JP2022054736A - 操舵制御装置 - Google Patents

操舵制御装置 Download PDF

Info

Publication number
JP2022054736A
JP2022054736A JP2020161923A JP2020161923A JP2022054736A JP 2022054736 A JP2022054736 A JP 2022054736A JP 2020161923 A JP2020161923 A JP 2020161923A JP 2020161923 A JP2020161923 A JP 2020161923A JP 2022054736 A JP2022054736 A JP 2022054736A
Authority
JP
Japan
Prior art keywords
axial force
steering
vehicle speed
torque
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020161923A
Other languages
English (en)
Inventor
祐輔 柿本
Yusuke KAKIMOTO
隆志 小寺
Takashi Kodera
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2020161923A priority Critical patent/JP2022054736A/ja
Priority to EP21198557.7A priority patent/EP3974288A1/en
Priority to CN202111123407.XA priority patent/CN114312983A/zh
Priority to US17/485,669 priority patent/US20220097761A1/en
Publication of JP2022054736A publication Critical patent/JP2022054736A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】目標トルクが適切な値から乖離することを抑制できる操舵制御装置を提供する。【解決手段】軸力成分演算部92は、第1配分軸力Fds1を軸力成分Firとして演算する第1演算系統101と、第2配分軸力Fds2を軸力成分Firとして演算する第2演算系統102と、有効な演算系統を切り替える出力切替部103とを含む。第1配分軸力Fds1は、車速Vbに基づいて演算される角度軸力Fib及び車両状態量軸力Fyrに加え、車速Vb以外の状態量に基づいて演算される電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyに基づいて演算される。第2配分軸力Fds2は、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyに基づいて演算される。出力切替部103は、車速Vbの状態が正常である場合には、第1演算系統101を有効とし、車速Vbの状態が異常である場合には、第2演算系統102を有効とする。【選択図】図3

