JP2022071283A - Slide mechanism - Google Patents

Slide mechanism Download PDF

Info

Publication number
JP2022071283A
JP2022071283A JP2020180157A JP2020180157A JP2022071283A JP 2022071283 A JP2022071283 A JP 2022071283A JP 2020180157 A JP2020180157 A JP 2020180157A JP 2020180157 A JP2020180157 A JP 2020180157A JP 2022071283 A JP2022071283 A JP 2022071283A
Authority
JP
Japan
Prior art keywords
dlc
film
sliding
sliding mechanism
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020180157A
Other languages
Japanese (ja)
Inventor
毅 樋口
Takeshi Higuchi
豊 馬渕
Yutaka Mabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Utsunomiya University
Nissan Motor Co Ltd
Original Assignee
Renault SAS
Utsunomiya University
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Utsunomiya University, Nissan Motor Co Ltd filed Critical Renault SAS
Priority to JP2020180157A priority Critical patent/JP2022071283A/en
Publication of JP2022071283A publication Critical patent/JP2022071283A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a slide mechanism including a slide member with a carbon-containing coating film, having high adsorption performance to a lubricant including a molybdenum extreme pressure additive, and high friction reduction effect by molybdenum disulfide.SOLUTION: A slide mechanism includes a slide member having a DLC-Ni coating film including metal nickel in a DLC film, on a surface, and a lubricant existing on a slide surface of the slide member. A carbon film is a DLC-Ni coating film having DLC as its main component and including nickel (Ni), the lubricant includes a molybdenum (Mo)-containing compound, and friction reduction effect by a reaction coating film having molybdenum disulfide can be also obtained, in addition to low friction characteristic of the DLC film itself.SELECTED DRAWING: Figure 1

Description

本発明は、摺動機構に係り、更に詳細には、潤滑油による摩擦低減能を十分発揮できる含炭素被膜を有する摺動部材を備える摺動機構に関する。 The present invention relates to a sliding mechanism, and more particularly to a sliding mechanism including a sliding member having a carbon-containing coating capable of sufficiently exerting a friction reducing ability by a lubricating oil.

ダイヤモンドライクカーボン(DLC)膜は、著しい低摩擦特性と高硬度とを併せもつ長寿命の固体潤滑被膜である。DLC膜の低摩擦特性は、表面の凝着力が小さいことにより摺動相手材との接触界面で剪断が容易に起こるためであると考えられている。 Diamond-like carbon (DLC) film is a long-life solid lubricating film that combines extremely low friction properties with high hardness. It is considered that the low friction property of the DLC film is due to the fact that shearing easily occurs at the contact interface with the sliding mating material due to the small adhesive force of the surface.

しかし、DLC膜はその凝着力が非常に小さいため、内燃機関や変速機等の潤滑油が存在する摺動機構においては、DLC膜の表面に充分な油膜が形成され難い。 However, since the adhesive force of the DLC film is very small, it is difficult to form a sufficient oil film on the surface of the DLC film in a sliding mechanism such as an internal combustion engine or a transmission in which lubricating oil is present.

したがって、上記摺動機構の摩擦特性は、潤滑油の存在下であっても潤滑油による摩擦低減効果が得られ難く、DLC膜の摩擦特性によるところが大きくなる。 Therefore, it is difficult to obtain the friction reducing effect of the lubricating oil even in the presence of the lubricating oil, and the friction characteristics of the sliding mechanism are largely due to the friction characteristics of the DLC film.

このようなDLC膜であっても、エステル系分子を含む潤滑油と組み合わせることで、さらなる低摩擦性を得られることが知られている。 It is known that even such a DLC film can obtain further low friction by combining it with a lubricating oil containing an ester-based molecule.

また、内燃機関や変速機等の潤滑油には、有機モリブデンや硫黄等を含むモリブデン系極圧添加剤が添加されることが多い。 Further, a molybdenum-based extreme pressure additive containing organic molybdenum, sulfur, or the like is often added to the lubricating oil of an internal combustion engine or a transmission.

上記モリブデン系極圧添加剤は、摺動によって摺動面に、層間の剪断力が非常に小さな層状構造の二硫化モリブデン(MoS)を含む反応被膜が生成し、上記二硫化モリブデンの層間が滑ることで摩擦を低減させる。 In the molybdenum-based extreme pressure additive, a reaction film containing molybdenum disulfide (MoS 2 ) having a layered structure having a very small shearing force between layers is formed on the sliding surface by sliding, and the layers of the molybdenum disulfide are formed between the layers. Sliding reduces friction.

しかし、特許文献1には、摺動部材の表面がDLC膜で被覆されていると、上記反応被膜が生成せず、上記反応被膜による摩擦低減効果が得られない旨が記載されている。 However, Patent Document 1 describes that when the surface of the sliding member is covered with the DLC film, the reaction film is not formed and the friction reducing effect of the reaction film cannot be obtained.

