヤフラムと干渉しないように、構造的な制約を有している。このため、流量調整弁の軸線方向に沿う方向に、比較的大きな設置スペースを要するという問題(以下、「従来の問題点(軸線方向の設置スペースの必要性)」という)が生じていた。 However, the flow rate regulating valve of Patent Document 2 mainly had the following two problems. First, although this flow rate regulating valve directly receives the temperature of the object to be cooled only through the recessed portion of the upper lid, the portion of the upper lid other than the recessed portion is strongly influenced by the ambient temperature. For this reason, the problem of a delay in temperature-sensitive response (hereinafter referred to as "conventional problem (delay in temperature-sensing characteristic)") still occurred. Second, the depth of the recess formed in the top lid has structural limitations so as not to interfere with the diaphragm disposed inside the top lid. For this reason, a problem has arisen in that a relatively large installation space is required in the direction along the axial direction of the flow rate regulating valve (hereinafter referred to as "conventional problem (need for installation space in the axial direction)").

特開2006-38302号公報Japanese Patent Application Publication No. 2006-38302 特開2020-60356号公報JP2020-60356A

本発明の目的は、流量調整弁の感温特性の向上、及び、流量調整弁の装着高さの低背化を実現する冷却装置を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling device that improves the temperature sensitivity of a flow rate regulating valve and reduces the mounting height of the flow rate regulating valve.

上記課題を解決するために、冷媒を所定方向に送り出す送流体手段と、前記冷媒を通過させるとともに冷却対象から受熱する受熱部と、前記冷却対象の温度に応じて通過する前記冷媒の流量を調整する流量調整弁と、前記冷媒の熱を放熱する放熱手段と、を備え、前記送流体手段、前記受熱部、前記流量調整弁、及び、前記放熱手段を接続し、前記冷媒を循環させる冷却装置であって、前記流量調整弁は、前記冷媒が導入される第1ポート、前記第1ポートから流入した前記冷媒を通過させる弁ポート、及び、前記弁ポートを通過した前記冷媒を送り出す第2ポートを有する弁ハウジングと、前記弁ハウジングに移動自在に設けられ、前記弁ポートの弁開度を調整する弁体と、前記弁体に所定の弁閉方向の力を付与する弁閉力付与手段と、前記弁体を駆動する駆動エレメントと、を備え、前記駆動エレメントは、封入ガスが封入される封入空間を形成する感温部と、前記封入空間と前記冷媒が導入される空間とを区画するとともに、前記弁体に対して弁開力を付与可能な密封部材と、を備え、前記感温部は、有底筒形状からなり、平板部及び壁部を備え、前記受熱部は、底面及び側面を有する凹部を備え、前記凹部に前記感温部を収容する際に、前記凹部の前記底面に前記感温部の前記平板部を熱的に接触させる冷却装置である。 In order to solve the above problems, a fluid sending means for sending a refrigerant in a predetermined direction, a heat receiving section that allows the refrigerant to pass through and receives heat from the object to be cooled, and adjusts the flow rate of the refrigerant passing according to the temperature of the object to be cooled. A cooling device comprising: a flow rate regulating valve for dissipating heat of the refrigerant; and a heat dissipating means for dissipating heat of the refrigerant; the fluid sending means, the heat receiving section, the flow regulating valve, and the heat dissipating means are connected to each other, and the refrigerant is circulated. The flow rate adjustment valve includes a first port into which the refrigerant is introduced, a valve port through which the refrigerant flowing from the first port passes, and a second port through which the refrigerant that has passed through the valve port is sent out. a valve housing having: a valve body movably provided in the valve housing to adjust the valve opening degree of the valve port; and a valve closing force applying means for applying a force in a predetermined valve closing direction to the valve body. , a driving element that drives the valve body, and the driving element partitions a temperature sensing part that forms an enclosed space in which the enclosed gas is enclosed, and a space into which the refrigerant is introduced from the enclosed space. and a sealing member capable of applying a valve-opening force to the valve body, the temperature-sensing part has a cylindrical shape with a bottom, and includes a flat plate part and a wall part, and the heat-receiving part has a bottom face and a wall part. The cooling device includes a recessed portion having side surfaces, and when the temperature sensing portion is accommodated in the recessed portion, the flat plate portion of the temperature sensing portion is brought into thermal contact with the bottom surface of the recessed portion.

また、上記冷却装置であって、前記駆動エレメントは、上蓋と、前記感温部である下蓋と、をさらに備え、前記上蓋及び前記下蓋の間に、前記密封部材の外周縁部を挟持することにより、鍔部が形成され、前記凹部の前記底面から立ち上がる前記側面の高さは、前記感温部の前記壁部の軸線方向の高さ以下であるものとしてもよい。 Further, in the cooling device, the driving element further includes an upper lid and a lower lid that is the temperature sensing portion, and the outer peripheral edge of the sealing member is sandwiched between the upper lid and the lower lid. By doing so, a flange portion may be formed, and the height of the side surface rising from the bottom surface of the recessed portion may be equal to or less than the height of the wall portion of the temperature sensing portion in the axial direction.

また、上記冷却装置であって、前記凹部における前記底面の幅は、前記感温部の前記壁部の幅と同程度であるものとしてもよい。 Further, in the cooling device, the width of the bottom surface of the recess may be approximately the same as the width of the wall of the temperature sensing section.

また、上記冷却装置であって、前記感温部の前記壁部には、前記封入ガスを封入し、密封される封入管が接続され、前記受熱部には、前記感温部を前記凹部に収容する際に、前記封入管との干渉を避けるための逃げ溝が形成されているものとしてもよい。 Further, in the cooling device, the wall portion of the temperature sensing portion is connected to an enclosure tube that is sealed with the filling gas, and the heat receiving portion is configured to connect the temperature sensing portion to the recess. An escape groove may be formed to avoid interference with the enclosing tube during accommodation.

また、上記冷却装置であって、前記凹部は、前記側面の開口側に、前記側面の内径より拡径された段差部と、前記段差部の内周面に形成された環状溝と、をさらに備え、前記凹部に前記感温部を収容した後に、前記環状溝内に止め輪を挿入し、前記止め輪と前記凹部との間に、前記駆動エレメントの前記鍔部を固定するものとしてもよい。 In the cooling device, the recess further includes, on the opening side of the side surface, a step portion whose diameter is larger than an inner diameter of the side surface, and an annular groove formed on an inner circumferential surface of the step portion. A retaining ring may be inserted into the annular groove after the temperature sensing section is accommodated in the recess, and the collar portion of the drive element may be fixed between the retaining ring and the recess. .

本発明によれば、流量調整弁の感温特性の向上、及び、流量調整弁の装着高さの低背化を実現する冷却装置を提供することができる。 According to the present invention, it is possible to provide a cooling device that improves the temperature-sensitive characteristics of a flow rate regulating valve and reduces the mounting height of the flow rate regulating valve.