Description

本発明は、操舵制御装置に関する。
従来、ステアリングホイールが連結される操舵ユニットと転舵輪を転舵させる転舵ユニットとの間の動力伝達路が分離されたステアバイワイヤ式の操舵装置がある。こうした操舵装置では、転舵輪が受ける路面反力等が機械的にはステアリングホイールに伝達されない。そこで、同形式の操舵装置を制御する操舵制御装置には、路面反力等を考慮してステアリングホイールに付与する操舵反力の目標値を演算するものがある。
例えば特許文献1の操舵制御装置は、転舵輪が連結される転舵軸に作用する軸力に着目し、当該軸力に応じた複数種の演算軸力を種々の状態量に基づいて演算する。そして、複数種の演算軸力を個別に設定される配分比率で合算することにより得られる配分軸力に基づいて目標操舵反力を演算する。こうした複数種の演算軸力として、同文献には、ステアリングホイールの操舵角及び車速に基づく角度軸力や、転舵力を付与する転舵側モータの駆動電流に基づく電流軸力等が例示されている。
国際公開第2013/061567号 特開2016-144974号公報
ところで、転舵輪の転舵角と転舵軸に実際に作用する軸力との関係は、例えば図5に示すグラフのように表され、車速に応じて変化する。すなわち、図5(a)に示すように、車速が車両の停車状態を示す場合には、転舵角に対する軸力の変化割合である勾配が小さく、かつヒステリシス成分が大きい関係となる。一方、図5(b)に示すように、車速が中高速程度で走行している状態を示す場合には、軸力の勾配が大きく、かつヒステリシス成分が小さい関係となる。なお、ヒステリシス成分は、主として転舵輪と路面との間の摩擦を示す。
したがって、例えば上記特許文献1のように角度軸力を演算する場合、操舵角またこれに関連する値のみでは適切な角度軸力を演算することはできず、操舵角に加えて車速を考慮する必要がある。そのため、例えば車速を検出するためのセンサに異常が生じた場合等、検出される車速が誤った値になると、角度軸力が実際に作用する軸力から乖離することがある。その結果、当該角度軸力に基づいて演算される目標操舵反力が、実際に転舵軸に作用する軸力に応じた適切な値から乖離するおそれがある。
なお、このような問題は、角度軸力を演算する場合に限らず、例えば車両の横方向に作用する横力で示される車両状態量軸力等、車速を考慮する必要がある軸力を演算する場合には、同様に生じ得る。また、このような問題は、モータトルクを操舵反力として付与するステアバイワイヤ式の操舵装置を制御する場合に限らない。例えば特許文献2に記載されるように、モータトルクをアシスト力として付与する電動パワーステアリング装置を制御する操舵制御装置でも、転舵軸に作用する軸力に基づいてアシスト力の目標値を決めるものでは、同様に生じ得る。
本発明の目的は、目標トルクが適切な値から乖離することを抑制できる操舵制御装置を提供することにある。
上記課題を解決する操舵制御装置は、モータが付与するモータトルクによりステアリングホイールの操舵に必要な操舵トルクを可変とする操舵装置を制御するものであって、前記モータトルクの目標値である目標トルクを生成する目標トルク生成部と、前記目標トルクに応じた前記モータトルクを発生させるように前記モータを制御するための制御信号を生成する制御信号生成部と、を備え、前記目標トルク生成部は、転舵輪が連結される転舵軸に作用する軸力に応じた軸力成分を演算する軸力成分演算部と、前記軸力成分に基づいて前記目標トルクを演算する目標トルク演算部と、を備え、前記軸力成分演算部は、車速を含む状態量に基づいて演算される車速基礎軸力を演算する第1演算系統と、前記車速以外の他の状態量に基づいて演算される他状態量基礎軸力を演算する第2演算系統と、有効な演算系統を前記第1演算系統又は前記第2演算系統に切り替える出力切替部と、を含み、前記出力切替部は、前記車速の状態が正常である場合には、前記第1演算系統を有効とすることにより前記車速基礎軸力を前記軸力成分として出力し、前記車速の状態が異常である場合には、前記第2演算系統を有効とすることにより前記他状態量基礎軸力を前記軸力成分として出力する。
上記構成によれば、車速の状態が異常である場合には、車速に基づかない他状態量基礎軸力が軸力成分として出力され、当該軸力成分に基づいて目標トルクが演算される。そのため、目標トルクが転舵軸に作用する軸力に応じた適切な値から乖離することを抑制できる。
上記操舵制御装置において、前記軸力成分演算部は、有効な演算系統を前記第1演算系統から前記第2演算系統に切り替える際において、前記軸力成分の値を前記車速基礎軸力の値から前記他状態量基礎軸力の値に徐々に変化させることが好ましい。
上記構成によれば、車速の状態が異常となった際に、軸力成分の値が車速基礎軸力の値から他状態量基礎軸力の値へと徐々に変化するようになる。そのため、車速の状態が異常となった際に軸力成分の値が車速基礎軸力の値から他状態量基礎軸力の値に即座に変化する場合に比べ、軸力成分が急変することを抑制できる。これにより、目標トルクの急変を抑制し、操舵フィーリングの低下を抑制できる。
上記操舵制御装置において、前記車速基礎軸力は、複数種の演算軸力を含む第1軸力群に基づいて演算される第1配分軸力であり、前記他状態量基礎軸力は、複数種の演算軸力を含む第2軸力群に基づいて演算される第2配分軸力であり、前記第1軸力群は、前記車速に基づいて演算されるとともに路面情報を含まない角度軸力、及び前記車速に基づいて演算されるとともに前記路面情報のうち車両の横方向への挙動の変化を通じて伝達可能なものを含む車両状態量軸力の少なくとも一方を含み、前記第2軸力群は、前記車速に基づいて演算される演算軸力を含まず、前記車速以外の状態量に基づいて演算されるとともに前記路面情報を含む複数種の路面軸力を含む構成を採用できる。
上記操舵制御装置において、前記車速基礎軸力は、前記車速に基づいて演算されるとともに路面情報を含まない角度軸力、又は前記車速に基づいて演算されるとともに前記路面情報のうち車両の横方向への挙動の変化を通じて伝達可能なものを含む車両状態量軸力であり、前記他状態量基礎軸力は、前記車速以外の状態量に基づいて演算されるとともに前記路面情報を含む単一の路面軸力である構成を採用できる。
上記操舵制御装置において、前記操舵装置は、前記ステアリングホイールが連結される操舵ユニットと、前記転舵輪を転舵させる転舵ユニットとの間の動力伝達路が分離した構造を有するものであり、前記モータは、前記操舵ユニットに入力される操舵に抗する操舵反力として前記モータトルクを付与する操舵側モータであり、前記目標トルク生成部は、前記目標トルクとして前記操舵反力の目標値である目標反力トルクを生成するものである構成を採用できる。
本発明によれば、目標トルクが適切な値から乖離することを抑制できる。
第1実施形態の操舵装置の概略構成図。 第1実施形態の操舵制御装置のブロック図。 第1実施形態の目標反力トルク生成部のブロック図。 第2実施形態の目標反力トルク生成部のブロック図。 (a)は停車状態を示す車速における軸力と転舵角との関係を示すグラフ、(b)は中高速走行状態を示す車速における軸力と転舵角との関係を示すグラフ。
(第1実施形態)
以下、操舵制御装置の第1実施形態を図面に従って説明する。
図1に示すように、操舵制御装置1の制御対象である操舵装置2はステアバイワイヤ式の操舵装置として構成されている。操舵装置2は、ステアリングホイール3を介して運転者により操舵される操舵ユニット4と、運転者による操舵ユニット4の操舵に応じて転舵輪5を転舵させる転舵ユニット6とを備えている。
操舵ユニット4は、ステアリングホイール3が連結されるステアリングシャフト11と、ステアリングホイール3に対して操舵に抗する力である操舵反力を付与する操舵側アクチュエータ12とを備えている。
操舵側アクチュエータ12は、操舵側モータ13と、操舵側減速機14とを備えている。操舵側モータ13には、例えば三相の表面磁石同期モータが採用されている。操舵側減速機14には、例えばウォームアンドホイール機構が採用されている。操舵側モータ13は、操舵側減速機14を介してステアリングシャフト11に連結されている。これにより、操舵側モータ13のモータトルクは、ステアリングシャフト11を介して操舵反力としてステアリングホイール3に付与される。
転舵ユニット6は、ピニオン軸21と、ピニオン軸21に連結された転舵軸であるラック軸22と、ラック軸22を往復動可能に収容するラックハウジング23と、ピニオン軸21及びラック軸22を有するラックアンドピニオン機構24とを備えている。ピニオン軸21とラック軸22とは、ラックハウジング23内において所定の交差角をもって配置されている。ラックアンドピニオン機構24は、ピニオン軸21に形成されたピニオン歯21aとラック軸22に形成されたラック歯22aとを噛合することにより構成されている。これにより、ピニオン軸21は、ラック軸22の往復動に応じて回転する。ラック軸22の両端には、ボールジョイント25を介してタイロッド26が連結されている。各タイロッド26の先端は、転舵輪5が組み付けられた図示しないナックルに連結されている。
また、転舵ユニット6は、転舵輪5を転舵させる力である転舵力を付与する転舵側アクチュエータ31を備えている。転舵側アクチュエータ31は、転舵側モータ32と、伝達機構33と、変換機構34とを備えている。転舵側モータ32には、例えば三相の表面磁石同期モータが採用されている。伝達機構33には、例えばベルト機構が採用されている。変換機構34には、例えばボールネジ機構が採用されている。転舵側モータ32のモータトルクは、伝達機構33を介して変換機構34に伝達される。変換機構34は、伝達されたトルクをラック軸22の往復動に変換する。これにより、転舵側アクチュエータ31は、転舵ユニット6に転舵力を付与する。
