JP2022072658A - Gold potassium cyanide crystal and gold potassium cyanide solution - Google Patents

Gold potassium cyanide crystal and gold potassium cyanide solution Download PDF

Info

Publication number
JP2022072658A
JP2022072658A JP2020182222A JP2020182222A JP2022072658A JP 2022072658 A JP2022072658 A JP 2022072658A JP 2020182222 A JP2020182222 A JP 2020182222A JP 2020182222 A JP2020182222 A JP 2020182222A JP 2022072658 A JP2022072658 A JP 2022072658A
Authority
JP
Japan
Prior art keywords
gold
potassium
solution
cyanide
plating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020182222A
Other languages
Japanese (ja)
Other versions
JP6841969B1 (en
Inventor
正英 水橋
Masahide Mizuhashi
孝文 久保
Takafumi Kubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda Sangyo Co Ltd
Original Assignee
Matsuda Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda Sangyo Co Ltd filed Critical Matsuda Sangyo Co Ltd
Priority to JP2020182222A priority Critical patent/JP6841969B1/en
Priority to PCT/JP2020/042913 priority patent/WO2022091427A1/en
Priority to CN202080102530.0A priority patent/CN115867694A/en
Application granted granted Critical
Publication of JP6841969B1 publication Critical patent/JP6841969B1/en
Priority to TW110109562A priority patent/TW202216600A/en
Publication of JP2022072658A publication Critical patent/JP2022072658A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Chemically Coating (AREA)

Abstract

To provide a gold potassium cyanide, which is used for forming a gold plating film or a gold alloy plating film, and which can reduce swelling of the plating film.SOLUTION: A gold potassium cyanide crystal is provided, including a silicon content of 10 wtppm or lower. A gold potassium cyanide solution is also provided, in which the number of foreign matters, each of which has a diameter of 1.0 μm or larger, included in the gold potassium cyanide solution of 10 mL is 100 or less.SELECTED DRAWING: None

Description

本発明は、シアン化金カリウム結晶に関し、特には、金めっき液や金合金めっき液として使用することができるシアン化金カリウム結晶及びシアン化金カリウム溶液に関する。 The present invention relates to a gold potassium cyanide crystal, and more particularly to a gold potassium cyanide crystal and a gold potassium cyanide solution that can be used as a gold plating solution or a gold alloy plating solution.

金(Au)は、電気伝導性や熱伝導性に優れていることから、電子部品材料として使用されている。軟質金めっきと呼ばれる純度の高い金めっきは、接触抵抗が低く、硬度が低いため、IC(集積回路)のボンディングワイヤなどに使用される。一方、硬質金めっきと呼ばれる純度の低い金めっきは、硬度が高く、光沢があるため、電子部品のコネクタや装飾用などに使用されている。金めっき液の金供給用の薬剤として、化学的な安定性や溶解容易性の観点から、シアン化金カリウムが使用されている。 Gold (Au) is used as an electronic component material because it has excellent electrical and thermal conductivity. High-purity gold plating called soft gold plating has low contact resistance and low hardness, and is therefore used for bonding wires of ICs (integrated circuits). On the other hand, low-purity gold plating called hard gold plating has high hardness and gloss, so it is used for connectors and decoration of electronic parts. Potassium gold cyanide is used as a chemical for supplying gold in a gold plating solution from the viewpoint of chemical stability and easiness of dissolution.

シアン化金カリウムの製造方法として、シアン化カリウム溶液の電解槽中に金の陽極を配置し、陰極として金属板を配置して、電解することで、シアン化金カリウムを晶析させ、分離する方法が知られている(例えば特許文献1、2)。また、特許文献3には隔膜電解法によりシアン化金塩を晶析させ、結晶を分離した後、分離した溶液を活性炭処理することで、該溶液を隔膜電解法の陽極液として再使用する技術が知られている。 As a method for producing gold potassium cyanide, a gold anode is placed in an electrolytic bath of a potassium cyanide solution, a metal plate is placed as a cathode, and electrolysis is performed to crystallize and separate gold potassium cyanide. It is known (for example, Patent Documents 1 and 2). Further, Patent Document 3 describes a technique of crystallizing a gold cyanide by a diaphragm electrolysis method, separating the crystals, and then treating the separated solution with activated carbon to reuse the solution as an anode solution of the diaphragm electrolysis method. It has been known.

