JP2022046072A - Multistage simultaneous injection device - Google Patents

Multistage simultaneous injection device Download PDF

Info

Publication number
JP2022046072A
JP2022046072A JP2020151926A JP2020151926A JP2022046072A JP 2022046072 A JP2022046072 A JP 2022046072A JP 2020151926 A JP2020151926 A JP 2020151926A JP 2020151926 A JP2020151926 A JP 2020151926A JP 2022046072 A JP2022046072 A JP 2022046072A
Authority
JP
Japan
Prior art keywords
injection
grout
air
pipe
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020151926A
Other languages
Japanese (ja)
Other versions
JP6867662B1 (en
Inventor
了 古谷
Satoru Furuya
一雄 下田
Kazuo Shimoda
和雄 壱岐
Kazuo Iki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKOSHA KK
Shimoda Gijutsu Kenkyusho KK
Original Assignee
CHIKOSHA KK
Shimoda Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75801763&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2022046072(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CHIKOSHA KK, Shimoda Gijutsu Kenkyusho KK filed Critical CHIKOSHA KK
Priority to JP2020151926A priority Critical patent/JP6867662B1/en
Application granted granted Critical
Publication of JP6867662B1 publication Critical patent/JP6867662B1/en
Publication of JP2022046072A publication Critical patent/JP2022046072A/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provided a multistage simultaneous injection device and a method thereof allowing infiltration of grout to be finely carried out under lower pressure by injecting the grout with low outlet amount in the spaces between sandy soil particles.SOLUTION: A multistage simultaneous injection device 1 is provided with: an outer pipe 2 provided with outer pipe nozzles 3 to 3''' arranged with the number of four stages or more in a depth direction corresponding to an injection step injecting grout; a four cylinder four series injection pump 4; and an air generator 9 supplying gas by pressure, wherein four outlet ports 5 to 5''' provided in the injection pump 4 are connected to injection pipes 7 to 7''' having outlet holes 8 to 8''' placed in four stages in a depth direction corresponding to an injection step, the air generator 9 is connected to five air packer members 12 to 12'''' sealing gaps between upper parts and lower parts to allow gas to be supplies by pressure through communicated air pipes 11, of which one of air pipes 11 has an inner pipe configured to place four injection pipes 7 to 7''' therearound, and the inner pipe is inserted into the outer pipe 2 and configured to be liftable in the outer pipe 2.SELECTED DRAWING: Figure 1

Description

本発明は、軟弱地盤、特に砂質土粒子の間隙にグラウトを浸透させて止水や地盤強化を図るストレーナー工法に関するものであり、詳しくは、4筒4連式ポンプを用いて、1注入工あたり4段にグラウトを同時に注入する多段同時注入装置及びそれを用いた多段同時注入工法に関するのである。 The present invention relates to a strainer method for infiltrating grout into soft ground, especially in the gaps between sandy soil particles to stop water and strengthen the ground. It relates to a multi-stage simultaneous injection device that simultaneously injects grout into four stages and a multi-stage simultaneous injection method using the same.

従来、軟弱地盤の止水や地盤強化を目的として薬液(以下、グラウトという)注入工法が広く使われている。特に、近年は地震や自然災害の頻発により、液状化対策、或いは、既設構造物などに対する耐震化が求められている。 Conventionally, a chemical solution (hereinafter referred to as grout) injection method has been widely used for the purpose of stopping water in soft ground and strengthening the ground. In particular, in recent years, due to the frequent occurrence of earthquakes and natural disasters, measures against liquefaction or earthquake resistance of existing structures are required.

これらの対象となる地盤は、河川や海辺域に永年にわたり堆積した軟弱な沖積層の砂質土は、堆積の過程で粒子が沈降して層状に生成されているため、砂質土であっても一様ではなく、下部が粗く上部が細かい砂粒子で構成されている場合が多い。 These target grounds are sandy soils that have been deposited over many years in rivers and seaside areas, because the soft alluvial sandy soils are formed in layers by sedimentation during the sedimentation process. Is not uniform, and is often composed of sand particles with a coarse bottom and fine top.

また、砂質土は、粘性土や礫など複雑多岐に互層をなして層状を呈して堆積した地盤である。このため、透水性(透水係数)も大きく異なり、縦方向に比べて横方向の方が透水係数が大となり、また層境も大となる傾向を示している。 In addition, sandy soil is a complex and diverse layered ground such as cohesive soil and gravel. For this reason, the permeability (permeability coefficient) is also significantly different, and the permeability coefficient is larger in the horizontal direction than in the vertical direction, and the stratum boundary also tends to be larger.

このような、地下水下の不均一な砂質土層にグラウトを注入する工法として、主にストレーナー工法が用いられている。このストレーナー工法には、開発された時系列順に、単管ストレーナー工法(非特許文献1、P131参照)、ダブルパッカー工法がある。ダブルパッカー工法としては、代表的なものとして、ソレタンシュ工法、スリーブ工法(非特許文献1、P132~133参照)がある。その後、超多点注入工法(特許文献2、非特許文献2参照)が開発されている。 The strainer method is mainly used as a method of injecting grout into such a non-uniform sandy soil layer under groundwater. The strainer method includes a single tube strainer method (see Non-Patent Document 1, P131) and a double packer method in the order of development. Typical examples of the double packer method include a soletanche method and a sleeve method (see Non-Patent Document 1, P132 to 133). Since then, a super-multi-point injection method (see Patent Document 2 and Non-Patent Document 2) has been developed.

[単管ストレーナー工法]
我が国で初めて開発されたのが単管ストレーナー工法である。この単管ストレーナー工法は、第1工程で注入管の設置と、第2工程で注入する2工程で構成されている。第1工程は、先端が尖ったガス管パイプで周囲の多数の注入孔が設けられた注入管を対象地盤に打込んで設置している。第2工程の注入は、予め注入管内に溶液型薬液を充填して、注入管と地山の隙間と注入管内をゲル化させた後、注入範囲(注入作用長で約1m)の注入管内を水洗いで排出して注入孔を確保する。
[Single tube strainer method]
The single-tube strainer method was first developed in Japan. This single-tube strainer method consists of two steps: installation of an injection tube in the first step and injection in the second step. In the first step, an injection pipe provided with a large number of surrounding injection holes, which is a gas pipe with a sharp tip, is driven into the target ground and installed. In the second step, the injection tube is filled with a solution-type drug solution in advance to gel the gap between the injection tube and the ground and the inside of the injection tube, and then the inside of the injection tube within the injection range (injection action length is about 1 m). Drain by washing with water to secure the injection hole.

次に、グラウトを1台のポンプで1本のホースで注入すると地盤(地盤抵抗圧)の違いにより、注入されたグラウトは、極僅かの圧力差であっても圧力のかからないところの注入孔に多く浸入し、逆に圧力がかかるところの注入孔には浸入がし難くなる。 Next, when the grout is injected with one pump with one hose, due to the difference in the ground (ground resistance pressure), the injected grout will be placed in the injection hole where no pressure is applied even if the pressure difference is extremely small. It penetrates a lot, and on the contrary, it becomes difficult to penetrate into the injection hole where pressure is applied.