本発明の第1の実施形態に係る冷却装置の概略図である。1 is a schematic diagram of a cooling device according to a first embodiment of the present invention. 図1の流量調整弁を示す縦断面図である。FIG. 2 is a longitudinal cross-sectional view showing the flow rate regulating valve of FIG. 1. FIG. 図1の冷却器に装着された流量調整弁を説明する側面図であり、(a)は、冷却器の凹部に流量調整弁を装着した状態(本実施形態)、(b)は、冷却器の上面に流量調整弁を装着した状態(比較例)を、それぞれ表す。FIG. 2 is a side view illustrating the flow rate adjustment valve installed in the cooler of FIG. Each figure shows a state in which a flow rate adjustment valve is attached to the top surface (comparative example). 図3の破線IV(a)で囲まれる部分拡大図であり、(a)は、駆動エレメントの鍔部が冷却器の上面と離間した状態(本実施形態)、(b)は、駆動エレメントの鍔部が冷却器の上面と接触した状態(比較例)を、それぞれ表す。4 is a partial enlarged view surrounded by a broken line IV (a) in FIG. 3, in which (a) shows a state in which the flange of the drive element is separated from the top surface of the cooler (this embodiment), and (b) shows a state in which the flange of the drive element is separated from the top surface of the cooler; FIG. Each figure shows a state in which the flange is in contact with the upper surface of the cooler (comparative example). 第2の実施形態に係る冷却器に装着された流量調整弁を説明する図であり、(a)は、取り付け向きが正しい状態の側面図(本実施形態)、(b)は、(a)における冷却器の上面図、(c)は、取り付け向きが誤った状態の側面図(比較例)を、それぞれ表す。It is a figure explaining the flow rate adjustment valve attached to the cooler concerning a 2nd embodiment, (a) is a side view (this embodiment) of the state where attachment direction is correct, (b) is (a) (c) is a top view of the cooler, and (c) is a side view (comparative example) in a state where the mounting direction is incorrect. 第3の実施形態に係る冷却器に装着された流量調整弁を説明する図であり、(a)は、流量調整弁が冷却器に固定された状態の側面図、(b)は、(a)における冷却器の上面図を、それぞれ表す。It is a figure explaining the flow rate adjustment valve attached to the cooler concerning a 3rd embodiment, (a) is a side view of the state where the flow rate adjustment valve is fixed to the cooler, (b) is (a) ) respectively represent top views of the coolers.

本発明の実施形態について、図1から図6を参照しながら詳細に説明する。ただし、本発明は本実施形態の態様に限定されるものではない。 Embodiments of the present invention will be described in detail with reference to FIGS. 1 to 6. However, the present invention is not limited to the aspects of this embodiment.

<用語について>
本明細書及び特許請求の範囲の記載において、「上」、「下」、「右」、「左」は、図面の側面図に対応する方向を示す。
<About terms>
In this specification and claims, "top", "bottom", "right", and "left" refer to directions corresponding to side views of the drawings.

(第1の実施形態)
<冷却装置について>
図1を用いて、本発明の第1の実施形態に係る冷却装置1について説明する。なお、図中における直線矢印は、冷媒の送液方向を示している。
(First embodiment)
<About the cooling device>
A cooling device 1 according to a first embodiment of the present invention will be described using FIG. 1. Note that the straight arrow in the figure indicates the direction in which the refrigerant is fed.

冷却装置1は、通過する冷媒の流量を冷却対象Aの温度に応じて調整する流量調整弁100と、冷却対象Aから受熱する冷却器(受熱部)200aと、冷媒(液冷媒)を所定方向に送り出すポンプ(送流体手段)300と、冷媒の熱を放熱する放熱器(放熱手段)400と、を備え、これらを環状に接続して冷媒を循環させる。この冷却装置1は、電気自動車やハイブリッド車等に搭載される発熱部品(例えば、モータやインバータ等)である冷却対象Aを冷却する。あるいは、大型のコンピュータシステムやサーバ等に搭載される発熱部品(例えば、CPUやメモリ等)である冷却対象Aを冷却する。以下、冷却装置1のそれぞれの構成について順に説明する。 The cooling device 1 includes a flow rate adjustment valve 100 that adjusts the flow rate of the refrigerant passing therethrough according to the temperature of the object A to be cooled, a cooler (heat receiving section) 200a that receives heat from the object A to be cooled, and a coolant (liquid refrigerant) that directs the refrigerant (liquid refrigerant) in a predetermined direction. The refrigerant is provided with a pump (fluid feeding means) 300 and a radiator (heat radiating means) 400 that radiates heat of the refrigerant, and these are connected in a ring to circulate the refrigerant. This cooling device 1 cools a cooling target A, which is a heat generating component (for example, a motor, an inverter, etc.) mounted on an electric vehicle, a hybrid vehicle, or the like. Alternatively, cooling target A, which is a heat-generating component (eg, CPU, memory, etc.) mounted on a large computer system, server, etc., is cooled. Hereinafter, each configuration of the cooling device 1 will be explained in order.

流量調整弁100は、詳細は後述するが、ダイヤフラム式の駆動エレメント40を有している。流量調整弁100の一次側継手10aは、冷却器200aの出口側配管に接続され、流量調整弁100の二次側継手10bは、放熱器400の入口側配管に接続される。また、流量調整弁100は、駆動エレメント40を冷却器200aに熱的に接触させ、この冷却器200aを介して、冷却対象Aの温度を感知することにより、冷却器200aを通過する冷媒の流量調整を行っている。 The flow rate regulating valve 100 has a diaphragm type drive element 40, the details of which will be described later. The primary side joint 10a of the flow rate adjustment valve 100 is connected to the outlet side piping of the cooler 200a, and the secondary side joint 10b of the flow rate adjustment valve 100 is connected to the inlet side piping of the radiator 400. In addition, the flow rate regulating valve 100 brings the driving element 40 into thermal contact with the cooler 200a, and detects the temperature of the object to be cooled A through the cooler 200a, thereby controlling the flow rate of the refrigerant passing through the cooler 200a. Adjustments are being made.

冷却器200aは、コールドプレートなどから構成されており、冷媒との熱交換を促進させるために、ジグザグに蛇行する内部流路や、冷媒と衝突するようにピンなど設けられた内部流路を有している。この冷却器200aの一側には、発熱部品である冷却対象Aが接触して配置され、他側には、流量調整弁100が接触して配置される。なお、本実施形態における冷却器200aは、冷媒を通過させるとともに冷却対象Aから受熱することにより、冷却対象Aから冷媒へと熱伝達させ得るものであれば、どのような形態であってもよい。 The cooler 200a is composed of a cold plate, etc., and has an internal flow path that meanders in a zigzag manner and an internal flow path provided with pins to collide with the refrigerant in order to promote heat exchange with the refrigerant. are doing. A cooling target A, which is a heat generating component, is placed in contact with one side of the cooler 200a, and a flow rate regulating valve 100 is placed in contact with the other side. Note that the cooler 200a in this embodiment may have any form as long as it can transfer heat from the object to be cooled A to the refrigerant by allowing the refrigerant to pass therethrough and receiving heat from the object to be cooled A. .

ポンプ300は、液体状態の冷媒を循環させ、冷却対象Aを冷却する。この冷媒は、絶縁性の冷媒、例えば、純水やフッ素系不活性液体(例えば、フロリナート(登録商標)や、ガルデン(登録商標)、ノベック(登録商標))等を用いるものである。本実施形態の冷媒は、冷却器200a及び流量調整弁100を通過する際に、液体であるが、これに限らず、冷却装置1の流路の一部において、気液混合状態に遷移する液体であってもよい。 The pump 300 circulates a liquid refrigerant to cool the object A to be cooled. This refrigerant is an insulating refrigerant, such as pure water or a fluorine-based inert liquid (eg, Fluorinert (registered trademark), Galden (registered trademark), Novec (registered trademark)), or the like. The refrigerant of this embodiment is a liquid when passing through the cooler 200a and the flow rate adjustment valve 100, but is not limited to this, and is a liquid that transitions to a gas-liquid mixed state in a part of the flow path of the cooling device 1. It may be.

放熱器400は、自然対流や強制対流により周囲環境と熱交換する空冷方式である。本実施形態の放熱器400は、空冷方式であるが、これに限らず、水冷方式や油冷方式など、周囲環境と熱交換できるものであれば、どのような形態であってもよい。 The radiator 400 is of an air cooling type that exchanges heat with the surrounding environment by natural convection or forced convection. The radiator 400 of this embodiment is an air-cooled type, but is not limited to this, and may be of any type as long as it can exchange heat with the surrounding environment, such as a water-cooled type or an oil-cooled type.