特開昭62-260084号公報Japanese Unexamined Patent Publication No. 62-26084 特開平6-192866号公報Japanese Unexamined Patent Publication No. 6-192866 特開平4-221086号公報Japanese Unexamined Patent Publication No. 4-221806

金(Au)は、電気伝導性や熱伝導性に優れ、触媒作用もなく、化学的腐食に対して耐性があり、酸化被膜を形成しないという優れた特性を示す。そして、金めっきや金合金めっきは、電気伝導性、熱伝導性、耐食性、低接触抵抗、ボンディング性、はんだ付け性、高周波特性、光反射性などの優れた特性を有することから、エレクトロニクス分野における各種電気接点、端子、コネクタピン、リードフレーム、IC、各種電気回路部品等、幅広く用いられている。 Gold (Au) exhibits excellent properties such as excellent electrical conductivity and thermal conductivity, no catalytic action, resistance to chemical corrosion, and no oxide film formation. Gold plating and gold alloy plating have excellent properties such as electrical conductivity, thermal conductivity, corrosion resistance, low contact resistance, bonding property, solderability, high frequency characteristics, and light reflectivity, and thus are used in the electronics field. It is widely used in various electric contacts, terminals, connector pins, lead frames, ICs, various electric circuit parts, and the like.

しかしながら、金めっきを厚く付着する場合、金めっき膜に膨れという欠陥が生じるという問題があった。このようなめっき膜の膨れの欠陥は、各種電子部品の不良の原因となり得る。このような問題に鑑み、本発明は、金めっき膜又は金合金めっき膜の形成に使用されるシアン化金カリウム結晶及びシアン化金カリウム溶液であって、めっき膜の膨れを低減することができるシアン化金カリウム結晶及びシアン金カリウム溶液を提供することを課題とする。 However, when the gold plating is thickly adhered, there is a problem that a defect called swelling occurs in the gold plating film. Such a defect in the swelling of the plating film can cause defects in various electronic components. In view of such problems, the present invention is a gold potassium cyanide crystal and a gold potassium cyanide solution used for forming a gold plating film or a gold alloy plating film, and can reduce swelling of the plating film. It is an object of the present invention to provide a gold potassium cyanide crystal and a potassium gold cyanide solution.

上記の課題を解決することができる本発明の第一の態様は、シリコン含有量が10wtppm以下であるシアン化金カリウム結晶である。また、本発明の第二の態様はシアン化金カリウム溶液10mLに含まれる1.0μm以上の異物の数が100個以下であることを特徴とするシアン化金カリウム溶液である。 The first aspect of the present invention capable of solving the above problems is a potassium gold cyanide crystal having a silicon content of 10 wtppm or less. The second aspect of the present invention is a potassium gold cyanide solution, characterized in that the number of foreign substances of 1.0 μm or more contained in 10 mL of the potassium gold cyanide solution is 100 or less.

本発明によれば、シアン化金カリウム溶液を用いて作製される金めっき膜又は金合金めっき膜において、めっき膜の膨れという欠陥が少ないという優れた効果を有する。 According to the present invention, in a gold plating film or a gold alloy plating film produced by using a gold potassium cyanide solution, there is an excellent effect that there are few defects such as swelling of the plating film.

シアン化金カリウム溶液は、金めっき膜又は金合金めっき膜を形成するためのめっき液として使用さている。シアン化金カリウム溶液をめっき液として用いて、金めっき膜又は金合金めっき膜を形成した場合、めっき膜の膨れという欠陥が生じることがあった。そして、めっき膜の膨れは、製品歩留まりの低下を生じさせていた。シアン化金カリウム溶液に含まれる主な不純物としてAg、Cu、Feなどの遷移金属が知られているが、これらの金属不純物を低減しても、めっき膜の膨れという欠陥を改善できなかった。 The gold potassium cyanide solution is used as a plating solution for forming a gold plating film or a gold alloy plating film. When a gold plating film or a gold alloy plating film is formed by using a gold potassium cyanide solution as a plating solution, a defect called swelling of the plating film may occur. The swelling of the plating film caused a decrease in product yield. Transition metals such as Ag, Cu, and Fe are known as the main impurities contained in the potassium gold cyanide solution, but even if these metal impurities are reduced, the defect of swelling of the plating film cannot be improved.

