JP2022071370A - Control system of absorption-type refrigerator and absorption-type refrigerator - Google Patents

Control system of absorption-type refrigerator and absorption-type refrigerator Download PDF

Info

Publication number
JP2022071370A
JP2022071370A JP2020180278A JP2020180278A JP2022071370A JP 2022071370 A JP2022071370 A JP 2022071370A JP 2020180278 A JP2020180278 A JP 2020180278A JP 2020180278 A JP2020180278 A JP 2020180278A JP 2022071370 A JP2022071370 A JP 2022071370A
Authority
JP
Japan
Prior art keywords
temperature
heat medium
absorption chiller
evaporator
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020180278A
Other languages
Japanese (ja)
Other versions
JP7225182B2 (en
Inventor
輝洋 佐潟
Teruhiro Sagata
隆英 杉山
Takahide Sugiyama
修 檜山
Osamu Hiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2020180278A priority Critical patent/JP7225182B2/en
Priority to DE102021211985.9A priority patent/DE102021211985A1/en
Publication of JP2022071370A publication Critical patent/JP2022071370A/en
Application granted granted Critical
Publication of JP7225182B2 publication Critical patent/JP7225182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/02Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a liquid, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/28Disposition of valves, e.g. of on-off valves or flow control valves specially adapted for sorption cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

To provide a refrigeration system using an external heat source, which blocks the supply of a heat medium by detecting the leakage of the heat medium which is supplied from an external heat source side in an absorption-type refrigerator.SOLUTION: A control system 20 for controlling an absorption-type refrigerator having a heat medium flow passage in which a heat medium is supplied to a regenerator 11 from an external heat source side, and flows back to the external heat source side from the regenerator 11, and a valve arranged at a supply path in which the heat medium is supplied to the regenerator 11 from the external heat source side in the heat medium flow passage, and opening and closing the supply path comprises: a first temperature sensor 21 for detecting an in-vessel temperature Tr or a vessel temperature Tr of either of an evaporator 13 and an absorber 14 of the absorption-type refrigerator; and a control device 22 for closing the valve when the in-vessel temperature Tr or the vessel temperature Tr which is detected by the first temperature sensor 21 is higher than a prescribed value Tcti.SELECTED DRAWING: Figure 9

Description

本発明は、外部熱源を利用する吸収式冷凍機の制御システム、及び外部熱源を利用する吸収式冷凍機に関する。 The present invention relates to a control system for an absorption chiller using an external heat source and an absorption chiller using an external heat source.

排熱ラインを流れる排熱保有流体(以下、熱媒という)が保有する熱量により再生が行われる排熱焚再生器を備える吸収式冷凍機が知られている(例えば、特許文献1参照)。特許文献1に記載の吸収式冷凍機では、排熱ラインからバイパスラインが分岐し、この分岐点には、三方弁が設けられている。 An absorption chiller equipped with a waste heat-fired regenerator that regenerates by the amount of heat possessed by the waste heat holding fluid (hereinafter referred to as a heat medium) flowing through the waste heat line is known (see, for example, Patent Document 1). In the absorption chiller described in Patent Document 1, a bypass line branches from the exhaust heat line, and a three-way valve is provided at this branch point.

特開2001-91085号公報Japanese Unexamined Patent Publication No. 2001-91085

ところで、外部熱源を利用する吸収式冷凍機において、熱効率の向上等を目的として外部熱源側から再生器へ熱交換器を介さずに熱媒を供給することが求められている。そのような構成の吸収式冷凍機では、熱媒流路を構成する配管に破損が生じた場合、運転時と停止時との何れにおいても、熱媒は、再生器を満たし、濃溶液と共に吸収器及び蒸発器に流入して吸収器及び蒸発器をも満たす。運転時のみならず停止時にも、熱媒流路には外部熱源側から圧力がかかり蒸発器内は真空になっていることから、熱媒は、吸収式冷凍機本体内に流入し続け、吸収式冷凍機本体内は熱媒で満たされる。ここで、吸収式冷凍機本体は、真空(負)圧に耐えうる構造となっている。しかしながら、正の高圧(水頭圧+循環ポンプ吐出圧)である熱媒で吸収式冷凍機本体の内部が満たされた場合、吸収式冷凍機本体や溶液熱交換器が、熱媒の圧力を内部から受けることで変形する可能性がある。その場合、吸収式冷凍機本体や溶液熱交換器の熱媒流入箇所を修理しても、運転効率が低下するなどの回復不可能な悪影響を生じる可能性がある。 By the way, in an absorption chiller that uses an external heat source, it is required to supply a heat medium from the external heat source side to the regenerator without using a heat exchanger for the purpose of improving thermal efficiency. In an absorption chiller with such a configuration, if the piping constituting the heat medium flow path is damaged, the heat medium fills the regenerator and absorbs it together with the concentrated solution both during operation and stop. It flows into the vessel and evaporator and also fills the absorber and evaporator. Since pressure is applied to the heat medium flow path from the external heat source side and the inside of the evaporator is evacuated not only during operation but also during stop, the heat medium continues to flow into the absorption chiller body and is absorbed. The inside of the chiller body is filled with a heat medium. Here, the absorption chiller body has a structure that can withstand vacuum (negative) pressure. However, when the inside of the absorption chiller body is filled with a heat medium having a positive high pressure (water head pressure + circulation pump discharge pressure), the absorption chiller body or the solution heat exchanger puts the pressure of the heat medium inside. It may be deformed by receiving from. In that case, even if the heat medium inflow portion of the absorption chiller main body or the solution heat exchanger is repaired, irreparable adverse effects such as a decrease in operating efficiency may occur.

本発明はかかる事情に鑑みてなされたものであり、外部熱源を利用する吸収式冷凍機において、外部熱源側から供給される熱媒の吸収式冷凍機での漏洩を検知して熱媒の供給を遮断できる吸収式冷凍機の制御システム、及び吸収式冷凍機を提供することを目的とする。 The present invention has been made in view of such circumstances, and in an absorption chiller using an external heat source, the heat medium is supplied by detecting leakage of the heat medium supplied from the external heat source side in the absorption chiller. It is an object of the present invention to provide a control system for an absorption chiller capable of shutting off the heat and an absorption chiller.

本発明に係る吸収式冷凍機の制御システムは、熱媒が外部熱源側から再生器へ供給されて前記再生器から前記外部熱源側へ還流する熱媒流路と、前記熱媒流路において前記熱媒が前記外部熱源側から前記再生器へ供給される供給路に設けられ前記供給路を開閉する弁とを備える吸収式冷凍機を制御する制御システムであって、前記吸収式冷凍機の蒸発器及び吸収器の何れか一方の容器内温度又は容器温度を検知する第1の温度検知部と、前記第1の温度検知部により検知された前記容器内温度又は前記容器温度が所定値より高い場合に前記弁を閉じる第1の制御部とを備える。 In the control system of the absorption chiller according to the present invention, the heat medium is supplied from the external heat source side to the regenerator and returns from the regenerator to the external heat source side, and the heat medium flow path is the same. A control system for controlling an absorption chiller provided in a supply path in which a heat medium is supplied from the external heat source side to the regenerator and having a valve for opening and closing the supply path, wherein the absorption chiller evaporates. The first temperature detection unit that detects the temperature inside the container or the temperature of the container of either the vessel or the absorber, and the temperature inside the container or the container temperature detected by the first temperature detection unit are higher than a predetermined value. In some cases, it includes a first control unit that closes the valve.

本発明に係る吸収式冷凍機の制御システムにおいて、第1の冷媒が前記吸収器に供給されて前記吸収器から還流する第1の冷媒流路において前記吸収器に供給される前記第1の冷媒の温度を検知する第2の温度検知部を備えてもよく、前記所定値は、前記第2の温度検知部により検知される前記第1の冷媒の温度に設定されていてもよい。 In the control system of the absorption chiller according to the present invention, the first refrigerant supplied to the absorber in the first refrigerant flow path in which the first refrigerant is supplied to the absorber and circulates from the absorber. The second temperature detecting unit for detecting the temperature of the above may be provided, and the predetermined value may be set to the temperature of the first refrigerant detected by the second temperature detecting unit.

本発明に係る吸収式冷凍機の制御システムにおいて、前記吸収器と前記蒸発器とは一体の容器で構成され前記吸収器と前記蒸発器との底部に前記再生器から供給された希溶液が貯留してもよく、前記第1の温度検知部は、前記容器における前記蒸発器側の側面に設けられて前記容器内温度又は前記容器温度を検知してもよい。 In the control system of the absorption chiller according to the present invention, the absorber and the evaporator are configured as an integral container, and a dilute solution supplied from the regenerator is stored in the bottom of the absorber and the evaporator. The first temperature detecting unit may be provided on the side surface of the container on the evaporator side to detect the temperature inside the container or the temperature of the container.