この傾向は、時間と共に拡大して行き、さらに、ゲルタイムより長い時間注入を続けると、ついには、ゲル化と相俟って孔は閉塞される。逆に、注入される孔は、数個となり、その結果、不均一な浸透となる。このため、単管ストレーナー工法は、止水や地盤強化を図ることはできないという致命的な欠陥があり、現在、全く使用されていない。 This tendency expands over time, and if the injection is continued for a longer time than the gel time, the pores are finally closed in combination with the gelation. On the contrary, the number of holes to be injected is several, resulting in non-uniform penetration. For this reason, the single-tube strainer method has a fatal defect that it cannot stop water or strengthen the ground, and is not used at all at present.

[ダブルパッカー工法]
その後、フランスから技術導入されたダブルパッカー工法(別名、ソレタンシュ工法)やスリーブ注入工法、ダブルストレーナー工法が開発されて、現在では主流をなしている。また、このダブルパッカー工法は、分類的には、二重管ストレーナー工法に属している。
[Double packer method]
After that, the double packer method (also known as the Soletanche method), the sleeve injection method, and the double strainer method, which were introduced from France, were developed and are now the mainstream. In addition, this double packer method belongs to the double pipe strainer method in terms of classification.

このダブルパッカー工法は、第1工程で注入管の設置、第2工程でグラウト注入の2工程で構成されている。第1工程は、削孔してケーシングパイプを設定し、パイプ内にシールグラウト(主にCB液)を充填する。その後、注入管(外管)を挿入し、シールグラウトが硬化する前に、ケーシングパイプを引き抜く。そして、シールグラウトの硬化後に、水圧で硬化したシールグラウトをクラッキングしてグラウト流路を確保する。 This double packer method consists of two steps: installation of an injection pipe in the first step and grout injection in the second step. In the first step, a hole is drilled to set a casing pipe, and the pipe is filled with seal grout (mainly CB liquid). After that, the injection pipe (outer pipe) is inserted, and the casing pipe is pulled out before the seal grout is cured. Then, after the seal grout is cured, the seal grout cured by water pressure is cracked to secure the grout flow path.

第2工程は、注入管(外管)内に、注入管(内管)にダブルパッカー装置を接続して所定の位置で外管ノズル上下にパッカー(ダブルパッカー)を形成させて固定し、グラウトを注入する。次に、ダブルパッカー装置を上部のステップまで引き上げて、同様にグラウトを注入する。これを繰り返し行い、注入終了後、ダブルパッカー装置が回収される。このダブルパッカー装置が内管に相当する。 In the second step, a double packer device is connected to the injection pipe (inner pipe) in the injection pipe (outer pipe), and packers (double packers) are formed and fixed above and below the outer pipe nozzle at a predetermined position, and grout is performed. Inject. The double packer device is then pulled up to the upper step and similarly infused with grout. This is repeated, and after the injection is completed, the double packer device is collected. This double packer device corresponds to the inner pipe.

このダブルパッカー工法は、低吐出、低圧の注入が可能であるが、1注入工あたり1地点のみの注入であるため、注入に長時間を要する。このため、グラウトの吐出量は、毎分8~10Lと多くしても作業効率が劣るという施工上の難点があり、効率よく低吐出で低圧で注入することができないという問題がある。 This double packer method can inject low discharge and low pressure, but it takes a long time to inject because only one point is injected per injection method. Therefore, even if the discharge amount of grout is as large as 8 to 10 L per minute, there is a problem in construction that the work efficiency is inferior, and there is a problem that it is not possible to efficiently inject at low pressure with low discharge.

なお、ダブルパッカー工法は、装置上ダブルパッカー装置を1注入工に多数段に複数個(例えば、3~4地点)連結することは、技術的には可能である。しかし、注入管が1本であるため、前述の単管ストレーナー工法で述べたように、注入時に地盤抵抗圧の違いにより、各注入孔から均一に吐出することができないため、現状では実施されていない。 In the double packer method, it is technically possible to connect a plurality of double packer devices (for example, 3 to 4 points) in a plurality of stages in one injection method. However, since there is only one injection pipe, as described in the single-tube strainer method described above, it is not possible to uniformly discharge from each injection hole due to the difference in ground resistance pressure at the time of injection, so this is currently practiced. not.

[超多点注入工法]
超多点注入工法は、第1工程で注入パイプの設置と、第2工程でグラウト注入の2工程で構成されている。第1工程は、ケーシングを所定の位置に設置し、その中にシールグラウトを充填する。その後、シールグラウトがまだ固まらない時に、注入パイプを挿入し、ケーシングパイプを引き抜き、注入パイプを固定する。この注入パイプは、複数の多段位置(注入ステップ)に束にして用いられ、1注入工あたり複数(通常3~5地点)に同時注入する装置として使用される。
[Ultra multi-point injection method]
The ultra-multi-point injection method consists of two steps: installation of an injection pipe in the first step and grout injection in the second step. In the first step, the casing is installed in a predetermined position, and the seal grout is filled therein. Then, when the seal grout is not yet solidified, insert the injection pipe, pull out the casing pipe, and fix the injection pipe. This injection pipe is used as a bundle at a plurality of multi-stage positions (injection steps), and is used as a device for simultaneously injecting into a plurality of (usually 3 to 5 points) per injection work.

第2工程は、シールグラウトをクラッキング後、1ユニット(大容量多連装重連ポンプから複数の小容量のポンプに接続)から各ポンプ、注入ホース、及び注入ポンプの先端のノズルチップよりグラウトを多段(地点)に同時注入する。このため、1地点からの注入は、低吐出量(毎分3~5L程度)で低圧できめ細かな浸透注入ができること、及び1注入工は、1回で注入が終了するため、作業効率が向上する利点がある。 In the second step, after cracking the seal grout, grout is multi-staged from one unit (connecting a large-capacity multi-unit heavy-duty pump to multiple small-capacity pumps) from each pump, injection hose, and nozzle tip at the tip of the injection pump. Simultaneously inject into (point). For this reason, injection from one point can be finely permeated at low pressure with a low discharge rate (about 3 to 5 L / min), and one injection work can be completed in one injection, improving work efficiency. There is an advantage to do.

その反面、技術的には、ダブルパッカー工法のように、注入管(内管)を使用せず、またパッカーも使用せず、シールグラウトの中心部に注入パイプを設置させ、確実にパッカー効果を発揮でき難いという難点がある。 On the other hand, technically, unlike the double packer method, the injection pipe (inner pipe) is not used, and the packer is not used, and the injection pipe is installed in the center of the seal grout to ensure the packer effect. There is a drawback that it is difficult to demonstrate.

また、例えば、5本のパイプを段差毎に設置すると、最上段の注入パイプの位置は、他の4本の注入パイプと重なっており、ノズルから噴射したグラウトは、クラッキング(割れ目の流路)全面を通じて地盤に均一に注入することができ難たいとう難点もある。 Further, for example, when five pipes are installed for each step, the position of the uppermost injection pipe overlaps with the other four injection pipes, and the grout injected from the nozzle is cracked (flow path of the crack). There is also the difficulty that it is difficult to inject evenly into the ground through the entire surface.