<冷却装置の冷却動作について>
ポンプ300によって送り出された冷媒は、冷却対象Aに接触するように設けられた冷却器200a内を通過することで冷却対象Aと熱交換した後、流量調整弁100を通過し、放熱器400によって放熱され、再び、ポンプ300に戻る。この際、冷却器200aを通過する冷媒の流量は、流量調整弁100によって、冷却対象Aの温度が高くなると、冷却器200aに多くの冷媒が流れる一方、冷却対象Aの温度が低くなると、冷却器200aに少ない冷媒が流れるように調整される。
<About the cooling operation of the cooling device>
The refrigerant sent out by the pump 300 exchanges heat with the object A by passing through the cooler 200a provided so as to come into contact with the object A, then passes through the flow rate adjustment valve 100 and is cooled by the radiator 400. The heat is radiated and returns to the pump 300 again. At this time, the flow rate of the refrigerant passing through the cooler 200a is controlled by the flow rate adjustment valve 100. When the temperature of the object A to be cooled increases, more refrigerant flows through the cooler 200a; Adjustment is made so that a small amount of refrigerant flows into the container 200a.

なお、本実施形態の冷却装置1は、1台のポンプ300及び放熱器400に対し、1対の冷却器200a及び流量調整弁100を1台備えたものであるが、これに限らず、例えば、1台のポンプ300及び放熱器400に対し、1組の冷却器200a及び流量調整弁100を並列に複数備えてもよいし、ポンプ300を直列に複数又は並列に複数備えてもよい。 Note that the cooling device 1 of this embodiment includes a pair of coolers 200a and a flow rate adjustment valve 100 for one pump 300 and radiator 400, but is not limited to this, for example. For one pump 300 and radiator 400, a plurality of coolers 200a and a plurality of flow rate regulating valves 100 may be provided in parallel, or a plurality of pumps 300 may be provided in series or in parallel.

<流量調整弁について>
図2を用いて、流量調整弁100について説明する。なお、図中における一点鎖線で示す軸線Lは、後述の弁ポート14の中心線であるとともに、弁体20の移動方向に対応している。流量調整弁100は、弁ハウジング10と、弁体20と、弁体20に所定の弁閉方向の力を付与する調整ばねユニット(弁閉力付与手段)30と、駆動エレメント40とから主に構成される。以下、流量調整弁100のそれぞれの構成について順に説明する。
<About the flow rate adjustment valve>
The flow rate regulating valve 100 will be explained using FIG. 2. Note that an axis L shown by a dashed line in the figure is the center line of the valve port 14, which will be described later, and corresponds to the moving direction of the valve body 20. The flow rate adjustment valve 100 mainly includes a valve housing 10, a valve body 20, an adjustment spring unit (valve closing force applying means) 30 that applies a force in a predetermined valve closing direction to the valve body 20, and a drive element 40. configured. Hereinafter, each configuration of the flow rate regulating valve 100 will be explained in order.

弁ハウジング10は、SUS等の金属部材によって構成され、一次側継手10aに接続される第1ポート11と、二次側継手10bに接続される第2ポート12と、弁室13と、が形成される。第1ポート11は、弁室13に連通され、弁室13と第2ポート12との間には、弁ポート14が形成される。また、弁ハウジング10には、弁ポート14が弁体20により閉となっても、弁室13と第2ポート12とを連通するためのブリード流路15と、第2ポート12と後述の均圧室45とを連通する均圧路16とが形成される。さらに、弁ハウジング10には、弁ポート14の軸線L上で第2ポート12から均圧室45側に開口するガイド孔17が形成され、このガイド孔17は軸線Lを中心とする円筒状の形状をしている。 The valve housing 10 is made of a metal member such as SUS, and includes a first port 11 connected to the primary joint 10a, a second port 12 connected to the secondary joint 10b, and a valve chamber 13. be done. The first port 11 communicates with the valve chamber 13 , and a valve port 14 is formed between the valve chamber 13 and the second port 12 . The valve housing 10 also includes a bleed passage 15 for communicating the valve chamber 13 and the second port 12 even when the valve port 14 is closed by the valve body 20, and a bleed passage 15 that communicates the second port 12 with the second port 12, which will be described later. A pressure equalization path 16 communicating with the pressure chamber 45 is formed. Further, a guide hole 17 is formed in the valve housing 10 and opens from the second port 12 to the pressure equalizing chamber 45 side on the axis L of the valve port 14. It has a shape.

弁体20は、フランジ部21と、円錐状のニードル部22と、作動軸23と、を有している。この弁体20は、弁ハウジング10内に配置される。具体的には、弁体20において、フランジ部21が弁室13内に配設され、ニードル部22が弁ポート14内に配設され、作動軸23が第2ポート12内及びガイド孔17内に配設される。この作動軸23は、ガイド孔17の内周面に対してクリアランスを有して嵌挿される。これにより、弁体20は、ガイド孔17内を軸線L方向に移動自在に収容され、この軸線L方向の移動によりニードル部22が弁ポート14の弁開度を調整する。 The valve body 20 has a flange portion 21, a conical needle portion 22, and an operating shaft 23. This valve body 20 is arranged within the valve housing 10. Specifically, in the valve body 20, the flange portion 21 is disposed within the valve chamber 13, the needle portion 22 is disposed within the valve port 14, and the operating shaft 23 is disposed within the second port 12 and the guide hole 17. will be placed in The operating shaft 23 is fitted into the inner peripheral surface of the guide hole 17 with a clearance therebetween. Thereby, the valve body 20 is accommodated in the guide hole 17 so as to be freely movable in the direction of the axis L, and the needle portion 22 adjusts the valve opening degree of the valve port 14 by this movement in the direction of the axis L.

調整ばねユニット30は、圧縮ばねからなる調整ばね31と、金属部材で構成され、弁ハウジング10と螺合する調整ねじ32と、を備える。調整ばね31は、軸線L方向に延在するコイル状に形成され、弁体20のフランジ部21と、調整ねじ32との間に挟持される。この調整ねじ32を、弁ハウジング10と螺合させ、調整ねじ32のねじ込み量を調整することで、調整ばね31を介して、弁体20に付与される所定の弁閉力(付勢力)が調整されて、弁ポート14の弁開圧力を設定することができる。この弁開圧力を設定した後は、調整ねじ32と弁ハウジング10とを溶接や接着等で全周を固着し気密封止する。 The adjustment spring unit 30 includes an adjustment spring 31 made of a compression spring, and an adjustment screw 32 made of a metal member and screwed into the valve housing 10. The adjustment spring 31 is formed in a coil shape extending in the direction of the axis L, and is held between the flange portion 21 of the valve body 20 and the adjustment screw 32. By screwing this adjustment screw 32 into the valve housing 10 and adjusting the screwing amount of the adjustment screw 32, a predetermined valve closing force (biasing force) is applied to the valve body 20 via the adjustment spring 31. The valve opening pressure of the valve port 14 can be adjusted. After this valve opening pressure is set, the adjusting screw 32 and the valve housing 10 are fixed around the entire circumference by welding, adhesive, etc., and are hermetically sealed.

駆動エレメント40は、金属製からなりケース体を構成する上蓋41及び下蓋42と、ダイヤフラム(密封部材)43と、当金47と、封入管48と、吸着材内包体49と、を備える。 The drive element 40 includes an upper cover 41 and a lower cover 42 that are made of metal and constitute a case body, a diaphragm (sealing member) 43, a stopper 47, an enclosure tube 48, and an adsorbent encapsulation body 49.

上蓋41は、開口が形成された環形状の板部と、板部の外周縁から下方に向かって延びる筒状部と、筒状部の下端から外方に向かって延びるフランジ部と、を有している。この上蓋41は、弁ハウジング10の下方側端部に対して加締め及びろう付けによって気密に固定される。 The upper lid 41 has an annular plate portion with an opening formed therein, a cylindrical portion extending downward from the outer peripheral edge of the plate portion, and a flange portion extending outward from the lower end of the cylindrical portion. are doing. This upper cover 41 is airtightly fixed to the lower end of the valve housing 10 by caulking and brazing.