本発明に係る吸収式冷凍機の制御システムは、熱媒が外部熱源側から再生器へ供給されて前記再生器から前記外部熱源側へ還流する熱媒流路と、前記熱媒流路において前記熱媒が前記外部熱源側から前記再生器へ供給される供給路に設けられ前記供給路を開閉する弁とを備える吸収式冷凍機を制御する制御システムであって、第2の冷媒が蒸発器に供給されて前記蒸発器から還流する第2の冷媒流路において前記蒸発器に供給される前記第2の冷媒の温度Tiを検知する第3の温度検知部と、前記第2の冷媒流路において前記蒸発器から還流する前記第2の冷媒の温度Toを検知する第4の温度検知部と、前記温度Toと前記温度Tiとの差(To-Ti)が0以上の所定値より大きい場合に前記弁を閉じる第2の制御部とを備える。 In the control system of the absorption chiller according to the present invention, the heat medium is supplied from the external heat source side to the regenerator and is returned from the regenerator to the external heat source side, and the heat medium flow path is the same. A control system for controlling an absorption chiller provided with a supply path in which a heat medium is supplied from the external heat source side to the regenerator and a valve for opening and closing the supply path, wherein the second refrigerant is an evaporator. A third temperature detection unit that detects the temperature Ti of the second refrigerant supplied to the evaporator in the second refrigerant flow path supplied to the evaporator and recirculated from the evaporator, and the second refrigerant flow path. When the difference (To-Ti) between the temperature To and the temperature Ti is larger than a predetermined value of 0 or more between the fourth temperature detecting unit that detects the temperature To of the second refrigerant recirculating from the evaporator. Is provided with a second control unit that closes the valve.

本発明に係る吸収式冷凍機は、前記制御システムと、前記熱媒流路と、前記弁と、前記再生器、前記吸収器、前記蒸発器、及び凝縮器を備える吸収式冷凍機本体とを備える。 The absorption chiller according to the present invention includes the control system, the heat medium flow path, the valve, and the absorption chiller main body including the regenerator, the absorber, the evaporator, and the condenser. Be prepared.

本発明によれば、外部熱源を利用する吸収式冷凍機において、外部熱源側から供給される熱媒の吸収式冷凍機内での漏洩を検知して熱媒の供給を遮断できる。 According to the present invention, in an absorption chiller using an external heat source, it is possible to detect leakage of the heat medium supplied from the external heat source side in the absorption chiller and cut off the supply of the heat medium.

図1は、本発明の一実施形態に係る吸収式冷凍機の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an absorption chiller according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る吸収式冷凍機の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of an absorption chiller according to an embodiment of the present invention. 図3は、図1及び図2に示す吸収式冷凍機本体の概略を示す図である。FIG. 3 is a diagram showing an outline of the absorption chiller main body shown in FIGS. 1 and 2. 図4は、比較例に係る吸収式冷凍機の概略構成を示す図である。FIG. 4 is a diagram showing a schematic configuration of the absorption chiller according to the comparative example. 図5は、比較例に係る吸収式冷凍機の概略構成を示す図である。FIG. 5 is a diagram showing a schematic configuration of an absorption chiller according to a comparative example. 図6は、図4及び図5に示す吸収式冷凍機本体において熱媒配管に破損が生じた直後の状態を示す図である。FIG. 6 is a diagram showing a state immediately after the heat medium pipe is damaged in the absorption chiller main body shown in FIGS. 4 and 5. 図7は、図4及び図5に示す吸収式冷凍機本体において熱媒配管に破損が生じてから一定時間が経過した後の状態を示す図である。FIG. 7 is a diagram showing a state after a certain period of time has elapsed since the heat medium pipe was damaged in the absorption chiller main body shown in FIGS. 4 and 5. 図8は、図4及び図5に示す吸収式冷凍機本体において熱媒配管に破損が生じた後の最終的な状態を示す図である。FIG. 8 is a diagram showing the final state of the absorption chiller main body shown in FIGS. 4 and 5 after the heat medium pipe is damaged. 図9は、図1及び図2に示す吸収式冷凍機本体において熱媒配管からの熱媒の漏洩が検知された時の状態を示す図である。FIG. 9 is a diagram showing a state when leakage of a heat medium from a heat medium pipe is detected in the absorption chiller main body shown in FIGS. 1 and 2. 図10は、本発明の他の実施形態に係る吸収式冷凍機の概略構成を示す図である。FIG. 10 is a diagram showing a schematic configuration of an absorption chiller according to another embodiment of the present invention. 図11は、本発明の他の実施形態に係る吸収式冷凍機の概略構成を示す図である。FIG. 11 is a diagram showing a schematic configuration of an absorption chiller according to another embodiment of the present invention. 図12は、図10及び図11に示す係る吸収式冷凍機本体において熱媒配管からの熱媒の漏洩が検知された時の状態を示す図である。FIG. 12 is a diagram showing a state when leakage of a heat medium from a heat medium pipe is detected in the absorption chiller main body shown in FIGS. 10 and 11.

以下、本発明を好適な実施形態に沿って説明する。なお、本発明は以下に示す実施形態に限られるものではなく、実施形態は本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾が発生しない範囲内において、適宜公知又は周知の技術が適用されることはいうまでもない。 Hereinafter, the present invention will be described with reference to preferred embodiments. The present invention is not limited to the embodiments shown below, and the embodiments can be appropriately modified without departing from the spirit of the present invention. In addition, in the embodiments shown below, some parts of the configuration are not shown or explained, but the details of the omitted techniques are within the range that does not conflict with the contents described below. Needless to say, publicly known or well-known techniques are appropriately applied.

図1及び図2は、本発明の一実施形態に係る吸収式冷凍機1の概略構成を示す図である。これらの図に示すように、吸収式冷凍機1は、吸収式冷凍機本体10と、外部熱源2と吸収式冷凍機本体10との間で熱媒を循環させる熱媒流路3と、熱媒流路3に設けられた遮断弁4及び三方弁5と、制御システム20とを備える。 1 and 2 are views showing a schematic configuration of an absorption chiller 1 according to an embodiment of the present invention. As shown in these figures, the absorption chiller 1 includes an absorption chiller main body 10, a heat medium flow path 3 for circulating a heat medium between the external heat source 2 and the absorption chiller main body 10, and heat. It includes a shutoff valve 4 and a three-way valve 5 provided in the medium flow path 3, and a control system 20.

本実施形態に係る吸収式冷凍機1は、熱交換器を介さずに外部熱源2から供給される熱媒を利用して再生器11(図3参照)内の希溶液を加熱する。ここで、外部熱源2としては、地域熱供給システム、コージェネレーションシステム、及び太陽熱供給システム等を例示できる。なお、図1及び図2には、地域熱供給システムを示している。 The absorption chiller 1 according to the present embodiment heats the dilute solution in the regenerator 11 (see FIG. 3) by using a heat medium supplied from the external heat source 2 without going through a heat exchanger. Here, examples of the external heat source 2 include a district heat supply system, a cogeneration system, a solar heat supply system, and the like. In addition, FIG. 1 and FIG. 2 show a district heating system.

熱媒流路3は、外部熱源2側から吸収式冷凍機本体10の熱媒入口10Iへ熱媒を供給する供給路3Aと、吸収式冷凍機本体10の熱媒出口10Eから外部熱源2側へ熱媒を還流させる還流路3Bと、供給路3Aから分岐して還流路3Bに合流するバイパス路3Cとを備える。バイパス路3Cと還流路3Bとの合流点に三方弁5が設けられている。また、供給路3Aとバイパス路3Cとの分岐点と熱媒入口10Iとの間に遮断弁4が設けられている。 The heat medium flow path 3 is a supply path 3A for supplying a heat medium from the external heat source 2 side to the heat medium inlet 10I of the absorption chiller body 10 and an external heat source 2 side from the heat medium outlet 10E of the absorption chiller body 10. A recirculation path 3B for recirculating the heat medium to the heat medium and a bypass path 3C branching from the supply path 3A and joining the recirculation path 3B are provided. A three-way valve 5 is provided at the confluence of the bypass path 3C and the return path 3B. Further, a isolation valve 4 is provided between the branch point between the supply path 3A and the bypass path 3C and the heat medium inlet 10I.

図1に示すように、遮断弁4及び三方弁5が開いた状態では、熱媒が外部熱源2側から吸収式冷凍機本体10へ供給されて吸収式冷凍機本体10から外部熱源2側へ還流する。それに対して、図2に示すように、三方弁5が閉じた状態では、熱媒が供給路3Aからバイパス路3C及び還流路3Bを経由して外部熱源2側へ還流する。さらに、三方弁5に加えて遮断弁4が閉じた状態では、供給路3Aから吸収式冷凍機本体10への熱媒の供給が遮断されると共に、吸収式冷凍機本体10から還流路3Bへの熱媒の排出が遮断される。 As shown in FIG. 1, when the isolation valve 4 and the three-way valve 5 are open, the heat medium is supplied from the external heat source 2 side to the absorption chiller main body 10 and from the absorption chiller main body 10 to the external heat source 2 side. Reflux. On the other hand, as shown in FIG. 2, when the three-way valve 5 is closed, the heat medium returns from the supply path 3A to the external heat source 2 side via the bypass path 3C and the return path 3B. Further, when the shutoff valve 4 is closed in addition to the three-way valve 5, the supply of the heat medium from the supply path 3A to the absorption chiller body 10 is cut off, and the heat medium is cut off from the absorption chiller body 10 to the recirculation path 3B. The discharge of the heat medium is cut off.