さらに、施工的には、注入後の注入パイプと先端ノズルは、シールグラウトに固定されており、回収することができず、そのまま残置されることも難点となる。また、超多点注入工法に用いられる超多点注入装置は、高価なものとなることも難点である。 Further, in terms of construction, the injection pipe and the tip nozzle after injection are fixed to the seal grout and cannot be recovered, and it is also a problem that they are left as they are. Another drawback is that the ultra-multi-point injection device used in the ultra-multi-point injection method is expensive.

以上説明したダブルパッカー工法と超多点注入工法には、それぞれ長所、短所があり、これらの短所を取り除き、長所を取り入れた(又は活かした)工法が望まれている。即ち、1注入に対し注入管(外管でストレーナー管)内に複数の注入孔の上下にパッカーを設けた多段パッカー装置を用い、多段同時注入を可能にして低吐出量により低圧でグラウト注入ができる注入工法が望まれている。それに加え、注入終了後に内管(多段同時注入装置)を回収できる注入工法も望まれている。 The double packer method and the ultra-multi-point injection method described above have advantages and disadvantages, respectively, and a method that eliminates these disadvantages and incorporates (or utilizes) the advantages is desired. That is, using a multi-stage packer device in which packers are provided above and below multiple injection holes in the injection pipe (outer pipe, strainer pipe) for one injection, multi-stage simultaneous injection is possible and grout injection is performed at low pressure with a low discharge amount. A possible injection method is desired. In addition to that, an injection method capable of recovering the inner tube (multi-stage simultaneous injection device) after the completion of injection is also desired.

特開2015-36503号公報JP-A-2015-36503 特開平11-81296号公報Japanese Unexamined Patent Publication No. 11-81296

草野一人、「薬液注入工法 ハンドブック」、吉井書店、昭和58年7月5日、P131~135Kazuto Kusano, "Handbook of Chemical Injection Method", Yoshii Shoten, July 5, 1983, P131-135 米倉亮三・島田俊介著、「恒久グラウト本設注入工法の設計施工」、近代科学社、2016年10月31日、P133~135Ryozo Yonekura and Shunsuke Shimada, "Design and Construction of Permanent Grout Main Injection Method", Modern Science Co., Ltd., October 31, 2016, pp. 133-135

そこで、本発明は、前記問題点を解決するために案出されたものであり、その目的とするところは、砂質土粒子間隙にグラウトを低吐出量(毎分1~8L)で注入することにより、低圧力できめ細かく浸透させることができる多段同時注入工法を提供することにある。 Therefore, the present invention has been devised to solve the above-mentioned problems, and the purpose thereof is to inject grout into the gaps between sandy soil particles at a low discharge rate (1 to 8 L / min). It is an object of the present invention to provide a multi-stage simultaneous injection method capable of finely infiltrating with low pressure.

第1発明に係る多段同時注入装置は、砂質土粒子間隙に深さ方向の複数段において同時にグラウトを浸透させて止水や地盤強化を図る多段同時注入装置であって、グラウトを注入する注入ステップに応じた深さ方向に外管ノズルを4段以上設けた外管と、4筒4連式の注入ポンプと、気体を圧送するエア発生機と、を備え、前記注入ポンプは、4つの吐出口を有し、これらの4つの吐出口は、注入ステップに応じた深さ方向に4段設置された吐出孔を有する注入パイプに接続され、前記エア発生機は、注入ステップの上下間を閉塞する5カ所のエアパッカー部材に連通するエアパイプを通じて各エアパッカー部材に気体を圧送可能に接続され、一本の前記エアパイプの周りに4本の前記注入パイプが配置されて束になった内管を有し、前記内管は、前記外管内に挿入されて前記外管に対して昇降自在に構成されていることを特徴とする。 The multi-stage simultaneous injection device according to the first invention is a multi-stage simultaneous injection device for simultaneously infiltrating a grout into a plurality of stages in the depth direction in a sandy soil particle gap to stop water and strengthen the ground, and is an injection for injecting the grout. It is equipped with an outer pipe provided with four or more outer pipe nozzles in the depth direction according to the step, a four-cylinder four-series injection pump, and an air generator that pumps gas, and the injection pump has four. It has a discharge port, and these four discharge ports are connected to an injection pipe having four discharge holes provided in the depth direction corresponding to the injection step, and the air generator moves between the upper and lower parts of the injection step. An inner pipe bundled by arranging four injection pipes around one air pipe, which is connected so that gas can be pumped to each air packer member through an air pipe communicating with five air packer members to be closed. The inner pipe is inserted into the outer pipe and is configured to be able to move up and down with respect to the outer pipe.

第2発明に係る多段同時注入装置は、第1発明において、前記注入ポンプで注入するグラウトは、ゲル化時間が30分以上の一液性グラウトであることを特徴とする。 The multi-stage simultaneous injection device according to the second invention is characterized in that, in the first invention, the grout injected by the injection pump is a one-component grout having a gelation time of 30 minutes or more.

第3発明に係る多段同時注入方法は、請求項1又は2に記載の多段同時注入装置を用いて、砂質土粒子間隙に深さ方向の複数段において同時にグラウトを浸透させて止水や地盤強化を図る多段同時注入工法であって、前記エアパイプを介して前記エア発生機から気体を前記エアパッカー部材に送り込み、5か所の各エアパッカー部材を膨らませて、注入ステップの上下間を閉塞するエアパッカー膨張工程を行い、その後、前記注入ポンプを用いて毎分1~8Lの低吐出量で、注入ステップに応じた深さ方向に4段設置された前記注入パイプの前記吐出孔からグラウトを4段同時に注入するグラウト注入工程を行うとともに、前記内管を上方の注入ステップまで引き上げ、前記エアパッカー膨張工程と前記グラウト注入工程を繰り返して注入ステップ4段毎にグラウトを注入していくことを特徴とする。 In the multi-stage simultaneous injection method according to the third invention, the multi-stage simultaneous injection device according to claim 1 or 2 is used to simultaneously infiltrate the grout into the sandy soil particle gaps in a plurality of stages in the depth direction to stop water or ground. This is a multi-stage simultaneous injection method for strengthening, in which gas is sent from the air generator to the air packer member via the air pipe, each of the five air packer members is inflated, and the space between the upper and lower parts of the injection step is closed. An air packer expansion step is performed, and then the grout is squeezed from the discharge hole of the injection pipe installed in four stages in the depth direction according to the injection step at a low discharge rate of 1 to 8 L / min using the injection pump. In addition to performing the grout injection step of injecting four stages at the same time, the inner pipe is pulled up to the upper injection step, and the air packer expansion step and the grout injection step are repeated to inject grout in every four injection steps. It is a feature.

第1発明~第3発明によれば、低圧、低吐出量により、土粒子間隙に割裂浸透注入ではなく、きめ細かく浸透させることができるだけでなく、多段(4地点)に同時注入できるため注入時間を短縮して施工労力を省力化し、施工費を低減することができる。その上、第1発明~第3発明によれば、超多点注入工法と違い、グラウト注入完了後に、内管を簡単に回収することもできる。 According to the first to third inventions, due to the low pressure and the low discharge amount, not only the soil particle gap can be finely infiltrated instead of split infiltration, but also the injection time can be increased because it can be simultaneously injected into multiple stages (4 points). It can be shortened to save construction labor and reduce construction costs. Moreover, according to the first to third inventions, unlike the super multi-point injection method, the inner tube can be easily recovered after the grout injection is completed.

