JP2022071924A - Carrier core material - Google Patents

Carrier core material Download PDF

Info

Publication number
JP2022071924A
JP2022071924A JP2020181055A JP2020181055A JP2022071924A JP 2022071924 A JP2022071924 A JP 2022071924A JP 2020181055 A JP2020181055 A JP 2020181055A JP 2020181055 A JP2020181055 A JP 2020181055A JP 2022071924 A JP2022071924 A JP 2022071924A
Authority
JP
Japan
Prior art keywords
core material
carrier core
mol
less
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020181055A
Other languages
Japanese (ja)
Other versions
JP6924885B1 (en
Inventor
信也 佐々木
Shinya Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Dowa IP Creation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77364539&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022071924(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dowa Electronics Materials Co Ltd, Dowa IP Creation Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020181055A priority Critical patent/JP6924885B1/en
Application granted granted Critical
Publication of JP6924885B1 publication Critical patent/JP6924885B1/en
Publication of JP2022071924A publication Critical patent/JP2022071924A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

To provide a carrier core material that can suppress a development memory and the concentration unevenness of an image.SOLUTION: The carrier core material is formed of ferrite particles represented by a composition formula (MnO)x(MgO)y(Fe2O3)z (x denotes a value in the range of 30 mol% to 55 mol%, both inclusive, y denotes a value of 20 mol% or smaller, and z denotes a value in the range of 40 mol% to 60 mol%, both inclusive, and x+y+z=100 mol%). Ca is contained in the range of 0.1 mol% to 1.0 mol%, both inclusive, and Zr is included in the range of 0.1 mol% to 1.0 mol%, both inclusive.SELECTED DRAWING: Figure 1

Description

本発明は、キャリア芯材並びにこれを用いた電子写真現像用キャリア及び電子写真用現像剤に関するものである。 The present invention relates to a carrier core material, a carrier for electrophotographic development using the carrier, and a developer for electrophotographic development.

例えば、電子写真方式を用いたファクシミリやプリンター、複写機などの画像形成装置では、感光体の表面に形成された静電潜像にトナーを付着させて可視像化し、この可視像を用紙等に転写した後、加熱・加圧して定着させている。高画質化やカラー化の観点から、現像剤としては、キャリアとトナーとを含むいわゆる二成分現像剤が広く使用されている。 For example, in an image forming apparatus such as a facsimile, a printer, or a copier using an electrophotographic method, toner is attached to an electrostatic latent image formed on the surface of a photoconductor to make a visible image, and this visible image is printed on paper. After transferring to, etc., it is fixed by heating and pressurizing. From the viewpoint of high image quality and colorization, a so-called two-component developer containing a carrier and a toner is widely used as a developer.

二成分現像剤を用いた現像方式では、キャリアとトナーとを現像装置内で撹拌混合し、摩擦によってトナーを所定量まで帯電させる。そして、回転する現像ローラに現像剤を供給し、現像ローラ上で磁気ブラシを形成させて、磁気ブラシを介して感光体へトナーを電気的に移動させて感光体上の静電潜像を可視像化する。トナー移動後のキャリアは現像ローラ上から剥離されて現像装置内で再びトナーと混合される。このため、キャリアの特性として、磁気ブラシを形成する磁気特性と、所望の電荷をトナーに付与する帯電特性および繰り返し使用における耐久性が要求される。 In a developing method using a two-component developer, the carrier and toner are stirred and mixed in a developing device, and the toner is charged to a predetermined amount by friction. Then, a developer is supplied to the rotating developing roller, a magnetic brush is formed on the developing roller, and the toner is electrically transferred to the photoconductor via the magnetic brush to obtain an electrostatic latent image on the photoconductor. Visualize. After the toner is transferred, the carrier is peeled off from the developing roller and mixed with the toner again in the developing apparatus. Therefore, as the characteristics of the carrier, the magnetic characteristics for forming the magnetic brush, the charging characteristics for imparting a desired charge to the toner, and the durability in repeated use are required.

このようなキャリアとして、マグネタイトや各種フェライト等の磁性粒子(キャリア芯材)の表面を樹脂で被覆したものが一般に用いられている。ところが、キャリア芯材の表面を樹脂で被覆した樹脂被覆キャリアをトナーと混合して二成分現像剤とした場合、現像ローラの1周前の画像の影響を受けて画像濃度が低下する「現像メモリ」と呼ばれる不具合が生じることがあった。 As such a carrier, one in which the surface of magnetic particles (carrier core material) such as magnetite or various ferrites is coated with a resin is generally used. However, when a resin-coated carrier in which the surface of the carrier core material is coated with resin is mixed with toner to form a two-component developer, the image density is reduced due to the influence of the image one round before the developing roller. There was a problem called ".

この現像メモリは樹脂被覆キャリアの電気抵抗が高いことに起因するものと推測され、その対策の一つとして、例えば、特許文献1では、キャリア芯材の形状を特定形状として、樹脂被覆したキャリアの表面からキャリア芯材を所定割合で露出させて現像メモリを抑制する技術が提案されている。また特許文献2には、Sr(ストロンチウム)を含有させて、キャリア芯材の粒子の表面に微小な凹凸を形成する技術が提案されている。 It is presumed that this developing memory is caused by the high electrical resistance of the resin-coated carrier, and as one of the countermeasures, for example, in Patent Document 1, the shape of the carrier core material is set as a specific shape, and the resin-coated carrier is used. A technique has been proposed in which the carrier core material is exposed from the surface at a predetermined ratio to suppress the development memory. Further, Patent Document 2 proposes a technique of incorporating Sr (strontium) to form minute irregularities on the surface of particles of a carrier core material.

特開2010-256759号公報Japanese Unexamined Patent Publication No. 2010-256759 特開2012-159642号公報Japanese Unexamined Patent Publication No. 2012-159642

しかしながら、キャリア芯材にSrに添加すると、組成SrFe1219の酸化物が析出する。当該酸化物は高い残留磁化と高い保持力を有するため、キャリアの流動性が低下し、また現像ローラからのキャリアの離脱不良が発生することがある。そして、このようなキャリアの流動性の低下や現像ローラからの離脱不良に起因して画像に濃度ムラが表れることがあった。 However, when added to Sr in the carrier core material, an oxide having the composition SrFe 12 O 19 precipitates. Since the oxide has a high residual magnetization and a high holding force, the fluidity of the carrier may decrease, and the carrier may be poorly detached from the developing roller. Then, uneven density may appear in the image due to such a decrease in the fluidity of the carrier and poor detachment from the developing roller.

そこで、本発明の目的は現像メモリが抑制でき、しかも画像の濃度ムラも抑制できるキャリア芯材を提供することにある。 Therefore, an object of the present invention is to provide a carrier core material that can suppress the development memory and also suppress the density unevenness of the image.

また本発明の他の目的は、長期間の使用においても安定して良好な画質画像を形成することができる電子写真現像用キャリア及び電子写真用現像剤を提供することにある。 Another object of the present invention is to provide a carrier for electrophotographic development and a developer for electrophotographic, which can stably form a good image quality image even after long-term use.

前記目的を達成する本発明に係るキャリア芯材は、組成式(MnO)(MgO)(Fe(但し、x:30mol%以上55mol%以下,y:20mol%以下,z:40mol%以上60mol%以下,x+y+z=100mol%)で表されるフェライト粒子から構成されるキャリア芯材であって、Caが0.1mol%以上1.0mol%以下の範囲、Zrが0.1mol%以上1.0mol%以下の範囲含有されていることを特徴とする。 The carrier core material according to the present invention that achieves the above object has a composition formula (MnO) x (MgO) y (Fe 2O 3 ) z (where x: 30 mol% or more and 55 mol% or less, y: 20 mol% or less, z). : A carrier core material composed of ferrite particles represented by 40 mol% or more and 60 mol% or less, x + y + z = 100 mol%), in which Ca is 0.1 mol% or more and 1.0 mol% or less, and Zr is 0.1 mol. It is characterized in that it is contained in a range of% or more and 1.0 mol% or less.

なお、本明細書においてCa及びZrの含有量は後述する実施例に記載の方法で測定した値である。また、本明細書において「フェライト粒子」、「キャリア芯材」、「電子写真現像用キャリア」、「電子写真用現像剤」は、それぞれ個々の粒子の集合体(粉体)を意味するものである。 In this specification, the contents of Ca and Zr are values measured by the method described in Examples described later. Further, in the present specification, "ferrite particles", "carrier core material", "carrier for electrophotographic development", and "developer for electrophotographic development" each mean an aggregate (powder) of individual particles. be.

前記構成のキャリア芯材において、前記フェライト粒子の表面の最大山谷深さRzは1.7μm以上2.5μm以下であるのが好ましい。 In the carrier core material having the above structure, the maximum mountain valley depth Rz on the surface of the ferrite particles is preferably 1.7 μm or more and 2.5 μm or less.

また前記構成のキャリア芯材において、前記フェライト粒子の残留磁化σは1.0(A・m/kg)以下であるのが好ましい。 Further, in the carrier core material having the above structure, the residual magnetization σ r of the ferrite particles is preferably 1.0 (A · m 2 / kg) or less.

また前記構成のキャリア芯材において、前記フェライト粒子の保持力Hは10(A/m×10/(4π))以下であるのが好ましい。 Further, in the carrier core material having the above configuration, the holding force Hc of the ferrite particles is preferably 10 (A / m × 10 3 / (4π)) or less.

また前記構成のキャリア芯材において、水銀圧入法で測定される細孔容積が0.003cm/g以上0.02cm/g以下であるのが好ましい。 Further, in the carrier core material having the above structure, the pore volume measured by the mercury intrusion method is preferably 0.003 cm 3 / g or more and 0.02 cm 3 / g or less.

また前記構成のキャリア芯材において、磁場79.58×10A/m(1000エルステッド)を印加した際の前記フェライト粒子の磁化σ1kが45Am/kg以上75Am/kg以下であるのが好ましい。 Further, in the carrier core material having the above configuration, the magnetization σ 1 k of the ferrite particles when a magnetic field of 79.58 × 10 3 A / m (1000 oersted) is applied is 45 Am 2 / kg or more and 75 Am 2 / kg or less. preferable.

また前記構成のキャリア芯材において、前記フェライト粒子の体積平均粒子径(以下、「平均粒子径」と記すことがある。)D50が20μm以上75μm以下であるのが好ましい。 Further, in the carrier core material having the above structure, it is preferable that the volume average particle diameter (hereinafter, may be referred to as “average particle diameter”) D 50 of the ferrite particles is 20 μm or more and 75 μm or less.

また本発明によれば、前記のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリアが提供される。 Further, according to the present invention, there is provided a carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of the above is coated with a resin.

そしてまた本発明によれば、前記記載の電子写真現像用キャリアとトナーとを含むことを特徴とする電子写真用現像剤が提供される。 Further, according to the present invention, there is provided an electrophotographic developer characterized by containing the above-mentioned electrophotographic developing carrier and toner.

なお、「最大山谷深さRz」、「残留磁化σ」、「保持力H「細孔容積」、「磁化σ1k」、「体積平均粒子径D50」は後述する実施例に記載の方法で測定した値である。 In addition, "maximum mountain valley depth Rz", "residual magnetization σ r ", "holding force H c " , "pore volume", "magnetization σ 1 k ", and "volume average particle diameter D 50 " are described in Examples described later. It is a value measured by the described method.

本発明に係るキャリア芯材によれば現像メモリが抑制できると共に画像の濃度ムラも抑制できる。 According to the carrier core material according to the present invention, the development memory can be suppressed and the density unevenness of the image can be suppressed.

また本発明に係るキャリア芯材を含む現像剤を用いれば、長期間の使用においても安定して良好な画質画像を形成することができる。 Further, by using the developer containing the carrier core material according to the present invention, it is possible to stably form a good image quality image even after long-term use.

実施例11のキャリア芯材のSEM写真である。It is an SEM photograph of the carrier core material of Example 11. 比較例3のキャリア芯材のSEM写真である。It is an SEM photograph of the carrier core material of the comparative example 3. FIG. 本発明に係る電子写真用現像剤を用いた現像装置の一例を示す概説図である。It is a schematic diagram which shows an example of the developing apparatus using the developer for electrophotographics which concerns on this invention.