このように構成された操舵装置2では、運転者によるステアリング操作に応じて転舵側アクチュエータ31から転舵力が付与される。これにより、ラック軸22が往復動し、転舵輪5の転舵角が変更される。このとき、操舵側アクチュエータ12からは、運転者の操舵に抗する操舵反力がステアリングホイール3に付与される。つまり、操舵装置2では、操舵側モータ13が操舵反力として付与するモータトルクにより、ステアリングホイール3の操舵に必要な操舵トルクThが変更される。
次に、本実施形態の電気的構成について説明する。
操舵制御装置1は、操舵側モータ13及び転舵側モータ32に接続されており、操舵側モータ13及び転舵側モータ32をそれぞれ操作する。
操舵制御装置1は、(1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、(2)各種処理のうち少なくとも一部の処理を実行する特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、或いは(3)それらの組み合わせ、を含む処理回路によって構成することができる。プロセッサは、CPU並びに、RAMおよびROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわち非一時的なコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。操舵制御装置1による各種制御は、所定の演算周期ごとにメモリに記憶されたプログラムをCPUが実行することによって実行される。
操舵制御装置1には、各種のセンサの検出結果が入力される。各種のセンサには、例えばトルクセンサ41、操舵側回転角センサ42、転舵側回転角センサ43、横加速度センサ44、ヨーレートセンサ45、軸力センサ46、左前タイヤ力センサ47l及び右前タイヤ力センサ47rが含まれる。
トルクセンサ41は、ステアリングシャフト11に付与された操舵トルクThを検出する。なお、上記操舵トルクThは、例えば右方向に操舵した場合に正の値、左方向に操舵した場合に負の値として検出する。操舵側回転角センサ42は、操舵側モータ13の回転軸13aの回転角θsを360°の範囲内の相対角で検出する。転舵側回転角センサ43は、転舵側モータ32の回転軸32aの回転角θtを相対角で検出する。横加速度センサ44は、車両の横加速度LAを検出する。ヨーレートセンサ45は、車両のヨーレートγを検出する。
軸力センサ46は、ラック軸22に作用する軸力に応じた軸力検出値Fdeを検出する。軸力センサ46としては、例えばラック軸22のストロークに応じた圧力変化に基づいて軸力を検出するものが採用可能である。軸力検出値Fdeの次元は、ニュートン(N)である。左前タイヤ力センサ47l及び右前タイヤ力センサ47rは、転舵輪5を図示しないドライブシャフトを介して回転可能に支持するハブユニット48に設けられている。左前タイヤ力センサ47lは、左側の転舵輪5に作用するタイヤ力Ftlを検出する。右前タイヤ力センサ47rは、左側の転舵輪5に作用するタイヤ力Ftrを検出する。タイヤ力Ftl,Ftrは、それぞれ、車両前後方向(x方向)の荷重、車両左右方向(y方向)の荷重、車両上下方向(z方向)の荷重、x軸周りのモーメント、y軸周りのモーメント及びz軸周りのモーメントの少なくとも1つに基づく値である。タイヤ力Ftl,Ftrの次元は、それぞれニュートン(N)である。
また、操舵制御装置1は、その外部に設けられた制動制御装置51と通信可能に接続されている。制動制御装置51は、図示しないブレーキ装置を操作するための装置である。
制動制御装置51は、ブレーキ装置の操作に際して、車両本体の車速Vbを演算する。具体的には、制動制御装置51には、左前輪センサ52l、右前輪センサ52r、左後輪センサ53l及び右後輪センサ53rが接続されている。左前輪センサ52l及び右前輪センサ52rは、それぞれハブユニット48に設けられている。左前輪センサ52lは、左側の転舵輪5の車輪速度Vflを検出し、右前輪センサ52rは、右側の転舵輪5の車輪速度Vfrを検出する。左後輪センサ53lは、図示しない左後輪の車輪速度Vrlを検出し、右後輪センサ53rは、図示しない右後輪の車輪速度Vrrを検出する。制動制御装置51は、一例として車輪速度Vfl,Vfr,Vrl,Vrrの平均を車速Vbとして演算する。このように演算された車速Vbは、操舵制御装置1に出力される。
また、制動制御装置51は、検出する車速Vbの状態が正常であるか異常であるかの判定を行う。一例として、制動制御装置51は、左前輪センサ52l、右前輪センサ52r、左後輪センサ53l及び右後輪センサ53rから出力される車輪速度Vfl,Vfr,Vrl,Vrrが取り得ない値となった場合、又は前回値からの変化量が予め設定される閾値を超える場合には、車速Vbの状態が異常であると判定する。また、他の例として、制動制御装置51は、左前輪センサ52l、右前輪センサ52r、左後輪センサ53l及び右後輪センサ53rに供給される駆動電圧の少なくとも1つが低下した場合には、車速Vbの状態が異常であると判定する。制動制御装置51は、車速Vbの状態の判定結果を示す車速状態信号Sveを生成する。このように生成された車速状態信号Sveは、操舵制御装置1に出力される。
操舵制御装置1は、これら各センサ及び制動制御装置51から入力される各状態量に基づいて、操舵側モータ13及び転舵側モータ32の作動をそれぞれ制御する。
以下、操舵制御装置1の構成について詳細に説明する。
図2に示すように、操舵制御装置1は、操舵側モータ制御信号Msを出力する操舵側マイクロコンピュータ61と、操舵側モータ制御信号Msに基づいて操舵側モータ13に駆動電力を供給する操舵側駆動回路62とを備えている。操舵側マイクロコンピュータ61には、操舵側駆動回路62と操舵側モータ13の各相のモータコイルとの間の接続線63に設けられた電流センサ64が接続されている。電流センサ64は、接続線63を流れる操舵側モータ13の各相電流値Ius,Ivs,Iwsを検出する。なお、図2では、説明の便宜上、各相の接続線63及び各相の電流センサ64をそれぞれ1つにまとめて図示している。
また、操舵制御装置1は、転舵側モータ制御信号Mtを出力する転舵側マイクロコンピュータ66と、転舵側モータ制御信号Mtに基づいて転舵側モータ32に駆動電力を供給する転舵側駆動回路67とを備えている。転舵側マイクロコンピュータ66には、転舵側駆動回路67と転舵側モータ32の各相のモータコイルとの間の接続線68に設けられた電流センサ69が接続されている。電流センサ69は、接続線68を流れる転舵側モータ32の各相電流値Iut,Ivt,Iwtを検出する。なお、図2では、説明の便宜上、各相の接続線68及び各相の電流センサ69をそれぞれ1つにまとめて図示している。
操舵側駆動回路62及び転舵側駆動回路67には、例えばFET等の複数のスイッチング素子を有する周知のPWMインバータがそれぞれ採用されている。また、操舵側モータ制御信号Ms及び転舵側モータ制御信号Mtは、それぞれ各スイッチング素子のオンオフ状態を規定するゲートオンオフ信号となっている。
そして、操舵側モータ制御信号Msが操舵側駆動回路62に出力されることにより、車載電源Bから駆動電力が操舵側モータ13に供給される。このように操舵制御装置1は、操舵側モータ13への駆動電力の供給を通じて、操舵側モータ13が発生するモータトルクを制御する。また、転舵側モータ制御信号Mtが転舵側駆動回路67に出力されることにより、車載電源Bから駆動電力が転舵側モータ32に駆動電力が供給される。このように操舵制御装置1は、転舵側モータ32への駆動電力の供給を通じて、転舵側モータ32が発生するモータトルクを制御する。
次に、操舵側マイクロコンピュータ61の構成について説明する。
操舵側マイクロコンピュータ61は、所定の演算周期毎に以下の各制御ブロックに示される各演算処理を実行することで、操舵側モータ制御信号Msを出力する。操舵側マイクロコンピュータ61には、上記操舵トルクTh、車速Vb、車速状態信号Sve、回転角θs、横加速度LA、ヨーレートγ、軸力検出値Fde、タイヤ力Ftl,Ftr、各相電流値Ius,Ivs,Iws、後述するピニオン軸21の回転角である転舵対応角θp及び転舵側モータ32の駆動電流であるq軸電流値Iqtが入力される。操舵側マイクロコンピュータ61は、これら各状態量に基づいて操舵側モータ制御信号Msを出力する。
詳しくは、操舵側マイクロコンピュータ61は、ステアリングホイール3の操舵角θhを演算する操舵角演算部71と、操舵反力の目標値である目標反力トルクTs*を生成する目標反力トルク生成部72と、操舵側モータ制御信号Msを生成する操舵側モータ制御信号生成部73とを備えている。
操舵角演算部71には、操舵側モータ13の回転角θsが入力される。操舵角演算部71は、例えばステアリング中点からの操舵側モータ13の回転数をカウントし、ステアリング中点を原点として回転角θsを積算することにより積算角を演算する。なお、ステアリング中点は、ステアリングホイール3が操舵可能範囲の中心にあるときの操舵角θhである。そして、操舵角演算部71は、この積算角に対して、操舵側減速機14の回転速度比に基づく換算係数を乗算することにより、操舵角θhを演算する。操舵角θhは、ステアリング中点よりも、例えば右側の角度である場合に正、左側の角度である場合に負の値とする。このように演算された操舵角θhは、転舵側マイクロコンピュータ66に出力される。
目標反力トルク生成部72には、操舵トルクTh、車速Vb、車速状態信号Sve、横加速度LA、ヨーレートγ、軸力検出値Fde、タイヤ力Ftl,Ftr、転舵対応角θp及びq軸電流値Iqtが入力される。目標反力トルク生成部72は、後述するようにこれらの状態量に基づいて目標反力トルクTs*を生成し、操舵側モータ制御信号生成部73に出力する。目標反力トルクTs*が、操舵側モータ13の目標トルクに相当し、目標反力トルク生成部72が目標トルク生成部に相当する。