そこで、特許文献1では、表面に鉄が露出した鉄含有DLC膜とすることで、上記反応被膜が摺動面に生成し、摩擦を低減できる旨が開示されている。 Therefore, Patent Document 1 discloses that by using an iron-containing DLC film in which iron is exposed on the surface, the reaction film is formed on the sliding surface and friction can be reduced.

特開2000-320673号公報Japanese Unexamined Patent Publication No. 2000-320673

しかしながら、特許文献1に記載のものにあっては、鉄含有DLC膜のモリブデン系極圧添加剤を含む潤滑油に対する吸着性が未だ乏しく、二硫化モリブデンによる摩擦低減効果を十分発揮できていない。 However, in the case described in Patent Document 1, the adsorptivity of the iron-containing DLC film to the lubricating oil containing the molybdenum-based extreme pressure additive is still poor, and the friction reducing effect of molybdenum disulfide cannot be sufficiently exhibited.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、モリブデン系極圧添加剤を含有する潤滑油に対する吸着能が高く、二硫化モリブデンによる摩擦低減効果が高い、含炭素被膜を有する摺動部材を備える摺動機構を提供することにある。 The present invention has been made in view of the problems of the prior art, and an object of the present invention is to have high adsorption ability to a lubricating oil containing a molybdenum-based extreme pressure additive, and friction due to molybdenum disulfide. It is an object of the present invention to provide a sliding mechanism provided with a sliding member having a carbon-containing film, which has a high reduction effect.

上記二硫化モリブデン(MoS)を含む反応被膜は、特許文献1に記載されているように、DLC膜で被覆した摺動部材では生成しないことから、モリブデン系極圧添加剤単独では上記反応被膜が生成せず、上記反応被膜の生成には鉄などの他の元素が関わっていると考えられる。 As described in Patent Document 1, the reaction film containing molybdenum disulfide (MoS 2 ) is not formed by the sliding member coated with the DLC film. Therefore, the molybdenum-based extreme pressure additive alone does not form the reaction film. Is not formed, and it is considered that other elements such as iron are involved in the formation of the above reaction film.

しかし、潤滑油や極圧添加剤の構造は非常に複雑で、かつこれらの材料の組合せは無数に存在するため、上記反応被膜の生成過程を化学的に解明することは極めて難く、周期律表などから得られる規則的な元素特性からは、上記反応被膜の生成に有用な元素を特定することはできない。 However, since the structures of lubricating oils and extreme pressure additives are extremely complicated and there are innumerable combinations of these materials, it is extremely difficult to chemically elucidate the formation process of the above reaction film. It is not possible to specify an element useful for forming the above reaction film from the regular elemental properties obtained from the above.

本発明者は、上記目的を達成すべく様々な元素について試験・検討を重ねた結果、摺動部材の表面に形成する含炭素被膜を、DLC膜に金属ニッケルを含有させたDLC-Ni被膜とすることにより、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of repeated tests and studies on various elements in order to achieve the above object, the present inventor has formed a carbon-containing film on the surface of the sliding member as a DLC-Ni film in which metallic nickel is contained in the DLC film. By doing so, it was found that the above object could be achieved, and the present invention was completed.

即ち、本発明の摺動機構は、基材上に含炭素被膜を有する摺動部材と、上記摺動部材の摺動面に存在する潤滑油と、を備える。
そして、上記含炭素被膜が、DLCを主成分とし、ニッケル(Ni)を含有するDLC-Ni被膜であり、上記潤滑油が、含モリブデン(Mo)化合物を含有することを特徴とする。
That is, the sliding mechanism of the present invention includes a sliding member having a carbon-containing film on the base material, and lubricating oil existing on the sliding surface of the sliding member.
The carbon-containing film is a DLC-Ni film containing DLC as a main component and nickel (Ni), and the lubricating oil is characterized by containing a molybdenum-containing (Mo) compound.

本発明によれば、DLC膜に金属ニッケルを含有させたDLC-Ni被膜を摺動部材の表面に形成することとしたため、DLC膜自体が有する低摩擦特性に加えて、二硫化モリブデンを有する反応被膜による摩擦低減効果をも得ることができる、含炭素被膜を有する摺動部材を備える摺動機構を提供することができる。 According to the present invention, since the DLC-Ni film containing metallic nickel in the DLC film is formed on the surface of the sliding member, the reaction having molybdenum disulfide in addition to the low friction characteristics of the DLC film itself. It is possible to provide a sliding mechanism provided with a sliding member having a carbon-containing coating, which can also obtain a friction reducing effect due to the coating.

分散型DLC-Ni被膜の層構成を示す図である。It is a figure which shows the layer structure of the distributed DLC-Ni film. 積層型DLC-Ni被膜の層構成を示す図である。It is a figure which shows the layer structure of the laminated DLC-Ni film. 多層積層型DLC-Ni被膜の層構成を示す図である。It is a figure which shows the layer structure of the multi-layer laminated type DLC-Ni film. DLC膜のSEM像である。It is an SEM image of a DLC film. 実施例1の摺動部材表面のXPS分析結果である。It is the XPS analysis result of the sliding member surface of Example 1. 実施例3の摺動部材表面のXPS分析結果である。It is the XPS analysis result of the sliding member surface of Example 3.