図1及び図2に示すように、制御システム20は、第1の温度センサ21と、制御装置22とを備える。第1の温度センサ21は、吸収式冷凍機本体10の蒸発器13に設けられている。制御装置22は、第1の温度センサ21により検知される温度Tr等に基づいて遮断弁4及び三方弁5を制御する。 As shown in FIGS. 1 and 2, the control system 20 includes a first temperature sensor 21 and a control device 22. The first temperature sensor 21 is provided in the evaporator 13 of the absorption chiller body 10. The control device 22 controls the isolation valve 4 and the three-way valve 5 based on the temperature Tr or the like detected by the first temperature sensor 21.

図3は、図1及び図2に示す吸収式冷凍機本体10の概略を示す図である。この図に示すように、吸収式冷凍機本体10は、再生器11と、凝縮器12と、蒸発器13と、吸収器14とを備え、蒸発器13と負荷(図示省略)との間で循環する冷水を冷却する。 FIG. 3 is a diagram showing an outline of the absorption chiller main body 10 shown in FIGS. 1 and 2. As shown in this figure, the absorption chiller main body 10 includes a regenerator 11, a condenser 12, an evaporator 13, and an absorber 14, and is between the evaporator 13 and a load (not shown). Cool the circulating cold water.

吸収式冷凍機本体10は、再生器11と凝縮器12とを内包する高圧胴10Aと、蒸発器13と吸収器14とを内包する低温胴10Bとを備える。高圧胴10Aは、隔壁10Wによって左右の2室に区画されており、その2室の一方に再生器11が設けられ、その2室の他方に凝縮器12が設けられている。隔壁10Wの上側部分には多数の通気孔が形成されており、再生器11の内部と凝縮器12の内部とは相互に連通している。また、低温胴10Bは、隔壁10W’によって左右の2室に区画されており、その2室の一方に蒸発器13が設けられ、その2室の他方に吸収器14が設けられている。隔壁10W’には多数の通気孔が形成され、また、隔壁10W’の下端と低温胴10Bの底部との間には空間が形成されていることにより、蒸発器13の内部と吸収器14の内部とは相互に連通している。 The absorption chiller main body 10 includes a high-pressure cylinder 10A containing a regenerator 11 and a condenser 12, and a low-temperature cylinder 10B containing an evaporator 13 and an absorber 14. The high-pressure cylinder 10A is divided into two chambers on the left and right by a partition wall 10W, a regenerator 11 is provided in one of the two chambers, and a condenser 12 is provided in the other of the two chambers. A large number of ventilation holes are formed in the upper portion of the partition wall 10W, and the inside of the regenerator 11 and the inside of the condenser 12 communicate with each other. Further, the low temperature cylinder 10B is divided into two chambers on the left and right by a partition wall 10W', and an evaporator 13 is provided in one of the two chambers, and an absorber 14 is provided in the other of the two chambers. A large number of ventilation holes are formed in the partition wall 10W', and a space is formed between the lower end of the partition wall 10W'and the bottom of the low temperature cylinder 10B, so that the inside of the evaporator 13 and the absorber 14 are formed. It communicates with the inside.

吸収式冷凍機本体10は、冷水流路C1と,冷却水流路C2,C3とを備える。冷水流路C1は、冷水が蒸発器13と負荷との間で循環する流路である。なお、冷水流路C1を、水以外の冷媒が循環する冷媒流路としてもよい。冷却水流路C2は、冷却水が、冷却塔(図示省略)と凝縮器12との間で循環する流路である。なお、冷却水流路C2を、水以外の冷媒が循環する冷媒流路としてもよい。冷却水流路C3は、冷却水が、冷却塔と吸収器14との間で循環する流路である。なお、冷却水流路C3を、水以外の冷媒が循環する冷媒流路としてもよい。 The absorption chiller main body 10 includes a chilled water flow path C1 and cooling water flow paths C2 and C3. The cold water flow path C1 is a flow path through which cold water circulates between the evaporator 13 and the load. The cold water flow path C1 may be used as a refrigerant flow path through which a refrigerant other than water circulates. The cooling water flow path C2 is a flow path through which the cooling water circulates between the cooling tower (not shown) and the condenser 12. The cooling water flow path C2 may be used as a refrigerant flow path through which a refrigerant other than water circulates. The cooling water flow path C3 is a flow path through which the cooling water circulates between the cooling tower and the absorber 14. The cooling water flow path C3 may be used as a refrigerant flow path through which a refrigerant other than water circulates.

吸収式冷凍機本体10は、凝縮器12の底部に設けられた冷媒容器15と、冷媒容器15から蒸発器13へ冷媒を供給する冷媒供給管16と、蒸発器13内で冷媒を散布する散布器17と、冷媒供給管16に設けられた冷媒制御弁18とを備える。冷媒容器15には、冷媒が貯留される。 The absorption chiller main body 10 includes a refrigerant container 15 provided at the bottom of the condenser 12, a refrigerant supply pipe 16 for supplying the refrigerant from the refrigerant container 15 to the evaporator 13, and spraying the refrigerant in the evaporator 13. The vessel 17 and the refrigerant control valve 18 provided in the refrigerant supply pipe 16 are provided. Refrigerant is stored in the refrigerant container 15.

散布器17は、蒸発器13の上部に設けられた容器17Aを備える。容器17Aの底部には多数のノズルが形成されており、冷媒が容器17Aから蒸発器13内に散布される。冷媒は、例えば水である。 The spreader 17 includes a container 17A provided above the evaporator 13. A large number of nozzles are formed at the bottom of the container 17A, and the refrigerant is sprayed from the container 17A into the evaporator 13. The refrigerant is, for example, water.

また、吸収式冷凍機本体10は、溶液流路Sを備える。溶液流路Sは、溶液(吸収液)が再生器11と吸収器14との間で循環する流路である。溶液流路Sで循環する溶液は、例えば臭化リチウム(LiBr)である。 Further, the absorption chiller main body 10 includes a solution flow path S. The solution flow path S is a flow path in which the solution (absorbent liquid) circulates between the regenerator 11 and the absorber 14. The solution circulating in the solution flow path S is, for example, lithium bromide (LiBr).

溶液流路Sは、低温胴10Bの底部から再生器11へ希溶液を供給する希溶液供給路S1と、再生器11の底部から吸収器14の上部へ濃溶液を供給する濃溶液供給路S2と、溶液熱交換器S3と、ポンプS4とを備える。濃溶液供給路S2は、吸収器14内で濃溶液を散布するノズルS5を備える。ポンプS4は、希溶液供給路S1を通して低温胴10Bの底部から再生器11の上部へ希溶液を供給する。また、溶液熱交換器S3は、希溶液供給路S1を流れる希溶液と濃溶液供給路S2を流れる濃溶液とを熱交換させる。希溶液は、吸収器14内で濃溶液が冷媒蒸気を吸収して薄められた溶液である。 The solution flow path S is a rare solution supply path S1 for supplying a dilute solution from the bottom of the low temperature cylinder 10B to the regenerator 11, and a concentrated solution supply path S2 for supplying a concentrated solution from the bottom of the regenerator 11 to the top of the absorber 14. And a solution heat exchanger S3 and a pump S4. The concentrated solution supply path S2 includes a nozzle S5 for spraying the concentrated solution in the absorber 14. The pump S4 supplies the dilute solution from the bottom of the low temperature cylinder 10B to the top of the regenerator 11 through the dilute solution supply path S1. Further, the solution heat exchanger S3 exchanges heat between the dilute solution flowing through the dilute solution supply path S1 and the concentrated solution flowing through the concentrated solution supply path S2. The dilute solution is a solution in which the concentrated solution is diluted by absorbing the refrigerant vapor in the absorber 14.

蒸発器13内は真空状態であり、蒸発器13内では、水が5℃程度で蒸発する。このため、蒸発器13内では、散布器17から散布された冷媒が蒸発し、この際に生じる気化熱により、冷水流路C1で循環する冷水が冷却される。他方で、蒸発器13内で生じた冷媒蒸気は、低温胴10B内で拡散する。 The inside of the evaporator 13 is in a vacuum state, and water evaporates at about 5 ° C. in the evaporator 13. Therefore, in the evaporator 13, the refrigerant sprayed from the sprayer 17 evaporates, and the heat of vaporization generated at this evaporation cools the cold water circulating in the cold water flow path C1. On the other hand, the refrigerant vapor generated in the evaporator 13 diffuses in the low temperature cylinder 10B.