特に、第2発明によれば、一液性グラウトであるため、浸透性に極めて優れており、さらに、きめ細かく浸透させることができる。 In particular, according to the second invention, since it is a one-component grout, it has extremely excellent permeability and can be finely penetrated.

図1は、本発明の実施の形態に係る多段同時注入装置の構成を模式的に示す模式断面図である。FIG. 1 is a schematic cross-sectional view schematically showing a configuration of a multi-stage simultaneous injection device according to an embodiment of the present invention. 図2は、図1のイ-イ’線断面図である。FIG. 2 is a cross-sectional view taken along the line of FIG. 図3は、図1のロ-ロ’線断面図である。FIG. 3 is a cross-sectional view taken along the line of FIG. 図4は、図1のハ-ハ’線断面図である。FIG. 4 is a cross-sectional view taken along the line Ha-ha of FIG. 図5は、本発明の実施形態に係る多段同時注入工法の施工手順を示す工程説明図である。FIG. 5 is a process explanatory view showing a construction procedure of the multi-stage simultaneous injection method according to the embodiment of the present invention. 図6は、グラウト固結体を模式的に示す平面図であり、(a)が実施例1で形成したグラウト固結体であり、(b)が比較例1で形成したグラウト固結体である。6A and 6B are plan views schematically showing a grout consolidated body, in which FIG. 6A is a grout consolidated body formed in Example 1, and FIG. 6B is a grout consolidated body formed in Comparative Example 1. be. 図7は、グラウト固結体を模式的に示す側面図であり、(a)が実施例1で形成したグラウト固結体であり、(b)が比較例1で形成したグラウト固結体である。7A and 7B are side views schematically showing a grout consolidated body, in which FIG. 7A is a grout consolidated body formed in Example 1, and FIG. 7B is a grout consolidated body formed in Comparative Example 1. be. 図8は、グラウト固結体を模式的に示す水平断面図であり、(a)が実施例1で形成したグラウト固結体であり、(b)が比較例1で形成したグラウト固結体である。8A and 8B are horizontal cross-sectional views schematically showing a grout consolidated body, in which FIG. 8A is a grout consolidated body formed in Example 1, and FIG. 8B is a grout consolidated body formed in Comparative Example 1. Is.

以下、図面を用いて、本発明の実施の形態に係る多段同時注入装置及びそれを用いた多段同時注入方法について説明する。 Hereinafter, the multi-stage simultaneous injection device according to the embodiment of the present invention and the multi-stage simultaneous injection method using the same will be described with reference to the drawings.

<多段同時注入装置>
先ず、図1を用いて、本発明の実施の形態に係る多段同時注入装置1について説明する。図1は、本発明の実施の形態に係る多段同時注入装置1の構成を模式的に示す模式断面図である。
<Multi-stage simultaneous injection device>
First, the multi-stage simultaneous injection device 1 according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view schematically showing the configuration of the multi-stage simultaneous injection device 1 according to the embodiment of the present invention.

図1に示すように、本発明の実施の形態に係る多段同時注入装置1は、塩ビ管である外管2と、この外管2を通じてグラウトを圧送する注入ポンプ4など、を備えている。 As shown in FIG. 1, the multi-stage simultaneous injection device 1 according to the embodiment of the present invention includes an outer pipe 2 which is a PVC pipe, an injection pump 4 which pumps grout through the outer pipe 2, and the like.

(外管)
外管2は、前述のダブルパッカー工法や超多点注入工法(外管2は無くホースを束にして挿入)と同様に設置される。つまり、地盤に削孔してケーシングパイプ(図示せず)が設置され、ケーシングパイプ内に主にCB液(セメントベントナイト液)からなるシールグラウト14が充填される。その後、注入管である外管2が挿入されて、シールグラウト14が硬化する前に、ケーシングパイプを引き抜きくことで、外管2がシールグラウト14で固められて固定される。勿論、シールグラウト14には、水圧でクラッキングされてグラウト流路が確保される。
(Outer pipe)
The outer pipe 2 is installed in the same manner as the above-mentioned double packer method or super multi-point injection method (there is no outer pipe 2 and the hose is inserted in a bundle). That is, a casing pipe (not shown) is installed in the ground by drilling a hole, and the casing pipe is filled with a seal grout 14 mainly composed of a CB liquid (cement bentonite liquid). After that, the outer pipe 2 which is an injection pipe is inserted, and before the seal grout 14 is hardened, the casing pipe is pulled out, so that the outer pipe 2 is solidified and fixed by the seal grout 14. Of course, the seal grout 14 is cracked by water pressure to secure a grout flow path.

この外管2には、グラウトを注入する注入ステップに応じた上下方向(深さ方向)複数段に亘り、外管ノズル3~3’’’が設けられ、これらの外管ノズル3~3’’’を通じて、軟弱地盤の止水や地盤強化のために、後述のグラウトが砂質土からなる地盤に注入される。 The outer tube 2 is provided with outer tube nozzles 3 to 3'''in a plurality of stages in the vertical direction (depth direction) according to the injection step for injecting grout, and these outer tube nozzles 3 to 3'''. Through'', the grout described later is injected into the ground made of sandy soil in order to stop water in the soft ground and strengthen the ground.

(注入ポンプ)
この注入ポンプ4は、グラウト圧送に用いられる4筒2連式のプランジャー型(ピストン型)多筒式ポンプを改良して1筒毎に吐出口を設けた4筒4連式のプランジャー型多筒式ポンプである。
(Infusion pump)
This injection pump 4 is a 4-cylinder 4-series plunger type that is an improvement of the 4-cylinder 2-series plunger type (piston type) multi-cylinder pump used for grout pumping and has a discharge port for each cylinder. It is a multi-cylinder pump.

この注入ポンプ4は、4つの吐出口5~5’’’を有し、これらの4つの吐出口5~5’’’には、それぞれ樹脂製の4つの注入ホース6~6’’’が接続されている。また、これらの4つの注入ホース6~6’’’には、金属製の注入パイプ7~7’’’が接続されている。注入パイプ7~7’’’の先端が吐出孔8~8’’’であり、これらの吐出孔8~8’’’から注入ポンプ4で圧送されたグラウトが吐出されてシールグラウト14のクラッキングを通じて地盤に注入される。 The injection pump 4 has four discharge ports 5 to 5''', and each of the four discharge ports 5 to 5'''' has four resin injection hoses 6 to 6''''. It is connected. Further, metal injection pipes 7 to 7 ″ are connected to these four injection hoses 6 to 6 ″. The tip of the injection pipe 7 to 7'''is a discharge hole 8 to 8''', and the grout pumped by the injection pump 4 is discharged from these discharge holes 8 to 8''' to crack the seal grout 14. It is injected into the ground through.