操舵側モータ制御信号生成部73には、目標反力トルクTs*に加え、回転角θs及び相電流値Ius,Ivs,Iwsが入力される。操舵側モータ制御信号生成部73は、目標反力トルクTs*に基づいて、dq座標系におけるd軸上のd軸目標電流値Ids*及びq軸上のq軸目標電流値Iqs*を演算する。d軸目標電流値Ids*はd軸上の目標電流値を示し、q軸目標電流値Iqs*はq軸上の目標電流値を示す。
具体的には、操舵側モータ制御信号生成部73は、目標反力トルクTs*の絶対値が大きくなるほど、より大きな絶対値を有するq軸目標電流値Iqs*を演算する。なお、本実施形態では、d軸上のd軸目標電流値Ids*は、基本的にゼロに設定される。
操舵側モータ制御信号生成部73は、dq座標系における電流フィードバック演算を実行することにより、上記操舵側駆動回路62に出力する操舵側モータ制御信号Msを生成する。操舵側モータ制御信号生成部73は、電流フィードバック演算の一例として、PID制御演算を行う。なお、以下では、フィードバックという文言を「F/B」と記すことがある。
具体的には、操舵側モータ制御信号生成部73は、回転角θsに基づいて相電流値Ius,Ivs,Iwsをdq座標上に写像することにより、dq座標系における操舵側モータ13の実電流値であるd軸電流値Ids及びq軸電流値Iqsを演算する。操舵側モータ制御信号生成部73は、d軸電流値Idsをd軸目標電流値Ids*に追従させるとともにq軸電流値Iqsをq軸目標電流値Iqs*に追従させるべく、d軸及びq軸上の各電流偏差に基づいて目標電圧値を演算する。そして、操舵側モータ制御信号生成部73は、この目標電圧値に基づくデューティ比を有する操舵側モータ制御信号Msを生成する。
このように演算された操舵側モータ制御信号Msは、操舵側駆動回路62に出力される。これにより、操舵側モータ13には、操舵側駆動回路62から操舵側モータ制御信号Msに応じた駆動電力が供給される。そして、操舵側モータ13は、目標反力トルクTs*に示されるモータトルクを操舵反力としてステアリングホイール3に付与する。
次に、転舵側マイクロコンピュータ66の構成について説明する。
転舵側マイクロコンピュータ66は、所定の演算周期毎に以下の各制御ブロックに示される各演算処理を実行することで、転舵側モータ制御信号Mtを出力する。転舵側マイクロコンピュータ66には、上記車速Vb、回転角θt、操舵角θh、及び転舵側モータ32の各相電流値Iut,Ivt,Iwtが入力される。そして、転舵側マイクロコンピュータ66は、これら各状態量に基づいて転舵側モータ制御信号Mtを生成して出力する。
詳しくは、転舵側マイクロコンピュータ66は、転舵対応角θpを演算する転舵対応角演算部81と、上記転舵力の目標値である目標転舵トルクTt*を生成する目標転舵トルク生成部82と、転舵側モータ制御信号Mtを生成する転舵側モータ制御信号生成部83とを備えている。
転舵対応角演算部81には、転舵側モータ32の回転角θtが入力される。転舵対応角演算部81は、例えば転舵対応角中点からの転舵側モータ32の回転数をカウントし、転舵対応角中点を原点として回転角θtを積算することにより積算角を演算する。なお、転舵対応角中点は、車両が直進する際のピニオン軸21の回転角である。そして、転舵対応角演算部81は、この積算角に対して、伝達機構33の減速比、変換機構34のリード、及びラックアンドピニオン機構24の回転速度比に基づく換算係数を乗算することにより、転舵対応角θpを演算する。つまり、転舵対応角θpは、ピニオン軸21の回転角であるピニオン角に相当する。このように演算された転舵対応角θpは、目標反力トルク生成部72及び目標転舵トルク生成部82に出力される。
目標転舵トルク生成部82には、車速Vb、操舵角θh及び転舵対応角θpが入力される。目標転舵トルク生成部82は、転舵対応角θpの目標値である目標転舵対応角θp*を演算する目標転舵対応角演算部84と、目標転舵トルクTt*を演算する目標転舵トルク演算部85とを備えている。
具体的には、目標転舵対応角演算部84には、車速Vb及び操舵角θhが入力される。目標転舵対応角演算部84は、車速Vb及び操舵角θhに基づいて目標転舵対応角θp*を演算する。一例として、目標転舵対応角演算部84は、操舵角θhに対して、該操舵角θh及び車速Vに応じて変更される伝達比を除算することにより目標転舵対応角θp*を演算する。つまり、本実施形態の操舵制御装置1では、操舵角θhと転舵対応角θpとの比である舵角比を車速に応じて変更する。
目標転舵トルク演算部85には、減算器86において目標転舵対応角θp*から転舵対応角θpを差し引いた角度偏差Δθpが入力される。目標転舵トルク演算部85は、転舵対応角θpを目標転舵対応角θp*に追従させる角度F/B演算を実行することにより、目標転舵トルクTt*を演算する。目標転舵トルク演算部85は、角度F/B演算の一例として、PID制御演算を行う。このように演算された目標転舵トルクTt*は、転舵側モータ制御信号生成部83に出力される。
転舵側モータ制御信号生成部83には、目標転舵トルクTt*に加え、回転角θt及び相電流値Iut,Ivt,Iwtが入力される。転舵側モータ制御信号生成部83は、目標転舵トルクTt*に基づいて、dq座標系におけるd軸上のd軸目標電流値Idt*及びq軸上のq軸目標電流値Iqt*を演算する。具体的には、転舵側モータ制御信号生成部83は、目標転舵トルクTt*の絶対値が大きくなるほど、より大きな絶対値を有するq軸目標電流値Iqt*を演算する。なお、本実施形態では、d軸上のd軸目標電流値Idt*は、基本的にゼロに設定される。そして、転舵側モータ制御信号生成部83は、操舵側モータ制御信号生成部73と同様に、dq座標系における電流F/B演算を実行することにより、上記転舵側駆動回路67に出力する転舵側モータ制御信号Mtを生成する。なお、転舵側モータ制御信号Mtを生成する過程で演算したq軸電流値Iqtは、上記目標反力トルク生成部72に出力される。
このように演算された転舵側モータ制御信号Mtは、転舵側駆動回路67に出力される。これにより、転舵側モータ32には、転舵側駆動回路67から転舵側モータ制御信号Mtに応じた駆動電力が供給される。そして、転舵側モータ32は、目標転舵トルクTt*に示されるモータトルクを転舵力として転舵輪5に付与する。
次に、目標反力トルク生成部72について説明する。
図3に示すように、目標反力トルク生成部72は、入力トルク基礎成分Tbを演算する入力トルク基礎成分演算部91と、軸力成分Firを演算する軸力成分演算部92と、目標トルク演算部である減算器93とを備えている。入力トルク基礎成分Tbは、運転者の操舵方向にステアリングホイール3を回転させる力を示す。軸力成分Firは、運転者の操舵によるステアリングホイール3の回転に抗する力、すなわち転舵輪5からラック軸22に作用する軸力を示す。
詳しくは、入力トルク基礎成分演算部91には、操舵トルクThが入力される。入力トルク基礎成分演算部91は、操舵トルクThの絶対値が大きいほど、より大きな絶対値を有する入力トルク基礎成分Tbを演算する。このように演算された入力トルク基礎成分Tbは、減算器93に出力される。
軸力成分演算部92には、転舵側モータ32のq軸電流値Iqt、転舵対応角θp、車速Vb、車速状態信号Sve、横加速度LA、ヨーレートγ、軸力検出値Fde及びタイヤ力Ftl,Ftrが入力される。軸力成分演算部92は、後述するようにこれらの状態量に基づいて、ラック軸22に作用する軸力に応じた軸力成分Firを演算する。なお、軸力成分Firは、ラック軸22に作用する軸力を推定した演算上の軸力に相当する。このように演算された軸力成分Firは、減算器93に出力される。
減算器93は、入力トルク基礎成分Tbから軸力成分Firを減算することにより、目標反力トルクTs*を演算する。このように演算された目標反力トルクTs*は、操舵側モータ制御信号生成部73に出力される。
なお、上記のように目標反力トルク生成部72は、演算上の軸力である軸力成分Firに基づいて目標反力トルクTs*を演算する。そのため、操舵側モータ13が付与する操舵反力は、基本的には運転者の操舵に抗する力であるが、演算上の軸力とラック軸22に作用する実際の軸力との偏差によっては、運転者の操舵を補助する力にもなり得るものである。
次に、軸力成分演算部92について説明する。
軸力成分演算部92は、第1演算系統101と、第2演算系統102と、出力切替部103とを備えている。
第1演算系統101は、車速Vbを含む状態量に基づいて演算される車速基礎軸力である第1配分軸力Fds1を演算する。第2演算系統102は、車速Vb以外の他の状態量に基づいて演算される他状態量基礎軸力である第2配分軸力Fds2を演算する。出力切替部103は、車速状態信号Sveに基づいて、有効な演算系統を第1演算系統101又は第2演算系統102に切り替える。そして、軸力成分演算部92は、車速Vbの状態が正常である場合には、第1演算系統101を有効とすることにより第1配分軸力Fds1を軸力成分Firとして出力し、車速Vbの状態が異常である場合には、第2演算系統102を有効とすることにより第2配分軸力Fds2を軸力成分Firとして出力する。
詳しくは、第1演算系統101は、角度軸力Fibを演算する角度軸力演算部111と、車両状態量軸力Fyrを演算する車両状態量軸力演算部112と、電流軸力Ferを演算する電流軸力演算部113と、センサ軸力Fseを演算するセンサ軸力演算部114と、タイヤ軸力Ftyを演算するタイヤ軸力演算部115とを備えている。角度軸力Fib、車両状態量軸力Fyr、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyの次元は、一例として、それぞれピニオン軸周りのトルク(N・m)である。また、第1演算系統101は、角度軸力Fib、車両状態量軸力Fyr、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyを個別に設定される所定配分比率で合算することにより、第1配分軸力Fds1を演算する第1配分軸力演算部116を備えている。つまり、第1軸力群は、角度軸力Fib、車両状態量軸力Fyr、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyからなる。