本発明者らは現像メモリと濃度ムラの抑制が可能なキャリア芯材を得るため鋭意検討を重ねた結果、所定組成のフェライト粒子から構成されるキャリア芯材において、所定量のCa(カルシウム)とZr(ジルコニウム)とを含有させることによって、キャリアの流動性の低下や現像ローラからの離脱不良を招くことなく、キャリア芯材の表面を凹凸化させて現像メモリを抑制できることを見出し本発明をなすに至った。 As a result of diligent studies to obtain a developing memory and a carrier core material capable of suppressing density unevenness, the present inventors have obtained a predetermined amount of Ca (calcium) in the carrier core material composed of ferrite particles having a predetermined composition. The present invention has been found that by containing Zr (zyrylene), the surface of the carrier core material can be made uneven and the developing memory can be suppressed without causing a decrease in the fluidity of the carrier or a defect in detachment from the developing roller. It came to.

すなわち本発明に係るキャリア芯材の大きな特徴の一つは、Caが0.1mol%以上1.0mol%以下の範囲、Zrが0.1mol%以上1.0mol%以下の範囲含有されていることである。 That is, one of the major features of the carrier core material according to the present invention is that Ca is contained in the range of 0.1 mol% or more and 1.0 mol% or less, and Zr is contained in the range of 0.1 mol% or more and 1.0 mol% or less. Is.

キャリア芯材にCaを単独で含有させるとCa-Fe-O化合物の結晶相が生成しキャリア芯材の表面凹凸化はある程度は図れるものの現像メモリの十分な発生抑制に至らない。一方、キャリア芯材にCaと共にZrを含有させると、焼成時にCa-Zr-O化合物の結晶相が優先的に生成されてフェライト粒子の結晶粒界に留まってフェライト粒子の結晶の面内方向の成長が抑制されてフェライト粒子の表面凹凸化が促進される。加えて、Ca-Zr-O化合物は、従来使用されていたSrとFeの酸化物に比べてキャリア芯材の残留磁化及び保持力の上昇は招きにくい。 When Ca is contained alone in the carrier core material, a crystal phase of the Ca—Fe—O compound is generated, and the surface unevenness of the carrier core material can be achieved to some extent, but the generation of the developing memory is not sufficiently suppressed. On the other hand, when Zr is contained in the carrier core material together with Ca, the crystal phase of the Ca—Zr—O compound is preferentially generated during firing and stays at the grain boundaries of the ferrite particles in the in-plane direction of the ferrite particles. Growth is suppressed and surface unevenness of ferrite particles is promoted. In addition, the Ca-Zr-O compound is less likely to cause an increase in the residual magnetization and holding power of the carrier core material as compared with the conventionally used oxides of Sr and Fe.

Ca及びZrの各々の含有割合はいずれも0.1mol%以上1.0mol%以下の範囲である。Ca及びZrの含有割合が0.1mol%未満であると本発明の所期の効果が得られない。一方、Ca及びZrの含有割合が1.0mol%を超えるとキャリア芯材の保持力Hの上昇を招き濃度ムラが発生するおそれがある。 The content ratios of Ca and Zr are both in the range of 0.1 mol% or more and 1.0 mol% or less. If the content ratio of Ca and Zr is less than 0.1 mol%, the desired effect of the present invention cannot be obtained. On the other hand, if the content ratio of Ca and Zr exceeds 1.0 mol%, the holding power Hc of the carrier core material may increase and uneven concentration may occur.

本発明のキャリア芯材を構成するフェライト粒子は、組成式(MnO)(MgO)(Fe(但し、x:30mol%以上55mol%以下,y:20mol%以下,z:40mol%以上60mol%以下,x+y+z=100mol%)の組成を有する。上記xが55mol%超及び上記yが20mol%超では、キャリア芯材の磁化が低すぎて実使用においてはキャリア付着などの不具合が発生するおそれがある。またxが30mol%未満では、キャリア芯材の磁化が高くなるため画像ムラが発生するおそれがある。 The ferrite particles constituting the carrier core material of the present invention have a composition formula (MnO) x (MgO) y (Fe 2O 3 ) z (however, x: 30 mol% or more and 55 mol% or less, y: 20 mol% or less, z: It has a composition of 40 mol% or more and 60 mol% or less, x + y + z = 100 mol%). When the x is more than 55 mol% and the y is more than 20 mol%, the magnetization of the carrier core material is too low, and there is a possibility that problems such as carrier adhesion may occur in actual use. If x is less than 30 mol%, the magnetization of the carrier core material becomes high, so that image unevenness may occur.

本発明のキャリア芯材を構成するフェライト粒子の表面の最大山谷深さRzは1.7μm以上2.5μm以下の範囲が好ましい。フェライト粒子の表面の最大山谷深さRzが1.7μm未満であると、キャリア芯材表面が樹脂被覆されて樹脂被覆キャリアとされた際に樹脂被覆キャリアの表面にキャリア芯材が十分に露出することができず、樹脂被覆キャリアに溜まったカウンタチャージが円滑に外部に放出されずに現像メモリが発生するおそれがある。一方、フェライト粒子の表面の最大山谷深さRzが2.5μmを超えると、樹脂被覆キャリアの流動性が低下し濃度ムラが発生するおそれがある。最大山谷深さRzのより好ましい範囲は1.7μm以上2.2μm以下の範囲である。フェライト粒子の表面の最大山谷深さRzの制御は、原料におけるCa及びZrの添加量及び製造工程における焼成条件などによって行うことができる。 The maximum mountain valley depth Rz of the surface of the ferrite particles constituting the carrier core material of the present invention is preferably in the range of 1.7 μm or more and 2.5 μm or less. When the maximum mountain valley depth Rz on the surface of the ferrite particles is less than 1.7 μm, the carrier core material is sufficiently exposed on the surface of the resin-coated carrier when the surface of the carrier core material is coated with the resin to form a resin-coated carrier. Therefore, the counter charge accumulated in the resin-coated carrier may not be smoothly discharged to the outside, and a developing memory may be generated. On the other hand, if the maximum mountain valley depth Rz on the surface of the ferrite particles exceeds 2.5 μm, the fluidity of the resin-coated carrier may decrease and uneven concentration may occur. A more preferable range of the maximum mountain valley depth Rz is a range of 1.7 μm or more and 2.2 μm or less. The maximum mountain valley depth Rz on the surface of the ferrite particles can be controlled by the amount of Ca and Zr added to the raw material, the firing conditions in the manufacturing process, and the like.

本発明のキャリア芯材を構成するフェライト粒子の残留磁化σは1.0(A・m/kg)以下であるのが好ましい。フェライト粒子の残留磁化σが1.0(A・m/kg)を超えると、現像ローラからのキャリアの離脱不良が発生し画像に濃度ムラが表れるおそれがある。フェライト粒子の残留磁化σのより好ましい上限値は0.8(A・m/kg)である。また残留磁化σの好ましい下限値は0.5(A・m/kg)である。 The residual magnetization σ r of the ferrite particles constituting the carrier core material of the present invention is preferably 1.0 (A · m 2 / kg) or less. If the residual magnetization σ r of the ferrite particles exceeds 1.0 (A · m 2 / kg), carrier detachment failure from the developing roller may occur and density unevenness may appear in the image. A more preferable upper limit value of the residual magnetization σ r of the ferrite particles is 0.8 (A · m 2 / kg). The preferable lower limit of the residual magnetization σ r is 0.5 (A · m 2 / kg).

本発明のキャリア芯材を構成するフェライト粒子の保持力Hは10(A/m×10/(4π))以下であるのが好ましい。フェライト粒子の保持力Hが10(A/m×10/(4π))を超えると、現像ローラからのキャリアの離脱不良が発生し画像に濃度ムラが表れるおそれがある。フェライト粒子の保持力Hのより好ましい上限値は9.5(A/m×10/(4π))である。また保持力Hの好ましい下限値は5.0(A/m×10/(4π))である。 The holding force H c of the ferrite particles constituting the carrier core material of the present invention is preferably 10 (A / m × 10 3 / (4π)) or less. If the holding force H c of the ferrite particles exceeds 10 (A / m × 10 3 / (4π)), the carrier may be poorly detached from the developing roller and uneven density may appear in the image. A more preferable upper limit value of the holding force Hc of the ferrite particles is 9.5 (A / m × 10 3 / (4π)). The preferable lower limit of the holding force H c is 5.0 (A / m × 10 3 / (4π)).

本発明のキャリア芯材を構成するフェライト粒子の細孔容積は0.003cm/g以上0.02cm/g以下の範囲が好ましい。フェライト粒子の細孔容積が0.003cm/g未満であると、キャリア芯材一粒子あたりの磁化が大きくなり過ぎて現像ローラからのキャリアの離脱不良が発生し画像に濃度ムラが表れるおそれがある。一方、フェライト粒子の細孔容積が0.02cm/gを超えると内部空隙が大きくなり過ぎてキャリア芯材一粒子あたりの磁化が小さくなり過ぎキャリア飛散が生じやすくなる。フェライト粒子の細孔容積のより好ましい範囲は0.004cm/g以上0.015cm/g以下の範囲である。 The pore volume of the ferrite particles constituting the carrier core material of the present invention is preferably in the range of 0.003 cm 3 / g or more and 0.02 cm 3 / g or less. If the pore volume of the ferrite particles is less than 0.003 cm 3 / g, the magnetization per carrier core material particle becomes too large, and carrier detachment failure from the developing roller may occur, resulting in uneven density in the image. be. On the other hand, when the pore volume of the ferrite particles exceeds 0.02 cm 3 / g, the internal voids become too large and the magnetization per carrier core material particle becomes too small, so that carrier scattering is likely to occur. A more preferable range of the pore volume of the ferrite particles is 0.004 cm 3 / g or more and 0.015 cm 3 / g or less.

本発明のキャリア芯材を構成するフェライト粒子の磁化σ1kは45Am/kg以上75Am/kg以下であるのが好ましい。フェライト粒子の磁化σ1kが45Am/kg未満であると磁力が小さくなりすぎてキャリア飛散が発生するおそれがある。一方、フェライト粒子の磁化σ1kが75Am/kgを超えると磁力が大きくなりすぎて現像ローラからのキャリアの離脱不良が発生し画像に濃度ムラが表れるおそれがある。 The magnetization σ 1k of the ferrite particles constituting the carrier core material of the present invention is preferably 45 Am 2 / kg or more and 75 Am 2 / kg or less. If the magnetization σ 1k of the ferrite particles is less than 45 Am 2 / kg, the magnetic force becomes too small and carrier scattering may occur. On the other hand, if the magnetization σ 1k of the ferrite particles exceeds 75 Am 2 / kg, the magnetic force becomes too large and the carrier may not be detached from the developing roller, resulting in uneven density in the image.

本発明のキャリア芯材を構成するフェライト粒子の平均粒子径D50は20μm以上75μm以下の範囲が好ましく、より好ましくは30μm以上40μm以下の範囲である。またフェライト粒子の粒度分布はシャープであるのが好ましい。 The average particle diameter D 50 of the ferrite particles constituting the carrier core material of the present invention is preferably in the range of 20 μm or more and 75 μm or less, and more preferably in the range of 30 μm or more and 40 μm or less. Further, it is preferable that the particle size distribution of the ferrite particles is sharp.

本発明のキャリア芯材を構成するフェライト粒子の製造方法に特に限定はないが、以下に説明する製造方法が好適である。 The method for producing the ferrite particles constituting the carrier core material of the present invention is not particularly limited, but the production method described below is suitable.