これらの吐出孔8~8’’’や外管ノズル3~3’’は、前述の外管ノズル3~3’’’と同様に、グラウトを注入する注入ステップ深さ方向(上下方向)に4段設置されている。即ち、これらの吐出孔8~8’’’や外管ノズル3~3’’の各段の設置深さ(高さ)は、多段同時注入方法のグラウトの注入ステップに相当し、これらの上下間隔は、通常、約30cm~50cmとなっている。 These discharge holes 8 to 8'''and outer tube nozzles 3 to 3'' are in the injection step depth direction (vertical direction) for injecting grout, similarly to the above-mentioned outer tube nozzles 3 to 3'''. It is installed in 4 stages. That is, the installation depth (height) of each stage of the discharge holes 8 to 8'''and the outer pipe nozzles 3 to 3'' corresponds to the grout injection step of the multi-stage simultaneous injection method, and is above and below these. The interval is usually about 30 cm to 50 cm.

(エア発生機)
また、多段同時注入装置1は、コンプレッサーなどからなるエア発生機9を備えている。このエア発生機9には、樹脂製のエアホース10が接続され、このエアホース10には、金属管であるエアパイプ11が接続されている。そして、エアパイプ11には、各段の注入ステップである吐出孔8~8’’’を挟むように5つのエア吐出口が設けられ、最下段の吐出孔8’’’より深い位置までエアパイプ11が達している。
(Air generator)
Further, the multi-stage simultaneous injection device 1 includes an air generator 9 including a compressor or the like. A resin air hose 10 is connected to the air generator 9, and an air pipe 11 which is a metal pipe is connected to the air hose 10. The air pipe 11 is provided with five air discharge ports so as to sandwich the discharge holes 8 to 8'', which are the injection steps of each stage, and the air pipe 11 is provided to a position deeper than the discharge holes 8'''' in the lowermost stage. Has reached.

(エアパッカー部材)
これらの5つのエア吐出口には、5カ所のエアパッカー部材12が装着されている。このエアパッカー部材12は、ゴム弾性体などの伸縮性を有する素材からなり、エア発生機9から気体が送り込まれることにより膨らんで、注入ステップの上下間を閉塞し、注入するグラウトが下方の注入ステップへ逸走することを防止する仕機能を有している。
(Air packer member)
Five air packer members 12 are mounted on these five air discharge ports. The air packer member 12 is made of a stretchable material such as a rubber elastic body, expands when gas is sent from the air generator 9, closes between the upper and lower parts of the injection step, and the grout to be injected is injected downward. It has a function to prevent escape to the step.

本実施形態に係るエアパッカー部材12を膨らませる気体としては、窒素ガスが採用されている。勿論、空気など他の気体を用いてもよいことは云うまでもない。このエアパッカー部材12により、外管2内の4段の各段の外管ノズル3~3’’’の上下を閉塞して、外管ノズル3~3’’’からグラウトを確実に土粒子間隙に浸透させることが可能となる。 Nitrogen gas is adopted as the gas for inflating the air packer member 12 according to the present embodiment. Of course, it goes without saying that other gases such as air may be used. The air packer member 12 closes the upper and lower sides of the outer pipe nozzles 3 to 3 ″ of each of the four stages in the outer pipe 2, and ensures grout from the outer pipe nozzles 3 to 3''''. It is possible to penetrate the gap.

(内管)
図2は、図1のイ-イ’線断面図であり、図3は、図1のロ-ロ’線断面図である。
また、図4は、図1のハ-ハ’線断面図である。図2~図4に示すように、4本の注入パイプ7~7’’’とエアパイプ11は、予め、エアパイプ11を中心に、その周りに4本の注入パイプ7~7’’’が配置されて束にして固定されている。このように、前述のエアパッカー部材12が装着された状態のエアパイプ11の周りに4本の注入パイプ7~7’’’が配置されて束になったものを内管15(先端装置、図1)と称している。
(Inner tube)
FIG. 2 is a cross-sectional view taken along the line of FIG. 1 and FIG. 3 is a cross-sectional view taken along the line Loro of FIG.
Further, FIG. 4 is a cross-sectional view taken along the line Ha-ha of FIG. As shown in FIGS. 2 to 4, the four injection pipes 7 to 7'' and the air pipe 11 are arranged in advance with the air pipe 11 as the center and four injection pipes 7 to 7''' around the air pipe 11. It is fixed in a bundle. In this way, the inner pipe 15 (advanced device, drawing) is a bundle in which four injection pipes 7 to 7'''are arranged around the air pipe 11 in which the above-mentioned air packer member 12 is attached. It is called 1).

図2~図4に示すように、内管15(上部は注入ホース、エアホースで巻取り可能)で束にしてまとめているので、外管2内が注入パイプ7~7’’’やエアパイプ11などで埋め尽くされることがなく、グラウトが流通するスペースが確保されており、外管ノズル3~3’’’からグラウトを自由に注入することができる。この点が、背景技術で述べた超多点工法との違いである。また、この内管15は、後述のように、外管2内に挿入されて外管2に対して昇降機18により昇降自在に構成されている(図5参照)。 As shown in FIGS. 2 to 4, since the inner pipe 15 (the upper part can be wound with an injection hose and an air hose) is bundled together, the inside of the outer pipe 2 is the injection pipe 7 to 7'''and the air pipe 11. The space for grouting is secured without being filled with such things, and the grout can be freely injected from the outer tube nozzles 3 to 3'''. This point is different from the super multi-point construction method described in the background technology. Further, as will be described later, the inner pipe 15 is inserted into the outer pipe 2 and is configured to be able to move up and down with respect to the outer pipe 2 by the elevator 18 (see FIG. 5).

なお、図1に示すシールグラウト14は、外管2設置時に外管2と地盤(地山)との隙間に注入充填されるものであり、後述の施工手順で詳しく述べる。 The seal grout 14 shown in FIG. 1 is injected and filled in the gap between the outer pipe 2 and the ground (ground) when the outer pipe 2 is installed, and will be described in detail in the construction procedure described later.

<多段同時注入工法>
次に、本発明の実施の形態に係る多段同時注入工法について説明する。先ず、吐出量と注入圧力について説明する。
<Multi-stage simultaneous injection method>
Next, the multi-stage simultaneous injection method according to the embodiment of the present invention will be described. First, the discharge amount and the injection pressure will be described.

[吐出量と注入圧力]
前述のように、本発明の実施の形態に係る多段同時注入装置1の注入ポンプ4は、1台のポンプから独立した4つの吐出口5~5’’’からグラウトを多段(4地点:深さの異なる4つの注入ステップ)に同時に注入する。このため、各段毎の注入は、毎分あたり1~8Lと極めて少量の吐出量(注入速度)が可能となり、その結果、低圧で土粒子間隙にきめ細かく浸透注入ができ、且つ、注入時間が大幅に短縮されるという利点がある。
[Discharge volume and injection pressure]
As described above, the injection pump 4 of the multi-stage simultaneous injection device 1 according to the embodiment of the present invention has multiple stages of grout from four discharge ports 5 to 5'''independent of one pump (4 points: deep). Inject simultaneously into 4 different injection steps). For this reason, the injection for each stage enables an extremely small discharge amount (injection rate) of 1 to 8 L per minute, and as a result, fine penetration injection can be performed in the soil particle gap at low pressure, and the injection time is long. It has the advantage of being significantly shortened.