角度軸力演算部111には、転舵対応角θp及び車速Vbが入力される。角度軸力演算部111は、転舵対応角θp及び車速Vbに基づいて演算する。角度軸力Fibは、予め設定されるモデルにおける軸力の理想値である。そのため、角度軸力Fibは、車両の横方向への挙動に影響を与えない微小な凹凸、又は車両の横方向への挙動に影響を与える段差等の路面情報を含まない。
具体的には、角度軸力演算部111は、転舵対応角θpの絶対値が大きくなるほど、角度軸力Fibの絶対値が大きくなるように演算する。また、角度軸力演算部111は、車速Vbが大きくなるにつれて角度軸力Fibの絶対値が大きくなるように演算する。つまり、角度軸力Fibは、車速Vbに基づいて演算される演算軸力である。このように演算された角度軸力Fibは、第1配分軸力演算部116に出力される。
車両状態量軸力演算部112には、車速Vb、ヨーレートγ及び横加速度LAが入力される。車両状態量軸力演算部112は、下記(1)式にヨーレートγ及び横加速度LAを入力することにより得られる横力Fyを車両状態量軸力Fyrとして演算する。車両状態量軸力Fyrは、転舵輪5を介してラック軸22に作用する軸力を該ラック軸22に作用する横力Fyであると近似的にみなした推定値である。車両状態量軸力Fyrは、車両の横方向への挙動の変化を引き起こさない路面情報は含まず、車両の横方向への挙動の変化を通じて伝達可能な路面情報を含む。
Fy=Kla×LA+Kγ×γ’…(1)
なお、「γ’」は、ヨーレートγの微分値を示し、「Kla」及び「Kγ」は、それぞれ試験等により予め設定された係数を示す。係数Kla,Kγは、それぞれ車速Vbに応じて可変設定されている。つまり、車両状態量軸力Fyrは、車速Vbに基づいて演算される演算軸力である。このように演算された車両状態量軸力Fyrは、第1配分軸力演算部116に出力される。
電流軸力演算部113には、転舵側モータ32のq軸電流値Iqtが入力される。電流軸力演算部113は、転舵輪5を介してラック軸22に作用する軸力をq軸電流値Iqtに基づいて演算する。電流軸力Ferは、ラック軸22に作用する軸力の推定値である。電流軸力Ferは、路面情報を含む路面軸力である。
具体的には、電流軸力演算部113は、転舵側モータ32によってラック軸22に加えられるトルクと、転舵輪5に対して路面から加えられる力に応じたトルクとが釣り合うと仮定して、電流軸力Ferを演算する。電流軸力演算部113は、q軸電流値Iqtの絶対値が大きくなるほど、電流軸力Ferの絶対値が大きくなるように演算する。このように電流軸力Ferは、トルクの釣り合いに基づいて演算されるため、車速Vbを考慮しなくても、ラック軸22に実際に作用する軸力に応じた適切な値となる。つまり、電流軸力Ferは、車速Vb以外の他の状態量に基づいて演算される演算軸力である。このように演算された電流軸力Ferは、第1配分軸力演算部116に出力される。
センサ軸力演算部114には、軸力検出値Fdeが入力される。センサ軸力演算部114は、軸力検出値Fdeにラックアンドピニオン機構24の回転速度比に基づく換算係数を乗算することで、センサ軸力Fseを演算する。このようにセンサ軸力Fseは、ラック軸22に作用する軸力の検出値である軸力検出値Fdeに基づいて演算されるため、車速Vbを考慮しなくても、ラック軸22に実際に作用する軸力に応じた適切な値となる。つまり、センサ軸力Fseは、車速Vb以外の他の状態量に基づいて演算される演算軸力である。このように演算されたセンサ軸力Fseは、第1配分軸力演算部116に出力される。
タイヤ軸力演算部115には、タイヤ力Ftl,Ftrが入力される。タイヤ軸力演算部115は、タイヤ力Ftl,Ftrの平均値を演算する。タイヤ軸力演算部115は、この平均値にラックアンドピニオン機構24の回転速度比に基づく換算係数を乗算することで、タイヤ軸力Ftyを演算する。このようにタイヤ軸力Ftyは、転舵輪5に作用する力の検出値であるタイヤ力Ftl,Ftrに基づいて演算されるため、車速Vbを考慮しなくても、ラック軸22に実際に作用する軸力に応じた適切な値となる。つまり、タイヤ軸力Ftyは、車速Vb以外の他の状態量に基づいて演算される軸力である。このように演算されたタイヤ軸力Ftyは、第1配分軸力演算部116に出力される。
第1配分軸力演算部116には、角度軸力Fib、車両状態量軸力Fyr、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyが入力される。第1配分軸力演算部116には、角度配分ゲインGib、車両状態量配分ゲインGyr、電流配分ゲインGer、センサ配分ゲインGse、及びタイヤ配分ゲインGtyが、実験結果等に基づいて予め設定されている。角度配分ゲインGibは、第1配分軸力Fds1における角度軸力Fibの配分比率を示す。車両状態量配分ゲインGyrは、第1配分軸力Fds1における車両状態量軸力Fyrの配分比率を示す。電流配分ゲインGerは、第1配分軸力Fds1における電流軸力Ferの配分比率を示す。センサ配分ゲインGseは、第1配分軸力Fds1におけるセンサ軸力Fseの配分比率を示す。タイヤ配分ゲインGtyは、第1配分軸力Fds1におけるタイヤ軸力Ftyの配分比率を示す。
第1配分軸力演算部116は、角度軸力Fibに角度配分ゲインGibを乗算することにより角度軸力配分値を演算する。車両状態量軸力Fyrに車両状態量配分ゲインGyrを乗算することにより車両状態量軸力配分値を演算する。電流軸力Ferに電流配分ゲインGerを乗算することにより電流軸力配分値を演算する。センサ軸力Fseにセンサ配分ゲインGseを乗算することによりセンサ軸力配分値を演算する。タイヤ軸力Ftyにタイヤ配分ゲインGtyを乗算することによりタイヤ軸力配分値を演算する。そして、第1配分軸力演算部116は、これらの配分値を足し合わせることにより、第1配分軸力Fds1を演算する。このように第1配分軸力Fds1には、車速Vbに基づいて演算される演算軸力、すなわち角度軸力Fib及び車両状態量軸力Fyrが含まれる。このように演算された第1配分軸力Fds1は、出力切替部103に出力される。
第2演算系統102は、電流軸力Ferを演算する電流軸力演算部121と、センサ軸力Fseを演算するセンサ軸力演算部122と、タイヤ軸力Ftyを演算するタイヤ軸力演算部123とを備えている。また、第2演算系統102は、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyを個別に設定される所定配分比率で合算することにより、第2配分軸力Fds2を演算する第2配分軸力演算部124を備えている。つまり、第2軸力群は、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyを含む。
電流軸力演算部121は、第1演算系統101の電流軸力演算部113と同様に、電流軸力Ferを演算する。センサ軸力演算部122は、第1演算系統101のセンサ軸力演算部114と同様に、センサ軸力Fseを演算する。タイヤ軸力演算部123は、第1演算系統101のタイヤ軸力演算部115と同様に、タイヤ軸力Ftyを演算する。
第2配分軸力演算部124には、電流配分ゲインGer、センサ配分ゲインGse、及びタイヤ配分ゲインGtyが設定されている。第2配分軸力演算部124は、第1配分軸力演算部116と同様に、電流軸力配分値、センサ軸力配分値及びタイヤ軸力配分値を演算する。そして、第2配分軸力演算部124は、これらの配分値を足し合わせることにより、第2配分軸力Fds2を演算する。このように第2配分軸力Fds2には、車速Vbに基づいて演算される演算軸力が含まれていない。このように演算された第2配分軸力Fds2は、出力切替部103に出力される。
出力切替部103には、第1配分軸力Fds1及び第2配分軸力Fds2に加え、車速状態信号Sveが入力される。出力切替部103は、車速Vbの状態が正常であることを車速状態信号Sveが示す場合には、第1演算系統101を有効にすることにより第1配分軸力Fds1を軸力成分Firとして上記減算器93に出力する。一方、出力切替部103は、車速Vbの状態が異常であることを車速状態信号Sveが示す場合には、第2演算系統102を有効にすることにより第2配分軸力Fds2を軸力成分Firとして上記減算器93に出力する。つまり、出力切替部103は、車速Vbの状態が異常となった場合に、軸力成分Firとなる値を第1配分軸力Fds1の値から第2配分軸力Fds2の値に切り替える。これにより、車速Vbの状態が異常である場合に、車速Vbに基づいて演算される角度軸力Fib及び車両状態量軸力Fyrが軸力成分Firに対して影響を与えなくなる。
ここで、本実施形態の出力切替部103は、車速Vbの状態が正常から異常に変化することで、有効な演算系統を第1演算系統101から第2演算系統102に切り替える際において、軸力成分Firの値を第1配分軸力Fds1の値から第2配分軸力Fds2の値に徐々に変化させる。
一例として、出力切替部103は、有効な演算系統を第1演算系統101から第2演算系統102に切り替えた演算周期に得られる第1配分軸力Fds1から第2配分軸力Fds2を減算することにより、差分を演算する。出力切替部103は、この差分及び操舵速度に基づいて、その絶対値が徐々に小さくなるように補償値を演算する。出力切替部103は、この補償値を第2配分軸力Fds2に加算することにより得られる値を軸力成分Firとして出力する。つまり、補償値がゼロになると、軸力成分Firの値は第2配分軸力Fds2の値と等しくなる。