下蓋42は、有底筒形状であり、円形状の平板部(感温部)42aと、平板部42aの外周縁から上方に向かって延びる壁部(感温部)42bと、壁部42bの上端から外方に向かって延びるフランジ部と、を有している。この平板部42aは、冷却対象A(図1参照)に熱的に接触されて、冷却対象Aの温度を感知している。また、壁部42bには、後述の密閉室46に封入ガス3を封入するために、外方に向かって延在する封入管48が設けられており、封入管48は、封入ガス3の封入後に封止される。なお、本実施形態の封入管48は、外方に延在するものであるが、これに限らず、例えば、封入管48の長さを比較的短くし、壁部42bと略面一の様態としてもよい。 The lower lid 42 has a cylindrical shape with a bottom and includes a circular flat plate part (temperature sensing part) 42a, a wall part (temperature sensing part) 42b extending upward from the outer peripheral edge of the flat plate part 42a, and a wall part 42b. and a flange portion extending outward from the upper end of the flange. This flat plate portion 42a is in thermal contact with the object to be cooled A (see FIG. 1) and senses the temperature of the object to be cooled A. Further, the wall portion 42b is provided with a sealing tube 48 extending outward in order to fill the sealed chamber 46 with the filler gas 3, which will be described later. It will be sealed later. Note that although the encapsulation tube 48 of this embodiment extends outward, the present invention is not limited to this. For example, the encapsulation tube 48 may have a relatively short length and be substantially flush with the wall portion 42b. You can also use it as

ダイヤフラム43は、弁体20に対して弁開力を付与可能なものであって、外周縁部が上蓋41及び下蓋42の間に挟持された後、溶接やろう付けによって気密に固定されることにより鍔部44が形成される。このダイヤフラム43により、上蓋41の内側空間が、冷媒が導入される空間である均圧室45に区画され、また、下蓋42の内側空間が、封入ガス3が封入される封入空間である密閉室46に区画される。 The diaphragm 43 is capable of applying a valve opening force to the valve body 20, and the outer peripheral edge is sandwiched between the upper lid 41 and the lower lid 42, and then the diaphragm 43 is fixed airtight by welding or brazing to form the flange 44. This diaphragm 43 divides the inner space of the upper lid 41 into a pressure equalizing chamber 45, which is the space into which the refrigerant is introduced, and divides the inner space of the lower lid 42 into a sealed chamber 46, which is the enclosed space into which the enclosed gas 3 is enclosed.

当金47は、上方に窪み部と、下方に平坦部と、を有する。この当金47は、均圧室45内に配置され、下方の平坦部が、ダイヤフラム43に当接するとともに、上方の窪み部が、弁体20の作動軸23と接続する。 The deposit 47 has a recessed portion at the top and a flat portion at the bottom. This stopper 47 is arranged within the pressure equalization chamber 45 , and its lower flat portion abuts against the diaphragm 43 , and its upper recessed portion connects with the operating shaft 23 of the valve body 20 .

吸着材内包体49は、不織布等の袋状の仕切り部材49aと、仕切り部材49aに内包された粒状の活性炭等の吸着材49bと、を備える。この吸着材内包体49は、封入ガス3が封入される密閉室46内、つまり、平板部42aの内壁42a1に接触して配置される。これにより、吸着材49bは、冷却対象Aに対して熱的に接触している。 The adsorbent encapsulating body 49 includes a bag-shaped partition member 49a made of nonwoven fabric or the like, and an adsorbent 49b such as granular activated carbon encapsulated in the partition member 49a. This adsorbent-containing body 49 is disposed within the sealed chamber 46 in which the sealed gas 3 is sealed, that is, in contact with the inner wall 42a1 of the flat plate portion 42a. Thereby, the adsorbent 49b is in thermal contact with the object A to be cooled.

吸着材49bは、封入ガス3に対して、二酸化炭素のみに吸着・脱着特性を示す。これにより、封入ガス3は、冷却すると吸着量が増加して密閉室46内の圧力が減少し、加熱すると吸着量が減少して密閉室46内の圧力が増加するような温度-圧力特性を持つ。即ち、温度に応じて吸着材49bが、封入ガス3を吸着する吸着量が変化する。本実施形態の封入ガス3は、主成分ガスを二酸化炭素とし、漏れ検知ガスをヘリウムとし、これらを混入したガスを採用するものであるが、これに限らない。例えば、熱的安定性や環境負荷等を考慮して、使用される温度域で気体状態として存在する封入ガス3を選択するとともに、この封入ガス3を吸着する吸着材49bをさらに選択してもよい。 The adsorbent 49b exhibits adsorption/desorption characteristics only for carbon dioxide with respect to the sealed gas 3. As a result, the sealed gas 3 has temperature-pressure characteristics such that when it is cooled, the amount of adsorption increases and the pressure inside the sealed chamber 46 decreases, and when it is heated, the amount of adsorption decreases and the pressure inside the sealed chamber 46 increases. have That is, the amount of adsorption of the filler gas 3 by the adsorbent 49b changes depending on the temperature. The sealed gas 3 of this embodiment uses carbon dioxide as the main component gas, helium as the leak detection gas, and employs a gas mixed with these gases, but is not limited thereto. For example, considering thermal stability, environmental load, etc., a filler gas 3 that exists in a gaseous state in the temperature range in which it will be used is selected, and an adsorbent 49b that adsorbs this filler gas 3 is also selected. good.

<流量調整弁の動作について>
流量調整弁100において、一次側継手10aに導入された冷媒は、第1ポート11から弁室13に流入し、弁室13からブリード流路15、第2ポート12及び均圧路16を介して均圧室45に導入される。また、第2ポート12の冷媒は、二次側継手10bから流出される。これにより、弁ポート14が全閉状態でも、所定の冷媒流量が得られる。
<About the operation of the flow rate adjustment valve>
In the flow rate adjustment valve 100, the refrigerant introduced into the primary joint 10a flows from the first port 11 into the valve chamber 13, and from the valve chamber 13 via the bleed passage 15, the second port 12, and the pressure equalization passage 16. It is introduced into the pressure equalization chamber 45. Furthermore, the refrigerant in the second port 12 is discharged from the secondary joint 10b. Thereby, a predetermined refrigerant flow rate can be obtained even when the valve port 14 is fully closed.

一方、駆動エレメント40の下蓋42において、平板部42aの感知温度に応じて密閉室46内の封入ガス3の圧力が上昇又は低下すると、ダイヤフラム43が変位する。そして、このダイヤフラム43の変位に伴い、当金47を介して、弁体20の作動軸23が軸線L方向に移動し、弁ポート14と弁体20のニードル部22との隙間すなわち弁開度が変化する。この弁開度、つまり、冷却対象Aの温度に応じて、一次側継手10aから二次側継手10bに流れる冷媒の流量が調整される。 On the other hand, in the lower lid 42 of the drive element 40, when the pressure of the sealed gas 3 in the sealed chamber 46 increases or decreases depending on the temperature sensed by the flat plate portion 42a, the diaphragm 43 is displaced. With this displacement of the diaphragm 43, the operating shaft 23 of the valve body 20 moves in the direction of the axis L via the stopper 47, and the gap between the valve port 14 and the needle portion 22 of the valve body 20, that is, the valve opening. changes. The flow rate of the refrigerant flowing from the primary joint 10a to the secondary joint 10b is adjusted according to this valve opening degree, that is, the temperature of the object A to be cooled.

<流量調整弁の装着様態について>
図3は、冷却器200aに装着された流量調整弁100を説明する図であり、(a)は、冷却器200aの凹部210に流量調整弁100を装着した状態(本実施形態)、(b)は、冷却器200a’の上面201に流量調整弁100を装着した状態(比較例)を、それぞれ表す。なお、図中の冷却器200a,200a’は説明のために、断面図として示している。また、図中の流量調整弁100は、封入管の長さが極めて短く、壁部42bと略面一である様態のものを示している。
<About how to install the flow rate adjustment valve>
FIG. 3 is a diagram illustrating the flow rate adjustment valve 100 attached to the cooler 200a, (a) shows a state where the flow rate adjustment valve 100 is attached to the recess 210 of the cooler 200a (this embodiment), ) respectively represent a state (comparative example) in which the flow rate regulating valve 100 is mounted on the upper surface 201 of the cooler 200a'. Note that the coolers 200a and 200a' in the figure are shown as cross-sectional views for explanation. Further, the flow rate regulating valve 100 shown in the figure has an extremely short length of the sealed tube and is substantially flush with the wall portion 42b.