まず、Fe成分原料、Mn成分原料、Mg成分原料、Ca成分原料、Zr成分原料、そして必要により添加剤を秤量する。Fe成分原料としては、Fe等が好適に使用される。Mn成分原料としてはMnCO、Mn等が使用でき、Mg成分原料であればMgO、Mg(OH)、MgCO、MgFeが使用でき、Ca成分原料としては、CaO、Ca(OH)、CaCO等が使用でき、Zr成分原料としては、ZrO、ZrCl等が使用できる。 First, the Fe component raw material, the Mn component raw material, the Mg component raw material, the Ca component raw material, the Zr component raw material, and, if necessary, the additive are weighed. Fe 2 O 3 or the like is preferably used as the raw material for the Fe component. MnCO 3 , Mn 3 O 4 , etc. can be used as the Mn component raw material, MgO, Mg (OH) 2 , MgCO 3 , MgFe 2 O 4 can be used as the Mg component raw material, and CaO, CaO, can be used as the Ca component raw material. Ca (OH) 2 , CaCO 3 , etc. can be used, and ZrO 2 , ZrCl 4 , etc. can be used as the Zr component raw material.

次いで、原料を分散媒中に投入しスラリーを作製する。本発明で使用する分散媒としては水が好適である。分散媒には、前記仮焼成原料の他、必要によりバインダー、分散剤等を配合してもよい。バインダーとしては、例えば、ポリビニルアルコールが好適に使用できる。バインダーの配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。また、分散剤としては、例えば、ポリカルボン酸アンモニウム等が好適に使用できる。分散剤の配合量としてはスラリー中の濃度が0.1質量%~2質量%程度とするのが好ましい。その他、カーボンブラックなどの還元剤、アンモニアなどのpH調整剤、潤滑剤、焼結促進剤等を配合してもよい。スラリーの固形分濃度は50質量%~90質量%の範囲が望ましい。より好ましくは60質量%~80質量%である。60質量%以上であれば、造粒物中に粒子内細孔が少なく、焼成時の焼結不足を防ぐことができる。 Next, the raw material is put into the dispersion medium to prepare a slurry. Water is suitable as the dispersion medium used in the present invention. In addition to the temporary firing raw material, a binder, a dispersant, or the like may be added to the dispersion medium, if necessary. As the binder, for example, polyvinyl alcohol can be preferably used. The amount of the binder to be blended is preferably such that the concentration in the slurry is about 0.1% by mass to 2% by mass. Further, as the dispersant, for example, ammonium polycarboxylate or the like can be preferably used. The amount of the dispersant to be blended is preferably such that the concentration in the slurry is about 0.1% by mass to 2% by mass. In addition, a reducing agent such as carbon black, a pH adjuster such as ammonia, a lubricant, a sintering accelerator and the like may be blended. The solid content concentration of the slurry is preferably in the range of 50% by mass to 90% by mass. More preferably, it is 60% by mass to 80% by mass. When it is 60% by mass or more, the pores in the particles are small in the granulated product, and it is possible to prevent insufficient sintering during firing.

なお、秤量した原料を混合し仮焼成し解粒した後、分散媒に投入しスラリーを作製してもよい。仮焼成の温度としては750℃~1000℃の範囲が好ましい。750℃以上であれば、仮焼成による一部フェライト化が進み、焼成時のガス発生量が少なく、固体間反応が十分に進むため、好ましい。一方、1000℃以下であれば、仮焼成による焼結が弱く、後のスラリー粉砕工程で原料を十分に粉砕できるので好ましい。また、仮焼成時の雰囲気としては大気雰囲気が好ましい。 The weighed raw materials may be mixed, calcined and pulverized, and then charged into a dispersion medium to prepare a slurry. The temperature of the tentative firing is preferably in the range of 750 ° C to 1000 ° C. When the temperature is 750 ° C. or higher, partial ferrite formation by calcination proceeds, the amount of gas generated during calcination is small, and the reaction between solids proceeds sufficiently, which is preferable. On the other hand, when the temperature is 1000 ° C. or lower, sintering by calcination is weak and the raw material can be sufficiently pulverized in the subsequent slurry pulverization step, which is preferable. Further, the atmosphere at the time of temporary firing is preferably an atmospheric atmosphere.

次に、以上のようにして作製されたスラリーを湿式粉砕する。例えば、ボールミルや振動ミルを用いて所定時間湿式粉砕する。粉砕後の原材料の平均粒径は5μm以下が好ましく、より好ましくは1μm以下である。振動ミルやボールミルには、所定粒径のメディアを内在させるのがよい。メディアの材質としては、鉄系のクロム鋼や酸化物系のジルコニア、チタニア、アルミナなどが挙げられる。粉砕工程の形態としては連続式及び回分式のいずれであってもよい。粉砕物の粒径は、粉砕時間や回転速度、使用するメディアの材質・粒径などによって調整される。 Next, the slurry produced as described above is wet-ground and pulverized. For example, wet pulverization is performed for a predetermined time using a ball mill or a vibration mill. The average particle size of the raw material after pulverization is preferably 5 μm or less, more preferably 1 μm or less. It is preferable that the vibration mill or the ball mill contains a medium having a predetermined particle size. Examples of the material of the media include iron-based chromium steel, oxide-based zirconia, titania, and alumina. The form of the crushing step may be either a continuous type or a batch type. The particle size of the crushed material is adjusted by the crushing time, rotation speed, material and particle size of the media used, and the like.

そして、粉砕されたスラリーを噴霧乾燥させて造粒する。具体的には、スプレードライヤーなどの噴霧乾燥機にスラリーを導入し、雰囲気中へ噴霧することによって球形に造粒する。噴霧乾燥時の雰囲気温度は100℃~300℃の範囲が好ましい。これにより、粒径10μm~200μmの球形の造粒物が得られる。次いで、必要により、得られた造粒物を振動篩を用いて分級し所定の粒径範囲の造粒物を作製する。 Then, the crushed slurry is spray-dried to be granulated. Specifically, the slurry is introduced into a spray dryer such as a spray dryer and sprayed into the atmosphere to granulate into a spherical shape. The atmospheric temperature during spray drying is preferably in the range of 100 ° C to 300 ° C. As a result, a spherical granule having a particle size of 10 μm to 200 μm can be obtained. Then, if necessary, the obtained granulated product is classified using a vibrating sieve to prepare a granulated product having a predetermined particle size range.

次に、前記の造粒物を所定温度に加熱した炉に投入して、フェライト粒子を合成するための一般的な手法で焼成することにより、フェライト粒子を生成させる。焼成温度としては1100℃~1350℃の範囲が好ましい。焼成温度が1100℃以下であると、相変態が起こりにくくなるとともに焼結も進みにくくなる。また、焼成温度が1350℃を超えると、過剰焼結による過大グレインの発生がするおそれがある。前記焼成温度に至るまでの昇温速度としては250℃/h~500℃/hの範囲が好ましい。焼成温度での保持時間は2時間以上が好ましい。フェライト粒子の表面の凹凸は焼成工程における酸素濃度によっても調整可能である。具体的には酸素濃度を500ppm~100000ppmとする。また、冷却時の酸素濃度を焼成時の酸素濃度よりも低くすることによって、フェライト相の酸化状態の調整を図ってもよい。具体的には酸素濃度を500ppm~15000ppmの範囲とする。昇温・焼結・冷却における酸素濃度は500ppm~100000ppmの範囲に制御するのが好ましい。 Next, the granulated product is put into a furnace heated to a predetermined temperature and fired by a general method for synthesizing ferrite particles to generate ferrite particles. The firing temperature is preferably in the range of 1100 ° C to 1350 ° C. When the firing temperature is 1100 ° C. or lower, phase transformation is less likely to occur and sintering is less likely to proceed. Further, if the firing temperature exceeds 1350 ° C., excessive grain may be generated due to excessive sintering. The rate of temperature rise up to the firing temperature is preferably in the range of 250 ° C./h to 500 ° C./h. The holding time at the firing temperature is preferably 2 hours or more. The unevenness of the surface of the ferrite particles can also be adjusted by the oxygen concentration in the firing process. Specifically, the oxygen concentration is set to 500 ppm to 100,000 ppm. Further, the oxidation state of the ferrite phase may be adjusted by lowering the oxygen concentration at the time of cooling to the oxygen concentration at the time of firing. Specifically, the oxygen concentration is in the range of 500 ppm to 15,000 ppm. The oxygen concentration in raising, sintering, and cooling is preferably controlled in the range of 500 ppm to 100,000 ppm.

このようにして得られた焼成物を必要により解粒する。具体的には、例えば、ハンマーミル等によって焼成物を解粒する。解粒工程の形態としては連続式及び回分式のいずれであってもよい。また解粒処理後、必要により、粒径を所定範囲に揃えるため分級を行ってもよい。分級方法としては、風力分級や篩分級など従来公知の方法を用いることができる。また、風力分級機で1次分級した後、振動篩や超音波篩で粒径を所定範囲に揃えるようにしてもよい。さらに、分級工程後に、磁場選鉱機によって非磁性粒子を除去するようにしてもよい。フェライト粒子の平均粒子径としては20μm以上75μm以下の範囲が好ましい。 The fired product thus obtained is pulverized as necessary. Specifically, for example, the fired product is pulverized by a hammer mill or the like. The form of the pulverization step may be either a continuous type or a batch type. Further, after the pulverization treatment, if necessary, classification may be performed in order to make the particle size within a predetermined range. As the classification method, conventionally known methods such as wind power classification and sieve classification can be used. Further, after the primary classification with a wind power classifier, the particle size may be adjusted to a predetermined range with a vibration sieve or an ultrasonic sieve. Further, after the classification step, the non-magnetic particles may be removed by a magnetic field beneficiation machine. The average particle size of the ferrite particles is preferably in the range of 20 μm or more and 75 μm or less.

その後、必要に応じて、分級後のフェライト粒子を酸化性雰囲気中で加熱して、粒子表面に酸化被膜を形成してフェライト粒子の高抵抗化を図ってもよい(高抵抗化処理)。酸化性雰囲気としては大気雰囲気又は酸素と窒素の混合雰囲気のいずれでもよい。また、加熱温度は200℃以上800℃以下の範囲が好ましく、360℃以上550℃以下の範囲がさらに好ましい。加熱時間は0.5時間以上5時間以下の範囲が好ましい。なお、フェライト粒子の表面と内部とを均質化する観点からは加熱温度は低温であるのが望ましい。 Then, if necessary, the classified ferrite particles may be heated in an oxidizing atmosphere to form an oxide film on the particle surface to increase the resistance of the ferrite particles (high resistance treatment). The oxidizing atmosphere may be either an atmospheric atmosphere or a mixed atmosphere of oxygen and nitrogen. The heating temperature is preferably in the range of 200 ° C. or higher and 800 ° C. or lower, and more preferably in the range of 360 ° C. or higher and 550 ° C. or lower. The heating time is preferably in the range of 0.5 hours or more and 5 hours or less. From the viewpoint of homogenizing the surface and the inside of the ferrite particles, it is desirable that the heating temperature is low.

以上のようにして作製したフェライト粒子を本発明のキャリア芯材として用いる。そして、所望の帯電性等を得るために、キャリア芯材の外周を樹脂で被覆して電子写真現像用キャリアとする。 The ferrite particles produced as described above are used as the carrier core material of the present invention. Then, in order to obtain the desired chargeability and the like, the outer periphery of the carrier core material is coated with a resin to form a carrier for electrophotographic development.

キャリア芯材の表面を被覆する樹脂としては、従来公知のものが使用でき、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ-4-メチルペンテン-1、ポリ塩化ビニリデン、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリスチレン、(メタ)アクリル系樹脂、ポリビニルアルコール系樹脂、並びにポリ塩化ビニル系やポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系等の熱可塑性エストラマー、フッ素シリコーン系樹脂などが挙げられる。 Conventionally known resins can be used as the resin for coating the surface of the carrier core material, for example, polyethylene, polypropylene, polyvinyl chloride, poly-4-methylpentene-1, polyvinylidene chloride, ABS (acrylonitrile-butadiene-styrene). ) Resins, polystyrenes, (meth) acrylic resins, polyvinyl alcohol-based resins, polyvinyl chloride-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based thermoplastic estramers, fluorosilicone-based resins, and the like.