本発明の摺動機構について詳細に説明する。
上記摺動機構は、DLC膜に金属ニッケルを含有させたDLC-Ni被膜を表面に有する摺動部材と、該摺動部材の摺動面に存在する潤滑油とを備え、上記炭素被膜が、DLCを主成分とし、ニッケル(Ni)を含有するDLC-Ni被膜であり、上記潤滑油が、含モリブデン(Mo)化合物を含有する。
本発明において、「主成分」とは50at%以上であるこという。
The sliding mechanism of the present invention will be described in detail.
The sliding mechanism includes a sliding member having a DLC-Ni film having a DLC-Ni film containing metallic nickel on the surface of the DLC film, and a lubricating oil existing on the sliding surface of the sliding member. It is a DLC-Ni film containing DLC as a main component and nickel (Ni), and the lubricating oil contains a molybdenum-containing (Mo) compound.
In the present invention, the "main component" is 50 at% or more.

<DLC-Ni被膜>
本発明のDLC-Ni被膜が、含モリブデン(Mo)化合物を含有する潤滑油との親和性が高く、摩擦低減効果を増大できる理由は明らかではないが、DLC-Ni被膜中のNiがモリブデン系極圧添加剤中の硫黄(S)と反応してNiSやNiS等の硫化物を形成する。この硫化物は、DLC-Ni被膜中のNiと親和性が高く、かつモリブデン(Mo)への硫黄の供給源となることで二硫化モリブデン(MoS)を含む反応被膜が生成し易くなることも一因ではないかと考えられる。
<DLC-Ni coating>
The reason why the DLC-Ni coating of the present invention has a high affinity with the lubricating oil containing a molybdenum-containing (Mo) compound and can increase the friction reducing effect is not clear, but the Ni in the DLC-Ni coating is molybdenum-based. It reacts with sulfur (S) in the extreme pressure additive to form sulfides such as NiS and NiS2 . This sulfide has a high affinity for Ni in the DLC-Ni film and serves as a source of sulfur for molybdenum (Mo), so that a reaction film containing molybdenum disulfide (MoS 2 ) can be easily formed. Is also considered to be one of the causes.

上記DLC-Ni被膜は、水素含有量が1at%以下であることが好ましい。
水素含有量が1at%以下の水素フリーDLC膜は、高硬度で耐熱性が高く、潤滑油存在下における摩擦係数低減効果が優れる。
The DLC-Ni coating preferably has a hydrogen content of 1 at% or less.
A hydrogen-free DLC film having a hydrogen content of 1 at% or less has high hardness and high heat resistance, and has an excellent effect of reducing the coefficient of friction in the presence of lubricating oil.

上記DLC-Ni被膜としては、図1に示すようなニッケル(Ni)が分散した分散型DLC-Ni被膜や、図2に示すようなDLC膜と金属ニッケル膜とを積層した積層型DLC-Ni被膜を挙げることができ、上記積層型DLC-Ni被膜は、図3に示すようなDLC膜と金属ニッケル膜とを交互に複数積層した多層構造であってもよい。 The DLC-Ni coating includes a dispersed DLC-Ni coating in which nickel (Ni) is dispersed as shown in FIG. 1, and a laminated DLC-Ni in which a DLC film and a metallic nickel film are laminated as shown in FIG. The film may be mentioned, and the laminated DLC-Ni film may have a multilayer structure in which a plurality of DLC films and metallic nickel films are alternately laminated as shown in FIG.

(分散型DLC-Ni被膜)
上記分散型DLC-Ni被膜は、数個から数十個以上が集まったNi原子塊が、DLC膜中に均一に微分散しており、摺動面の全体に反応被膜を形成する。
(Distributed DLC-Ni coating)
In the dispersed DLC-Ni film, Ni atomic masses in which several to several tens or more are gathered are uniformly finely dispersed in the DLC film, and a reaction film is formed on the entire sliding surface.

上記分散型DLC-Ni被膜中のNi含有量は、1~15at%であることが好ましく、2~10at%であることがより好ましく、3~5at%であることがさらに好ましい。 The Ni content in the dispersed DLC-Ni film is preferably 1 to 15 at%, more preferably 2 to 10 at%, and even more preferably 3 to 5 at%.

分散型DLC-Ni被膜においては、Ni含有量が多くなると、反応被膜が生成し易くなって摩擦低減効果が得られる一方、被膜の硬度が低下する傾向があり、上記範囲内であることで高い摩擦低減効果と耐摩耗性とを両立できる。
Ni含有量は、エネルギー分散型X線分析(EDX)により測定できる。
In the dispersed DLC-Ni coating, when the Ni content is large, a reaction coating is easily formed and a friction reducing effect is obtained, but the hardness of the coating tends to decrease, which is high within the above range. Both friction reduction effect and wear resistance can be achieved.
The Ni content can be measured by energy dispersive X-ray analysis (EDX).