図3(a)に示すように、冷却器200aは、底面211及び側面212からなる凹部210を有している。この凹部210は、流量調整弁100の駆動エレメント40を収容するために、軸線L方向からみて、駆動エレメント40における外形に対応した形状(例えば、円形形状)を有している。 As shown in FIG. 3(a), the cooler 200a has a recess 210 consisting of a bottom surface 211 and side surfaces 212. In order to accommodate the drive element 40 of the flow rate regulating valve 100, the recess 210 has a shape (for example, a circular shape) corresponding to the outer shape of the drive element 40 when viewed from the axis L direction.

これにより、流量調整弁100を冷却器200aに装着する際に、凹部210に駆動エレメント40を収容することができる。よって、軸線L方向の流量調整弁100の装着高さZを、冷却器200a’の上面201に流量調整弁100を装着した状態における流量調整弁100の装着高さZ’と比べ、低くすることができる。これにより、従来の問題点(軸線方向の設置スペースの必要性)を解消させ、機器レイアウトの自由度を向上させることができる。 Thereby, the drive element 40 can be accommodated in the recess 210 when the flow rate adjustment valve 100 is mounted on the cooler 200a. Therefore, the installation height Z of the flow rate adjustment valve 100 in the direction of the axis L should be made lower than the installation height Z' of the flow rate adjustment valve 100 when the flow rate adjustment valve 100 is installed on the upper surface 201 of the cooler 200a'. Can be done. This eliminates the conventional problem (the need for installation space in the axial direction) and improves the degree of freedom in device layout.

また、駆動エレメント40の壁部42bは、凹部210の側面212に囲まれるように収容されている。これにより、駆動エレメント40の壁部42bは、図3(b)の比較例と比べ、雰囲気温度の影響を受け難いため、従来の問題点(感温特性の遅れ)を解消させることができる。 Further, the wall portion 42b of the drive element 40 is housed so as to be surrounded by the side surface 212 of the recess 210. As a result, the wall portion 42b of the driving element 40 is less affected by the ambient temperature than in the comparative example shown in FIG. 3(b), so that the conventional problem (delay in temperature-sensitive characteristics) can be solved.

なお、本実施形態では、駆動エレメント40の平板部42aを、凹部210の底面211に直接接触させているが、平板部42aと底面211との間を熱的に接触させていればよく、例えば、平板部42aと底面211との間を、伝熱グリス等を介して、熱的に接触させてもよい。 In this embodiment, the flat plate part 42a of the drive element 40 is brought into direct contact with the bottom surface 211 of the recessed part 210, but it is sufficient that the flat part 42a and the bottom surface 211 are brought into thermal contact, for example. , the flat plate portion 42a and the bottom surface 211 may be brought into thermal contact via heat transfer grease or the like.

<凹部における底面から立ち上がる側面の高さについて>
図4は、駆動エレメント40の鍔部44と冷却器200aの上面201との配置関係について説明する図であり、(a)は、鍔部44が冷却器200aの上面201と離間した状態(本実施形態)、(b)は、鍔部44が冷却器200aの上面201と接触した状態(比較例)を、それぞれ表す。
<About the height of the side surfaces rising from the bottom of the recess>
FIG. 4 is a diagram illustrating the arrangement relationship between the flange 44 of the drive element 40 and the top surface 201 of the cooler 200a. FIG. Embodiment) and (b) each represent a state in which the flange portion 44 is in contact with the upper surface 201 of the cooler 200a (comparative example).

まず、図2に示すように、平板部42a及び壁部42bは、封入ガス3が封入された密閉室46を画定している。よって、冷却対象Aから冷却器200aが受熱した熱を、確実に吸着材49bに伝えるためには、感温部である平板部42a及び壁部42bを介した受熱面積を増加させることが必要となる。 First, as shown in FIG. 2, the flat plate portion 42a and the wall portion 42b define a sealed chamber 46 in which the filler gas 3 is filled. Therefore, in order to reliably transfer the heat received by the cooler 200a from the object to be cooled A to the adsorbent 49b, it is necessary to increase the heat receiving area via the flat plate part 42a and the wall part 42b, which are temperature sensing parts. Become.

そこで、図4(a)に示すように、底面211から立ち上がる側面の高さHrを、流量調整弁100の壁部42bの軸線L方向の高さHd以下に設定することにより、鍔部44が冷却器200aの上面201と離間するため、凹部210の底面211を平板部42aに確実に面接触させることができる。これにより、従来の問題点(感温特性の遅れ)を解消させることができる。 Therefore, as shown in FIG. 4(a), by setting the height Hr of the side surface rising from the bottom surface 211 to be less than or equal to the height Hd of the wall portion 42b of the flow rate regulating valve 100 in the axis L direction, the flange portion 44 is Since it is spaced apart from the upper surface 201 of the cooler 200a, the bottom surface 211 of the recessed portion 210 can be reliably brought into surface contact with the flat plate portion 42a. Thereby, the conventional problem (delay in temperature-sensitive characteristics) can be solved.

一方、図4(b)に示すように、底面211’から立ち上がる側面の高さHr’を、流量調整弁100の壁部42bの軸線L方向の高さHd超に設定する場合には、鍔部44が、冷却器200a’の上面201と干渉するため、凹部210’の底面211’が平板部42aと離間してしまう。これにより、冷却対象Aから冷却器200a’が受熱した熱を、直接平板部42aに伝えることができなくなるので、吸着材49bに伝わる熱に遅れが生ずることになる。 On the other hand, as shown in FIG. 4(b), when the height Hr' of the side surface rising from the bottom surface 211' is set to exceed the height Hd of the wall portion 42b of the flow rate regulating valve 100 in the axis L direction, the flange Since the portion 44 interferes with the upper surface 201 of the cooler 200a', the bottom surface 211' of the recessed portion 210' is separated from the flat plate portion 42a. As a result, the heat received by the cooler 200a' from the object to be cooled A cannot be directly transmitted to the flat plate portion 42a, resulting in a delay in the heat transmitted to the adsorbent 49b.

<凹部における底面の幅について>
図4(a)に示すように、凹部210における底面211の幅Wrは、壁部42bの幅Wdと同程度に設定されている。ここで、底面211の幅Wrが、壁部42bの幅Wdと同一に設定されている場合には、凹部210の側面212を壁部42bに面接触させることができる。これにより、冷却対象Aから冷却器200aが受熱した熱を、平板部42aに加え、壁部42bを介して、確実に吸着材49bに伝えることができる。また、底面211の幅Wrが、壁部42bの幅Wdより若干大きく設定されている場合においても、側面212と壁部42bとの隙間に、伝熱グリス等を塗布することにより、前述と同様に、冷却対象Aから冷却器200aが受熱した熱を、平板部42aに加え、壁部42bを介して、確実に吸着材49bに伝えることができる。
<About the width of the bottom of the recess>
As shown in FIG. 4A, the width Wr of the bottom surface 211 of the recess 210 is set to be approximately the same as the width Wd of the wall portion 42b. Here, when the width Wr of the bottom surface 211 is set to be the same as the width Wd of the wall portion 42b, the side surface 212 of the recessed portion 210 can be brought into surface contact with the wall portion 42b. Thereby, the heat received by the cooler 200a from the object to be cooled A can be added to the flat plate portion 42a and reliably transmitted to the adsorbent 49b via the wall portion 42b. Furthermore, even when the width Wr of the bottom surface 211 is set to be slightly larger than the width Wd of the wall portion 42b, it is possible to apply heat transfer grease or the like to the gap between the side surface 212 and the wall portion 42b in the same manner as described above. In addition, the heat received by the cooler 200a from the object to be cooled A can be applied to the flat plate portion 42a and reliably transmitted to the adsorbent 49b via the wall portion 42b.