キャリア芯材の表面を樹脂で被覆するには、樹脂の溶液又は分散液をキャリア芯材に施せばよい。塗布溶液用の溶媒としては、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル類溶媒;エタノール、プロパノール、ブタノール等のアルコール系溶媒;エチルセロソルブ、ブチルセロソルブ等のセロソルブ系溶媒;酢酸エチル、酢酸ブチル等のエステル系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒などの1種又は2種以上を用いることができる。塗布溶液中の樹脂成分濃度は、一般に0.001質量%以上30質量%以下、特に0.001質量%以上2質量%以下の範囲内にあるのがよい。 To coat the surface of the carrier core material with resin, a resin solution or dispersion may be applied to the carrier core material. As the solvent for the coating solution, aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; cyclic ether solvents such as tetrahydrofuran and dioxane; ethanol, propanol and butanol Alcohol-based solvents such as; cellosolve-based solvents such as ethyl cellosolve and butyl cellosolve; ester-based solvents such as ethyl acetate and butyl acetate; amide-based solvents such as dimethylformamide and dimethylacetamide can be used alone or in combination of two or more. .. The concentration of the resin component in the coating solution is generally preferably in the range of 0.001% by mass or more and 30% by mass or less, particularly 0.001% by mass or more and 2% by mass or less.

キャリア芯材への樹脂の被覆方法としては、例えばスプレードライ法や流動床法あるいは流動床を用いたスプレードライ法、浸漬法等を用いることができる。これらの中でも、少ない樹脂量で効率的に塗布できる点で流動床法が特に好ましい。樹脂被覆量は、例えば流動床法の場合には吹き付ける樹脂溶液量や吹き付け時間によって調整することができる。 As a method for coating the carrier core material with the resin, for example, a spray-drying method, a fluidized bed method, a spray-drying method using a fluidized bed, a dipping method, or the like can be used. Among these, the fluidized bed method is particularly preferable because it can be applied efficiently with a small amount of resin. For example, in the case of the fluidized bed method, the resin coating amount can be adjusted by the amount of the resin solution to be sprayed and the spraying time.

キャリアの粒子径は、一般に、体積平均粒子径で20μm以上75μm未満の範囲、特に30μm以上40μm以下の範囲が好ましい。 The particle size of the carrier is generally preferably in the range of 20 μm or more and less than 75 μm in volume average particle size, particularly preferably in the range of 30 μm or more and 40 μm or less.

本発明に係る電子写真用現像剤は、以上のようにして作製したキャリアとトナーとを混合してなる。キャリアとトナーとの混合比に特に限定はなく、使用する現像装置の現像条件などから適宜決定すればよい。一般に現像剤中のトナー濃度は1質量%以上15質量%以下の範囲が好ましい。トナー濃度が1質量%未満の場合、画像濃度が薄くなりすぎ、他方トナー濃度が15質量%を超える場合、現像装置内でトナー飛散が発生し機内汚れや転写紙などの背景部分にトナーが付着する不具合が生じるおそれがあるからである。より好ましいトナー濃度は3質量%以上10質量%以下の範囲である。 The developer for electrophotographic processing according to the present invention is made by mixing the carrier and toner produced as described above. The mixing ratio of the carrier and the toner is not particularly limited, and may be appropriately determined from the development conditions of the developing apparatus to be used. Generally, the toner concentration in the developer is preferably in the range of 1% by mass or more and 15% by mass or less. If the toner concentration is less than 1% by mass, the image density becomes too thin, while if the toner concentration exceeds 15% by mass, toner is scattered in the developing device and the toner adheres to the background of stains on the machine or transfer paper. This is because there is a possibility that a problem may occur. A more preferable toner concentration is in the range of 3% by mass or more and 10% by mass or less.

トナーとしては、重合法、粉砕分級法、溶融造粒法、スプレー造粒法など従来公知の方法で製造したものが使用できる。具体的には、熱可塑性樹脂を主成分とする結着樹脂中に、着色剤、離型剤、帯電制御剤等を含有させたものが好適に使用できる。 As the toner, those manufactured by conventionally known methods such as a polymerization method, a pulverization classification method, a melt granulation method, and a spray granulation method can be used. Specifically, a binder resin containing a thermoplastic resin as a main component containing a colorant, a mold release agent, a charge control agent, or the like can be preferably used.

トナーの粒径は、一般に、コールターカウンターによる体積平均粒径で5μm以上15μm以下の範囲が好ましく、7μm以上12μm以下の範囲がより好ましい。 Generally, the particle size of the toner is preferably in the range of 5 μm or more and 15 μm or less, and more preferably in the range of 7 μm or more and 12 μm or less in terms of the volume average particle size of the Coulter counter.

トナー表面には、必要により、改質剤を添加してもよい。改質剤としては、例えば、シリカ、アルミナ、酸化亜鉛、酸化チタン、酸化マグネシウム、ポリメチルメタクリレート等が挙げられる。これらの1種又は2種以上を組み合わせて使用できる。 If necessary, a modifier may be added to the surface of the toner. Examples of the modifier include silica, alumina, zinc oxide, titanium oxide, magnesium oxide, polymethylmethacrylate and the like. One of these or a combination of two or more thereof can be used.

キャリアとトナーとの混合は、従来公知の混合装置を用いることができる。例えばヘンシェルミキサー、V型混合機、タンブラーミキサー、ハイブリタイザー等を用いることができる。 A conventionally known mixing device can be used for mixing the carrier and the toner. For example, a Henschel mixer, a V-type mixer, a tumbler mixer, a hybridizer and the like can be used.

本発明の現像剤を用いた現像方法に特に限定はないが、磁気ブラシ現像法が好適である。図3に、磁気ブラシ現像を行う現像装置の一例を示す概説図を示す。図3に示す現像装置は、複数の磁極を内蔵した回転自在の現像ローラ3と、現像部へ搬送される現像ローラ3上の現像剤量を規制する規制ブレード6と、水平方向に平行に配置され、互いに逆向きに現像剤を撹拌搬送する2本のスクリュー1,2と、2本のスクリュー1,2の間に形成され、両スクリューの両端部において、一方のスクリューから他方のスクリューに現像剤の移動を可能とし、両端部以外での現像剤の移動を防ぐ仕切板4とを備える。 The developing method using the developer of the present invention is not particularly limited, but the magnetic brush developing method is suitable. FIG. 3 shows an outline diagram showing an example of a developing device that performs magnetic brush development. The developing apparatus shown in FIG. 3 is arranged in parallel in the horizontal direction with a rotatable developing roller 3 having a plurality of magnetic poles and a regulating blade 6 for regulating the amount of developer on the developing roller 3 conveyed to the developing unit. It is formed between two screws 1 and 2 and two screws 1 and 2 that agitate and convey the developer in opposite directions, and develops from one screw to the other at both ends of both screws. It is provided with a partition plate 4 that allows the agent to move and prevents the developer from moving to other than both ends.

2本のスクリュー1,2は、螺旋状の羽根13,23が同じ傾斜角で軸部11,21に形成されたものであって、不図示の駆動機構によって同方向に回転し、現像剤を互いに逆方向に搬送する。そして、スクリュー1,2の両端部において一方のスクリューから他方のスクリューに現像剤が移動する。これによりトナーとキャリアからなる現像剤は装置内を常に循環し撹拌されることになる。 The two screws 1 and 2 have spiral blades 13 and 23 formed on the shaft portions 11 and 21 at the same inclination angle, and are rotated in the same direction by a drive mechanism (not shown) to charge a developer. Transport in opposite directions. Then, the developer moves from one screw to the other screw at both ends of the screws 1 and 2. As a result, the developer composed of toner and carrier is constantly circulated and stirred in the apparatus.

一方、現像ローラ3は、表面に数μmの凹凸を付けた金属製の筒状体の内部に、磁極発生手段として、現像磁極N、搬送磁極S、剥離磁極N、汲み上げ磁極N、ブレード磁極Sの5つの磁極を順に配置した固定磁石を有してなる。現像ローラ3の筒状体が矢印方向に回転すると、汲み上げ磁極Nの磁力によって、スクリュー1から現像ローラ3へ現像剤が汲み上げられる。現像ローラ3の表面に担持された現像剤は、規制ブレード6により層規制された後、現像領域へ搬送される。 On the other hand, the developing roller 3 has a developing magnetic pole N 1 , a transport magnetic pole S 1 , a peeling magnetic pole N 2 , and a pumping magnetic pole N 3 as means for generating magnetic poles inside a metal cylindrical body having irregularities of several μm on the surface. It has a fixed magnet in which the five magnetic poles of the blade magnetic pole S2 are arranged in order. When the tubular body of the developing roller 3 rotates in the direction of the arrow, the developer is pumped from the screw 1 to the developing roller 3 by the magnetic force of the pumping magnetic pole N3. The developer supported on the surface of the developing roller 3 is layer-regulated by the regulating blade 6 and then conveyed to the developing region.

現像領域では、直流電圧に交流電圧を重畳したバイアス電圧が転写電圧電源8から現像ローラ3に印加される。バイアス電圧の直流電圧成分は、感光体ドラム5表面の背景部電位と画像部電位との間の電位とされる。また、背景部電位と画像部電位とは、バイアス電圧の最大値と最小値との間の電位とされる。バイアス電圧のピーク間電圧は0.5kV~5kVの範囲が好ましく、周波数は1kHz~10kHzの範囲が好ましい。またバイアス電圧の波形は矩形波、サイン波、三角波などいずれであってもよい。これによって、現像領域においてトナー及びキャリアが振動し、トナーが感光体ドラム5上の静電潜像に付着して現像がなされる。 In the developing region, a bias voltage obtained by superimposing an AC voltage on a DC voltage is applied from the transfer voltage power supply 8 to the developing roller 3. The DC voltage component of the bias voltage is a potential between the background potential and the image potential on the surface of the photoconductor drum 5. Further, the background potential and the image potential are potentials between the maximum and minimum values of the bias voltage. The peak-to-peak voltage of the bias voltage is preferably in the range of 0.5 kV to 5 kV, and the frequency is preferably in the range of 1 kHz to 10 kHz. The waveform of the bias voltage may be a rectangular wave, a sine wave, a triangular wave, or the like. As a result, the toner and the carrier vibrate in the developing region, and the toner adheres to the electrostatic latent image on the photoconductor drum 5 to develop.

その後現像ローラ3上の現像剤は、搬送磁極Sによって装置内部に搬送され、剥離電極Nによって現像ローラ3から剥離して、スクリュー1,2によって装置内を再び循環搬送され、現像に供していない現像剤と混合撹拌される。そして汲み上げ極Nによって、新たに現像剤がスクリュー1から現像ローラ3へ供給される。 After that, the developer on the developing roller 3 is conveyed to the inside of the apparatus by the transport magnetic pole S1, is detached from the developing roller 3 by the peeling electrode N 2 , is circulated and conveyed again in the apparatus by the screws 1 and 2, and is used for development. Mix and stir with undeveloped developer. Then, the developing agent is newly supplied from the screw 1 to the developing roller 3 by the pumping electrode N3.

なお、図3に示した実施形態では現像ローラ3に内蔵された磁極は5つであったが、現像剤の現像領域での移動量を一層大きくしたり、汲み上げ性等を一層向上させるために、磁極を8極や10極、12極と増やしてももちろん構わない。 In the embodiment shown in FIG. 3, the number of magnetic poles built in the developing roller 3 is five, but in order to further increase the amount of movement of the developing agent in the developing region and further improve the pumping property and the like. Of course, the number of magnetic poles may be increased to 8 poles, 10 poles, or 12 poles.

(実施例1)
原料として、Fe(平均粒径:0.6μm)12.3kg、Mn(平均粒径:3.4μm)4.6kg、MgFe(平均粒径:3.2μm)3.1kg、CaCO(平均粒径:0.6μm)0.100kg、ZrO(平均粒径:1.8μm)0.122kgのみを純水6.6kg中に分散し、還元剤としてカーボンブラックを37g、分散剤としてポリカルボン酸アンモニウム系分散剤を144g、アンモニア水(25wt%水溶液)を10g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では100000ppm、冷却の段階では15000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径35.1μmのキャリア芯材を得た。
(Example 1)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 12.3 kg, Mn 3 O 4 (average particle size: 3.4 μm) 4.6 kg, MgFe 2 O 4 (average particle size: 3.2 μm) Only 3.1 kg, CaCO 3 (average particle size: 0.6 μm) 0.100 kg, ZrO 2 (average particle size: 1.8 μm) 0.122 kg are dispersed in 6.6 kg of pure water, and carbon black is used as a reducing agent. 37 g, 144 g of an ammonium polycarboxylate-based dispersant as a dispersant, and 10 g of aqueous ammonia (25 wt% aqueous solution) were added to prepare a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1200 ° C. over 4.5 hours. After that, firing was performed by holding at 1200 ° C. for 3 hours. The oxygen concentration in the electric furnace was adjusted so that it would be 100,000 ppm in the heating stage and 15,000 ppm in the cooling stage.
The obtained fired product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a carrier core material having an average particle diameter of 35.1 μm.