また、シアン化金カリウムを超純水に溶かし、ICP分析を用いて不純物測定を行ったが、特に気になる不純物は確認できなかった。さらに調査を進めた結果、シアン化金カリウム溶液にSiO2を主とする酸化物が異物として浮遊し、それが、めっき液中に取り込まれ、めっき膜の膨れの原因となることが判明した。このSiO2を主とする酸化物はイオンでなく固形物として存在していたため、ICPで検出できなかったと考えられる。 In addition, potassium gold cyanide was dissolved in ultrapure water, and impurities were measured using ICP analysis, but no impurities of particular concern could be confirmed. As a result of further investigation, it was found that an oxide mainly composed of SiO 2 floats as a foreign substance in the potassium gold cyanide solution, and it is taken into the plating solution and causes swelling of the plating film. It is probable that this oxide mainly composed of SiO 2 was not detected by ICP because it existed as a solid substance rather than an ion.

上記の知見から、本発明の実施形態に係るシアン化金カリウム結晶は、シリコン含有量が10wtppm以下であることを特徴とする。シリコン含有量を10wtppm以下とすることで、上記異物の数を低減でき、これに起因するめっき膜の膨れを抑制することができる。好ましくは5wtppm以下であり、より好ましくは1wtppm以下である。めっき膜の膨れは、製品歩留まりを低下させることから、めっき膜の膨れの抑制は、製品歩留まりの改善に寄与することが期待できる。 From the above findings, the potassium gold cyanide crystal according to the embodiment of the present invention is characterized by having a silicon content of 10 wtppm or less. By setting the silicon content to 10 wtppm or less, the number of the foreign substances can be reduced, and the swelling of the plating film due to this can be suppressed. It is preferably 5 wtppm or less, and more preferably 1 wtppm or less. Since the swelling of the plating film reduces the product yield, it can be expected that the suppression of the swelling of the plating film contributes to the improvement of the product yield.

シアン化カリウムは、通常、シアン化水素と水酸化カリウムを反応させて製造され、反応容器として石英を用いて製造されている。そのため、SiO2は、その石英が攪拌時の摩擦により混入しているものと考えられる。また、周囲の雰囲気からもSiO2が混入していることが判明した。これまで不純物としてSiO2が着目されることは皆無であり、シアン化金カリウムの製造時に混入するSiO2を低減することで、めっき膜の膨れを抑制できたことは極めて重要である。 Potassium cyanide is usually produced by reacting hydrogen cyanide with potassium hydroxide, and is produced using quartz as a reaction vessel. Therefore, it is considered that the quartz of SiO 2 is mixed due to friction during stirring. It was also found that SiO 2 was mixed in from the surrounding atmosphere. Until now, SiO 2 has never been the focus of attention as an impurity, and it is extremely important that the swelling of the plating film could be suppressed by reducing the amount of SiO 2 mixed in during the production of potassium gold cyanide.

本実施形態に係るシアン化金カリウム溶液は、シアン化金カリウム溶液10mLに含まれる1.0μm以上の異物の数が100個以下であることが好ましい。異物はSiO2を主とする酸化物から構成されるものであるが、他の成分からなるものであっても、めっき膜の膨れの原因となることから、異物の成分については特に問わない。このように1.0μm以上の異物の数を100個以下とすることで、めっき膜の膨れを効果的に抑制することできる。 In the potassium gold cyanide solution according to the present embodiment, it is preferable that the number of foreign substances of 1.0 μm or more contained in 10 mL of the potassium gold cyanide solution is 100 or less. The foreign substance is composed of an oxide mainly composed of SiO 2 , but even if it is composed of other components, it causes swelling of the plating film, so the component of the foreign substance is not particularly limited. By setting the number of foreign substances of 1.0 μm or more to 100 or less in this way, swelling of the plating film can be effectively suppressed.

シアン化金カリウム溶液は、シアン化金カリウム結晶1gを純水/超純水10mLに溶かして作製されるものである。本実施形態に係るシアン化金カリウムは、シアン化金カリウム溶液に含まれる1.0μm以上の異物の数が50個以下であることがより好ましい。さらに好ましくは異物の数が30個以下、もっとも好ましくは異物の数が10個以下である。このように異物の数を減らすことで、めっき膜の膨れを抑制することができ、製品歩留まりの低下を防ぐことができる。 The potassium gold cyanide solution is prepared by dissolving 1 g of potassium gold cyanide crystals in 10 mL of pure water / ultrapure water. It is more preferable that the number of foreign substances of 1.0 μm or more contained in the potassium gold cyanide solution according to the present embodiment is 50 or less. More preferably, the number of foreign substances is 30 or less, and most preferably the number of foreign substances is 10 or less. By reducing the number of foreign substances in this way, it is possible to suppress swelling of the plating film and prevent a decrease in product yield.