具体的には、ポンプの吐出量が毎分12Lとすると、各段(4地点)の吐出量は、12×1/4=3Lと極めて少量の吐出量で注入できるため、注入圧も極めて低圧で浸透注入が可能となる。 Specifically, assuming that the discharge amount of the pump is 12 L / min, the discharge amount of each stage (4 points) is 12 × 1/4 = 3 L, which is an extremely small amount of discharge, so the injection pressure is also extremely low. Penetration injection is possible with.

さらに、ポンプの吐出量が毎分8Lとすると、各段の吐出量は、8×1/4=2Lとなる。これは、通常の4筒2連式のポンプ(二液性で毎分8~16Lに設定されている)では、正確に吐出させることができない程度の低圧である。 Further, assuming that the discharge amount of the pump is 8 L per minute, the discharge amount of each stage is 8 × 1/4 = 2 L. This is a low pressure that cannot be accurately discharged by a normal 4-cylinder double pump (two-component pump set at 8 to 16 L / min).

例えば、軟弱な沖積層の細砂土(N値10程度で透水係数10-3[cm/sec])に毎分8L(ダブルパッカー)の吐出量で注入すると、圧力は0.3[MPa]と高い値が必要であることが実証されている(表1参照)。 For example, when a soft alluvial fine sand soil (N value of about 10 and a hydraulic conductivity of 10-3 [cm / sec]) is injected at a discharge rate of 8 L (double packer) per minute, the pressure is 0.3 [MPa]. It has been demonstrated that a high value is required (see Table 1).

これに対して、後述のように、本実施形態に係る多段同時注入工法では、毎分3Lの低吐出量で0.15[MPa]と非常に低い圧力で注入できることが確認されている(表1参照)。即ち、本実施形態に係る多段同時注入工法の対象となる砂質土の土粒子間隙にグラウトを浸透させるには、グラウトを受け入れる抵抗圧(地盤抵抗圧)を超える注入圧力を必要とする。この抵抗圧は、吐出量(注入する時間あたりグラウトの容量)と比例関係にあり、吐出量が多いと高い圧力がかかり、土粒子間隙に浸透することができず地盤を押し広げて割裂(脈状)に浸入しながら浸透するになり、均一に浸透させることができない。この現象を割裂浸透注入と称している。 On the other hand, as will be described later, it has been confirmed that in the multi-stage simultaneous injection method according to the present embodiment, injection can be performed at a very low pressure of 0.15 [MPa] with a low discharge amount of 3 L / min (Table). See 1). That is, in order to infiltrate the grout into the soil particle gaps of the sandy soil which is the target of the multi-stage simultaneous injection method according to the present embodiment, an injection pressure exceeding the resistance pressure (ground resistance pressure) for accepting the grout is required. This resistance pressure is proportional to the discharge amount (the capacity of the grout per injection time), and if the discharge amount is large, a high pressure is applied, and it cannot penetrate into the soil particle gap, expanding the ground and splitting (pulse). It penetrates while infiltrating into the shape) and cannot penetrate uniformly. This phenomenon is called split osmosis injection.

一方、吐出量が少ない程、土粒子間隙に小さい圧力でゆっくりときめ細かく浸透させることができる。つまり、吐出量が少ない程、低圧で浸透できるので理想的である。 On the other hand, the smaller the discharge amount, the slower and finer the penetration into the soil particle gap with a smaller pressure. That is, the smaller the discharge amount, the lower the pressure, which is ideal.

しかし、施工性を考慮すれば、一定以上の吐出量が必要であり、また、実用的な注入ポンプの性能を加味して、本実施形態に係る多段同時注入工法では、吐出量は、好ましくは、毎分2Lを下限としている。また、吐出量の上限は、好ましくは、きめ細かい浸透が可能な毎分5Lとしている。即ち、本実施形態に係る多段同時注入工法における吐出量は、1注入地点あたり2~5L/分(4地点合計で8~20L/分)の範囲としている。 However, in consideration of workability, a discharge amount of a certain level or more is required, and in consideration of the performance of a practical injection pump, in the multi-stage simultaneous injection method according to the present embodiment, the discharge amount is preferably , The lower limit is 2 L / min. Further, the upper limit of the discharge amount is preferably 5 L / min, which enables fine penetration. That is, the discharge amount in the multi-stage simultaneous injection method according to the present embodiment is in the range of 2 to 5 L / min per injection point (8 to 20 L / min in total at the four points).

[施工手順]
以下に、図5を用いて、本発明の実施の形態に係る多段同時注入工法の施工手順について説明する。前述の多段同時注入装置1を用いて、軟弱地盤の止水や地盤強化のために、砂質土からなる地盤に注入する場合を例示して説明する。図5は、本実施形態に係る多段同時注入工法の施工手順を示す工程説明図である。
[Construction procedure]
Hereinafter, the construction procedure of the multi-stage simultaneous injection method according to the embodiment of the present invention will be described with reference to FIG. An example will be described in which the above-mentioned multi-stage simultaneous injection device 1 is used to inject into a ground made of sandy soil in order to stop water in soft ground and strengthen the ground. FIG. 5 is a process explanatory view showing a construction procedure of the multi-stage simultaneous injection method according to the present embodiment.

なお、本発明の実施の形態に係る多段同時注入工法も、外管2を設置するまでには、背景技術で述べたダブルパッカー工法の第1工程と同じであり、異なる点は、多段同時注入装置1の内管15を用いる点である。 The multi-stage simultaneous injection method according to the embodiment of the present invention is the same as the first step of the double packer method described in the background technique until the outer pipe 2 is installed, and the difference is that the multi-stage simultaneous injection method is performed. The point is that the inner tube 15 of the device 1 is used.

(1.削孔・ケーシングパイプ設置)
図5(1)に示すように、本実施形態に係る多段同時注入工法では、先ず、(1)ボーリングマシンにより所定深さまで地盤を削孔して立穴を設け、そこにケーシングパイプ(図示せず)を設置する削孔・ケーシングパイプ設置工程を行う。
(1. Drilling and casing pipe installation)
As shown in FIG. 5 (1), in the multi-stage simultaneous injection method according to the present embodiment, first, (1) the ground is drilled to a predetermined depth by a boring machine to provide a standing hole, and a casing pipe (shown) is provided therein. Perform the drilling and casing pipe installation process.

(2.シールグラウト充填)
次に、図5(2)に示すように、本実施形態に係る多段同時注入工法では、(2)ケーシング内に、主にCB液(セメントベントナイト液)からなるシールグラウト14を注入して充填するシールグラウト充填工程を行う。
(2. Seal grout filling)
Next, as shown in FIG. 5 (2), in the multi-stage simultaneous injection method according to the present embodiment, (2) the seal grout 14 mainly composed of CB liquid (cement bentonite liquid) is injected and filled into the casing. Perform the seal grout filling process.