上記分散型DLC-Ni被膜は、Niを混合した黒鉛をターゲット材料とした、イオンプレーティング法や、Niを含むガスと炭化水素ガスを用いたプラズマCVD法により作製できる。Ni含有量は、黒鉛に混合したNi粉末の量やNiを含むガスの供給量の他、成膜中の条件変更により制御できる。 The dispersed DLC-Ni film can be produced by an ion plating method using graphite mixed with Ni as a target material or a plasma CVD method using a gas containing Ni and a hydrocarbon gas. The Ni content can be controlled by changing the conditions during film formation, in addition to the amount of Ni powder mixed with graphite and the amount of gas containing Ni.

(積層型DLC-Ni被膜)
積層型DLC-Ni被膜は、上記分散型DLC-Ni被膜のように下層のDLC膜中にNiが分散していないため、DLC膜自体の硬度が低下することがなく高耐久である。
(Laminated DLC-Ni coating)
Unlike the dispersed DLC-Ni film, the laminated DLC-Ni film has high durability because Ni is not dispersed in the underlying DLC film, so that the hardness of the DLC film itself does not decrease.

上記積層型DLC-Ni被膜のDLC膜に積層するNi層の厚さは、0.1~1μmであることが好ましく、0.3~0.7μmであることがより好ましい。また、上記DLC膜の厚さは特に制限はないが、上記Ni層よりも厚いことが好ましい。 The thickness of the Ni layer laminated on the DLC film of the laminated DLC-Ni film is preferably 0.1 to 1 μm, more preferably 0.3 to 0.7 μm. The thickness of the DLC film is not particularly limited, but is preferably thicker than the Ni layer.

Ni層が厚くなり過ぎると、下層のDLC膜が硬質であることによる接触面積低減効果が薄れる傾向がある。上記範囲内であることで荷重によるNi層の変形が抑止され、摩擦係数の上昇防止と高い摩擦低減効果とを両立できる。 If the Ni layer becomes too thick, the effect of reducing the contact area due to the hardness of the lower DLC film tends to be diminished. Within the above range, deformation of the Ni layer due to the load is suppressed, and both prevention of increase in the coefficient of friction and high friction reduction effect can be achieved at the same time.

上記積層型DLC-Ni被膜は、下層のDLC膜が凹部を有することが好ましい。
積層型DLC-Ni被膜は、摺動によって、表面側に形成された上層のNi層が先に摩耗する。しかし、上層のNi層の一部が下層のDLC膜の凹部内に入り込んで成膜されていることで、上層のNi層が摩耗し下層のDLC膜が露出したとしても凹部内のNiによって摩擦低減効果を得ることができる。加えて、凹部内のNiは周囲をDLCで囲まれているため、表面に露出していても摩耗し難いので長期に亘り摩擦低減効果が得られる。
In the laminated DLC-Ni film, it is preferable that the lower DLC film has recesses.
In the laminated DLC-Ni coating, the upper Ni layer formed on the surface side is first worn by sliding. However, since a part of the upper Ni layer penetrates into the recess of the lower DLC film to form a film, even if the upper Ni layer is worn and the lower DLC film is exposed, it is rubbed by the Ni in the recess. A reduction effect can be obtained. In addition, since Ni in the recess is surrounded by DLC, it is difficult to wear even if it is exposed on the surface, so that a friction reducing effect can be obtained for a long period of time.

上記DLC膜表面の凹部の面積率は、4~60%であることが好ましく、10~50%であることがより好ましく、さらに15~40%であることが好ましい。 The area ratio of the recesses on the surface of the DLC film is preferably 4 to 60%, more preferably 10 to 50%, and further preferably 15 to 40%.

上記凹部の面積率が上記範囲内であることで、DLC膜による耐摩耗性と、Niによる反応被膜の生成とを両立できる。 When the area ratio of the recess is within the above range, it is possible to achieve both the wear resistance of the DLC film and the formation of the reaction film by Ni.

上記面積率は、濃塩酸または希硝酸処理でNiを除去した後、レーザー顕微鏡による3Dの粗さ計測を行い(ISO 25178)、谷部の比率を示すアボット負荷曲線のSMr2を使用粗さ計で測定した断面曲線から算出できる。
また、別な方法として、積層型DLC-Niが摩擦により十分なじんだ状態で、表面から元素マッピングを行い、得られた画像をNiに対する2値化処理を行い算出することもできる。
For the above area ratio, after removing Ni by concentrated hydrochloric acid or dilute nitric acid treatment, 3D roughness measurement is performed with a laser microscope (ISO 25178), and SMr2 of the abbott load curve showing the ratio of valleys is used with a roughness meter. It can be calculated from the measured cross-sectional curve.
Alternatively, as another method, the laminated DLC-Ni can be calculated by performing element mapping from the surface in a state where the laminated DLC-Ni is sufficiently blended by friction, and binarizing the obtained image with respect to Ni.