(シアン化金カリウムの製造方法)
シアン化金カリウムは、例えば、以下のようにして製造することができる。
市販されるシアン化カリウム結晶を純水に溶かし、シアン化カリウム溶液を作製する。次に、シアン化カリウム溶液を孔径0.1μm~1μmの濾過フィルターで濾過する。この濾過工程により、不純物として混入するSiO2などの酸化物をある程度、除去することができる。
次に、濾過したシアン化カリウム溶液中で、金を陽極として電解して溶解する。陰極をイオン交換膜で仕切り、金が電着しないように不溶性電極を用いる。金濃度が一定の濃度になった時点で、陽極室からシアン化金カリウムの溶液を抜き出し、100℃以上で加熱して、濃縮する(晶出させる)。
(Manufacturing method of potassium gold cyanide)
Potassium gold cyanide can be produced, for example, as follows.
A commercially available potassium cyanide crystal is dissolved in pure water to prepare a potassium cyanide solution. Next, the potassium cyanide solution is filtered through a filtration filter having a pore size of 0.1 μm to 1 μm. By this filtration step, oxides such as SiO 2 mixed as impurities can be removed to some extent.
Next, in the filtered potassium cyanide solution, gold is electrolyzed and dissolved as an anode. The cathode is partitioned by an ion exchange membrane, and an insoluble electrode is used to prevent gold electrodeposition. When the gold concentration reaches a certain concentration, the solution of potassium gold cyanide is withdrawn from the anode chamber and heated at 100 ° C. or higher to concentrate (crystallize).

濃縮する際、初期に晶出した結晶の1%~10%程度を除去した後、純水やアルコールで洗浄して、シアン化金カリウム結晶とする。初期に晶出した結晶中には、SiO2を主とする酸化物などを核として成長した結晶が存在するため、これを除去する。その後、上記で得られたシアン化金カリウム結晶を温度50~90℃の純水/超純水に溶かし、活性炭フィルターなどで濾過した後、10℃以下に冷却して、再結晶化することにより、不純物をさらに除去することができる(再結晶化処理)。 At the time of concentration, about 1% to 10% of the crystals initially crystallized are removed, and then washed with pure water or alcohol to obtain gold potassium cyanide crystals. Among the crystals crystallized in the early stage, there are crystals grown with oxides mainly composed of SiO 2 as nuclei, and these are removed. Then, the gold potassium cyanide crystals obtained above are dissolved in pure water / ultrapure water having a temperature of 50 to 90 ° C., filtered through an activated carbon filter or the like, cooled to 10 ° C. or lower, and recrystallized. , Impurities can be further removed (recrystallization treatment).

各種評価に使用した測定装置や測定条件等を以下に示す。
(シリコン含有量の測定)
シアン化金カリウム結晶をテフロン(登録商標)ビーカー内で酸を用いて分解し(SiO2などが溶解)、酸で分解したシアン化金溶液に混合標準液を添加してマトリクスマッチング法で、ICP(高周波誘導結合プラズマ)分析装置を用いて、シリコン含有量の測定を行う。
The measuring devices and measurement conditions used for various evaluations are shown below.
(Measurement of silicon content)
Potassium gold cyanide crystals are decomposed with an acid in a Teflon (registered trademark) beaker (SiO 2 etc. are dissolved), and a mixed standard solution is added to the gold cyanide solution decomposed with the acid, and ICP is performed by a matrix matching method. (High frequency inductively coupled plasma) The silicon content is measured using an analyzer.

(異物の測定)
シアン化金カリウム結晶1gを超純水10mLに溶かして、シアン化金カリウム溶液を作製し、該溶液をパーティクルカウンター(リオン製 KS-28、光散乱法)を用いて、シアン化金カリウム溶液中の1.0μm以上の異物の数を分析する。
(Measurement of foreign matter)
1 g of potassium gold cyanide crystals is dissolved in 10 mL of ultrapure water to prepare a potassium gold cyanide solution, and the solution is mixed in the potassium gold cyanide solution using a particle counter (KS-28 manufactured by Rion, light scattering method). The number of foreign substances of 1.0 μm or more is analyzed.