吸収器14内では、蒸発器13で生じた冷媒蒸気が、ノズルS5から散布された濃溶液に吸収される。この吸収作用時に発生する熱は、冷却水流路C3で循環する冷却水により除去される。吸収器14内において濃溶液が冷媒蒸気を吸収して薄められることで希溶液となり、この希溶液が、ポンプS4によって加圧されて再生器11の上部へ供給される。その際、希溶液は、溶液熱交換器S3において再生器11からの高温の濃溶液と熱交換して、昇温した状態で再生器11に流入する。再生器11に流入する希溶液の温度が再生器11内の濃溶液の温度と近くなるほど吸収式冷凍機本体10の効率は向上する。 In the absorber 14, the refrigerant vapor generated in the evaporator 13 is absorbed by the concentrated solution sprayed from the nozzle S5. The heat generated during this absorption action is removed by the cooling water circulating in the cooling water flow path C3. The concentrated solution absorbs the refrigerant vapor in the absorber 14 and is diluted to become a dilute solution, and this dilute solution is pressurized by the pump S4 and supplied to the upper part of the regenerator 11. At that time, the dilute solution exchanges heat with the high-temperature concentrated solution from the regenerator 11 in the solution heat exchanger S3, and flows into the regenerator 11 in a heated state. The efficiency of the absorption chiller body 10 improves as the temperature of the rare solution flowing into the regenerator 11 becomes closer to the temperature of the concentrated solution in the regenerator 11.

再生器11内では、希溶液が、希溶液供給路S1の先端のノズルS6から散布され、外部熱源2の熱量を伝送する熱媒によって加熱される。加熱された希溶液から冷媒蒸気が生じ、他方で、加熱された希溶液から冷媒が蒸気の状態で分離することにより濃溶液が生じる。再生器11で生じた冷媒蒸気は、高圧胴10A内で拡散する。他方で、再生器11で生じた濃溶液は、溶液熱交換器S3において吸収器14から再生器11へ供給される希溶液を温め、吸収器14内でノズルS5から散布される。 In the regenerator 11, the dilute solution is sprayed from the nozzle S6 at the tip of the dilute solution supply path S1 and heated by a heat medium that transmits the amount of heat of the external heat source 2. Refrigerant vapor is generated from the heated dilute solution, and on the other hand, a concentrated solution is produced by separating the refrigerant from the heated dilute solution in the vapor state. The refrigerant vapor generated in the regenerator 11 diffuses in the high pressure cylinder 10A. On the other hand, the concentrated solution generated in the regenerator 11 warms the dilute solution supplied from the absorber 14 to the regenerator 11 in the solution heat exchanger S3, and is sprayed from the nozzle S5 in the absorber 14.

再生器11で生じて凝縮器12内まで拡散した冷媒蒸気は、冷却水流路C2で循環する冷却水により冷却されることにより凝縮され、液状の冷媒になる。この液状の冷媒は、冷媒容器15に貯留する。 The refrigerant vapor generated in the regenerator 11 and diffused into the condenser 12 is condensed by being cooled by the cooling water circulating in the cooling water flow path C2 to become a liquid refrigerant. This liquid refrigerant is stored in the refrigerant container 15.

ここで、熱媒流路3(図1及び図2参照)は、熱媒入口10Iを通して吸収式冷凍機本体10内に挿入され熱媒出口10Eを通して吸収式冷凍機本体10外に引き出された熱媒配管3Pを備える。この熱媒配管3Pは、再生器11内におけるノズルS6の下方を通過するように配されており、熱媒配管3Pを流れる熱媒が、ノズルS6から散布された濃溶液を加熱する。 Here, the heat medium flow path 3 (see FIGS. 1 and 2) is inserted into the absorption chiller main body 10 through the heat medium inlet 10I and drawn out of the absorption chiller main body 10 through the heat medium outlet 10E. A medium pipe 3P is provided. The heat medium pipe 3P is arranged so as to pass below the nozzle S6 in the regenerator 11, and the heat medium flowing through the heat medium pipe 3P heats the concentrated solution sprayed from the nozzle S6.

制御システム20は、第2の温度センサ23を備える。この第2の温度センサ23は、冷却水流路C3における冷却水を吸収器14内へ供給する供給路に設けられており、吸収器14へ供給される冷却水の温度Tctiを検知する。第2の温度センサ23の検知信号は、制御装置22に出力される。 The control system 20 includes a second temperature sensor 23. The second temperature sensor 23 is provided in the supply path for supplying the cooling water in the cooling water flow path C3 into the absorber 14, and detects the temperature Tcti of the cooling water supplied to the absorber 14. The detection signal of the second temperature sensor 23 is output to the control device 22.

第1の温度センサ21は、低温胴10Bにおける蒸発器13側の側面10Sの下部に設置されている。この第1の温度センサ21の検知信号は、制御装置22に出力される。 The first temperature sensor 21 is installed in the lower part of the side surface 10S on the evaporator 13 side in the low temperature cylinder 10B. The detection signal of the first temperature sensor 21 is output to the control device 22.

ここで、本実施形態では、第1の温度センサ21のセンサ部は、低温胴10B内に配されており、第1の温度センサ21は、低温胴10Bの容器内温度を検知する。しかしながら、第1の温度センサ21のセンサ部を、側面10Sに接するように配し、第1の温度センサ21により、低温胴10Bの容器温度(側面10Sの温度)を検知するようにしてもよい。さらに、第1の温度センサ21を、低温胴10Bにおける蒸発器13側の側面10Sに設置することは必須ではなく、低温胴10Bにおける吸収器14側の側面に設置してもよい。 Here, in the present embodiment, the sensor unit of the first temperature sensor 21 is arranged in the low temperature cylinder 10B, and the first temperature sensor 21 detects the temperature inside the container of the low temperature cylinder 10B. However, the sensor unit of the first temperature sensor 21 may be arranged so as to be in contact with the side surface 10S, and the container temperature of the low temperature cylinder 10B (the temperature of the side surface 10S) may be detected by the first temperature sensor 21. .. Further, it is not essential to install the first temperature sensor 21 on the side surface 10S of the low temperature cylinder 10B on the evaporator 13 side, and the first temperature sensor 21 may be installed on the side surface of the low temperature cylinder 10B on the absorber 14 side.

第1の温度センサ21のセンサ部の設置高さは、低温胴10Bの底部に貯留する希溶液の液面の近傍であって当該液面より上側に設定されている。なお、第1の温度センサ21のセンサ部の設置高さを、希溶液の液面以下に設定し、常時、希溶液の温度又は希溶液が接する容器部分の温度を検知してもよい。 The installation height of the sensor portion of the first temperature sensor 21 is set near the liquid level of the rare solution stored in the bottom of the low temperature cylinder 10B and above the liquid level. The installation height of the sensor unit of the first temperature sensor 21 may be set below the liquid level of the dilute solution, and the temperature of the dilute solution or the temperature of the container portion in contact with the dilute solution may be constantly detected.

制御装置22は、第1の温度センサ21から出力された温度Trと第2の温度センサ23から出力された温度Tctiとに基づいて遮断弁4及び三方弁5(図1及び図2参照)を制御する。具体的には、制御装置22は、第1の温度センサ21から出力された温度Trが第2の温度センサ23から出力された温度Tctiより高い場合(Tr>Tcti)に、遮断弁4及び三方弁5を閉じ、外部熱源2側から吸収式冷凍機本体10への熱媒の供給を遮断する。これにより、熱媒配管3Pに破損が生じて熱媒が吸収式冷凍機本体10に漏洩した場合に、熱媒が吸収式冷凍機本体10内に漏洩したことを検知し、熱媒が吸収式冷凍機本体10内に漏洩し続けることを防止できる。なお、作用の詳細については後述する。 The control device 22 uses the isolation valve 4 and the three-way valve 5 (see FIGS. 1 and 2) based on the temperature Tr output from the first temperature sensor 21 and the temperature Tcti output from the second temperature sensor 23. Control. Specifically, the control device 22 sets the shutoff valve 4 and the three sides when the temperature Tr output from the first temperature sensor 21 is higher than the temperature Tcti output from the second temperature sensor 23 (Tr> Tcti). The valve 5 is closed, and the supply of the heat medium from the external heat source 2 side to the absorption chiller main body 10 is cut off. As a result, when the heat medium pipe 3P is damaged and the heat medium leaks into the absorption chiller body 10, it is detected that the heat medium has leaked into the absorption chiller body 10, and the heat medium is absorbed. It is possible to prevent the refrigerator from continuing to leak into the main body 10. The details of the action will be described later.

図4及び図5は、比較例に係る吸収式冷凍機1Cの概略構成を示す図である。この図に示すように、比較例に係る吸収式冷凍機1Cは、上述の第1の温度センサ21と遮断弁4とを備えない。また、比較例に係る吸収式冷凍機1Cでは、制御装置22Cが、温度Trと温度Tctiとに基づいた熱媒の供給の制御を実施しない。 4 and 5 are views showing a schematic configuration of the absorption chiller 1C according to the comparative example. As shown in this figure, the absorption chiller 1C according to the comparative example does not include the above-mentioned first temperature sensor 21 and the isolation valve 4. Further, in the absorption chiller 1C according to the comparative example, the control device 22C does not control the supply of the heat medium based on the temperature Tr and the temperature Tcti.