(3.外管設置)
次に、図5(3)に示すように、本実施形態に係る多段同時注入工法では、前工程で充填したシールグラウト14が硬化する前に、外管2を挿入した後、(3)ケーシングパイプを引き抜いて、シールグラウト14を硬化させて外管2を設置する外管設置工程を行う。
(3. Installation of outer pipe)
Next, as shown in FIG. 5 (3), in the multi-stage simultaneous injection method according to the present embodiment, after the outer pipe 2 is inserted before the seal grout 14 filled in the previous step is cured, the casing (3) The outer pipe installation step of pulling out the pipe, hardening the seal grout 14 and installing the outer pipe 2 is performed.

また、前述のように、外管2には、内管15の各吐出孔8~8’’’の位置の周囲に、複数の外管ノズル3~3’’’が設けられている。本工程では、シールグラウト14が硬化した後、注入ホース6~6’’’及び注入パイプ7~7’’’を介して外管ノズル3~3’’’から水を圧送し、水圧をかけてクラッキング(割れ目)を発生させ、グラウトの注入流路を確保しておく。 Further, as described above, the outer pipe 2 is provided with a plurality of outer pipe nozzles 3 to 3 ″ around the positions of the discharge holes 8 to 8 ″ of the inner pipe 15. In this step, after the seal grout 14 is hardened, water is pumped from the outer pipe nozzles 3 to 3'''via the injection hose 6 to 6'' and the injection pipe 7 to 7''', and water pressure is applied. Cracking (cracking) is generated and the grout injection flow path is secured.

なお、(1.削孔・ケーシングパイプ設置)~(3.外管設置)までの工程は、背景技術で述べたダブルパッカー工法と同じである。 The steps from (1. drilling / casing pipe installation) to (3. outer pipe installation) are the same as the double packer method described in the background technique.

(4-1.エアパッカー膨張工程)
次に、図5(4-1)に示すように、本実施形態に係る多段同時注入工法では、前述のように、エアパッカー部材12が装着された状態のエアパイプ11の周りに4本の注入パイプ7~7’’’が配置されて束になった内管15を挿入する。
(4-1. Air packer expansion process)
Next, as shown in FIG. 5 (4-1), in the multi-stage simultaneous injection method according to the present embodiment, as described above, four injections are made around the air pipe 11 in which the air packer member 12 is attached. Insert the inner pipe 15 in which the pipes 7 to 7'''are arranged and bundled.

そして、図5(4-1)に示すように、本実施形態に係る多段同時注入工法では、エアホース10、エアパイプ11及びエア流路13を介してエア発生機9から気体として窒素を送り込み、5か所の各エアパッカー部材12~12’’’’を膨らませて、注入ステップの上下間を閉塞するエアパッカー膨張工程を行う(図2~図4も参照)。 Then, as shown in FIG. 5 (4-1), in the multi-stage simultaneous injection method according to the present embodiment, nitrogen is sent as a gas from the air generator 9 via the air hose 10, the air pipe 11, and the air flow path 13, and 5 An air packer expansion step of inflating each of the air packer members 12 to 12'''' at each location to close the space between the upper and lower parts of the injection step is performed (see also FIGS. 2 to 4).

(4-2.グラウト注入工程)
その後、図5(4-2)に示すように、本実施形態に係る多段同時注入工法では、注入ポンプ4を用いて、注入パイプ7~7’’’の吐出孔8~8’’’から一液性グラウトを注入するグラウト注入工程を行う。
(4-2. Grout injection process)
After that, as shown in FIG. 5 (4-2), in the multi-stage simultaneous injection method according to the present embodiment, the injection pump 4 is used from the discharge holes 8 to 8'''' of the injection pipes 7 to 7''. A grout injection step of injecting a one-component grout is performed.

具体的には、4筒4連式のプランジャー型多筒式ポンプである注入ポンプ4で、[吐出量と注入圧力]で述べたように、各段毎の注入を毎分あたり1~8L、好ましくは、2~5Lの極めて少量の吐出量で注入する。このため、本実施形態に係る多段同時注入工法によれば、砂質土の土粒子間隙に一液性グラウトを小さい圧力でゆっくりときめ細かく浸透させるが可能となり、均一なグラウト固結体17(サンドゲル)を造成させて地盤の強化と止水を達成することができる(図5(5-1)等参照)。 Specifically, in the injection pump 4, which is a 4-cylinder 4-unit type plunger type multi-cylinder pump, as described in [Discharge amount and injection pressure], injection for each stage is 1 to 8 L per minute. , Preferably, inject with a very small discharge amount of 2 to 5 L. Therefore, according to the multi-stage simultaneous injection method according to the present embodiment, it is possible to slowly and finely permeate the one-component grout into the soil particle gaps of the sandy soil with a small pressure, and the uniform grout solidified body 17 (sand gel). ) Can be created to strengthen the ground and stop water (see Fig. 5 (5-1), etc.).

(5.注入ステップ盛替工程)
次に、本実施形態に係る多段同時注入工法では、エア発生機9を作動させてエアパッカー部材12~12’’’’から窒素(気体)を抜き、エアパッカー部材12~12’’’’をしぼませる。そして、図5(5-1)に示すように、本実施形態に係る多段同時注入工法では、モーターで内管15を吊るしたワイヤロープ19を巻き上げる昇降機18を用いて、束になった先端装置の内管15を上方の多段の注入ステップまで引き上げる注入ステップ盛替工程を行う。
(5. Injection step replacement process)
Next, in the multi-stage simultaneous injection method according to the present embodiment, the air generator 9 is operated to remove nitrogen (gas) from the air packer members 12 to 12'''', and the air packer members 12 to 12''''. Squeeze. Then, as shown in FIG. 5 (5-1), in the multi-stage simultaneous injection method according to the present embodiment, a bundled tip device is used by using an elevator 18 that winds up a wire rope 19 that suspends an inner pipe 15 by a motor. An injection step replacement step is performed in which the inner pipe 15 of the above is pulled up to the upper multi-stage injection step.

次に、図5(5-1)に示すように、前述のエアパッカー膨張工程を行う。その後、図5(5-2)に示すように、前述のグラウト注入工程を行う。 Next, as shown in FIG. 5 (5-1), the above-mentioned air packer expansion step is performed. Then, as shown in FIG. 5 (5-2), the grout injection step described above is performed.

このように、エアパッカー膨張工程とグラウト注入工程を順次繰り返し、4段の注入ステップを同時に注入する工程を繰り返して、所定の深度の地盤に後述の一液性グラウトを注入する注入工(注入工事)を完了する。 In this way, the air packer expansion process and the grout injection process are repeated in sequence, and the process of simultaneously injecting four stages of injection steps is repeated to inject the one-component grout described later into the ground at a predetermined depth (injection work). ) Is completed.

なお、昇降機18として、モーターでワイヤロープを巻き上げる構成のものを図示して例示したが、内管15を纏めて持ち上げて移動できる機能有した機構であればどのような構成の機械でも採用できることは云うまでもない。 Although the elevator 18 has a configuration in which a wire rope is wound up by a motor is illustrated and illustrated, it is possible to adopt a machine having any configuration as long as it has a mechanism capable of lifting and moving the inner pipes 15 together. Needless to say.