得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。 The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

次に、このようにして得られたキャリア芯材の表面を樹脂で被覆してキャリアを作製した。具体的には、シリコーン樹脂450質量部と、(2-アミノエチル)アミノプロピルトリメトキシシラン9質量部とを、溶媒としてのトルエン450質量部に溶解してコート溶液を作製した。このコート溶液を、流動床型コーティング装置を用いてキャリア芯材50000質量部に塗布し、温度300℃の電気炉で加熱してキャリアを得た。以下の実施例及び比較例についても同様にしてキャリアを得た。 Next, the surface of the carrier core material thus obtained was coated with a resin to prepare a carrier. Specifically, 450 parts by mass of a silicone resin and 9 parts by mass of (2-aminoethyl) aminopropyltrimethoxysilane were dissolved in 450 parts by mass of toluene as a solvent to prepare a coated solution. This coating solution was applied to 50,000 parts by mass of a carrier core material using a fluidized bed coating device, and heated in an electric furnace at a temperature of 300 ° C. to obtain carriers. Carriers were obtained in the same manner for the following examples and comparative examples.

得られたキャリアと平均粒子径5.0μm程度のトナーとを、ポットミルを用いて所定時間混合し、二成分系の電子写真現像剤を得た。この場合、キャリアとトナーとをトナーの質量/(トナーおよびキャリアの質量)=5/100となるように調整した。以下、全ての実施例、比較例についても同様にして現像剤を得た。得られた現像剤について後述の実機評価を行った。評価結果を表1に合わせて示す。 The obtained carrier and toner having an average particle diameter of about 5.0 μm were mixed for a predetermined time using a pot mill to obtain a two-component electrophotographic developer. In this case, the carrier and the toner were adjusted so that the mass of the toner / (mass of the toner and the carrier) = 5/100. Hereinafter, developing agents were obtained in the same manner for all Examples and Comparative Examples. The obtained developer was evaluated on an actual machine as described later. The evaluation results are shown in Table 1.

(実施例2)
焼成工程における電気炉温度を1240℃に変更した以外は実施例1と同様にして平均粒子径35.2μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 2)
A carrier core material having an average particle diameter of 35.2 μm was obtained in the same manner as in Example 1 except that the electric furnace temperature in the firing step was changed to 1240 ° C.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例3)
焼成工程における電気炉温度を1280℃に変更した以外は実施例1と同様にして平均粒子径35.5μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 3)
A carrier core material having an average particle diameter of 35.5 μm was obtained in the same manner as in Example 1 except that the electric furnace temperature in the firing step was changed to 1280 ° C.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例4)
原料として、Fe(平均粒径:0.6μm)11.6kg、Mn(平均粒径:3.4μm)5.1kg、MgFe(平均粒径:3.2μm)3.3kgを使用した以外は実施例2と同様にして平均粒子径35.2μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 4)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 11.6 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.1 kg, Mg Fe 2 O 4 (average particle size: 3.2 μm) A carrier core material having an average particle diameter of 35.2 μm was obtained in the same manner as in Example 2 except that 3.3 kg was used.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例5)
原料として、Fe(平均粒径:0.6μm)9.9kg、Mn(平均粒径:3.4μm)4.8kg、MgFe(平均粒径:3.2μm)5.3kg、カーボンブラックを添加しない以外は実施例2と同様にして平均粒子径34.7μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 5)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 9.9 kg, Mn 3 O 4 (average particle size: 3.4 μm) 4.8 kg, MgFe 2 O 4 (average particle size: 3.2 μm) A carrier core material having an average particle diameter of 34.7 μm was obtained in the same manner as in Example 2 except that 5.3 kg and carbon black were not added.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例6)
焼成工程における電気炉内酸素濃度を21%に変更した以外は実施例4と同様にして平均粒子径36.4μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 6)
A carrier core material having an average particle diameter of 36.4 μm was obtained in the same manner as in Example 4 except that the oxygen concentration in the electric furnace in the firing step was changed to 21%.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例7)
焼成工程における電気炉内酸素濃度を21%に変更した以外は実施例5と同様にして平均粒子径34.8μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 7)
A carrier core material having an average particle diameter of 34.8 μm was obtained in the same manner as in Example 5 except that the oxygen concentration in the electric furnace in the firing step was changed to 21%.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例8)
原料として、CaCO(平均粒径:0.6μm)0.149kg、ZrO(平均粒径:1.8μm)0.184kgを使用した以外は実施例2と同様にして平均粒子径35.2μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 8)
The average particle size was 35.2 μm in the same manner as in Example 2 except that CaCO 3 (average particle size: 0.6 μm) 0.149 kg and ZrO 2 (average particle size: 1.8 μm) 0.184 kg were used as raw materials. Carrier core material was obtained.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例9)
原料として、CaCO(平均粒径:0.6μm)0.050kg、ZrO(平均粒径:1.8μm)0.061kgを使用した以外は実施例2と同様にして平均粒子径34.9μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 9)
The average particle size was 34.9 μm in the same manner as in Example 2 except that CaCO 3 (average particle size: 0.6 μm) 0.050 kg and ZrO 2 (average particle size: 1.8 μm) 0.061 kg were used as raw materials. Carrier core material was obtained.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例10)
焼成工程における電気炉温度を1270℃に変更した以外は実施例6と同様にして平均粒子径34.7μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 10)
A carrier core material having an average particle diameter of 34.7 μm was obtained in the same manner as in Example 6 except that the electric furnace temperature in the firing step was changed to 1270 ° C.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例11)
原料として、CaCO(平均粒径:0.6μm)0.050kg、ZrO(平均粒径:1.8μm)0.061kgを使用した以外は実施例10と同様にして平均粒子径34.5μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 11)
The average particle size was 34.5 μm in the same manner as in Example 10 except that CaCO 3 (average particle size: 0.6 μm) 0.050 kg and ZrO 2 (average particle size: 1.8 μm) 0.061 kg were used as raw materials. Carrier core material was obtained.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(実施例12)
原料として、Fe(平均粒径:0.6μm)14.5kg、Mn(平均粒径:3.4μm)5.4kg、CaCO(平均粒径:0.6μm)0.100kg、ZrO(平均粒径:1.8μm)0.122kgのみを純水6.6kg中に分散し、還元剤としてカーボンブラックを37g、分散剤としてポリカルボン酸アンモニウム系分散剤を144g、アンモニア水(25wt%水溶液)を10g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1240℃まで4.5時間かけて昇温した。その後1240℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では50000ppm、冷却の段階では5000ppmとなるよう、炉内の酸素濃度を調整した以外は実施例1と同様にして平均粒子径35.2μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Example 12)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.5 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.4 kg, CaCO 3 (average particle size: 0.6 μm) 0. Only 0.122 kg of 100 kg and ZrO 2 (average particle size: 1.8 μm) was dispersed in 6.6 kg of pure water, 37 g of carbon black as a reducing agent, 144 g of an ammonium polycarboxylate dispersant as a dispersant, and ammonia. 10 g of water (25 wt% aqueous solution) was added to prepare a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1240 ° C. over 4.5 hours. After that, firing was performed by holding at 1240 ° C. for 3 hours. A carrier core material having an average particle diameter of 35.2 μm is the same as in Example 1 except that the oxygen concentration in the furnace is adjusted so that the oxygen concentration in the electric furnace is 50,000 ppm in the heating stage and 5000 ppm in the cooling stage. Got
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(比較例1)
原料として、Fe(平均粒径:0.6μm)11.6kg、Mn(平均粒径:2.0μm)5.1kg、MgFe(平均粒径:3.2μm)3.3kg、SrCO(平均粒径:0.6μm)0.220kgのみを純水6.6kg中に分散し、還元剤としてカーボンブラックを69g、分散剤としてポリカルボン酸アンモニウム系分散剤を100g、塩酸(35wt%水溶液)を38g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では10000ppm、冷却の段階では15000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径34.9μmのキャリア芯材を得た。
(Comparative Example 1)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 11.6 kg, Mn 3 O 4 (average particle size: 2.0 μm) 5.1 kg, Mg Fe 2 O 4 (average particle size: 3.2 μm) 3.3 kg, SrCO 3 (average particle size: 0.6 μm) 0.220 kg was dispersed in 6.6 kg of pure water, 69 g of carbon black as a reducing agent, and 100 g of an ammonium polycarboxylate dispersant as a dispersant. , 38 g of hydrochloric acid (35 wt% aqueous solution) was added to prepare a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1200 ° C. over 4.5 hours. After that, firing was performed by holding at 1200 ° C. for 3 hours. The oxygen concentration in the electric furnace was adjusted so that it would be 10,000 ppm in the heating stage and 15,000 ppm in the cooling stage.
The obtained fired product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a carrier core material having an average particle diameter of 34.9 μm.

(比較例2)
Fe(平均粒径:0.8μm)を50.0mol、Mn(平均粒径:2.0μm)をMnO換算で50.0molとなるように秤量し、ローラーコンパクターでペレット化した。得られたペレットを大気雰囲気の条件下、850℃にてロータリー式の焼成炉で仮焼成をおこなった。乾式ビーズミルで6時間粉砕し、仮焼原料(平均粒径:2.2μm)を得た。この仮焼原料20.0kgとSrCO(平均粒径:0.6μm)0.240kgのみを純水6.7kg中に分散し、還元剤としてカーボンブラックを60g、分散剤としてポリカルボン酸アンモニウム系分散剤を120g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径30μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1200℃まで4.5時間かけて昇温した。その後1200℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は15000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径34.8μmの焼成物を得た。
次いで、得られた焼成物を大気雰囲気下380℃で1時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
(Comparative Example 2)
Weigh Fe 2 O 3 (average particle size: 0.8 μm) to 50.0 mol and Mn 3 O 4 (average particle size: 2.0 μm) to 50.0 mol in terms of MnO, and pelletize with a roller compactor. bottom. The obtained pellets were tentatively calcined in a rotary calcining furnace at 850 ° C. under atmospheric air conditions. The mixture was pulverized with a dry bead mill for 6 hours to obtain a raw material for calcining (average particle size: 2.2 μm). Only 20.0 kg of this calcination raw material and 0.240 kg of SrCO 3 (average particle size: 0.6 μm) are dispersed in 6.7 kg of pure water, 60 g of carbon black is used as a reducing agent, and ammonium polycarboxylate is used as a dispersant. 120 g of a dispersant was added to prepare a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 30 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1200 ° C. over 4.5 hours. After that, firing was performed by holding at 1200 ° C. for 3 hours. The oxygen concentration in the furnace was adjusted so that the oxygen concentration in the electric furnace was 15,000 ppm.
The obtained calcined product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a calcined product having an average particle diameter of 34.8 μm.
Next, the obtained fired product was held at 380 ° C. for 1 hour in an air atmosphere to perform an oxidation treatment (high resistance treatment) to obtain a carrier core material.