図4では、三方弁5が開いた吸収式冷凍機1Cの運転時に熱媒配管3Pに破損が生じた場合の吸収式冷凍機1Cの状態を示している。また、図5では、三方弁5が閉じた吸収式冷凍機1Cの運転停止時に熱媒配管3Pに破損が生じた場合の吸収式冷凍機1Cの状態を示している。 FIG. 4 shows the state of the absorption chiller 1C when the heat medium pipe 3P is damaged during the operation of the absorption chiller 1C in which the three-way valve 5 is opened. Further, FIG. 5 shows the state of the absorption chiller 1C when the heat medium pipe 3P is damaged when the operation of the absorption chiller 1C with the three-way valve 5 closed is stopped.

図4に示すように、吸収式冷凍機1Cでは、三方弁5が開いた運転時に熱媒配管3Pに破損が生じた場合、外部熱源2側から吸収式冷凍機本体10Cに熱媒が供給され続け、熱媒配管3Pから吸収式冷凍機本体10C内に熱媒が漏洩し続ける。この場合、熱媒が、吸収式冷凍機本体10C内の溶液や冷媒等と共に、吸収式冷凍機本体10Cから外部熱源2側へ流れる。また、図5に示すように、吸収式冷凍機1Cでは、三方弁5が閉じた運転停止時に熱媒配管3Pに破損が生じた場合、外部熱源2側から吸収式冷凍機本体10Cに熱媒が供給され、熱媒配管3Pから吸収式冷凍機本体10C内に熱媒が漏洩する。以下、比較例に係る吸収式冷凍機1Cにおいて熱媒配管3Pに破損が生じた場合の作用について詳細に説明する。 As shown in FIG. 4, in the absorption chiller 1C, when the heat medium pipe 3P is damaged during the operation when the three-way valve 5 is opened, the heat medium is supplied from the external heat source 2 side to the absorption chiller main body 10C. Subsequently, the heat medium continues to leak from the heat medium pipe 3P into the absorption chiller main body 10C. In this case, the heat medium flows from the absorption chiller body 10C to the external heat source 2 side together with the solution, the refrigerant, and the like in the absorption chiller body 10C. Further, as shown in FIG. 5, in the absorption chiller 1C, when the heat medium pipe 3P is damaged when the operation is stopped when the three-way valve 5 is closed, the heat medium is transmitted from the external heat source 2 side to the absorption chiller main body 10C. Is supplied, and the heat medium leaks from the heat medium pipe 3P into the absorption chiller main body 10C. Hereinafter, the operation when the heat medium pipe 3P is damaged in the absorption chiller 1C according to the comparative example will be described in detail.

図6は、図4及び図5に示す吸収式冷凍機本体10Cにおいて熱媒配管3Pに破損が生じた直後の状態を示す図である。この図に示すように、吸収式冷凍機本体10Cにおいて熱媒配管3Pに破損が生じた場合、熱媒が熱媒配管3Pの破損箇所から再生器11内に漏洩する。熱媒の温度は60~95℃程度である。この熱媒が再生器11の底部に貯留した濃溶液と混合する。再生器11の底部で生じた熱媒と濃溶液との混合液は、濃溶液供給路S2を通じて吸収器14に供給され吸収器14内でノズルS5から散布される。低温胴10Bの底部には、熱媒と冷媒と溶液とが混合した混合液が貯留する。なお、図6~図9,図12において、熱媒又は熱媒が混合した混合液をハッチングで示している。 FIG. 6 is a diagram showing a state immediately after the heat medium pipe 3P is damaged in the absorption chiller main body 10C shown in FIGS. 4 and 5. As shown in this figure, when the heat medium pipe 3P is damaged in the absorption chiller main body 10C, the heat medium leaks into the regenerator 11 from the damaged portion of the heat medium pipe 3P. The temperature of the heat medium is about 60 to 95 ° C. This heat medium mixes with the concentrated solution stored in the bottom of the regenerator 11. The mixed solution of the heat medium and the concentrated solution generated at the bottom of the regenerator 11 is supplied to the absorber 14 through the concentrated solution supply path S2 and sprayed from the nozzle S5 in the absorber 14. A mixed liquid in which a heat medium, a refrigerant, and a solution are mixed is stored in the bottom of the low temperature cylinder 10B. In addition, in FIGS. 6 to 9 and 12, the heat medium or the mixed liquid in which the heat medium is mixed is shown by hatching.

図7は、図4及び図5に示す吸収式冷凍機本体10Cにおいて熱媒配管3Pに破損が生じてから一定時間が経過した後の状態を示す図である。この図に示すように、吸収式冷凍機本体10Cにおいて熱媒配管3Pに破損が生じてから一定時間が経過すると、低温胴10Bの底部に貯留した混合液の量が増加すると共に、高圧胴10Aの底部に貯留した混合液の量も増加する。高圧胴10Aでは、再生器11の底部に貯留していた混合液の液面が隔壁10Wの連通孔が形成されている高さまで上昇し、混合液が、凝縮器12内に流入する。凝縮器12内に流入した混合液は、冷媒供給管16を通じて蒸発器13内の散布器17に流入し散布器17から蒸発器13内に散布される。 FIG. 7 is a diagram showing a state after a certain time has elapsed from the occurrence of damage to the heat medium pipe 3P in the absorption chiller main body 10C shown in FIGS. 4 and 5. As shown in this figure, when a certain period of time elapses after the heat medium pipe 3P is damaged in the absorption chiller main body 10C, the amount of the mixed liquid stored in the bottom of the low temperature cylinder 10B increases and the high pressure cylinder 10A The amount of mixture stored at the bottom of the squeeze also increases. In the high-pressure cylinder 10A, the liquid level of the mixed liquid stored in the bottom of the regenerator 11 rises to the height at which the communication hole of the partition wall 10W is formed, and the mixed liquid flows into the condenser 12. The mixed liquid that has flowed into the condenser 12 flows into the spreader 17 in the evaporator 13 through the refrigerant supply pipe 16 and is sprayed from the spreader 17 into the evaporator 13.

図8は、図4及び図5に示す吸収式冷凍機本体10Cにおいて熱媒配管3Pに破損が生じた後の最終的な状態を示す図である。この図に示すように、吸収式冷凍機本体10Cにおいて熱媒配管3Pに破損が生じた後、最終的には、高圧胴10Aの内部及び低温胴10Bの内部が、熱媒と冷媒と溶液との混合液により満たされる。運転時には、熱媒が熱媒配管3Pに供給され続けることから、熱媒が熱媒配管3Pの破損箇所から高圧胴10A内に漏洩し続け最終的には高圧胴10Aの内部及び低温胴10Bの内部を満たすことになる。それに対して、運転停止時には、熱媒配管3Pには外部熱源2側から圧力がかかっていると共に低温胴10Bの内部は真空に近い状態であることから、熱媒が熱媒配管3Pの破損箇所から高圧胴10A内に漏洩し続け最終的には高圧胴10Aの内部及び低温胴10Bの内部を満たすことになる。 FIG. 8 is a diagram showing a final state after the heat medium pipe 3P is damaged in the absorption chiller main body 10C shown in FIGS. 4 and 5. As shown in this figure, after the heat medium pipe 3P is damaged in the absorption chiller main body 10C, the inside of the high pressure cylinder 10A and the inside of the low temperature cylinder 10B are finally filled with the heat medium, the refrigerant, and the liquid. Filled with a mixture of. During operation, the heat medium continues to be supplied to the heat medium pipe 3P, so that the heat medium continues to leak into the high-pressure cylinder 10A from the damaged portion of the heat medium pipe 3P, and finally inside the high-pressure cylinder 10A and the low-temperature cylinder 10B. It will fill the inside. On the other hand, when the operation is stopped, the heat medium pipe 3P is under pressure from the external heat source 2 side and the inside of the low temperature cylinder 10B is in a state close to vacuum, so that the heat medium is the damaged part of the heat medium pipe 3P. Will continue to leak into the high pressure cylinder 10A and eventually fill the inside of the high pressure cylinder 10A and the inside of the low temperature cylinder 10B.

それに対して、本実施形態に係る吸収式冷凍機1によれば、熱媒配管3Pに破損が生じた場合には、熱媒が熱媒配管3Pから吸収式冷凍機本体10内に漏洩したことを検知して吸収式冷凍機本体10への熱媒の供給を遮断するので、比較例のような事態が生じることを防止できる。以下、本実施形態に係る吸収式冷凍機1において熱媒配管3Pに破損が生じた場合の作用について詳細に説明する。 On the other hand, according to the absorption chiller 1 according to the present embodiment, when the heat medium pipe 3P is damaged, the heat medium leaks from the heat medium pipe 3P into the absorption chiller main body 10. Is detected and the supply of the heat medium to the absorption chiller main body 10 is cut off, so that it is possible to prevent the situation as in the comparative example from occurring. Hereinafter, the operation when the heat medium pipe 3P is damaged in the absorption chiller 1 according to the present embodiment will be described in detail.