次に、本実施形態の作用及び効果について説明する。
(1)軸力成分演算部92は、車速Vbを含む状態量に基づいて第1配分軸力Fds1を演算する第1演算系統101と、車速Vb以外の他の状態量に基づいて第2配分軸力Fds2を演算する第2演算系統102と、有効な演算系統を切り替える出力切替部103と、を含む。出力切替部103は、車速Vbの状態が正常である場合には、第1演算系統101を有効とすることにより第1配分軸力Fds1を軸力成分Firとして出力し、車速Vbの状態が異常である場合には、第2演算系統102を有効とすることにより第2配分軸力Fds2を軸力成分Firとして出力する。これにより、車速Vbの状態が異常である場合には、車速Vbに基づかない第2配分軸力Fds2が軸力成分Firとして出力され、当該軸力成分Firに基づいて目標反力トルクTs*が演算される。そのため、目標反力トルクTs*がラック軸22に作用する軸力に応じた適切な値から乖離することを抑制できる。
(2)軸力成分演算部92は、有効な演算系統を第1演算系統101から第2演算系統102に切り替える際において、軸力成分Firの値を車速基礎軸力である第1配分軸力Fds1の値から他状態量基礎軸力である第2配分軸力Fds2の値に徐々に変化させる。そのため、車速Vbの状態が異常となった際に軸力成分Firの値が第1配分軸力Fds1の値から第2配分軸力Fds2の値に即座に変化する場合に比べ、軸力成分Firが急変することを抑制できる。これにより、目標反力トルクTs*の急変を抑制し、操舵フィーリングの低下を抑制できる。
(第2実施形態)
次に、操舵制御装置の第2実施形態を図面に従って説明する。なお、説明の便宜上、同一の構成については上記第1実施形態と同一の符号を付してその説明を省略する。
図4に示すように、本実施形態の第1演算系統101は、角度軸力演算部111のみを有している。角度軸力演算部111は、演算した角度軸力Fibを出力切替部103に出力する。つまり、本実施形態では、単一の軸力である角度軸力Fibが車速基礎軸力に相当する。
第2演算系統102は電流軸力演算部121のみを有している。電流軸力演算部121は、演算した電流軸力Ferを出力切替部103に出力する。つまり、本実施形態では、単一の軸力である電流軸力Ferが他状態量基礎軸力に相当する。
出力切替部103は、車速Vbの状態が正常であることを車速状態信号Sveが示す場合には、第1演算系統101を有効にすることにより角度軸力Fibを軸力成分Firとして出力する。一方、出力切替部103は、車速Vbの状態が異常であることを車速状態信号Sveが示す場合には、第2演算系統102を有効にすることにより電流軸力Ferを軸力成分Firとして出力する。また、出力切替部103は、上記第1実施形態と同様に、有効な演算系統を第1演算系統101から第2演算系統102に切り替える際において、軸力成分Firの値を角度軸力Fibの値から電流軸力Ferの値に徐々に変化させる。
以上、本実施形態では、上記第1実施形態の(1),(2)の作用及び効果と同様の作用及び効果を奏する。
上記各実施形態は、以下のように変更して実施することができる。上記各実施形態及び以下の変形例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・上記各実施形態では、各車輪速度Vfl,Vfr,Vrl,Vrrの平均値を車速Vbとして用いたが、これに限らず、例えば各車輪速度Vfl,Vfr,Vrl,Vrrのうちの二番目と三番目に速い車輪速度の平均を用いてもよく、車速Vbの演算方法は適宜変更可能である。また、車輪速度を用いず、例えば車両の前後加速度を積分することにより得られる値を車速Vbとしてもよい。さらに、例えばGPS(Global Positioning System)用の人工衛星からの測位信号を受信し、当該受信される測位信号に基づく時間あたりの車両の位置変化から推定される推定車速を車速Vbとして用いてもよい。
・上記各実施形態において、操舵制御装置1が各車輪速度Vfl,Vfr,Vrl,Vrr等に基づいて車速Vbを演算してもよい。
・上記各実施形態では、タイヤ力Ftl,Ftrの平均値に基づいてタイヤ軸力Ftyを演算したが、これに限らず、例えばタイヤ力Ftl,Ftrのうちのいずれか大きい方又は小さい方のみに基づいてタイヤ軸力Ftyを演算してもよい。
・上記各実施形態において、入力トルク基礎成分演算部91が、例えば操舵トルクTh及び車速Vbに基づいて入力トルク基礎成分Tbを演算するようにしてもよい。この場合、例えば入力トルク基礎成分演算部91は、車速Vbが小さくなるほど、より大きな絶対値を有する入力トルク基礎成分Tbを演算する。また、入力トルク基礎成分演算部91は、車速Vbに異常が有る旨の車速状態信号Sveが入力される場合には、車速Vbが予め設定された所定車速であるとして、操舵トルクThに応じた入力トルク基礎成分Tbを演算することが好ましい。なお、所定車速は、例えば操舵トルクThの変化によって入力トルク基礎成分Tbが過大又は過小な値とならないような速度に設定される。
・上記第1実施形態では、第1軸力群が、角度軸力Fib、車両状態量軸力Fyr、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyを含んだが、これに限らない。第1軸力群は、少なくとも車速Vbに基づいて演算される演算軸力を含む複数の演算軸力により構成されればよい。したがって、第1軸力群を、例えば角度軸力Fibと電流軸力Ferとにより構成してもよい。換言すると、角度軸力Fibと電流軸力Ferとを個別に設定される所定配分比率で合算することにより第1配分軸力Fds1を演算してもよい。
・上記第1実施形態では、第2軸力群が、電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyを含んだが、これに限らない。第2軸力群は、車速Vbに基づいて演算される軸力を含まず、車速Vb以外の状態量に基づいて演算される複数の演算軸力により構成されればよい。したがって、第2軸力群を、例えば電流軸力Ferとセンサ軸力Fseとにより構成してもよい。換言すると、例えば電流軸力Ferとセンサ軸力Fseを個別に設定される所定配分比率で合算することにより第2配分軸力Fds2を演算してもよい。
・上記第1実施形態において、第1演算系統101が第1配分軸力Fds1を演算せず、車速Vbに基づいて演算される単一の演算軸力、例えば角度軸力Fib又は車両状態量軸力Fyrを演算するようにしてもよい。また、第2演算系統102が第2配分軸力Fds2を演算せず、車速Vb以外の状態量に基づいて演算される単一の演算軸力、例えば電流軸力Fer、センサ軸力Fse及びタイヤ軸力Ftyのいずれか1つを演算するようにしてもよい。つまり、車速Vbの状態に応じて、軸力成分Firとなる値を配分軸力又は単一の軸力に切り替えてもよい。
・上記第2実施形態では、第1演算系統101が角度軸力演算部111のみを有したが、これに限らず、例えば第1演算系統101が車両状態量軸力演算部112のみを有してもよい。また、第2演算系統102がセンサ軸力演算部122のみ、又はタイヤ軸力演算部123のみを有してもよい。
・上記各実施形態において、軸力成分Firの値を第1配分軸力Fds1の値から第2配分軸力Fds2の値に徐々に変化させる演算態様は、適宜変更可能である。例えば第2配分軸力Fds2に加算する補償値を、車速Vbの状態が正常から異常に変化してからの時間経過に基づいて徐々に小さくしてもよい。
・上記第1実施形態において、出力切替部103が、有効な演算系統を第1演算系統101から第2演算系統102に切り替える際に、軸力成分Firの値を第1配分軸力Fds1の値から第2配分軸力Fds2の値に即座に変化させてもよい。上記第2実施形態においても同様に、出力切替部103が、有効な演算系統を第1演算系統101から第2演算系統102に切り替える際に、軸力成分Firの値を角度軸力Fibの値から電流軸力Ferの値に即座に変化させてもよい。
・上記各実施形態において、軸力成分演算部92が出力切替部103から出力される値に、他の軸力を加味した値を軸力成分Firとして演算してもよい。こうした他の軸力として、例えばステアリングホイール3の操舵角の絶対値が舵角閾値に近づく場合に、更なる切り込み操舵が行われることを規制するエンド軸力を採用することができる。
・上記各実施形態では、電流軸力Ferをq軸電流値Iqtに基づいて演算したが、これに限らず、例えばq軸目標電流値Iqt*に基づいて演算してもよい。
・上記各実施形態では、角度軸力Fibを転舵対応角θpに基づいて演算したが、これに限らず、例えば目標転舵対応角θp*や操舵角θhに基づいて演算してもよく、また操舵トルクTh等、他のパラメータを加味する等、他の方法で演算してもよい。
・上記各実施形態では、制御対象となる操舵装置2を、操舵ユニット4と転舵ユニット6との間の動力伝達が分離したリンクレスの構造としたが、これに限らず、クラッチにより操舵ユニット4と転舵ユニット6との間の動力伝達を分離可能な構造の操舵装置を制御対象としてもよい。
・上記各実施形態では、ステアバイワイヤ式の操舵装置2を制御対象としたが、これに限らない。例えばステアリングホイール3の操作に基づいて転舵輪5を転舵させる操舵機構を有し、ステアリング操作を補助するためのアシスト力としてモータトルクを付与する電動パワーステアリング装置を制御対象としてもよい。なお、こうした操舵装置では、アシスト力として付与されるモータトルクにより、ステアリングホイール3の操舵に必要な操舵トルクThが変更される。また、この場合、操舵制御装置は、アシスト力の目標値となる目標アシストトルクを軸力成分に基づいて演算する。
1…操舵制御装置
2…操舵装置
3…ステアリングホイール
4…操舵ユニット
5…転舵輪
6…転舵ユニット
13…操舵側モータ
92…軸力成分演算部
101…第1演算系統
102…第2演算系統
103…出力切替部