このように、本実施形態の冷却装置1は、平板部42aに加え、壁部42bを介して、冷却対象Aから冷却器200aが受熱した熱を確実に吸着材49bに伝えることができるため、従来の問題点(感温特性の遅れ)を解消させ、感温特性を向上させることができる。 In this way, the cooling device 1 of the present embodiment can reliably transfer the heat received by the cooler 200a from the object to be cooled A to the adsorbent 49b through the wall portion 42b in addition to the flat plate portion 42a. It is possible to solve the conventional problem (delay in temperature-sensing characteristics) and improve temperature-sensing characteristics.

以上より、第1の実施形態では、機器レイアウトの自由度を向上、及び、感温特性を向上させることができる。 As described above, in the first embodiment, it is possible to improve the degree of freedom in device layout and to improve the temperature sensing characteristics.

(第2の実施形態)
図5を用いて、第2の実施形態に係る冷却器200bに装着された流量調整弁100について説明する。なお、図中の流量調整弁100は、外方に向かって延在する封入管48を有する様態のものを示している。第2の実施形態に係る冷却器200bは、凹部210に加え、逃がし溝220を設けた点で、第1の実施形態の冷却器200aと相違するが、その他の基本構成は第1の実施形態と同一である。ここで、同一部材には同一符号を付し、重複する説明は省略する。
(Second embodiment)
The flow rate regulating valve 100 attached to the cooler 200b according to the second embodiment will be described using FIG. 5. Note that the flow rate regulating valve 100 in the figure is shown as having an enclosure tube 48 extending outward. The cooler 200b according to the second embodiment differs from the cooler 200a according to the first embodiment in that a relief groove 220 is provided in addition to the recess 210, but the other basic configuration is that of the first embodiment. is the same as Here, the same members are given the same reference numerals, and redundant explanations will be omitted.

まず、第1の実施形態において、流量調整弁100を冷却器200aに装着する際に、取り付け向きが正しい状態では、図3(a)に示すように、流量調整弁100の一次側継手10aが冷却器200aの出口側配管(図3(a)の左側)に接続され、二次側継手10bが放熱器400の入口側配管(図3(a)の右側)に接続される。しかしながら、作業員による取り付け作業中に、流量調整弁100が冷却器200aに誤った状態(左右反対)で取り付けられてしまうおそれがあった。これにより、流量調整弁100における冷媒の流れが反対向きとなり、所望の流量調整を実施できないおそれがあった。 First, in the first embodiment, when the flow rate adjustment valve 100 is installed in the cooler 200a, if the installation direction is correct, the primary side joint 10a of the flow rate adjustment valve 100 is attached as shown in FIG. 3(a). It is connected to the outlet side piping of the cooler 200a (the left side in FIG. 3(a)), and the secondary joint 10b is connected to the inlet side piping of the radiator 400 (the right side in FIG. 3(a)). However, during the installation work by a worker, there was a risk that the flow rate regulating valve 100 would be installed in the cooler 200a in the wrong state (left and right opposite). As a result, the flow of the refrigerant in the flow rate adjustment valve 100 becomes opposite, and there is a possibility that the desired flow rate adjustment cannot be performed.

そこで、第2の実施形態においては、図5(a)に示すように、駆動エレメント40の壁部42bには、封入ガス3を封入するための封入管48が、外方に向かって延在して設けられている。また、冷却器200bは、凹部210に加え、凹部210と接続される逃がし溝220を有している。この凹部210及び逃がし溝220は、封入管48を含む駆動エレメント40を収容するために、図5(b)に示すように、軸線L方向からみて、封入管48を含む駆動エレメント40における外形に対応した形状(例えば、円形形状と矩形形状を組み合わせた形状など)を有している。 Therefore, in the second embodiment, as shown in FIG. 5(a), an enclosure tube 48 for enclosing the enclosure gas 3 is provided in the wall portion 42b of the drive element 40 and extends outward. It is provided. In addition to the recess 210, the cooler 200b has a relief groove 220 connected to the recess 210. In order to accommodate the drive element 40 including the enclosure tube 48, the recess 210 and the escape groove 220 are designed to accommodate the outer shape of the drive element 40 including the enclosure tube 48 when viewed from the axis L direction, as shown in FIG. 5(b). It has a corresponding shape (for example, a shape that is a combination of a circular shape and a rectangular shape).

これにより、流量調整弁100を冷却器200bに装着する際に、駆動エレメント40を凹部210に収容するとともに、封入管48を逃がし溝220に収容し、封入管48が冷却器200bの表面201と干渉することを避けることができる。 As a result, when the flow rate adjustment valve 100 is attached to the cooler 200b, the driving element 40 is accommodated in the recess 210, the sealed tube 48 is accommodated in the relief groove 220, and the sealed tube 48 is connected to the surface 201 of the cooler 200b. interference can be avoided.

ここで、図5(c)に示すように、仮に、流量調整弁100を冷却器200bに取り付け方向が誤った状態(左右反対)で取り付けようとしても、封入管48が冷却器200bの上面201と干渉するため、取り付け方向の間違いを防止することができる。また、作業員は、瞬時に、流量調整弁100の正しい取り付け方向を視認できるため、取り付け作業の効率を向上させることができる。 Here, as shown in FIG. 5(c), even if the flow rate adjustment valve 100 is attached to the cooler 200b in the wrong direction (opposite left and right), the enclosing tube 48 will be attached to the upper surface 200 of the cooler 200b. This prevents incorrect installation direction. Moreover, since the worker can instantly visually confirm the correct mounting direction of the flow rate regulating valve 100, the efficiency of the mounting work can be improved.

以上より、第2の実施形態では、第1の実施形態と同様の効果(機器レイアウトの自由度向上、及び、感温特性向上)に加え、取り付け方向の間違いを防止することや、取り付け作業の効率を向上させることができる。 As described above, in addition to the same effects as the first embodiment (increased freedom in equipment layout and improved temperature-sensing characteristics), the second embodiment also prevents mistakes in the mounting direction and improves the installation work. Efficiency can be improved.

(第3の実施形態)
図6を用いて、第3の実施形態に係る冷却器200cに装着された流量調整弁100について説明する。なお、図6(b)は、説明のために、流量調整弁100を省略して示している。第3の実施形態に係る冷却器200cは、凹部210内に、流量調整弁100を固定する手段を有する点で、第2の実施形態の冷却器200bと相違するが、その他の基本構成は第2の実施形態と同一である。ここで、同一部材には同一符号を付し、重複する説明は省略する。
(Third embodiment)
The flow rate regulating valve 100 attached to the cooler 200c according to the third embodiment will be described using FIG. 6. Note that, in FIG. 6(b), the flow rate adjustment valve 100 is omitted for the sake of explanation. The cooler 200c according to the third embodiment is different from the cooler 200b according to the second embodiment in that it has means for fixing the flow rate adjustment valve 100 in the recess 210, but the other basic configuration is the same as that of the cooler 200c according to the third embodiment. This is the same as the second embodiment. Here, the same members are given the same reference numerals, and redundant explanations will be omitted.

図6(a)に示すように、凹部210において、底面211から立ち上がる側面212の開口側に、側面212の内径より拡径された段差部213が形成されている。この段差部213の内周面には、環状溝214がさらに形成されている。ここで、段差部213の内径は、鍔部44の外径より大きく設定されるとともに、底面211から立ち上がる側面212の高さが、流量調整弁100の壁部42bの軸線L方向の高さ以下に設定されている。 As shown in FIG. 6A, in the recess 210, a stepped portion 213 whose diameter is larger than the inner diameter of the side surface 212 is formed on the opening side of the side surface 212 rising from the bottom surface 211. As shown in FIG. An annular groove 214 is further formed on the inner peripheral surface of this stepped portion 213 . Here, the inner diameter of the stepped portion 213 is set larger than the outer diameter of the flange portion 44, and the height of the side surface 212 rising from the bottom surface 211 is equal to or less than the height of the wall portion 42b of the flow rate regulating valve 100 in the axis L direction. is set to .