図9は、本実施形態に係る吸収式冷凍機本体10において熱媒配管3Pからの熱媒の漏洩が検知された時の状態を示す図である。この図に示すように、吸収式冷凍機本体10において熱媒配管3Pに破損が生じてから一定時間が経過すると、低温胴10Bの底部に貯留した混合液の量が増加する。なお、高圧胴10Aの底部に貯留した混合液の量も増加する。 FIG. 9 is a diagram showing a state when leakage of the heat medium from the heat medium pipe 3P is detected in the absorption chiller main body 10 according to the present embodiment. As shown in this figure, when a certain period of time elapses after the heat medium pipe 3P of the absorption chiller main body 10 is damaged, the amount of the mixed liquid stored in the bottom of the low temperature cylinder 10B increases. The amount of the mixed liquid stored in the bottom of the high-pressure cylinder 10A also increases.

ここで、熱媒配管3Pに破損が生じる以前の状態では、第1の温度センサ21が、低温胴10Bの底部に貯留した希溶液の液面の近傍(液面よりも上側)に位置する。そのため、熱媒配管3Pに破損が生じて低温胴10Bの底部に貯留した混合液の量が増加した場合、この混合液の液面が第1の温度センサ21のセンサ部の高さまで上昇する。これにより、第1の温度センサ21が検知する温度Trが、通常時の蒸発器13の容器内温度から熱媒を含む混合液の温度まで上昇する。なお、第1の温度センサ21が蒸発器13の容器温度を検知する場合には、温度Trが、通常時の蒸発器13の容器温度から熱媒を含む混合液が接する容器部分の温度まで上昇する。 Here, in the state before the heat medium pipe 3P is damaged, the first temperature sensor 21 is located near the liquid level of the rare solution stored in the bottom of the low temperature cylinder 10B (above the liquid level). Therefore, when the heat medium pipe 3P is damaged and the amount of the mixed liquid stored in the bottom of the low temperature cylinder 10B increases, the liquid level of the mixed liquid rises to the height of the sensor portion of the first temperature sensor 21. As a result, the temperature Tr detected by the first temperature sensor 21 rises from the normal temperature inside the container of the evaporator 13 to the temperature of the mixed liquid containing the heat medium. When the first temperature sensor 21 detects the container temperature of the evaporator 13, the temperature Tr rises from the normal container temperature of the evaporator 13 to the temperature of the container portion in contact with the mixed liquid containing the heat medium. do.

制御装置22は、第1の温度センサ21が検知する温度Trと第2の温度センサ23が検知する冷却水の温度Tctiとを比較し、温度Trが温度Tctiより高い場合(Tr>Tcti)に、熱媒配管3Pから吸収式冷凍機本体10内への熱媒の漏洩が発生したと判断して遮断弁4及び三方弁5(図1及び図2参照)を閉じる。 The control device 22 compares the temperature Tr detected by the first temperature sensor 21 with the temperature Tcti of the cooling water detected by the second temperature sensor 23, and when the temperature Tr is higher than the temperature Tcti (Tr> Tcti). , It is determined that the heat medium has leaked from the heat medium pipe 3P into the absorption chiller body 10, and the shutoff valve 4 and the three-way valve 5 (see FIGS. 1 and 2) are closed.

ここで、熱媒が低温胴10B内に流入していない状態では、吸収器14に供給される冷却水の温度Tctiは、蒸発器13の容器内温度又は容器温度(例えば、約10℃)である温度Trに比して高い。それに対して、熱媒が低温胴10B内に流入した状態では、熱媒がノズルS5から吸収器14内に散布され冷却水流路C3を流れる冷却水により冷却されるものの、その熱媒の温度が、吸収器14に供給される冷却水の温度Tctiよりも低くなることはない。従って、温度Tr>温度Tctiとなる状態を検知することにより、低温胴10B内に熱媒が流入したことを検知することができる。 Here, in a state where the heat medium does not flow into the low temperature cylinder 10B, the temperature Tcti of the cooling water supplied to the absorber 14 is the temperature inside the container of the evaporator 13 or the temperature of the container (for example, about 10 ° C.). It is higher than a certain temperature Tr. On the other hand, in a state where the heat medium has flowed into the low temperature cylinder 10B, the heat medium is sprayed from the nozzle S5 into the absorber 14 and cooled by the cooling water flowing through the cooling water flow path C3, but the temperature of the heat medium is high. , The temperature of the cooling water supplied to the absorber 14 is not lower than Tcti. Therefore, by detecting the state where the temperature Tr> the temperature Tcti, it is possible to detect that the heat medium has flowed into the low temperature cylinder 10B.

なお、第1の温度センサ21は、吸収器14側の側面に配してもよい。しかしながら、その場合、熱媒配管3Pからの熱媒の漏洩のない通常時に、ノズルS5から散布された溶液(濃溶液もしくは希溶液)の温度が第1の温度センサ21により検知される可能性があるので、第1の温度センサ21は、蒸発器13側の側面10Sに配されるのが好適である。 The first temperature sensor 21 may be arranged on the side surface of the absorber 14 side. However, in that case, the temperature of the solution (concentrated solution or dilute solution) sprayed from the nozzle S5 may be detected by the first temperature sensor 21 in a normal time when there is no leakage of the heat medium from the heat medium pipe 3P. Therefore, it is preferable that the first temperature sensor 21 is arranged on the side surface 10S on the evaporator 13 side.

また、本実施形態では、第1の温度センサ21により検知された温度Trと第2の温度センサ23により検知された冷却水の温度Tctiとを用いて熱媒の漏洩を検知した。しかしながら、冷却水の温度Tctiに代えて所定値Tr’を用いてもよい。即ち、第1の温度センサ21により検知された温度Trが所定値Tr’より高い場合(Tr>Tr’)に、熱媒の漏洩を検知するようにしてもよい。この場合、所定値Tr’としては、熱媒の漏洩が生じていない通常時の蒸発器13の容器内温度又は容器温度より高く、熱媒の温度と同程度若しくは熱媒の温度と蒸発器13の温度との中間の温度を例示できる。 Further, in the present embodiment, the leakage of the heat medium is detected by using the temperature Tr detected by the first temperature sensor 21 and the temperature Tcti of the cooling water detected by the second temperature sensor 23. However, a predetermined value Tr'may be used instead of the temperature Tcti of the cooling water. That is, when the temperature Tr detected by the first temperature sensor 21 is higher than the predetermined value Tr'(Tr> Tr'), the leakage of the heat medium may be detected. In this case, the predetermined value Tr'is higher than the temperature inside the container of the evaporator 13 or the temperature of the container in a normal state where leakage of the heat medium does not occur, and is about the same as the temperature of the heat medium or the temperature of the heat medium and the evaporator 13. An example is an example of a temperature intermediate with the temperature of.

図10及び図11は、本発明の他の実施形態に係る吸収式冷凍機101の概略構成を示す図である。なお、上記実施形態と同様の構成については同一の符号を付すと共に上記実施形態についての説明を援用する。 10 and 11 are views showing a schematic configuration of the absorption chiller 101 according to another embodiment of the present invention. The same reference numerals are given to the same configurations as those of the above-described embodiment, and the description of the above-described embodiment is incorporated.

これらの図に示すように、吸収式冷凍機101は、上記実施形態の制御システム20に代えて制御システム120を備える。この制御システム120は、第3の温度センサ121と、第4の温度センサ122と、制御装置123とを備える。 As shown in these figures, the absorption chiller 101 includes a control system 120 instead of the control system 20 of the above embodiment. The control system 120 includes a third temperature sensor 121, a fourth temperature sensor 122, and a control device 123.

第3の温度センサ121は、冷水流路C1における冷水を負荷(図示省略)側から蒸発器13へ供給する流路に設けられ、蒸発器13へ供給される冷水の温度(蒸発器13の入口での冷水の温度)Twtiを検知する。また、第4の温度センサ122は、冷水流路C1における冷水を蒸発器13から負荷側へ供給する流路に設けられ、蒸発器13から負荷側へ供給される冷水の温度(蒸発器13の出口での冷水の温度)Twtoを検知する。第3の温度センサ121の検知信号は制御装置123に出力される。また、第4の温度センサ122の検知信号は制御装置123に出力される。 The third temperature sensor 121 is provided in a flow path for supplying cold water in the cold water flow path C1 from the load (not shown) side to the evaporator 13, and the temperature of the cold water supplied to the evaporator 13 (the inlet of the evaporator 13). Cold water temperature in) Twti is detected. Further, the fourth temperature sensor 122 is provided in the flow path for supplying cold water from the evaporator 13 to the load side in the cold water flow path C1, and the temperature of the cold water supplied from the evaporator 13 to the load side (of the evaporator 13). Cold water temperature at the outlet) Twto is detected. The detection signal of the third temperature sensor 121 is output to the control device 123. Further, the detection signal of the fourth temperature sensor 122 is output to the control device 123.