(電解金めっきの条件)
金イオン供給源:シアン化金カリウム 12g/L
遊離シアン化物イオン減:シアン化カリウム 20g/L
電導性向上:炭酸カリウム 20L
pH緩衝剤:りん酸水素化ホウ酸塩 20/L
pH:12
浴温:70℃
電流密度:1A/dm2
膜厚:5μm
(Conditions for electrolytic gold plating)
Gold ion source: Potassium gold cyanide 12 g / L
Free cyanide ion reduction: Potassium cyanide 20 g / L
Improved electrical conductivity: Potassium carbonate 20L
pH buffer: Borate hydride 20 / L
pH: 12
Bath temperature: 70 ° C
Current density: 1A / dm 2
Film thickness: 5 μm

(無電解金めっきの条件)
金イオン供給源:シアン化金カリウム 3g/L
クエン酸アンモニウム 90g/L
塩酸ヒドラジン 19g/L
pH:7.5
浴温:95℃
(Conditions for electroless gold plating)
Gold ion source: Potassium gold cyanide 3 g / L
Ammonium ferric citrate 90g / L
Hydrazine hydrochloride 19g / L
pH: 7.5
Bath temperature: 95 ° C

(めっき膜の膨れの評価)
めっき膜をSEM(走査型電子顕微鏡:JEOL製JSM-7000F)で観察し、めっき膜に生じている凹凸のうち、凸部のサイズが5μm以上の拡がりを持つものを「ふくれ」と定義した。
(Evaluation of swelling of plating film)
The plating film was observed with an SEM (scanning electron microscope: JSM-7000F manufactured by JEOL), and among the irregularities generated in the plating film, those having a protrusion size of 5 μm or more were defined as “bulges”.

次に、本発明の実施例等について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本発明はこれらの実施例に制限される必要はなく、明細書に記載される技術思想の範囲で解釈されるべきものである。 Next, examples and the like of the present invention will be described. It should be noted that the following examples show only representative examples, and the present invention does not have to be limited to these examples and should be interpreted within the scope of the technical idea described in the specification. It is a thing.

(実施例1)
市販のシアン化カリウム結晶400gを1Lの純水溶液に溶かした。次に、得られたシアン化カリウム液を0.1μのろ過フィルターでろ過した後、濾過液を陽極電解液用の溶液として、陽極に金を用いて電解を行った。金濃度が10g/Lになった時点で液を抜き出し、その後、100℃以上で加熱して濃縮した。その際、初期に晶出した結晶10%を除去した後、晶出したシアン化金カリウムをアルコール洗浄して、シアン化金カリウム結晶とした。さらに、その後、再結晶化処理を行い、シアン化金カリウム結晶を精製した。
(Example 1)
400 g of commercially available potassium cyanide crystals were dissolved in 1 L of a pure aqueous solution. Next, the obtained potassium cyanide solution was filtered through a 0.1 μ filter, and then electrolysis was performed using the filtered solution as a solution for the anode electrolytic solution and gold as the anode. The liquid was withdrawn when the gold concentration reached 10 g / L, and then heated at 100 ° C. or higher to concentrate. At that time, after removing 10% of the crystals initially crystallized, the crystallized potassium gold cyanide was washed with alcohol to obtain potassium gold cyanide crystals. Further, after that, a recrystallization treatment was carried out to purify the potassium gold cyanide crystals.

このようにして得られたシアン化金カリウム結晶について、シリコンの含有量を分析した結果、1wtppm未満であった。また、シアン化金カリウム結晶を超純水に溶かして、シアン化金カリウム溶液を作製し、該溶液をパーティクルカウンターを用いて1.0μm以上の異物の数を分析した。その結果、1.0μm以上の異物の個数は1~3個/10mLであった。また、実施例1のシアン化金カリウム溶液を用いて、電解めっき/無電解めっきを実施して、金めっき皮膜を形成し、得られた金めっき膜の表面を観察した結果、膨れの数は0個であった。以上の結果を表1に示す。 The silicon content of the potassium gold cyanide crystals thus obtained was analyzed and found to be less than 1 wtppm. Further, a potassium gold cyanide crystal was dissolved in ultrapure water to prepare a potassium gold cyanide solution, and the number of foreign substances having a size of 1.0 μm or more was analyzed using the solution using a particle counter. As a result, the number of foreign substances of 1.0 μm or more was 1 to 3/10 mL. Further, as a result of performing electrolytic plating / electroless plating using the gold potassium cyanide solution of Example 1 to form a gold plating film and observing the surface of the obtained gold plating film, the number of swellings was found. It was 0. The above results are shown in Table 1.