<流量調整弁の固定手段について>
流量調整弁100の固定手段は、メンテナンスのために、流量調整弁100が冷却器200cに対して、着脱可能に固定される必要がある。まず、軸線L方向からみて、封入管48を含む駆動エレメント40を、凹部210及び逃がし溝220との形状を一致させた状態で、封入管48を含む駆動エレメント40を、凹部210及び逃がし溝220内に挿入させる。これにより、駆動エレメント40の壁部42b及び封入管48が、側面212及び逃がし溝220に取り囲まれた状態で、駆動エレメント40の平板部42aが、凹部210の底面211と面接触する。そして、駆動エレメント40の鍔部44の上方において、止め輪230(例えば、Cリングなど)を一旦半径方向に圧縮し、環状溝214内に挿入した後、止め輪230の圧縮を解放する。ここで、底面211と環状溝214の下端との軸線L方向距離が、平板部42aと鍔部44の上端との軸線L方向距離と、同一又は僅かに小さく設定されている。これにより、鍔部44が、止め輪230と凹部210との間に挟持され、結果、流量調整弁100を、駆動エレメント40の平板部42aが、凹部210の底面211と面接触した状態で冷却器200cに堅固に固定することができる。本実施形態において、凹部210の深さは、流量調整弁100を冷却器200cに固定した際に、冷却器200cの上面201と二次側継手10bとが干渉しないように設定されている。しかしながら、これに限らず、例えば、冷却器200cの上面201が、二次側継手10bと干渉しないように、冷却器200cの上面201に溝を形成してもよい。
<About the means for fixing the flow rate adjustment valve>
The fixing means for the flow rate adjustment valve 100 needs to detachably fix the flow rate adjustment valve 100 to the cooler 200c for maintenance. First, when viewed from the direction of the axis L, the driving element 40 including the enclosing tube 48 is aligned with the recess 210 and the relief groove 220, and the drive element 40 including the enclosing tube 48 is placed in the recess 210 and the relief groove 220. insert it inside. As a result, the flat plate portion 42a of the drive element 40 comes into surface contact with the bottom surface 211 of the recess 210 in a state where the wall portion 42b and the enclosing tube 48 of the drive element 40 are surrounded by the side surface 212 and the relief groove 220. Then, the retaining ring 230 (for example, a C ring, etc.) is once compressed in the radial direction above the collar portion 44 of the drive element 40, and after being inserted into the annular groove 214, the compression of the retaining ring 230 is released. Here, the distance in the axis L direction between the bottom surface 211 and the lower end of the annular groove 214 is set to be the same as or slightly smaller than the distance in the axis L direction between the flat plate portion 42a and the upper end of the flange portion 44. As a result, the collar portion 44 is held between the retaining ring 230 and the recess 210, and as a result, the flow rate regulating valve 100 is cooled with the flat plate portion 42a of the drive element 40 in surface contact with the bottom surface 211 of the recess 210. It can be firmly fixed to the container 200c. In this embodiment, the depth of the recess 210 is set so that when the flow rate regulating valve 100 is fixed to the cooler 200c, the upper surface 201 of the cooler 200c and the secondary joint 10b do not interfere with each other. However, the present invention is not limited thereto, and for example, a groove may be formed in the upper surface 201 of the cooler 200c so that the upper surface 201 of the cooler 200c does not interfere with the secondary joint 10b.

以上より、第3の実施形態では、第2の実施形態と同様の効果(機器レイアウトの自由度向上、感温特性向上、取り付け作業の効率向上)に加え、流量調整弁100を冷却器200cに対して、堅固に固定することができる。また、第3の実施形態では、第1の実施形態(図4(a)参照)のように、鍔部44を、冷却器200aの上面201の上方ではなく、凹部210内に収容できることから、流量調整弁100の装着高さのさらなる低背化を実現することができる。 As described above, in the third embodiment, in addition to the same effects as the second embodiment (improved degree of freedom in equipment layout, improved temperature-sensitive characteristics, and improved efficiency of installation work), the flow regulating valve 100 is attached to the cooler 200c. However, it can be firmly fixed. Furthermore, in the third embodiment, the flange 44 can be accommodated in the recess 210 instead of above the upper surface 201 of the cooler 200a as in the first embodiment (see FIG. 4(a)). It is possible to further reduce the mounting height of the flow rate regulating valve 100.

以上、本発明の実施の形態について図面を参照して詳述し、その他の実施形態についても詳述してきたが、具体的な構成はこれらの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 The embodiments of the present invention have been described above in detail with reference to the drawings, and other embodiments have also been described in detail, but the specific configuration is not limited to these embodiments, and the gist of the present invention Even if there is a change in the design within a range that does not deviate from the above, it is included in the present invention.

1 冷却装置
3 封入ガス
10 弁ハウジング
10a 一次側継手
10b 二次側継手
11 第1ポート
12 第2ポート
13 弁室
14 弁ポート
15 ブリード流路
16 均圧路
17 ガイド孔
20 弁体
30 調整ばねユニット(弁閉力付与手段)
40 駆動エレメント
41 上蓋
42 下蓋
42a 平板部(感温部)
42b 壁部(感温部)
42a1 内壁
43 ダイヤフラム(密封部材)
44 鍔部
45 均圧室
46 密閉室
47 当金
48 封入管
49 吸着材内包体
100 流量調整弁
200a,200b,200c 冷却器(受熱部)(本実施形態)
200a’ 冷却器(比較例)
201 上面
210 凹部(本実施形態)
210’ 凹部(比較例)
211 底面(本実施形態)
211’ 底面(比較例)
212 側面
213 段差部
214 環状溝
220 逃がし溝
230 止め輪
300 ポンプ(送流体手段)
400 放熱器(放熱手段)

A 冷却対象
Hr 底面から立ち上がる側面の高さ(本実施形態)
Hr’ 底面から立ち上がる側面の高さ(比較例)
Hd 壁部の軸線方向の高さ
L 軸線
Wd 壁部の幅
Wr 底面の幅
Z 流量調整弁の装着高さ(本実施形態)
Z’ 流量調整弁の装着高さ(比較例)
1 Cooling device 3 Filled gas 10 Valve housing 10a Primary joint 10b Secondary joint 11 First port 12 Second port 13 Valve chamber 14 Valve port 15 Bleed passage 16 Pressure equalization passage 17 Guide hole 20 Valve body 30 Adjustment spring unit (Valve closing force applying means)
40 Drive element 41 Upper lid 42 Lower lid 42a Flat plate part (temperature sensing part)
42b Wall part (temperature sensing part)
42a1 Inner wall 43 Diaphragm (sealing member)
44 Flange portion 45 Pressure equalization chamber 46 Sealed chamber 47 Wet pad 48 Encapsulated tube 49 Adsorbent inclusion body 100 Flow rate adjustment valves 200a, 200b, 200c Cooler (heat receiving section) (this embodiment)
200a' cooler (comparative example)
201 Upper surface 210 Recessed portion (this embodiment)
210' recess (comparative example)
211 Bottom surface (this embodiment)
211' Bottom (comparative example)
212 Side surface 213 Step portion 214 Annular groove 220 Relief groove 230 Retaining ring 300 Pump (fluid feeding means)
400 Heat radiator (heat radiation means)

A Cooling target Hr Height of the side surface rising from the bottom (this embodiment)
Hr' Height of the side surface rising from the bottom (comparative example)
Hd Height of the wall in the axial direction L Axis Wd Width of the wall Wr Width of the bottom Z Mounting height of the flow rate regulating valve (this embodiment)
Z' Mounting height of flow adjustment valve (comparative example)

Claims (5)