(比較例3)
Fe(平均粒径:0.8μm)を50.0mol、Mn(平均粒径:2.0μm)をMnO換算で35.0mol、MgO(平均粒径:0.8μm)をMgO換算で15.0molとなるように秤量し、ローラーコンパクターでペレット化した。得られたペレットを大気雰囲気の条件下、870℃にてロータリー式の焼成炉で仮焼成をおこなった。乾式ビーズミルで6時間粉砕し、仮焼原料(平均粒径:2.2μm)を得た。この仮焼原料20.0kgとCaCO(平均粒径:0.6μm)0.150kgのみを純水6.7kg中に分散し、分散剤としてポリカルボン酸アンモニウム系分散剤を73g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1250℃まで4.5時間かけて昇温した。その後1250℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は5000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径35.8μmの焼成物を得た。
次いで、得られた焼成物を大気雰囲気下360℃で1時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
(Comparative Example 3)
Fe 2 O 3 (average particle size: 0.8 μm) is 50.0 mol, Mn 3 O 4 (average particle size: 2.0 μm) is 35.0 mol in terms of MnO, and MgO (average particle size: 0.8 μm). Weighed to 15.0 mol in terms of MgO and pelletized with a roller compactor. The obtained pellets were tentatively calcined in a rotary calcining furnace at 870 ° C. under atmospheric air conditions. The mixture was pulverized with a dry bead mill for 6 hours to obtain a raw material for calcining (average particle size: 2.2 μm). Only 20.0 kg of this calcination raw material and 0.150 kg of CaCO 3 (average particle size: 0.6 μm) are dispersed in 6.7 kg of pure water, and 73 g of an ammonium polycarboxylate-based dispersant is added as a dispersant to form a mixture. And said. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1250 ° C. over 4.5 hours. After that, firing was performed by holding at 1250 ° C. for 3 hours. The oxygen concentration in the furnace was adjusted so that the oxygen concentration in the electric furnace was 5000 ppm.
The obtained calcined product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a calcined product having an average particle diameter of 35.8 μm.
Next, the obtained fired product was held at 360 ° C. for 1 hour in an air atmosphere to perform an oxidation treatment (high resistance treatment) to obtain a carrier core material.

(比較例4)
原料として、Fe(平均粒径:0.6μm)14.4kg、Mn(平均粒径:2.0μm)5.6kg、CaCO(平均粒径:0.6μm)0.131kgのみを純水6.7kg中に分散し、還元剤としてカーボンブラックを55g、分散剤としてポリカルボン酸アンモニウム系分散剤を125g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1155℃まで4.5時間かけて昇温した。その後1155℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は5000ppmとなるよう、炉内の酸素濃度を調整した。
得られた焼成物をハンマーミルで解粒した後に振動篩を用いて分級し、平均粒子径34.3μmの焼成物を得た。
次いで、得られた焼成物を大気雰囲気下425℃で1時間保持することにより酸化処理(高抵抗化処理)を行い、キャリア芯材を得た。
(Comparative Example 4)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.4 kg, Mn 3 O 4 (average particle size: 2.0 μm) 5.6 kg, CaCO 3 (average particle size: 0.6 μm) 0. Only 131 kg was dispersed in 6.7 kg of pure water, and 55 g of carbon black was added as a reducing agent and 125 g of an ammonium polycarboxylate-based dispersant was added as a dispersant to prepare a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
The granulated product was placed in an electric furnace and heated to 1155 ° C. over 4.5 hours. After that, firing was performed by holding at 1155 ° C. for 3 hours. The oxygen concentration in the furnace was adjusted so that the oxygen concentration in the electric furnace was 5000 ppm.
The obtained calcined product was pulverized with a hammer mill and then classified using a vibrating sieve to obtain a calcined product having an average particle diameter of 34.3 μm.
Next, the obtained fired product was held at 425 ° C. for 1 hour in an air atmosphere to perform an oxidation treatment (high resistance treatment) to obtain a carrier core material.

(比較例5)
原料として、CaCO(平均粒径:0.6μm)0.224kg、ZrO(平均粒径:1.8μm)0.275kgを使用した以外は実施例2と同様にして平均粒子径35.6μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Comparative Example 5)
The average particle size was 35.6 μm in the same manner as in Example 2 except that CaCO 3 (average particle size: 0.6 μm) 0.224 kg and ZrO 2 (average particle size: 1.8 μm) 0.275 kg were used as raw materials. Carrier core material was obtained.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(比較例6)
原料として、Fe(平均粒径:0.6μm)14.4kg、Mn(平均粒径:3.4μm)5.6kg、ZrO(平均粒径:1.8μm)0.150kgのみを純水6.8kg中に分散し、還元剤としてカーボンブラックを56g、分散剤としてポリカルボン酸アンモニウム系分散剤を125g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1300℃まで4.5時間かけて昇温した。その後1300℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は5000ppmとなるよう、炉内の酸素濃度を調整した以外は実施例1と同様にして平均粒子径36.3μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Comparative Example 6)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 14.4 kg, Mn 3 O 4 (average particle size: 3.4 μm) 5.6 kg, ZrO 2 (average particle size: 1.8 μm) 0. Only 150 kg was dispersed in 6.8 kg of pure water, and 56 g of carbon black was added as a reducing agent and 125 g of an ammonium polycarboxylate-based dispersant was added as a dispersant to prepare a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1300 ° C. over 4.5 hours. After that, firing was performed by holding at 1300 ° C. for 3 hours. A carrier core material having an average particle diameter of 36.3 μm was obtained in the same manner as in Example 1 except that the oxygen concentration in the furnace was adjusted so that the oxygen concentration in the electric furnace was 5000 ppm.
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(比較例7)
原料として、Fe(平均粒径:0.6μm)13.6kg、Mn(平均粒径:3.4μm)6.4kg、SrCO(平均粒径:0.6μm)0.112kg、ZrO(平均粒径:1.8μm)0.093kgのみを純水6.6kg中に分散し、還元剤としてカーボンブラックを61g、分散剤としてポリカルボン酸アンモニウム系分散剤を121g添加して混合物とした。この混合物を湿式ボールミル(メディア径2mm)により粉砕処理し、混合スラリーを得た。
この混合スラリーをスプレードライヤーにて約140℃の熱風中に噴霧し、粒径10μm~75μmの乾燥造粒物を得た。この造粒物から粒径25μm以下の微小な粒子は篩を用いて除去した。
この造粒物を、電気炉に投入し1250℃まで4.5時間かけて昇温した。その後1250℃で3時間保持することにより焼成を行った。電気炉内の酸素濃度は昇温の段階では12000ppm、冷却の段階では7000ppmとなるよう、炉内の酸素濃度を調整した以外は実施例1と同様にして平均粒子径35.0μmのキャリア芯材を得た。
得られたキャリア芯材の組成、粉体特性、形状特性、磁気特性などを後述の方法で測定した。測定結果を表1に示す。
(Comparative Example 7)
As raw materials, Fe 2 O 3 (average particle size: 0.6 μm) 13.6 kg, Mn 3 O 4 (average particle size: 3.4 μm) 6.4 kg, SrCO 3 (average particle size: 0.6 μm) 0. Only 112 kg and 0.093 kg of ZrO 2 (average particle size: 1.8 μm) were dispersed in 6.6 kg of pure water, and 61 g of carbon black was added as a reducing agent and 121 g of an ammonium polycarboxylate dispersant was added as a dispersant. To make a mixture. This mixture was pulverized with a wet ball mill (media diameter 2 mm) to obtain a mixed slurry.
This mixed slurry was sprayed into hot air at about 140 ° C. with a spray dryer to obtain dried granules having a particle size of 10 μm to 75 μm. Fine particles having a particle size of 25 μm or less were removed from this granulated product using a sieve.
This granulated product was placed in an electric furnace and heated to 1250 ° C. over 4.5 hours. After that, firing was performed by holding at 1250 ° C. for 3 hours. A carrier core material having an average particle diameter of 35.0 μm is the same as in Example 1 except that the oxygen concentration in the furnace is adjusted so that the oxygen concentration in the electric furnace is 12000 ppm in the heating stage and 7,000 ppm in the cooling stage. Got
The composition, powder characteristics, shape characteristics, magnetic characteristics, etc. of the obtained carrier core material were measured by the methods described below. The measurement results are shown in Table 1.

(組成分析)
(Feの分析)
鉄元素を含むキャリア芯材を秤量し、塩酸と硝酸の混酸水に溶解させた。この溶液を蒸発乾固させた後、硫酸水を添加して再溶解し過剰な塩酸と硝酸とを揮発させる。この溶液に固体Alを添加して液中のFe3+を全てFe2+に還元する。続いて、この溶液中のFe2+イオンの量を過マンガン酸カリウム溶液で電位差滴定することにより定量分析し、Fe(Fe2+)の滴定量を求めた。
(Mnの分析)
キャリア芯材のMn含有量は、JIS G1311-1987記載のフェロマンガン分析方法(電位差滴定法)に準拠して定量分析を行った。本明細書に記載したキャリア芯材のMn含有量は、このフェロマンガン分析方法(電位差滴定法)で定量分析し得られたMn量である。
(Mgの分析)
キャリア芯材のMg含有量は、以下の方法で分析を行った。キャリア芯材を酸溶液中で溶解し、ICPにて定量分析を行った。本明細書に記載したキャリア芯材のMg含有量は、このICPによる定量分析で得られたMg量である。
(Caの分析)
キャリア芯材のCa含有量は、Mgの分析同様にICPによる定量分析で行った。
(Zrの分析)
キャリア芯材のZr含有量は、Mgの分析同様にICPによる定量分析で行った。
(Srの分析)
キャリア芯材のSr含有量は、Mgの分析同様にICPによる定量分析で行った。
(Composition analysis)
(Analysis of Fe)
The carrier core material containing the iron element was weighed and dissolved in a mixed acid water of hydrochloric acid and nitric acid. After evaporating and drying this solution, sulfuric acid water is added and redissolved to volatilize excess hydrochloric acid and nitric acid. Solid Al is added to this solution to reduce all Fe 3+ in the solution to Fe 2+ . Subsequently, the amount of Fe 2+ ions in this solution was quantitatively analyzed by potentiometric titration with a potassium permanganate solution to determine the titration amount of Fe (Fe 2+ ).
(Analysis of Mn)
The Mn content of the carrier core material was quantitatively analyzed according to the ferromanganese analysis method (potential difference titration method) described in JIS G1311-1987. The Mn content of the carrier core material described in the present specification is the amount of Mn obtained by quantitative analysis by this ferromanganese analysis method (potential difference drip method).
(Analysis of Mg)
The Mg content of the carrier core material was analyzed by the following method. The carrier core material was dissolved in an acid solution and quantitative analysis was performed by ICP. The Mg content of the carrier core material described in the present specification is the Mg content obtained by the quantitative analysis by this ICP.
(Analysis of Ca)
The Ca content of the carrier core material was quantitatively analyzed by ICP in the same manner as the analysis of Mg.
(Analysis of Zr)
The Zr content of the carrier core material was quantitatively analyzed by ICP as in the analysis of Mg.
(Analysis of Sr)
The Sr content of the carrier core material was quantitatively analyzed by ICP as in the analysis of Mg.

(見掛け密度AD)
キャリア芯材の見掛け密度はJIS Z 2504に準拠して測定した。
(Apparent density AD)
The apparent density of the carrier core material was measured according to JIS Z 2504.

(流動度FR)
キャリア芯材の流動度はJIS Z 2502に準拠して測定した。
(Fluidity FR)
The fluidity of the carrier core material was measured according to JIS Z 2502.

(体積平均粒子径D50
キャリア芯材の体積平均粒子径D50は、レーザー回折式粒度分布測定装置(日機装社製「マイクロトラックModel9320-X100」)を用いて測定した。
(Volume average particle diameter D 50 )
The volume average particle diameter D 50 of the carrier core material was measured using a laser diffraction type particle size distribution measuring device (“Microtrack Model 9320-X100” manufactured by Nikkiso Co., Ltd.).

(細孔容積)
細孔容積の測定については、以下の通り行った。評価装置は、Quantachrome社製のPOREMASTER-60GTを使用した。具体的には、測定条件としては、Cell Stem Volume:0.5cm、Headpressure:20PSIA、水銀の表面張力:485.00erg/cm、水銀の接触角:130.00degrees、高圧測定モード:Fixed Rate、Moter Speed:1、高圧測定レンジ:20.00~10000.00PSIとし、サンプル1.200gを秤量して0.5cmのセルに充填して測定を行った。また、10000.00PSI時の容積B(cm/g)から100PSI時の容積A(cm/g)を差し引いた値を、細孔容積とした。
(Pore volume)
The measurement of the pore volume was performed as follows. As the evaluation device, POREMASTER-60GT manufactured by Quantachrome was used. Specifically, the measurement conditions are Cell Stem Volume: 0.5 cm 3 , Headpressure: 20PSIA, surface tension of mercury: 485.00 erg / cm 2 , contact angle of mercury: 130.00 degrees, high pressure measurement mode: Fixed Rate. , Motor Speed: 1, high pressure measurement range: 20.00 to 10000.00 PSI, 1.200 g of sample was weighed and filled in a cell of 0.5 cm 3 for measurement. Further, the value obtained by subtracting the volume A (cm 3 / g) at 100 PSI from the volume B (cm 3 / g) at 10000.00 PSI was defined as the pore volume.