上記積層型DLC-Ni被膜は、プラズマCVD法やイオンプレーティング法でDLC膜を成膜した後、スパッタリングなどにより上記DLC膜上にNi層を蒸着させることで作製できる。 The laminated DLC-Ni film can be produced by forming a DLC film by a plasma CVD method or an ion plating method and then depositing a Ni layer on the DLC film by sputtering or the like.

上記DLC膜表面の凹部は、イオンエッチング レーザー処理、ブラスト処理の他、予め基材表面に凹凸をつけることで形成できる。特にイオンプレーティング法により成膜されたDLC膜は、黒鉛から作製するためDLC膜表面にドロップレットができる。これを研磨により除去する際、上記ドロップレットにより研磨剤の当たりが不均一になることによっても凹部を形成できる。 The recesses on the surface of the DLC film can be formed by ion etching laser treatment, blast treatment, or by preliminarily making irregularities on the surface of the base material. In particular, since the DLC film formed by the ion plating method is made of graphite, droplets are formed on the surface of the DLC film. When this is removed by polishing, a recess can also be formed by making the contact of the abrasive with the above-mentioned droplet non-uniform.

<潤滑油>
本発明の摺動機構における潤滑油は、基油と含モリブデン(Mo)化合物を含有するモリブデン系極圧添加剤とを含有する。
<Lubricating oil>
The lubricating oil in the sliding mechanism of the present invention contains a base oil and a molybdenum-based extreme pressure additive containing a molybdenum-containing (Mo) compound.

上記基油は、内燃機関や変速機等の摺動機関に従来用いられているものを使用でき、鉱物油、合成油のいずれであってもよい。
なかでも、高級脂肪酸、高級アルコール、脂肪族アミン、エステル等の極性基を分子の一端に有する基油は、上記極性基が物理吸着や化学吸着により金属表面に吸着膜を形成するため好ましく使用できる。
As the base oil, those conventionally used for sliding engines such as internal combustion engines and transmissions can be used, and either mineral oil or synthetic oil may be used.
Among them, a base oil having a polar group such as a higher fatty acid, a higher alcohol, an aliphatic amine, or an ester at one end of a molecule can be preferably used because the polar group forms an adsorption film on the metal surface by physical adsorption or chemical adsorption. ..

モリブデン系極圧添加剤としては、例えば、モリブデンジチオカルバメート(MoDTC)等の硫黄を含む有機モリブデンが挙げられる。 Examples of the molybdenum-based extreme pressure additive include organic molybdenum containing sulfur such as molybdenum dithiocarbamate (MoDTC).

<相手材>
一般に同種材同士を組み合わせた摺動機構は、摩擦力が大きくなることが知られている。これは、同種材同士を組み合わせるとその親和性が高さから凝着が生じ易くなるためであると考えられる。したがって、相手材がDLC被膜やNiを含有する摺動部材であると期待する摩擦低減効果が得られない。
<Mother material>
It is generally known that a sliding mechanism in which materials of the same type are combined has a large frictional force. It is considered that this is because when the same kind of materials are combined, adhesion is likely to occur due to the high affinity thereof. Therefore, the friction reducing effect expected that the mating material is a DLC film or a sliding member containing Ni cannot be obtained.

本発明の摺動機構は、上記摺動部材の相手材が鉄(Fe)を含有することが好ましい。
潤滑油中のモリブデン系極圧添加剤は、もともと鉄系の摺動部材の摩擦低減に用いられるものであり、鉄系の摺動部材の摺動面において、鉄との化学反応によって固体潤剤として機能するMoS を含む反応被膜を生成する。したがって、相手材がNiではなく鉄(Fe)を含有することで、DLC-Ni被膜との親和性の低さと上記反応被膜の生成とが相俟って優れた摩擦低減効果が得られる。
In the sliding mechanism of the present invention, it is preferable that the mating material of the sliding member contains iron (Fe).
The molybdenum-based extreme pressure additive in the lubricating oil is originally used to reduce the friction of the iron-based sliding member, and is a solid wettable agent by a chemical reaction with iron on the sliding surface of the iron-based sliding member. Produces a reaction film containing MoS 2 that functions as Therefore, when the mating material contains iron (Fe) instead of Ni, an excellent friction reducing effect can be obtained in combination with the low affinity with the DLC-Ni film and the formation of the reaction film.

また、鉄(Fe)を含有する相手材は、モリブデン系極圧添加剤存在下において、FeS、FeS等の硫化鉄を形成し、固体潤滑層であるMoSのSの供給源としてその生成に作用し、またFeO、Fe3、Fe等の酸化鉄の被膜形成は、上層に固体潤滑層であるMoSの形成を促し安定化させる機能があり、これらは摩擦を低減する効果を高める働きをする。 Further, the mating material containing iron (Fe) forms iron sulfide such as FeS and Fe 3S in the presence of a molybdenum -based extreme pressure additive, and serves as a supply source of S of MoS 2 which is a solid lubricating layer. It acts on the formation, and the formation of iron oxide films such as FeO, Fe2O3 , and Fe3O4 has the function of promoting and stabilizing the formation of MoS 2 , which is a solid lubricating layer, on the upper layer, which causes friction. It works to enhance the effect of reduction.