冷媒を所定方向に送り出す送流体手段と、
前記冷媒を通過させるとともに冷却対象から受熱する受熱部と、
前記冷却対象の温度に応じて通過する前記冷媒の流量を調整する流量調整弁と、
前記冷媒の熱を放熱する放熱手段と、
を備え、
前記送流体手段、前記受熱部、前記流量調整弁、及び、前記放熱手段を接続し、前記冷媒を循環させる冷却装置であって、
前記流量調整弁は、
前記冷媒が導入される第1ポート、前記第1ポートから流入した前記冷媒を通過させる弁ポート、及び、前記弁ポートを通過した前記冷媒を送り出す第2ポートを有する弁ハウジングと、
前記弁ハウジングに移動自在に設けられ、前記弁ポートの弁開度を調整する弁体と、
前記弁体に所定の弁閉方向の力を付与する弁閉力付与手段と、
前記弁体を駆動する駆動エレメントと、
を備え、
前記駆動エレメントは、封入ガスが封入される封入空間を形成する感温部と、前記封入空間と前記冷媒が導入される空間とを区画するとともに、前記弁体に対して弁開力を付与可能な密封部材と、を備え、
前記感温部は、有底筒形状からなり、平板部及び壁部を備え、
前記受熱部は、底面及び側面を有する凹部を備え、
前記凹部に前記感温部を収容する際に、前記凹部の前記底面に前記感温部の前記平板部を熱的に接触させることを特徴とする冷却装置。
a fluid sending means for sending the refrigerant in a predetermined direction;
a heat receiving part that allows the refrigerant to pass through and receives heat from the object to be cooled;
a flow rate adjustment valve that adjusts the flow rate of the refrigerant passing therethrough according to the temperature of the object to be cooled;
a heat radiating means for radiating heat of the refrigerant;
Equipped with
A cooling device that connects the fluid sending means, the heat receiving section, the flow rate adjustment valve, and the heat radiating means and circulates the refrigerant,
The flow rate adjustment valve is
a valve housing having a first port through which the refrigerant is introduced, a valve port through which the refrigerant flowing from the first port passes, and a second port through which the refrigerant that has passed through the valve port is sent out;
a valve body that is movably provided in the valve housing and adjusts the valve opening degree of the valve port;
Valve closing force applying means for applying a force in a predetermined valve closing direction to the valve body;
a driving element that drives the valve body;
Equipped with
The driving element is capable of partitioning a temperature sensing portion forming an enclosed space into which the enclosed gas is enclosed, and a space into which the enclosed space and the refrigerant are introduced, and applying a valve opening force to the valve body. a sealing member;
The temperature sensing part has a bottomed cylindrical shape and includes a flat plate part and a wall part,
The heat receiving part includes a recessed part having a bottom surface and side surfaces,
A cooling device characterized in that, when the temperature sensing section is housed in the recess, the flat plate part of the temperature sensing section is brought into thermal contact with the bottom surface of the recess.
前記駆動エレメントは、上蓋と、前記感温部である下蓋と、をさらに備え、
前記上蓋及び前記下蓋の間に、前記密封部材の外周縁部を挟持することにより、鍔部が形成され、
前記凹部の前記底面から立ち上がる前記側面の高さは、前記感温部の前記壁部の軸線方向の高さ以下であることを特徴とする請求項1に記載の冷却装置。
The drive element further includes an upper lid and a lower lid that is the temperature sensing section,
A flange is formed by sandwiching the outer peripheral edge of the sealing member between the upper lid and the lower lid,
2. The cooling device according to claim 1, wherein the height of the side surface rising from the bottom surface of the recess is less than or equal to the height of the wall portion of the temperature sensing portion in the axial direction.
前記凹部における前記底面の幅は、前記感温部の前記壁部の幅と同程度であることを特徴とする請求項2に記載の冷却装置。 3. The cooling device according to claim 2, wherein the width of the bottom surface of the recess is approximately the same as the width of the wall of the temperature sensing section. 前記感温部の前記壁部には、前記封入ガスを封入し、密封される封入管が接続され、
前記受熱部には、前記感温部を前記凹部に収容する際に、前記封入管との干渉を避けるための逃げ溝が形成されていることを特徴とする請求項2又は請求項3に記載の冷却装置。
An enclosure tube that is sealed and filled with the enclosure gas is connected to the wall portion of the temperature sensing section,
According to claim 2 or 3, the heat receiving section is provided with an escape groove for avoiding interference with the encapsulating tube when the temperature sensing section is housed in the recess. cooling system.
前記凹部は、前記側面の開口側に、前記側面の内径より拡径された段差部と、前記段差部の内周面に形成された環状溝と、をさらに備え、
前記凹部に前記感温部を収容した後に、前記環状溝内に止め輪を挿入し、前記止め輪と前記凹部との間に、前記駆動エレメントの前記鍔部を固定することを特徴とする請求項2~4のいずれか一項に記載の冷却装置。
The recess further includes, on the opening side of the side surface, a step portion whose diameter is larger than the inner diameter of the side surface, and an annular groove formed on the inner circumferential surface of the step portion,
A retaining ring is inserted into the annular groove after the temperature sensing portion is accommodated in the recess, and the collar portion of the driving element is fixed between the retaining ring and the recess. The cooling device according to any one of items 2 to 4.
JP2021141463A 2021-08-31 2021-08-31 Cooling system Active JP7453947B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021141463A JP7453947B2 (en) 2021-08-31 2021-08-31 Cooling system
CN202222185394.5U CN217898995U (en) 2021-08-31 2022-08-18 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021141463A JP7453947B2 (en) 2021-08-31 2021-08-31 Cooling system

Publications (2)

Publication Number Publication Date
JP2023034951A JP2023034951A (en) 2023-03-13
JP7453947B2 true JP7453947B2 (en) 2024-03-21

Family

ID=84142528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021141463A Active JP7453947B2 (en) 2021-08-31 2021-08-31 Cooling system

Country Status (2)

Country Link
JP (1) JP7453947B2 (en)
CN (1) CN217898995U (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038302A (en) 2004-07-23 2006-02-09 Toyota Central Res & Dev Lab Inc Cooling device, and cooling control method
JP2006292185A (en) 2005-04-06 2006-10-26 Tgk Co Ltd Expansion device and refrigerating cycle
JP2020063747A (en) 2018-10-15 2020-04-23 株式会社鷺宮製作所 Temperature sensitive control valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038302A (en) 2004-07-23 2006-02-09 Toyota Central Res & Dev Lab Inc Cooling device, and cooling control method
JP2006292185A (en) 2005-04-06 2006-10-26 Tgk Co Ltd Expansion device and refrigerating cycle
JP2020063747A (en) 2018-10-15 2020-04-23 株式会社鷺宮製作所 Temperature sensitive control valve

Also Published As

Publication number Publication date
CN217898995U (en) 2022-11-25
JP2023034951A (en) 2023-03-13

Similar Documents

Publication Publication Date Title
JP5999665B2 (en) Heat transfer unit and temperature control device
WO2007120530A2 (en) Integrated liquid to air conduction module
JP7026979B2 (en) Expansion valve
US20080210410A1 (en) Heat exchanger, in particular oil cooler
JP7453947B2 (en) Cooling system
US20170265330A1 (en) Cooling apparatus and electronic device
JP7185119B2 (en) Flow control valve and cooling device
JP7524008B2 (en) Cooling Devices and Systems
JP7508424B2 (en) Cooling system
JP7332565B2 (en) Temperature type valve device, cooling device and refrigeration cycle system
JP7185120B2 (en) Cooling system
JP7317780B2 (en) flow control valve
CN217842696U (en) Flow rate adjustment valve and cooling device
JP7280468B2 (en) Flow control valve and cooling device
JP2009092160A (en) Fuel gas tank
WO2001035199A1 (en) Heat transfer apparatus using refrigerant and computer having the same
JP2009257692A (en) Double pipe heat exchanger
JP6733246B2 (en) Electronic component cooling device and electronic component provided with cooling device
WO2020241496A1 (en) Equipment temperature adjustment device
JP2009227027A (en) Waterproof structure for vehicle
JP7328945B2 (en) Temperature type valve device, cooling device and refrigeration cycle system
JP2010206892A (en) Device for cooling inverter
JP7302468B2 (en) valve device, refrigeration cycle device
WO2016117313A1 (en) Cooling device, electronic apparatus equipped with same, and electric automobile
KR20200038077A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240308

R150 Certificate of patent or registration of utility model

Ref document number: 7453947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150