(最大山谷深さRz、平均長さRSm)
超深度カラー3D形状測定顕微鏡(「VK-X100」株式会社キーエンス製)を用い、100倍対物レンズで表面を観察して求めた。具体的には、まず、表面の平坦な粘着テープにフェライト粒子を固定し、100倍対物レンズで測定視野を決定した後、オートフォーカス機能を用いて焦点を粘着テープ面に調整した。フェライト粒子を固定した平坦な粘着テープ面に対し、垂直方向(Z方向)からレーザー光線を照射し、面のX方向Y方向に走査した。また、表面からの反射光の強度が最大となった時のレンズの高さ位置をつなぎ合わせることでZ方向のデータを取得した。これらX、YおよびZ方向の位置データをつなぎ合わせフェライト粒子表面の3次元形状を得た。なお、フェライト粒子表面の3次元形状の取り込みにはオート撮影機能を用いた。
各パラメータの測定には、粒子粗さ検査ソフトウェア(三谷商事製)を用いて行った。まず、前処理として、得られたフェライト粒子表面の3次元形状の粒子認識と形状選別を行った。粒子認識は以下の方法で行った。
撮影によって得られた3次元形状のうち、Z方向の最大値を100%、最小値を0%として最大値から最小値までの間を100等分する。この100~35%にあたる領域を抽出し、独立した領域の輪郭を粒子輪郭として認識した。次に形状選別で粗大、微小、会合などの粒子を除外した。この形状選別を行うことで以降に行う極率補正時の誤差を小さくすることができる。具体的には面積相当径28μm以下、38μm以上、針状比1.15以上に該当する粒子を除外した。ここで針状比とは粒子の最大長/対角幅の比から算出したパラメータであり、対角幅とは最大長に平行な2本の直線で粒子を挟んだときの2直線の最短距離を表す。
つぎに表面の3次元形状から解析に用いる部分の取り出しを行った。まず上記の方法で認識した粒子輪郭から求められる重心を中心として15.0μmの正方形を描く。描いた正方形の中に21本の平行線を引き、その線分上にあたる粗さ曲線を21本分取り出した。
フェライト粒子は略球形状であるため、取り出した粗さ曲線は、バックグラウンドとして一定の曲率を持っている。このため、バックグラウンドの補正として、最適な二次曲線をフィッティングし、粗さ曲線から差し引く補正を行った。この場合、ローパスフィルタを1.5μmの強度で適用し、カットオフ値λを80μmとした。
また、解析に用いるキャリア芯材の平均粒子径については32μm~34μmに限定した。このように測定対象となるキャリア芯材の平均粒子径を狭い範囲に限定することで、曲率補正の際に生じる残渣による誤差を小さくすることができる。
(Maximum mountain valley depth Rz, average length RSm)
The surface was observed with a 100x objective lens using an ultra-deep color 3D shape measuring microscope (“VK-X100” manufactured by KEYENCE CORPORATION). Specifically, first, ferrite particles were fixed on an adhesive tape having a flat surface, a measurement field of view was determined with a 100x objective lens, and then the focus was adjusted to the adhesive tape surface using an autofocus function. The flat adhesive tape surface on which the ferrite particles were fixed was irradiated with a laser beam from the vertical direction (Z direction) and scanned in the X direction and Y direction of the surface. In addition, data in the Z direction was acquired by connecting the height positions of the lenses when the intensity of the reflected light from the surface was maximized. These position data in the X, Y and Z directions were joined to obtain a three-dimensional shape of the surface of the ferrite particles. The auto photographing function was used to capture the three-dimensional shape of the surface of the ferrite particles.
Each parameter was measured using particle roughness inspection software (manufactured by Mitani Corporation). First, as a pretreatment, particle recognition and shape selection of the three-dimensional shape of the obtained ferrite particle surface were performed. Particle recognition was performed by the following method.
Of the three-dimensional shapes obtained by photographing, the maximum value in the Z direction is set to 100%, the minimum value is set to 0%, and the range from the maximum value to the minimum value is divided into 100 equal parts. The region corresponding to 100 to 35% was extracted, and the contour of the independent region was recognized as the particle contour. Next, the shape selection excluded particles such as coarse, micro, and association. By performing this shape selection, it is possible to reduce the error during the subsequent pole factor correction. Specifically, particles having an area equivalent diameter of 28 μm or less, 38 μm or more, and a needle-like ratio of 1.15 or more were excluded. Here, the needle-like ratio is a parameter calculated from the ratio of the maximum length / diagonal width of the particles, and the diagonal width is the shortest distance between the two straight lines when the particles are sandwiched between two straight lines parallel to the maximum length. Represents.
Next, the part used for the analysis was taken out from the three-dimensional shape of the surface. First, a 15.0 μm square is drawn centered on the center of gravity obtained from the particle contour recognized by the above method. Twenty-one parallel lines were drawn in the drawn square, and 21 roughness curves on the line segments were taken out.
Since the ferrite particles have a substantially spherical shape, the extracted roughness curve has a constant curvature as a background. Therefore, as a background correction, an optimum quadratic curve was fitted and a correction was performed by subtracting it from the roughness curve. In this case, a low-pass filter was applied with an intensity of 1.5 μm, and the cutoff value λ was set to 80 μm.
The average particle size of the carrier core material used in the analysis was limited to 32 μm to 34 μm. By limiting the average particle size of the carrier core material to be measured to a narrow range in this way, it is possible to reduce the error due to the residue generated during the curvature correction.

最大山谷深さRzは、粗さ曲線の中で最も高い山の高さと最も深い谷の深さの和として求めた。最大高さRzの算出には、各パラメータの平均値として、30粒子の平均値を用いることとした。 The maximum valley depth Rz was calculated as the sum of the height of the highest mountain and the depth of the deepest valley in the roughness curve. For the calculation of the maximum height Rz, the average value of 30 particles was used as the average value of each parameter.

平均長さRSmは、粗さ曲線のうち、谷と山の組み合わせを一つの要素と規定し、それぞれの要素の長さを平均したものである。平均長さRSmの算出には、各パラメータの平均値として、30粒子の平均値を用いることとした。 The average length RSm defines the combination of valleys and peaks as one element in the roughness curve, and averages the lengths of each element. For the calculation of the average length RSm, the average value of 30 particles was used as the average value of each parameter.

以上説明した最大高さRz、平均長さRSmの測定は、JIS B0601(2001年度版)に準拠して行われるものである。 The measurement of the maximum height Rz and the average length RSm described above is performed in accordance with JIS B0601 (2001 version).

(磁気特性)
室温専用振動試料型磁力計(VSM)(東英工業社製「VSM-P7」)を用いて、外部磁場を0~79.58×10A/m(10000エルステッド)の範囲で1サイクル連続的に印加して、磁場79.58×10A/m(1,000エルステッド)を印加した際の磁化σ1k、飽和磁化σ、残留磁化σ、保磁力Hを測定した。
(Magnetic characteristics)
Using a vibrating sample magnetometer (VSM) for room temperature (“VSM-P7” manufactured by Toei Kogyo Co., Ltd.), the external magnetic field is continuously applied for one cycle in the range of 0 to 79.58 × 10 4 A / m (10000 Elstead). When a magnetic field of 79.58 × 10 3 A / m (1,000 Elstead) was applied, the magnetization σ 1 k , saturation magnetization σ s , residual magnetization σ r , and coercive force H c were measured.

(電気抵抗)
電極として表面を電解研磨した板厚2mmの真鍮板2枚を電極間距離が2mmとなるように配置し、2枚の電極板の間の空隙にキャリア芯材200mgを装入した後、それぞれの電極板の背後に断面積240mmの磁石を配置して電極間に被測定粉体のブリッジを形成させた状態で電極間に500V直流電圧を印加し、キャリア芯材を流れる電流値を4端子法により測定した。その電流値と、電極間距離2mmおよび断面積240mmからキャリア芯材の電気抵抗を算出した。
(Electrical resistance)
Two brass plates with a thickness of 2 mm whose surfaces are electrolytically polished as electrodes are arranged so that the distance between the electrodes is 2 mm, and after charging 200 mg of a carrier core material into the gap between the two electrode plates, each electrode plate is used. A magnet with a cross-sectional area of 240 mm 2 is placed behind the electrode, and a 500 V DC voltage is applied between the electrodes with a bridge of the powder to be measured formed between the electrodes, and the current value flowing through the carrier core material is measured by the 4-terminal method. It was measured. The electric resistance of the carrier core material was calculated from the current value, the distance between the electrodes of 2 mm, and the cross-sectional area of 240 mm 2 .

(実機評価)
(現像メモリ)
得られた現像剤を、図3に示す構造の現像装置(現像ローラの周速度Vs:406mm/sec,感光体ドラムの周速度Vp:205mm/sec,感光体ドラム-現像ローラ間距離:0.3mm)に投入し、感光体ドラムの周方向にベタ画像部と非画像部とが隣り合い、その後は広い面積の中間調が続く初期画像を取得し、現像ローラ2周目の現像ローラ1周目のベタ画像が現像された領域とそうでない領域との画像濃度を反射濃度計(東京電色社製の型番TC-6D)を用いて測定し、その差を求め下記基準で評価した。結果を表1に示す。
「◎」:0.003未満
「○」:0.003以上0.006未満
「△」:0.006以上0.020未満
「×」:0.020以上
(Actual machine evaluation)
(Development memory)
The obtained developer was subjected to a developing apparatus having the structure shown in FIG. 3 (peripheral speed Vs of the developing roller: 406 mm / sec, peripheral speed Vp of the photoconductor drum: 205 mm / sec, distance between the photoconductor drum and the developing roller: 0. 3 mm), the solid image part and the non-image part are adjacent to each other in the circumferential direction of the photoconductor drum, and then an initial image in which a wide area of halftone continues is acquired, and one round of the developing roller on the second round of the developing roller is obtained. The image density between the area where the solid image of the eyes was developed and the area where it was not developed was measured using a reflection densitometer (model number TC-6D manufactured by Tokyo Denshoku Co., Ltd.), and the difference was obtained and evaluated according to the following criteria. The results are shown in Table 1.
"◎": Less than 0.003 "○": 0.003 or more and less than 0.006 "△": 0.006 or more and less than 0.020 "×": 0.020 or more

(濃度ムラ)
前記評価機による評価用画像3枚について1枚当たり5カ所の濃度を反射濃度計(東京電色社製の型番TC-6D)を用いて測定し下記基準で評価した。
「◎」:濃度の濃淡差の最大が0.1未満であり、濃度ムラが視認できない。
「○」:濃度の濃淡差の最大が0.1以上0.2未満あり、濃度ムラが視認できない。
「△」:濃度の濃淡差の最大が0.2以上0.3未満あり、濃度ムラが視認できる。
「×」:濃度の濃淡差の最大が0.3以上であり、濃度ムラが視認でき使用できない。
(Concentration unevenness)
For the three evaluation images by the evaluation machine, the densities at five places per image were measured using a reflection densitometer (model number TC-6D manufactured by Tokyo Denshi Co., Ltd.) and evaluated according to the following criteria.
"◎": The maximum difference in density is less than 0.1, and uneven density cannot be visually recognized.
"○": The maximum difference in density is 0.1 or more and less than 0.2, and uneven density cannot be visually recognized.
“Δ”: The maximum difference in density is 0.2 or more and less than 0.3, and uneven density can be visually recognized.
"X": The maximum difference in density is 0.3 or more, and uneven density is visible and cannot be used.