Claims (5)

  1. モータが付与するモータトルクによりステアリングホイールの操舵に必要な操舵トルクを可変とする操舵装置を制御する操舵制御装置であって、
    前記モータトルクの目標値である目標トルクを生成する目標トルク生成部と、
    前記目標トルクに応じた前記モータトルクを発生させるように前記モータを制御するための制御信号を生成する制御信号生成部と、を備え、
    前記目標トルク生成部は、
    転舵輪が連結される転舵軸に作用する軸力に応じた軸力成分を演算する軸力成分演算部と、
    前記軸力成分に基づいて前記目標トルクを演算する目標トルク演算部と、を備え、
    前記軸力成分演算部は、
    車速を含む状態量に基づいて演算される車速基礎軸力を演算する第1演算系統と、
    前記車速以外の他の状態量に基づいて演算される他状態量基礎軸力を演算する第2演算系統と、
    有効な演算系統を前記第1演算系統又は前記第2演算系統に切り替える出力切替部と、を含み、
    前記出力切替部は、
    前記車速の状態が正常である場合には、前記第1演算系統を有効とすることにより前記車速基礎軸力を前記軸力成分として出力し、
    前記車速の状態が異常である場合には、前記第2演算系統を有効とすることにより前記他状態量基礎軸力を前記軸力成分として出力する操舵制御装置。
  2. 請求項1に記載の操舵制御装置において、
    前記軸力成分演算部は、有効な演算系統を前記第1演算系統から前記第2演算系統に切り替える際において、前記軸力成分の値を前記車速基礎軸力の値から前記他状態量基礎軸力の値に徐々に変化させる操舵制御装置。
  3. 請求項1又は2に記載の操舵制御装置において、
    前記車速基礎軸力は、複数種の演算軸力を含む第1軸力群に基づいて演算される第1配分軸力であり、
    前記他状態量基礎軸力は、複数種の演算軸力を含む第2軸力群に基づいて演算される第2配分軸力であり、
    前記第1軸力群は、前記車速に基づいて演算されるとともに路面情報を含まない角度軸力、及び前記車速に基づいて演算されるとともに前記路面情報のうち車両の横方向への挙動の変化を通じて伝達可能なものを含む車両状態量軸力の少なくとも一方を含み、
    前記第2軸力群は、前記車速に基づいて演算される演算軸力を含まず、前記車速以外の状態量に基づいて演算されるとともに前記路面情報を含む複数種の路面軸力を含む操舵制御装置。
  4. 請求項1又は2に記載の操舵制御装置において、
    前記車速基礎軸力は、前記車速に基づいて演算されるとともに路面情報を含まない角度軸力、又は前記車速に基づいて演算されるとともに前記路面情報のうち車両の横方向への挙動の変化を通じて伝達可能なものを含む車両状態量軸力であり、
    前記他状態量基礎軸力は、前記車速以外の状態量に基づいて演算されるとともに前記路面情報を含む単一の路面軸力である操舵制御装置。
  5. 請求項1~4のいずれか一項に記載の操舵制御装置において、
    前記操舵装置は、前記ステアリングホイールが連結される操舵ユニットと、前記転舵輪を転舵させる転舵ユニットとの間の動力伝達路が分離した構造を有するものであり、
    前記モータは、前記操舵ユニットに入力される操舵に抗する操舵反力として前記モータトルクを付与する操舵側モータであり、
    前記目標トルク生成部は、前記目標トルクとして前記操舵反力の目標値である目標反力トルクを生成するものである操舵制御装置。
JP2020161923A 2020-09-28 2020-09-28 操舵制御装置 Pending JP2022054736A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020161923A JP2022054736A (ja) 2020-09-28 2020-09-28 操舵制御装置
EP21198557.7A EP3974288A1 (en) 2020-09-28 2021-09-23 Steering control device
CN202111123407.XA CN114312983A (zh) 2020-09-28 2021-09-24 转向控制装置
US17/485,669 US20220097761A1 (en) 2020-09-28 2021-09-27 Steering control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020161923A JP2022054736A (ja) 2020-09-28 2020-09-28 操舵制御装置