制御装置123は、第3の温度センサ121により検知される温度Twtiと第4の温度センサ122により検知される温度Twtoとに基づいて遮断弁4及び三方弁5を制御する。具体的には、制御装置123は、第4の温度センサ122から出力された温度Twtoと第3の温度センサ121から出力された温度Twtiとの差(Twto-Twti)が0以上の所定値Twt(例えば、1)より大きい場合((Twto-Twti)>Twt≧0)に、遮断弁4及び三方弁5を閉じ、外部熱源2側から吸収式冷凍機本体10への熱媒の供給を遮断する。ここで、所定値Twtは、1等の0に近い値であって、温度センサの検知精度を考慮したうえで温度Twtoが温度Twtiよりも高い状態(Twto>Twti)を確実に検知できる値に設定されている。 The control device 123 controls the isolation valve 4 and the three-way valve 5 based on the temperature Twti detected by the third temperature sensor 121 and the temperature Twto detected by the fourth temperature sensor 122. Specifically, the control device 123 has a predetermined value Twt in which the difference (Twto-Twti) between the temperature Twto output from the fourth temperature sensor 122 and the temperature Twti output from the third temperature sensor 121 is 0 or more. (For example, when it is larger than 1) ((Twto-Twti)> Twt ≧ 0), the shutoff valve 4 and the three-way valve 5 are closed to shut off the supply of the heat medium from the external heat source 2 side to the absorption chiller body 10. do. Here, the predetermined value Twt is a value close to 0 such as 1, and is a value that can reliably detect a state in which the temperature Twto is higher than the temperature Twti (Twto> Twti) in consideration of the detection accuracy of the temperature sensor. It is set.

これにより、熱媒配管3Pに破損が生じて熱媒が吸収式冷凍機本体10内に漏洩した場合に、熱媒が吸収式冷凍機本体10内に漏洩したことを検知し、熱媒が吸収式冷凍機本体10内に漏洩し続けることを防止できる。なお、作用の詳細については後述する。 As a result, when the heat medium pipe 3P is damaged and the heat medium leaks into the absorption chiller body 10, it is detected that the heat medium has leaked into the absorption chiller body 10 and the heat medium absorbs it. It is possible to prevent continuous leakage into the chiller body 10. The details of the action will be described later.

図12は、図10及び図11に示す吸収式冷凍機本体10において熱媒配管3Pからの熱媒の漏洩が検知された時の状態を示す図である。この図に示すように、吸収式冷凍機本体10において熱媒配管3Pに破損が生じると、低温胴10Bの底部に貯留した混合液の量が増加する。なお、高圧胴10Aの底部に貯留した混合液の量も増加する。 FIG. 12 is a diagram showing a state when leakage of the heat medium from the heat medium pipe 3P is detected in the absorption chiller main body 10 shown in FIGS. 10 and 11. As shown in this figure, when the heat medium pipe 3P is damaged in the absorption chiller main body 10, the amount of the mixed liquid stored in the bottom of the low temperature cylinder 10B increases. The amount of the mixed liquid stored in the bottom of the high-pressure cylinder 10A also increases.

ここで、熱媒配管3Pに破損が生じる以前の状態では、低温胴10B内が真空状態若しくは真空に近い状態であることから、蒸発器13内での冷媒の蒸発が促進される。そのため、冷水流路C1を流れる冷水が冷媒の気化熱により冷却され、第4の温度センサ122により検知される冷却水の温度Twtoが第3の温度センサ121により検知される冷却水の温度Twtiより低くなる(Twto<Twti)。 Here, in the state before the heat medium pipe 3P is damaged, since the inside of the low temperature cylinder 10B is in a vacuum state or a state close to a vacuum, evaporation of the refrigerant in the evaporator 13 is promoted. Therefore, the cold water flowing through the cold water flow path C1 is cooled by the heat of vaporization of the refrigerant, and the temperature Twto of the cooling water detected by the fourth temperature sensor 122 is higher than the temperature Twti of the cooling water detected by the third temperature sensor 121. It becomes lower (Twto <Twti).

それに対して、熱媒配管3Pに破損が生じて低温胴10B内に熱媒が流入すると、低温胴10B内の圧力が上昇し、蒸発器13内での冷媒の蒸発が促進されないどころか、蒸発器13内で冷媒の凝縮が始まる。これにより、冷水流路C1を流れる冷水が冷媒の凝縮熱により加熱され、第4の温度センサ122により検知される冷却水の温度Twtoが第3の温度センサ121により検知される冷却水の温度Twtiより高くなる(Twto>Twti)。従って、温度Twto>温度Twtiとなる状態を検知することにより、低温胴10B内に熱媒が流入したことを検知することができる。 On the other hand, when the heat medium pipe 3P is damaged and the heat medium flows into the low temperature cylinder 10B, the pressure in the low temperature cylinder 10B rises, and the evaporation of the refrigerant in the evaporator 13 is not promoted. Condensation of the refrigerant begins in 13. As a result, the cold water flowing through the cold water flow path C1 is heated by the heat of condensation of the refrigerant, and the temperature Twto of the cooling water detected by the fourth temperature sensor 122 is the temperature Twti of the cooling water detected by the third temperature sensor 121. Higher (Twto> Twti). Therefore, by detecting the state in which the temperature Twto> the temperature Twti, it is possible to detect that the heat medium has flowed into the low temperature cylinder 10B.

制御装置123は、第4の温度センサ122が検知する冷水の温度Twtoと第3の温度センサ121が検知する冷水の温度Twtiとを比較し、温度Twtoと温度Twtiとの差(Twto-Twti)が0以上の所定値Twtより大きい場合(Twto-Twti>Twt≧0)に、熱媒配管3Pから吸収式冷凍機本体10内への熱媒の漏洩が発生したと判断して遮断弁4及び三方弁5を閉じる。 The control device 123 compares the temperature Twto of the cold water detected by the fourth temperature sensor 122 with the temperature Twti of the cold water detected by the third temperature sensor 121, and compares the temperature Twto with the temperature Twti (Twto-Twti). When is greater than a predetermined value Twt of 0 or more (Twto-Twti> Twt ≧ 0), it is determined that the heat medium has leaked from the heat medium pipe 3P into the absorption type refrigerating machine main body 10, and the shutoff valve 4 and the shutoff valve 4 and Close the three-way valve 5.

以上、上記実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよいし、適宜公知や周知の技術を組み合わせてもよい。 Although the present invention has been described above based on the above-described embodiment, the present invention is not limited to the above-described embodiment, and changes may be made without departing from the spirit of the present invention. Techniques may be combined.

例えば、上記実施形態では、吸収式冷凍機本体10を、再生器11と凝縮器12とを一体化した高圧胴10Aと、蒸発器13と吸収器14とを一体化した低温胴10Bとにより構成した。しかしながら、再生器11と凝縮器12とを一体化せずに別体として配管で接続したり、蒸発器13と吸収器14とを一体化せずに別体として配管で接続したりする等してもよい。 For example, in the above embodiment, the absorption chiller main body 10 is composed of a high-pressure cylinder 10A in which the regenerator 11 and the condenser 12 are integrated, and a low-temperature cylinder 10B in which the evaporator 13 and the absorber 14 are integrated. bottom. However, the regenerator 11 and the condenser 12 may be connected by piping as separate bodies without being integrated, or the evaporator 13 and the absorber 14 may be connected by piping as separate bodies without being integrated. You may.

1 吸収式冷凍機
2 外部熱源
3 熱媒流路
3A 供給路
4 遮断弁(弁)
10 吸収式冷凍機本体
10B 低温胴(容器)
10S 側面
11 再生器
12 凝縮器
13 蒸発器
14 吸収器
20 制御システム
21 第1の温度センサ(第1の温度検知部)
22 制御装置(第1の制御部)
23 第2の温度センサ(第2の温度検知部)
101 吸収式冷凍機
120 制御システム
121 第3の温度センサ(第3の温度検知部)
122 第4の温度センサ(第4の温度検知部)
123 制御装置(第2の制御部)
C1 冷水流路(第2の冷媒流路)
C3 冷却水流路(第1の冷媒流路)
Tr 温度(容器内温度又は容器温度)
Tr’ 所定値
Tcti 温度(所定値、第1の冷媒の温度)
Twti 温度(第2の冷媒の温度Ti)
Twto 温度(第2の冷媒の温度To)
Twt 所定値
1 Absorption chiller 2 External heat source 3 Heat medium flow path 3A Supply path 4 Isolation valve (valve)
10 Absorption chiller body 10B Low temperature cylinder (container)
10S Side 11 Regenerator 12 Condensator 13 Evaporator 14 Absorber 20 Control system 21 First temperature sensor (first temperature detector)
22 Control device (first control unit)
23 Second temperature sensor (second temperature detector)
101 Absorption chiller 120 Control system 121 Third temperature sensor (third temperature detector)
122 Fourth temperature sensor (fourth temperature detector)
123 Control device (second control unit)
C1 Cold water flow path (second refrigerant flow path)
C3 cooling water flow path (first refrigerant flow path)
Tr temperature (container temperature or container temperature)
Tr'predetermined value Tcti temperature (predetermined value, temperature of the first refrigerant)
Twti temperature (Temperature of the second refrigerant Ti)
Twto temperature (Temperature of the second refrigerant To)
Twt predetermined value