Figure 2022071924000002
Figure 2022071924000002

表1から明らかなように、CaとZrとを含むMnMgフェライトから構成される実施例1~11のキャリア芯材では現像メモリ及び濃度ムラは実使用上問題のないレベルに抑えられていた。またCaとZrとを含むMnフェライトから構成される実施例12のキャリア芯材でも現像メモリ及び濃度ムラは実使用上問題のないレベルに抑えられていた。 As is clear from Table 1, in the carrier core materials of Examples 1 to 11 composed of MnMg ferrite containing Ca and Zr, the developing memory and density unevenness were suppressed to a level that would not cause a problem in actual use. Further, even in the carrier core material of Example 12 composed of Mn ferrite containing Ca and Zr, the development memory and density unevenness were suppressed to a level that would not cause a problem in actual use.

これに対して、Srを含むMnMgフェライトから構成される比較例1のキャリア芯材では現像メモリは実使用上問題のないレベルに抑えられていたものの濃度ムラは視認でき実使用上問題のあるレベルであった。また、Srを含むMnフェライトから構成される比較例2のキャリア芯材でも現像メモリは実使用上問題のないレベルに抑えられていたものの濃度ムラは視認でき実使用上問題のあるレベルであった。 On the other hand, in the carrier core material of Comparative Example 1 composed of MnMg ferrite containing Sr, the development memory was suppressed to a level where there was no problem in actual use, but the density unevenness was visible and there was a problem in actual use. Met. Further, even in the carrier core material of Comparative Example 2 composed of Mn ferrite containing Sr, the development memory was suppressed to a level where there was no problem in actual use, but the density unevenness was visible and was at a level where there was a problem in actual use. ..

またCaを含みZrを含まないMnMgフェライトから構成される比較例3のキャリア芯材では濃度ムラは実使用上問題のないレベルに抑えられていたものの現像メモリは実使用上問題のあるレベルであった。また、Caを含みZrを含まないMnフェライトから構成される比較例4のキャリア芯材でも濃度ムラは実使用上問題のないレベルに抑えられていたものの現像メモリは実使用上問題のあるレベルであった。 Further, in the carrier core material of Comparative Example 3 composed of MnMg ferrite containing Ca and not Zr, the density unevenness was suppressed to a level where there is no problem in actual use, but the development memory is at a level where there is a problem in actual use. rice field. Further, even in the carrier core material of Comparative Example 4 composed of Mn ferrite containing Ca and not Zr, the density unevenness was suppressed to a level where there is no problem in actual use, but the development memory is at a level where there is a problem in actual use. there were.

CaとZrとが過剰に含有されたMnMgフェライトから構成される比較例5のキャリア芯材では現像メモリは問題のないレベルに抑えられていたが濃度ムラが著しく使用できないレベルであった。 In the carrier core material of Comparative Example 5 composed of MnMg ferrite in which Ca and Zr were excessively contained, the developing memory was suppressed to a level where there was no problem, but the density unevenness was significantly unusable.

Zrを含みCaを含まないMnフェライトから構成される比較例6のキャリア芯材では濃度ムラは実使用上問題のないレベルに抑えられていたものの現像メモリが著しく使用できないレベルであった。 In the carrier core material of Comparative Example 6 composed of Mn ferrite containing Zr and not Ca, the density unevenness was suppressed to a level at which there was no problem in actual use, but the development memory was significantly unusable.

ZrとSrとを含むMnフェライトから構成される比較例7のキャリア芯材では現像メモリは問題のないレベルに抑えられていたが濃度ムラが著しく使用できないレベルであった。 In the carrier core material of Comparative Example 7 composed of Mn ferrite containing Zr and Sr, the developing memory was suppressed to a level where there was no problem, but the density unevenness was significantly unusable.

本発明に係るキャリア芯材によれば現像メモリが抑制できると共に、画像の濃度ムラも抑制でき有用である。 The carrier core material according to the present invention is useful because it can suppress the development memory and also suppress the density unevenness of the image.

3 現像ローラ
5 感光体ドラム
3 Develop roller 5 Photoreceptor drum

Claims (9)

組成式(MnO)(MgO)(Fe(但し、x:30mol%以上55mol%以下,y:20mol%以下,z:40mol%以上60mol%以下,x+y+z=100mol%)で表されるフェライト粒子から構成されるキャリア芯材であって、
Caが0.1mol%以上1.0mol%以下の範囲、
Zrが0.1mol%以上1.0mol%以下の範囲、
含有されていることを特徴とするキャリア芯材。
Composition formula (MnO) x (MgO) y (Fe 2O 3 ) z (However, x: 30 mol% or more and 55 mol% or less, y: 20 mol% or less, z: 40 mol% or more and 60 mol% or less, x + y + z = 100 mol%) A carrier core material composed of the represented ferrite particles.
Ca is in the range of 0.1 mol% or more and 1.0 mol% or less,
Zr is in the range of 0.1 mol% or more and 1.0 mol% or less,
A carrier core material characterized by being contained.
前記フェライト粒子の表面の最大山谷深さRzが1.7μm以上2.5μm以下である請求項1記載のキャリア芯材。 The carrier core material according to claim 1, wherein the maximum mountain valley depth Rz on the surface of the ferrite particles is 1.7 μm or more and 2.5 μm or less. 前記フェライト粒子の残留磁化σが1.0(A・m/kg)以下である請求項1又は2に記載のキャリア芯材。 The carrier core material according to claim 1 or 2, wherein the residual magnetization σ r of the ferrite particles is 1.0 (A · m 2 / kg) or less. 前記フェライト粒子の保持力Hが10(A/m×10/(4π))以下である請求項1~3のいずれかに記載のキャリア芯材。 The carrier core material according to any one of claims 1 to 3, wherein the holding force H c of the ferrite particles is 10 (A / m × 10 3 / (4π)) or less. 水銀圧入法で測定される細孔容積が0.003cm/g以上0.02cm/g以下である請求項1~4のいずれかに記載のキャリア芯材。 The carrier core material according to any one of claims 1 to 4, wherein the pore volume measured by the mercury intrusion method is 0.003 cm 3 / g or more and 0.02 cm 3 / g or less. 磁場79.58×10A/m(1000エルステッド)を印加した際の前記フェライト粒子の磁化σ1kが45Am/kg以上75Am/kg以下である請求項1~5のいずれかに記載のキャリア芯材。 17 . _ _ Carrier core material. 前記フェライト粒子の体積平均粒子径D50が20μm以上75μm以下である請求項1~6のいずれかに記載のキャリア芯材。 The carrier core material according to any one of claims 1 to 6, wherein the volume average particle diameter D 50 of the ferrite particles is 20 μm or more and 75 μm or less. 請求項1~7のいずれかに記載のキャリア芯材の表面が樹脂で被覆されていることを特徴とする電子写真現像用キャリア。 A carrier for electrophotographic development, wherein the surface of the carrier core material according to any one of claims 1 to 7 is coated with a resin. 請求項8記載の電子写真現像用キャリアとトナーとを含むことを特徴とする電子写真用現像剤。 A developer for electrophotographic processing, which comprises the carrier for developing an electrophotographic photograph according to claim 8 and a toner.
JP2020181055A 2020-10-29 2020-10-29 Carrier core material Active JP6924885B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020181055A JP6924885B1 (en) 2020-10-29 2020-10-29 Carrier core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020181055A JP6924885B1 (en) 2020-10-29 2020-10-29 Carrier core material

Publications (2)

Publication Number Publication Date
JP6924885B1 JP6924885B1 (en) 2021-08-25
JP2022071924A true JP2022071924A (en) 2022-05-17

Family

ID=77364539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020181055A Active JP6924885B1 (en) 2020-10-29 2020-10-29 Carrier core material

Country Status (1)

Country Link
JP (1) JP6924885B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240322A (en) * 2003-02-07 2004-08-26 Powdertech Co Ltd Carrier core material, coated carrier, electrophotographic two-component developer, and image forming method
JP2005314177A (en) * 2004-04-30 2005-11-10 Toda Kogyo Corp Spherical ferrite particle for radio wave absorbing material and its manufacturing method, and resin composition for semiconductor sealing containing ferrite particles
JP2005314176A (en) * 2004-04-30 2005-11-10 Toda Kogyo Corp Spherical ferrite particle and its manufacturing method, and magnetic carrier for electrophotographic development consisting of spherical ferrite particles
JP2006017828A (en) * 2004-06-30 2006-01-19 Powdertech Co Ltd Ferrite carrier for electrophotographic developer, method for manufacturing the same and electrophotographic developer using the ferrite carrier
JP2010256759A (en) * 2009-04-28 2010-11-11 Konica Minolta Business Technologies Inc Carrier for developing electrostatic latent image and image forming method using the same
JP2012076959A (en) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd Ferrite particles, and carrier for electrophotographic development and electrophotographic developer using ferrite particles
JP2012088385A (en) * 2010-10-15 2012-05-10 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2021088487A (en) * 2019-12-05 2021-06-10 パウダーテック株式会社 Ferrite mixed powder, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004240322A (en) * 2003-02-07 2004-08-26 Powdertech Co Ltd Carrier core material, coated carrier, electrophotographic two-component developer, and image forming method
JP2005314177A (en) * 2004-04-30 2005-11-10 Toda Kogyo Corp Spherical ferrite particle for radio wave absorbing material and its manufacturing method, and resin composition for semiconductor sealing containing ferrite particles
JP2005314176A (en) * 2004-04-30 2005-11-10 Toda Kogyo Corp Spherical ferrite particle and its manufacturing method, and magnetic carrier for electrophotographic development consisting of spherical ferrite particles
JP2006017828A (en) * 2004-06-30 2006-01-19 Powdertech Co Ltd Ferrite carrier for electrophotographic developer, method for manufacturing the same and electrophotographic developer using the ferrite carrier
JP2010256759A (en) * 2009-04-28 2010-11-11 Konica Minolta Business Technologies Inc Carrier for developing electrostatic latent image and image forming method using the same
JP2012076959A (en) * 2010-09-30 2012-04-19 Dowa Electronics Materials Co Ltd Ferrite particles, and carrier for electrophotographic development and electrophotographic developer using ferrite particles
JP2012088385A (en) * 2010-10-15 2012-05-10 Dowa Electronics Materials Co Ltd Carrier core material for electrophotographic developer, carrier for electrophotographic developer, and electrophotographic developer
JP2021088487A (en) * 2019-12-05 2021-06-10 パウダーテック株式会社 Ferrite mixed powder, carrier core material for electrophotographic developer, carrier for electrophotographic developer and electrophotographic developer

Also Published As

Publication number Publication date
JP6924885B1 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP5751688B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6929086B2 (en) Carrier core material
JP6450621B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP5957623B1 (en) Carrier core
JP5726360B1 (en) Carrier core material, electrophotographic developer carrier and electrophotographic developer using the same
JP6633898B2 (en) Carrier core material, electrophotographic developing carrier and electrophotographic developer using the same
JP7099902B2 (en) Carrier core material
JP7275361B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP2018025702A (en) Carrier core material
JP7361617B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP6511320B2 (en) Carrier core material and method for manufacturing the same
JP6924885B1 (en) Carrier core material
JP2018106015A (en) Carrier core material and carrier for electrophotographic development, and electrophotographic developer
JP7075913B2 (en) Carrier core material
JP7257732B2 (en) Carrier core material, electrophotographic development carrier and electrophotographic developer using the same
JP6864054B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic development
JP7085507B2 (en) Carrier core material, carrier for electrophotographic development using this, and developer for electrophotographic
JP7481159B2 (en) Ferrite carrier core material, and electrophotographic development carrier and electrophotographic developer using the same
JP2022090791A (en) Carrier core material
JP7433090B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP2023020082A (en) Carrier core
JP6916727B2 (en) Carrier core material
JP7393219B2 (en) Ferrite carrier core material, carrier for electrophotographic development and developer for electrophotography using the same
JP2018155827A (en) Carrier core material, and carrier for electrophotographic development and developer for electrophotography using the same
JP2021182073A (en) Ferrite carrier core material, carrier for electrophotographic development using the same, and developer for electrophotography

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6924885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150