Publications (1)

Publication Number Publication Date
JP2022054736A true JP2022054736A (ja) 2022-04-07

Family

ID=77910714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020161923A Pending JP2022054736A (ja) 2020-09-28 2020-09-28 操舵制御装置

Country Status (4)

Country Link
US (1) US20220097761A1 (ja)
EP (1) EP3974288A1 (ja)
JP (1) JP2022054736A (ja)
CN (1) CN114312983A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230145186A1 (en) * 2021-11-09 2023-05-11 Fca Us Llc Battery electric vehicle active sound and vibration enhancement systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9701337B2 (en) * 2011-10-26 2017-07-11 Nissan Motor Co., Ltd. Steering control apparatus and steering control method
JP6439473B2 (ja) 2015-02-06 2018-12-19 株式会社ジェイテクト 電動パワーステアリング装置
US11485411B2 (en) * 2018-10-30 2022-11-01 Jtekt Corporation Controller for steering device
JP7383384B2 (ja) * 2019-03-05 2023-11-20 株式会社ジェイテクト 操舵制御装置

Also Published As

Publication number Publication date
US20220097761A1 (en) 2022-03-31
CN114312983A (zh) 2022-04-12
EP3974288A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
JP7383384B2 (ja) 操舵制御装置
JP5126357B2 (ja) 車両の操舵装置
US11485411B2 (en) Controller for steering device
CN103596832B (zh) 电动助力转向设备
JP7376407B2 (ja) 操舵制御装置
EP3647161A1 (en) Steering control device
JP7147472B2 (ja) 操舵制御装置
JP2020163990A (ja) 操舵制御装置
JP2020069861A (ja) 操舵制御装置
CN113443005A (zh) 转向控制装置
JP2020163989A (ja) 操舵制御装置
US20220081025A1 (en) Steering control device
JP7259495B2 (ja) 操舵制御装置
JP2022054736A (ja) 操舵制御装置
JP7147473B2 (ja) 操舵制御装置
JP7243045B2 (ja) 操舵制御装置
JP7491802B2 (ja) 操舵制御装置
JP2020069863A (ja) 操舵制御装置
JP2012240440A (ja) 電動パワーステアリング装置
JP4582057B2 (ja) 車両用操舵装置
JP2019209787A (ja) 操舵制御装置
JP2010100257A (ja) 電動パワーステアリング装置