以下、本発明を実施例により詳細に説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

[実施例1]
Niを含むガスおよび炭化水素ガスを用いてプラズマCVD法により、表面粗さ(Ra)が0.01μmのSUJ2炭素鋼(HRC64)のDiskに、4.5at%のNiを含む、膜厚が1μm、表面粗さ(Ra)が0.01μmの分散型DLC-Ni被膜(a-C:H)を形成した。
[Example 1]
By plasma CVD method using a gas containing Ni and a hydrocarbon gas, a disc of SUJ2 carbon steel (HRC64) having a surface roughness (Ra) of 0.01 μm contains 4.5 at% Ni, and the film thickness is 1 μm. , A dispersed DLC-Ni film (a-C: H) having a surface roughness (Ra) of 0.01 μm was formed.

[実施例2]
表面粗さ(Ra)が0.01μmのSUJ2炭素鋼(HRC64)のDiskに、黒鉛に金属Niを含有させたターゲット材を用い、イオンプレーティング法により、5at%のNiを含む分散型DLC-Ni被膜を形成した後、研磨してドロップレットを除去し、表面粗さ(Ra)が0.02μm、膜厚が1μmの分散型DLC-Ni被膜(ta-C)を形成した。
[Example 2]
Dispersed DLC-containing 5 at% Ni by ion plating method using a target material containing metallic Ni in graphite on a disc of SUJ2 carbon steel (HRC64) having a surface roughness (Ra) of 0.01 μm. After forming the Ni film, the droplets were removed by polishing to form a dispersed DLC-Ni film (ta-C) having a surface roughness (Ra) of 0.02 μm and a film thickness of 1 μm.

[比較例1]
ターゲット原料にTiを含む黒鉛を用いて、イオンプレーティング法により5at%のTiを含む他は実施例2と同様にして表面粗さ(Ra)が0.02μmの分散型DLC-Ti被膜(ta-C)を形成した。
[Comparative Example 1]
A dispersed DLC-Ti film (ta) having a surface roughness (Ra) of 0.02 μm is the same as in Example 2 except that graphite containing Ti is used as the target raw material and 5 at% of Ti is contained by the ion plating method. -C) was formed.

[比較例2]
ターゲット原料にCuを含む黒鉛を用いて、イオンプレーティング法により5at%のCuを含む他は実施例2と同様にして表面粗さ(Ra)が0.02μmの分散型DLC-Cu被膜(ta-C)を形成した。
[Comparative Example 2]
A dispersed DLC-Cu film (ta) having a surface roughness (Ra) of 0.02 μm is the same as in Example 2 except that graphite containing Cu is used as the target raw material and 5 at% Cu is contained by the ion plating method. -C) was formed.

[実施例3]
黒鉛をターゲット材に用い、イオンプレーティング法により、表面粗さ(Ra)が0.01μmのSUJ2炭素鋼(HRC64)のDiskに、DLC膜(ta-C)を形成し、ドロップレットを研磨して除去し、表面粗さ(Ra)が0.02μm、膜厚が0.5μmのDLC膜を得た。
DLC膜のSEM像を図4に示す。このDLC膜は凹部を有しており、その面積率は15%であった。
[Example 3]
Using graphite as the target material, a DLC film (ta-C) is formed on a disc of SUJ2 carbon steel (HRC64) having a surface roughness (Ra) of 0.01 μm by the ion plating method, and the droplets are polished. A DLC film having a surface roughness (Ra) of 0.02 μm and a film thickness of 0.5 μm was obtained.
The SEM image of the DLC film is shown in FIG. This DLC film had recesses, and the area ratio thereof was 15%.

上記DLC膜上にスパッタリングにより厚さが0.5μmのNi層を蒸着させ、表面粗さ(Ra)が0.02μmの積層型DLC-Ni被膜(ta-C)を形成した。 A Ni layer having a thickness of 0.5 μm was deposited on the DLC film by sputtering to form a laminated DLC-Ni film (ta-C) having a surface roughness (Ra) of 0.02 μm.