Figure 2022072658000001
Figure 2022072658000001

(実施例2)
実施例2では、0.1μのろ過フィルターでろ過しなかったこと、初期に晶出した結晶5%を除去したこと以外は、実施例1と同様の方法により、シアン化金カリウム結晶を製造した。シアン化金カリウム中のシリコンの含有量を分析した結果、1wtppmであった。また、シアン化金カリウム溶液10mLに含まれる1.0μm以上の異物の数を分析した結果、異物の個数は8~10個であった。また、実施例2のシアン化金カリウム溶液を用いて、電解めっき/無電解めっきを実施して、金めっき皮膜を形成し、得られた金めっき膜の表面を観察した結果、膨れの数は2個又は1個であった。
(Example 2)
In Example 2, potassium gold cyanide crystals were produced by the same method as in Example 1 except that the crystals were not filtered with a 0.1 μ filter and 5% of the crystals initially crystallized were removed. .. As a result of analyzing the content of silicon in potassium gold cyanide, it was 1 wtppm. Further, as a result of analyzing the number of foreign substances having a size of 1.0 μm or more contained in 10 mL of the potassium gold cyanide solution, the number of foreign substances was 8 to 10. Further, as a result of performing electrolytic plating / electroless plating using the gold potassium cyanide solution of Example 2 to form a gold plating film and observing the surface of the obtained gold plating film, the number of swellings was found. It was two or one.

(実施例3)
実施例3では、初期に晶出した結晶1%を除去したこと、再結晶化を実施しなかったこと以外は、実施例1と同様の方法により、シアン化金カリウム結晶を製造した。シアン化金カリウム中のシリコンの含有量を分析した結果、3~5wtppmであった。また、シアン化金カリウム溶液10mLに含まれる1.0μm以上の異物の数を分析した結果、異物の個数は26~28個であった。また、実施例3のシアン化金カリウム溶液を用いて、電解めっき/無電解めっきを実施して、金めっき皮膜を形成し、得られた金めっき膜の表面を観察した結果、膨れの数は4個又は3個であった。
(Example 3)
In Example 3, gold potassium cyanide crystals were produced by the same method as in Example 1 except that 1% of the crystals initially crystallized were removed and recrystallization was not performed. As a result of analyzing the content of silicon in potassium gold cyanide, it was 3 to 5 wtppm. Further, as a result of analyzing the number of foreign substances having a size of 1.0 μm or more contained in 10 mL of the potassium gold cyanide solution, the number of foreign substances was 26 to 28. Further, as a result of performing electrolytic plating / electroless plating using the gold potassium cyanide solution of Example 3 to form a gold plating film and observing the surface of the obtained gold plating film, the number of swellings was found. It was 4 or 3.

(実施例4)
実施例4では、0.1μのろ過フィルターでろ過しなかったこと、再結晶化を実施しなかったこと以外は、実施例1と同様の方法により、シアン化金カリウム結晶を製造した。シアン化金カリウム中のシリコンの含有量を分析した結果、9~10wtppmであった。また、シアン化金カリウム溶液10mLに含まれる1.0μm以上の異物の数を分析した結果、異物の個数は96~100個であった。また、実施例4のシアン化金カリウム溶液を用いて、電解めっき/無電解めっきを実施して、金めっき皮膜を形成し、得られた金めっき膜の表面を観察した結果、膨れの数は10個又は9個であった。
(Example 4)
In Example 4, gold potassium cyanide crystals were produced by the same method as in Example 1 except that the crystals were not filtered with a 0.1 μ filter and recrystallization was not performed. As a result of analyzing the content of silicon in potassium gold cyanide, it was 9 to 10 wtppm. Further, as a result of analyzing the number of foreign substances having a size of 1.0 μm or more contained in 10 mL of the potassium gold cyanide solution, the number of foreign substances was 96 to 100. Further, as a result of performing electrolytic plating / electroless plating using the gold potassium cyanide solution of Example 4 to form a gold plating film and observing the surface of the obtained gold plating film, the number of swellings was found. It was 10 or 9.