Claims (5)

熱媒が外部熱源側から再生器へ供給されて前記再生器から前記外部熱源側へ還流する熱媒流路と、前記熱媒流路において前記熱媒が前記外部熱源側から前記再生器へ供給される供給路に設けられ前記供給路を開閉する弁とを備える吸収式冷凍機を制御する制御システムであって、
前記吸収式冷凍機の蒸発器及び吸収器の何れか一方の容器内温度又は容器温度を検知する第1の温度検知部と、
前記第1の温度検知部により検知された前記容器内温度又は前記容器温度が所定値より高い場合に前記弁を閉じる第1の制御部と
を備える吸収式冷凍機の制御システム。
A heat medium flow path in which a heat medium is supplied from the external heat source side to the regenerator and returns from the regenerator to the external heat source side, and the heat medium is supplied from the external heat source side to the regenerator in the heat medium flow path. A control system for controlling an absorption chiller provided with a valve for opening and closing the supply path provided in the supply path.
A first temperature detection unit that detects the temperature inside the container or the temperature of the container of either the evaporator or the absorber of the absorption chiller,
A control system for an absorption chiller including a first control unit that closes the valve when the temperature inside the container or the temperature of the container detected by the first temperature detection unit is higher than a predetermined value.
第1の冷媒が前記吸収器に供給されて前記吸収器から還流する第1の冷媒流路において前記吸収器に供給される前記第1の冷媒の温度を検知する第2の温度検知部を備え、
前記所定値は、前記第2の温度検知部により検知される前記第1の冷媒の温度に設定されている請求項1に記載の吸収式冷凍機の制御システム。
A second temperature detecting unit for detecting the temperature of the first refrigerant supplied to the absorber in the first refrigerant flow path in which the first refrigerant is supplied to the absorber and recirculates from the absorber is provided. ,
The control system for an absorption chiller according to claim 1, wherein the predetermined value is set to the temperature of the first refrigerant detected by the second temperature detection unit.
前記吸収器と前記蒸発器とは一体の容器で構成され前記吸収器と前記蒸発器との底部に前記再生器から供給された希溶液が貯留し、
前記第1の温度検知部は、前記容器における前記蒸発器側の側面に設けられて前記容器内温度又は前記容器温度を検知する請求項1又は2に記載の吸収式冷凍機の制御システム。
The absorber and the evaporator are configured as an integral container, and a dilute solution supplied from the regenerator is stored in the bottom of the absorber and the evaporator.
The control system for an absorption chiller according to claim 1 or 2, wherein the first temperature detecting unit is provided on the side surface of the container on the side of the evaporator and detects the temperature inside the container or the temperature of the container.
熱媒が外部熱源側から再生器へ供給されて前記再生器から前記外部熱源側へ還流する熱媒流路と、前記熱媒流路において前記熱媒が前記外部熱源側から前記再生器へ供給される供給路に設けられ前記供給路を開閉する弁とを備える吸収式冷凍機を制御する制御システムであって、
第2の冷媒が蒸発器に供給されて前記蒸発器から還流する第2の冷媒流路において前記蒸発器に供給される前記第2の冷媒の温度Tiを検知する第3の温度検知部と、
前記第2の冷媒流路において前記蒸発器から還流する前記第2の冷媒の温度Toを検知する第4の温度検知部と、
前記温度Toと前記温度Tiとの差(To-Ti)が0以上の所定値より大きい場合に前記弁を閉じる第2の制御部と
を備える吸収式冷凍機の制御システム。
A heat medium flow path in which a heat medium is supplied from the external heat source side to the regenerator and returns from the regenerator to the external heat source side, and the heat medium is supplied from the external heat source side to the regenerator in the heat medium flow path. A control system for controlling an absorption chiller provided with a valve for opening and closing the supply path provided in the supply path.
A third temperature detection unit that detects the temperature Ti of the second refrigerant supplied to the evaporator in the second refrigerant flow path in which the second refrigerant is supplied to the evaporator and returns from the evaporator.
A fourth temperature detection unit that detects the temperature To of the second refrigerant that recirculates from the evaporator in the second refrigerant flow path, and
A control system for an absorption chiller including a second control unit that closes the valve when the difference (To—Ti) between the temperature To and the temperature Ti is greater than or equal to a predetermined value of 0 or more.
請求項1~4の何れか1項に記載の前記制御システムと、
前記熱媒流路と、
前記弁と、
前記再生器、前記吸収器、前記蒸発器、及び凝縮器を備える吸収式冷凍機本体と
を備える吸収式冷凍機。
The control system according to any one of claims 1 to 4.
With the heat medium flow path
With the valve
An absorption chiller including an absorption chiller body including the regenerator, the absorber, the evaporator, and a condenser.
JP2020180278A 2020-10-28 2020-10-28 Absorption chiller control system and absorption chiller Active JP7225182B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020180278A JP7225182B2 (en) 2020-10-28 2020-10-28 Absorption chiller control system and absorption chiller
DE102021211985.9A DE102021211985A1 (en) 2020-10-28 2021-10-25 Control system for absorption chiller and absorption chiller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180278A JP7225182B2 (en) 2020-10-28 2020-10-28 Absorption chiller control system and absorption chiller

Publications (2)

Publication Number Publication Date
JP2022071370A true JP2022071370A (en) 2022-05-16
JP7225182B2 JP7225182B2 (en) 2023-02-20

Family

ID=81077179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180278A Active JP7225182B2 (en) 2020-10-28 2020-10-28 Absorption chiller control system and absorption chiller

Country Status (2)

Country Link
JP (1) JP7225182B2 (en)
DE (1) DE102021211985A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159852A (en) * 1992-11-30 1994-06-07 Osaka Gas Co Ltd Absorption type freezer
JPH09287857A (en) * 1996-04-23 1997-11-04 Yazaki Corp Absorption type cold heat generating device
JP2003065628A (en) * 2001-08-27 2003-03-05 Mitsubishi Heavy Ind Ltd Absorption refrigerating machine, equipment using absorption refrigerating machine and gas turbine suction air cooling device
JP2005233609A (en) * 2005-04-28 2005-09-02 Hitachi Ltd Anomaly diagnosing method and its device for absorption refrigerator
JP2018141565A (en) * 2017-02-27 2018-09-13 矢崎エナジーシステム株式会社 Absorption type refrigeration system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788567B2 (en) 1999-09-21 2006-06-21 東京瓦斯株式会社 Absorption chiller / heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159852A (en) * 1992-11-30 1994-06-07 Osaka Gas Co Ltd Absorption type freezer
JPH09287857A (en) * 1996-04-23 1997-11-04 Yazaki Corp Absorption type cold heat generating device
JP2003065628A (en) * 2001-08-27 2003-03-05 Mitsubishi Heavy Ind Ltd Absorption refrigerating machine, equipment using absorption refrigerating machine and gas turbine suction air cooling device
JP2005233609A (en) * 2005-04-28 2005-09-02 Hitachi Ltd Anomaly diagnosing method and its device for absorption refrigerator
JP2018141565A (en) * 2017-02-27 2018-09-13 矢崎エナジーシステム株式会社 Absorption type refrigeration system

Also Published As

Publication number Publication date
JP7225182B2 (en) 2023-02-20
DE102021211985A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP6385044B2 (en) Absorption refrigeration system
CN100549564C (en) Absorption refrigerating machine
JP2022071370A (en) Control system of absorption-type refrigerator and absorption-type refrigerator
JP6814071B2 (en) Absorption chiller system and absorption chiller using waste heat
KR101045512B1 (en) Low temperature water two-stage absorbtion typerefrigerator
KR101690303B1 (en) Triple effect absorption chiller
KR20220125561A (en) Absorption type cooler
JP2010007907A (en) Air conditioning system
JP2865305B2 (en) Absorption refrigerator
US20230152014A1 (en) Heat exchange system, air conditioning apparatus and control method for air conditioning apparatus
JP3314441B2 (en) Absorption chiller / heater
JP4201418B2 (en) Control method of absorption chiller / heater
KR20220083339A (en) Absorption type cooler
JPS6110149Y2 (en)
JPH0621730B2 (en) Single-double-effect absorption refrigerator
JP2011220675A (en) Absorption refrigerating machine
JP3143251B2 (en) Absorption refrigerator
JP3434283B2 (en) Absorption refrigerator and how to start it
JPS6135893Y2 (en)
JP3434279B2 (en) Absorption refrigerator and how to start it
CN117199631A (en) Direct-cooling and direct-heating type battery pack temperature control test system with wide adjusting range
JP2011202948A (en) Absorption refrigerating machine
KR910008683Y1 (en) Absorption type refrigerator
JP4115020B2 (en) Control method of absorption refrigerator
JP2000081253A (en) Absorptive freezer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R150 Certificate of patent or registration of utility model

Ref document number: 7225182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350