<評価> <Evaluation>

膜質が異なることによる摩擦特性の違いを考慮し、摩擦低減効果を評価する基準となるリファレンスディスクとして、プラズマCVD法により成膜したDLC膜(a-C:H、参考例1)と、イオンプレーティング法により成膜したDLC膜(ta-C、参考例2)を、それぞれ表面粗さ(Ra)を0.01μm、0.02μmに調節し、リファレンスディスクとした。
上記実施例1~3、比較例1,2のDiskを以下の条件で摩擦係数を測定し、上記リファレンスディスクとの摩擦係数の差によりDiskの摩擦特性(摩擦低減効果)を評価した。
評価結果を表1に示す。
A DLC film (a-C: H, Reference Example 1) formed by the plasma CVD method and an ion play as a reference disk as a reference disk for evaluating the friction reduction effect in consideration of the difference in friction characteristics due to the difference in film quality. The surface roughness (Ra) of the DLC film (ta-C, Reference Example 2) formed by the Ting method was adjusted to 0.01 μm and 0.02 μm, respectively, and used as a reference disk.
The friction coefficient of the discs of Examples 1 to 3 and Comparative Examples 1 and 2 was measured under the following conditions, and the friction characteristics (friction reduction effect) of the disc were evaluated by the difference in the friction coefficient from the reference disk.
The evaluation results are shown in Table 1.

(潤滑油)
市販エンジンオイル(ペンズオイル プラチナム0W-20 API SN ILSAC GF-5、40℃動粘度45mm/s、100℃動粘度8.4mm/s)に750ppmのMoDTCを添加した潤滑油を用いた。
(Lubricant)
A lubricating oil obtained by adding 750 ppm of MoDTC to a commercially available engine oil (Pens Oil Platinum 0W-20 API SN ILSAC GF-5, 40 ° C. kinematic viscosity 45 mm 2 / s, 100 ° C. kinematic viscosity 8.4 mm 2 / s) was used.

(相手材)
SUJ2炭素鋼(HRC64)のピン(表面粗さRa:0.05μm)
(Mother material)
SUJ2 carbon steel (HRC64) pin (surface roughness Ra: 0.05 μm)

(摩擦試験)
Disk Φ31 t=2.5mm、ピンΦ5x5mm、3点1組
オイルバス式油温 :120℃
試験時間 :30分
試験荷重 :90N(ヘルツ最大面圧150MPa)
試験回転数 :30rpm
平均摺動半径 :約10mm
試験末期の摩擦係数の値を摩擦係数とした。
(Friction test)
Disc Φ31 t = 2.5mm, pin Φ5x5mm, 3 points 1 set Oil bath type Oil temperature: 120 ℃
Test time: 30 minutes Test load: 90N (Hertz maximum surface pressure 150MPa)
Test rotation speed: 30 rpm
Average sliding radius: Approximately 10 mm
The value of the coefficient of friction at the end of the test was taken as the coefficient of friction.

また、摩擦試験後の実施例1(分散型DLC-Ni被膜)と実施例3(積層型DLC-Ni被膜)のDisk表面をXPS分析した。
実施例1の分析結果を図5、実施例3の分析結果を図6に示す。
Further, the disc surfaces of Example 1 (dispersion type DLC-Ni coating) and Example 3 (laminated DLC-Ni coating) after the friction test were analyzed by XPS.
The analysis result of Example 1 is shown in FIG. 5, and the analysis result of Example 3 is shown in FIG.

Figure 2022071283000002
Figure 2022071283000002

図5,6から、本発明の摺動機構は、摺動面にNiS等の硫化ニッケルを含む化合物が存在し、MoDTC由来の反応被膜の形成に作用していることがわかる。 From FIGS. 5 and 6, it can be seen that in the sliding mechanism of the present invention, a compound containing nickel sulfide such as NiS is present on the sliding surface and acts on the formation of the reaction film derived from MoDTC.

また、表1の結果から、DLC-Ni被膜を形成した被膜は、リファレンスディスクよりも摩擦係数が小さくなっており、DLC膜自体の低摩擦特性に加えて、二硫化モリブデンを有する反応被膜による摩擦低減効果が得られていることが確認された。 Further, from the results in Table 1, the film on which the DLC-Ni film is formed has a smaller coefficient of friction than the reference disk, and in addition to the low friction characteristics of the DLC film itself, the friction due to the reaction film having molybdenum disulfide. It was confirmed that the reduction effect was obtained.

1 摺動部材
2 基材
3 DLC-Ni被膜
31 DLC
32 Ni
1 Sliding member 2 Base material 3 DLC-Ni coating 31 DLC
32 Ni

Claims (9)