(比較例1)
市販のシアン化カリウム結晶400gを1Lの純水溶液に溶かした。得られた溶液を1μのろ過フィルターでろ過し、シアン化金カリウム溶液を製造した。得られたシアン化金カリウム溶液において、1.0μm以上の異物の個数は458~498個/10mLであった。また、シアン化金カリウム結晶中のシリコン含有量は18~21wtppmであった。次に、比較例1のシアン化金カリウム溶液を用いて、電解めっき/無電解めっきを実施して、金めっき皮膜を形成した。得られた金めっき膜の表面を観察した結果、膨れの数は26個又は24個であった。
(Comparative Example 1)
400 g of commercially available potassium cyanide crystals were dissolved in 1 L of a pure aqueous solution. The obtained solution was filtered through a 1 μ filter to produce a potassium gold cyanide solution. In the obtained potassium gold cyanide solution, the number of foreign substances having a size of 1.0 μm or more was 458 to 498/10 mL. The silicon content in the potassium gold cyanide crystals was 18 to 21 wtppm. Next, electroplating / electroless plating was performed using the gold potassium cyanide solution of Comparative Example 1 to form a gold plating film. As a result of observing the surface of the obtained gold plating film, the number of swellings was 26 or 24.

(比較例2)
市販のシアン化カリウム結晶400gを1Lの純水溶液に溶かして、シアン化金カリウム溶液を製造した。このようにして製造したシアン化金カリウム溶液において、1.0μm以上の異物の個数は718~746個/10mLであった。また、シアン化金カリウム溶液中のシリコン含有量は47~52wtppmであった。次に、比較例2のシアン化金カリウム溶液を用いて、電解めっき/無電解めっきを実施して、金めっき皮膜を形成した。得られた金めっき膜の表面を観察した結果、膨れの数は52個又は48個であった。
(Comparative Example 2)
400 g of commercially available potassium cyanide crystals were dissolved in 1 L of a pure aqueous solution to produce a gold potassium cyanide solution. In the potassium gold cyanide solution thus produced, the number of foreign substances having a size of 1.0 μm or more was 718 to 746/10 mL. The silicon content in the potassium gold cyanide solution was 47 to 52 wtppm. Next, electroplating / electroless plating was performed using the gold potassium cyanide solution of Comparative Example 2 to form a gold plating film. As a result of observing the surface of the obtained gold plating film, the number of swellings was 52 or 48.

本発明は、シアン化金カリウム溶液を用いて作製される金めっき膜または金合金めっき膜において、めっき膜の膨れという欠陥が少ないという優れた効果を有する。本発明に係るシアン化金カリウムを含むめっき液は、エレクトロニクス分野における各種電気接点、端子、コネクタピン、リードフレーム、IC、各種電気回路部品等、における、めっき液として有用である。
The present invention has an excellent effect that the gold plating film or the gold alloy plating film produced by using the potassium gold cyanide solution has few defects such as swelling of the plating film. The plating solution containing potassium gold cyanide according to the present invention is useful as a plating solution in various electric contacts, terminals, connector pins, lead frames, ICs, various electric circuit parts, etc. in the field of electronics.

Claims (2)

シリコン含有量が10wtppm以下であることを特徴とするシアン化金カリウム結晶。 Gold potassium cyanide crystals characterized by a silicon content of 10 wtppm or less. シアン化金カリウム溶液10mLに含まれる1.0μm以上の異物の数が100個以下であることを特徴とするシアン化金カリウム溶液。 A potassium gold cyanide solution, characterized in that the number of foreign substances of 1.0 μm or more contained in 10 mL of the potassium gold cyanide solution is 100 or less.
JP2020182222A 2020-10-30 2020-10-30 Potassium gold cyanide crystals and potassium gold cyanide solution Active JP6841969B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020182222A JP6841969B1 (en) 2020-10-30 2020-10-30 Potassium gold cyanide crystals and potassium gold cyanide solution
PCT/JP2020/042913 WO2022091427A1 (en) 2020-10-30 2020-11-18 Potassium gold cyanide crystal and pottassium gold cyanide solution
CN202080102530.0A CN115867694A (en) 2020-10-30 2020-11-18 Gold potassium cyanide crystal and gold potassium cyanide solution
TW110109562A TW202216600A (en) 2020-10-30 2021-03-17 Potassium gold cyanide crystal and potassium gold cyanide solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020182222A JP6841969B1 (en) 2020-10-30 2020-10-30 Potassium gold cyanide crystals and potassium gold cyanide solution

Publications (2)

Publication Number Publication Date
JP6841969B1 JP6841969B1 (en) 2021-03-10
JP2022072658A true JP2022072658A (en) 2022-05-17

Family

ID=74845364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020182222A Active JP6841969B1 (en) 2020-10-30 2020-10-30 Potassium gold cyanide crystals and potassium gold cyanide solution

Country Status (4)

Country Link
JP (1) JP6841969B1 (en)
CN (1) CN115867694A (en)
TW (1) TW202216600A (en)
WO (1) WO2022091427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219314A (en) * 1990-12-19 1992-08-10 Tanaka Kikinzoku Kogyo Kk Production of gold cyanide
JPH04221086A (en) * 1990-12-19 1992-08-11 Tanaka Kikinzoku Kogyo Kk Production of gold cyanide
JPH0874061A (en) * 1994-08-30 1996-03-19 Internatl Business Mach Corp <Ibm> Feeding solution and method for feeding for electroless goldplating bath
CN106637314A (en) * 2016-12-15 2017-05-10 广东光华科技股份有限公司 Preparation method of sodium gold sulfide solution for cyanide-free gold plating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289746A (en) * 2008-06-13 2008-10-22 吴朝勤 Auric potassium cyanide and method for preparing same
CN102978592B (en) * 2012-12-24 2014-11-05 厦门大学 Method for depositing gold nanoparticles on silicon surface by wet process
CN103757675B (en) * 2014-01-20 2016-05-11 厦门大学 A kind of fine and close gold thin film method of AFM silicon needle point pulse plating nano thickness
CN110804741A (en) * 2019-11-28 2020-02-18 衡阳市晋宏精细化工有限公司 Preparation process of potassium aurous cyanide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04219314A (en) * 1990-12-19 1992-08-10 Tanaka Kikinzoku Kogyo Kk Production of gold cyanide
JPH04221086A (en) * 1990-12-19 1992-08-11 Tanaka Kikinzoku Kogyo Kk Production of gold cyanide
JPH0874061A (en) * 1994-08-30 1996-03-19 Internatl Business Mach Corp <Ibm> Feeding solution and method for feeding for electroless goldplating bath
CN106637314A (en) * 2016-12-15 2017-05-10 广东光华科技股份有限公司 Preparation method of sodium gold sulfide solution for cyanide-free gold plating

Also Published As

Publication number Publication date
JP6841969B1 (en) 2021-03-10
WO2022091427A1 (en) 2022-05-05
TW202216600A (en) 2022-05-01
CN115867694A (en) 2023-03-28

Similar Documents

Publication Publication Date Title
JP4519775B2 (en) Ultra-high purity copper and method for producing the same
JP4750112B2 (en) Ultra high purity copper, method for producing the same, and bonding wire made of ultra high purity copper
KR101058765B1 (en) Manufacturing method of high purity copper by high purity copper and electrolysis
WO2012120982A1 (en) COPPER OR COPPER ALLOY REDUCED IN α-RAY EMISSION, AND BONDING WIRE OBTAINED FROM COPPER OR COPPER ALLOY AS RAW MATERIAL
TWI577836B (en) High purity tin manufacturing methods, high purity tin electrolytic refining devices and high purity tin
JP4076751B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JPH08990B2 (en) Ultra high purity copper manufacturing method
JP3987069B2 (en) High purity copper sulfate and method for producing the same
TWI492279B (en) Copper anode or phosphorous copper anode, semiconductor wafer electroplating copper method and particles attached to less semiconductor wafers
JP4034095B2 (en) Electro-copper plating method and phosphorous copper anode for electro-copper plating
JP6841969B1 (en) Potassium gold cyanide crystals and potassium gold cyanide solution
JP4232088B2 (en) Manufacturing method of high purity electrolytic copper
JP4607165B2 (en) Electro copper plating method
TWI837547B (en) Method for manufacturing potassium gold cyanide
TWI766824B (en) Gold plating solution containing sulfite gold salt and supplementary solution for gold plating solution containing gold salt sulfite
JP7137649B2 (en) Method for producing potassium gold cyanide
JP4554662B2 (en) Phosphorus copper anode for electrolytic copper plating and method for producing the same
JP2003073889A (en) Electrolytic copper plating method for semiconductor wafer, apparatus therefor and semiconductor wafer plated by using these and having little adhering particle
JP7356047B2 (en) Method for forming a metal body, metal body, and mating type connection terminal provided with the metal body
JP5234844B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP4872097B2 (en) Purification method of gallium-containing solution
JP5179549B2 (en) Electro copper plating method
JP2009149920A (en) Method of regenerating noble metal plating solution and method of manufacturing printed wiring board
HU191365B (en) Method for recovering precious metal of electrolytic purity from solid waste originating at making printed circuits panels, preferably form waste powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210218

R150 Certificate of patent or registration of utility model

Ref document number: 6841969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250