基材上に含炭素被膜を有する摺動部材と、
上記摺動部材の摺動面に存在する潤滑油と、を備える摺動機構であって、
上記含炭素被膜が、ダイヤモンドライクカーボン(DLC)を主成分とし、ニッケル(Ni)を含有するDLC-Ni被膜であり、
上記潤滑油が、含モリブデン(Mo)化合物を含有することを特徴とする摺動機構。
A sliding member having a carbon-containing film on the base material,
A sliding mechanism provided with lubricating oil existing on the sliding surface of the sliding member.
The carbon-containing film is a DLC-Ni film containing diamond-like carbon (DLC) as a main component and nickel (Ni).
A sliding mechanism characterized in that the lubricating oil contains a molybdenum-containing (Mo) compound.
上記DLC-Ni被膜は、水素量が1at%以下であることを特徴とする請求項1に記載の摺動機構。 The sliding mechanism according to claim 1, wherein the DLC-Ni coating has a hydrogen content of 1 at% or less. 上記DLC-Ni被膜が、DLC膜中にニッケル(Ni)が分散した分散型DLC-Ni被膜であることを特徴とする請求項1又は2に記載の摺動機構。 The sliding mechanism according to claim 1 or 2, wherein the DLC-Ni film is a dispersed DLC-Ni film in which nickel (Ni) is dispersed in the DLC film. 上記分散型DLC-Ni被膜は、ニッケル(Ni)含有量が1~15at%であることを特徴とする請求項3に記載の摺動機構。 The sliding mechanism according to claim 3, wherein the dispersed DLC-Ni coating has a nickel (Ni) content of 1 to 15 at%. 上記DLC-Ni被膜が、DLC膜の表面にニッケル(Ni)層を有する積層型DLC-Ni被膜であることを特徴とする請求項1又は2に記載の摺動機構。 The sliding mechanism according to claim 1 or 2, wherein the DLC-Ni film is a laminated DLC-Ni film having a nickel (Ni) layer on the surface of the DLC film. 上記積層型DLC-Ni被膜は、ニッケル(Ni)層の厚さが0.1~1μmであることを特徴とする請求項5に記載の摺動機構。 The sliding mechanism according to claim 5, wherein the laminated DLC-Ni film has a nickel (Ni) layer having a thickness of 0.1 to 1 μm. 上記DLC膜が凹部を有し、その面積率が4%以上であることを特徴とする請求項5又は6に記載の摺動機構。 The sliding mechanism according to claim 5 or 6, wherein the DLC film has a recess and the area ratio thereof is 4% or more. 上記摺動部材の相手材が鉄(Fe)を含有することを特徴とする請求項1~7のいずれか1つの項に記載の摺動機構。 The sliding mechanism according to any one of claims 1 to 7, wherein the mating material of the sliding member contains iron (Fe). 硫化ニッケル(NiS)、二硫化モリブデン(MoS)及び四酸化三鉄(Fe)を含む化合物層を摺動面に有することを特徴とする請求項8に記載の摺動機構。 The sliding mechanism according to claim 8, wherein the sliding surface has a compound layer containing nickel sulfide (NiS), molybdenum disulfide (MoS 2 ), and triiron tetroxide (Fe 3O 4 ) .
JP2020180157A 2020-10-28 2020-10-28 Slide mechanism Pending JP2022071283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020180157A JP2022071283A (en) 2020-10-28 2020-10-28 Slide mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020180157A JP2022071283A (en) 2020-10-28 2020-10-28 Slide mechanism

Publications (1)

Publication Number Publication Date
JP2022071283A true JP2022071283A (en) 2022-05-16

Family

ID=81593888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020180157A Pending JP2022071283A (en) 2020-10-28 2020-10-28 Slide mechanism

Country Status (1)

Country Link
JP (1) JP2022071283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786027A (en) * 2022-12-14 2023-03-14 中国科学院兰州化学物理研究所 Water-based micro-emulsified cutting fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786027A (en) * 2022-12-14 2023-03-14 中国科学院兰州化学物理研究所 Water-based micro-emulsified cutting fluid
CN115786027B (en) * 2022-12-14 2024-01-12 中国科学院兰州化学物理研究所 Water-based microemulsified cutting fluid

Similar Documents

Publication Publication Date Title
JP4784248B2 (en) Sliding structure and sliding method
EP2290119B1 (en) Slide part
JP4007440B2 (en) Hard carbon film sliding member
de Barros' Bouchet et al. Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives
JP5941472B2 (en) Sliding member and sliding material composition
JP2008195903A (en) Sliding structure
JP5298451B2 (en) Sliding structure
JP2022071283A (en) Slide mechanism
JP6114730B2 (en) Sliding system
JP5080505B2 (en) Sliding member
WO2022137810A1 (en) Sliding member, bearing, sliding member manufacturing method, and bearing manufacturing method
JP2019171512A (en) Slide member and method for manufacture thereof
JP7040532B2 (en) Low friction sliding mechanism
JP3657742B2 (en) Slide bearings with excellent seizure resistance
JP5077629B2 (en) Hard carbon coating
JP5712919B2 (en) Low friction sliding member
JP5854554B2 (en) Sliding mechanism
JP2000320674A (en) Low friction material and manufacture thereof
JP4135087B2 (en) Hard carbon film for sliding member and manufacturing method thereof
JP2008031011A (en) Hard carbon coating film
Li et al. The tribological performance of W-DLC in solid–liquid lubrication system addivated with Cu nanoparticles
JP6808560B2 (en) Sliding system
JP2007291430A (en) Hard carbon film
JP4968619B2 (en) Hard carbon coating
CN110892051A (en) Catalytic metal coating for metal components in lubrication systems to improve friction performance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240408