以上説明したように、本実施形態に係る多段同時注入工法によれば、4筒4連式の注入ポンプ4を中心とする簡略な設備である多段同時注入装置1を用いることにより、一度に4段(4地点)を同時に低吐出量で一液性グラウトを注入することができる。このため、本実施形態に係る多段同時注入工法によれば、低圧、低吐出量により、土粒子間隙に割裂浸透注入ではなく、きめ細かく浸透させることができるだけでなく、多段に同時注入できるため注入時間を短縮して施工労力を省力化し、施工費を低減することができる。その上、グラウト注入完了後に、内管15を昇降機18で引き上げて簡単に回収することもできる。 As described above, according to the multi-stage simultaneous injection method according to the present embodiment, by using the multi-stage simultaneous injection device 1 which is a simple facility centered on the 4-cylinder 4-unit injection pump 4, 4 at a time. One-component grout can be injected into the stages (4 points) at the same time with a low discharge amount. Therefore, according to the multi-stage simultaneous injection method according to the present embodiment, not only can the soil particle gaps be finely infiltrated instead of split-penetration injection due to the low pressure and low discharge amount, but also the injection time can be simultaneously injected in multiple stages. It is possible to reduce the construction cost by shortening the construction labor and saving the construction labor. Moreover, after the grout injection is completed, the inner pipe 15 can be pulled up by the elevator 18 and easily collected.

[一液性グラウト]
次に、前述の本発明の実施形態に係る多段同時注入工法で地盤に注入するグラウトについてさらに詳細に説明する。
[One-component grout]
Next, the grout to be injected into the ground by the multi-stage simultaneous injection method according to the embodiment of the present invention described above will be described in more detail.

本発明の実施形態に係る多段同時注入工法で用いるグラウトは、4筒4連式の注入ポンプ4を用いて4本の注入ホース6~6’’’等を介して圧送することを前提としているため、ゲルタイム(ゲル化時間)が30分以上の一液性のグラウトを採用する。 The grout used in the multi-stage simultaneous injection method according to the embodiment of the present invention is premised on pumping through four injection hoses 6 to 6'''and the like using a four-cylinder four-series injection pump 4. Therefore, a one-component grout with a gel time (gelation time) of 30 minutes or more is adopted.

一液性グラウトは、特に限定されないが、代表的なものとしては、水ガラスから酸でアルカリを取り除いた酸性シリカゾル溶液型(以下、単にシリカゾルグラウトという)、水ガラス-超微粒子セメント系、又は超微粒子セメント系の浸透性グラウトを挙げることができる。 The one-component grout is not particularly limited, but is typically an acidic silica sol solution type (hereinafter, simply referred to as silica sol grout) in which an acid is removed from water glass with an acid, a water glass-ultrafine cement type, or an ultrafine grout. Examples thereof include fine-grained cement-based permeable grout.

ここで、超微粒子は、粒子径が概ね2.5μm以下の粒子からなり、プレーン値6,000[cm/g]以上混入するものとする。また、セメント系には、普通ポルトラントセメント、早強ポルトラントセメント、超早強ポルトラントセメント、中庸熱ポルトラントセメント、低熱ポルトラントセメント、耐硫酸塩ポルトラントセメントのポルトラントセメント類が含まれるだけでなく、高炉セメント、シリカセメント、フライアッシュセメントのセメント-スラグ系の混合セメントも含まれる。その上、セメント系には、スラグ-石灰系も含むものとする。 Here, the ultrafine particles are composed of particles having a particle diameter of approximately 2.5 μm or less, and are mixed with a plane value of 6,000 [cm 3 / g] or more. In addition, cement-based cements include ordinary Portorant cement, early-strength Portorant cement, ultra-early-strong Portorant cement, moderate-heat Portrant cement, low-heat Portrant cement, and sulfate-resistant Portorant cement. Not only blast furnace cement, silica cement, fly ash cement cement-slag mixed cement are also included. In addition, the cement system shall also include the slag-lime system.

しかし、一液性グラウトとしては、シリカゾル系が最も好ましい。このシリカゾルは、水ガラスを水に希釈した水ガラス水液と硫酸(75%の工業用のもの)を比例連続混合(シリカゾル製造装置)したpH4以下のゲルタイム30分以上の酸性シリカゾルグラウトであり、浸透性に極めて優れているからである。 However, as the one-component grout, the silica sol type is most preferable. This silica sol is an acidic silica sol grout with a gel time of 30 minutes or more and a pH of 4 or less, which is obtained by proportionally continuous mixing (silica sol production equipment) of water glass water solution obtained by diluting water glass with water and sulfuric acid (75% industrial one). This is because it has extremely excellent permeability.

[効果確認実験]
次に、前述の多段同時注入装置1を用いて、前述の多段同時注入工法に準じて実行し、グラウトの吐出量の多少の違いによる注入圧値の変化を測定した結果を下記表1に示して説明する。また、注入後のグラウト固結体17の形状を確認するとともに、グラウト固結体17を半割にしてグラウトの浸透形態を確認した。
[Effect confirmation experiment]
Next, using the above-mentioned multi-stage simultaneous injection device 1, the results of measuring the change in the injection pressure value due to a slight difference in the discharge amount of the grout are shown in Table 1 below, which was executed according to the above-mentioned multi-stage simultaneous injection method. I will explain. In addition, the shape of the grout consolidated body 17 after injection was confirmed, and the permeation form of the grout was confirmed by splitting the grout consolidated body 17 in half.

注入地盤は、河川に近い地表下1.5~5mの軟弱な沖積細砂層(N値5、透水係数10-3[cm/sec]オーダー)である。 The injection ground is a soft alluvial fine sand layer 1.5 to 5 m below the surface near the river (N value 5, permeability coefficient 10 -3 [cm / sec] order).

使用した一液性グラウトは、シリカゾル系溶液型で水ガラス(SiO25.2%、Na7.0%、モル比3.72)150Lに水350Lを加えた水ガラス溶液500Lに希硫酸(75%工業用)17Lを加えてシリカゾル製造機で1mのシリカゾルグラウトを製造した。このシリカゾルは、粘性1.8cP(センチポアズ:mPa・s)、pH3.0の酸性液でゲルタイムは、10時間であった。 The one-component grout used was a silica sol-based solution type, and dilute sulfuric acid was added to 500 L of water glass solution in which 350 L of water was added to 150 L of water glass (SiO 2 25.2%, Na 2 7.0%, molar ratio 3.72). 17 L (75% for industrial use) was added to produce 1 m 3 of silica sol grout with a silica sol making machine. This silica sol was an acidic solution having a viscosity of 1.8 cP (centipores: mPa · s) and a pH of 3.0, and had a gel time of 10 hours.

注入は、地表下2.0m、2.5m、3.0m、及び3.5mの4段の注入地点で各外管ノズル(径3mm、4か所)から4筒4連式の注入ポンプを用いて同時注入を行った。 For injection, use a 4-cylinder 4-unit injection pump from each outer pipe nozzle (diameter 3 mm, 4 locations) at 4 stages of injection points 2.0 m, 2.5 m, 3.0 m, and 3.5 m below the surface of the earth. Simultaneous injection was performed using.

但し、比較として行った注入は、4筒4連式の注入ポンプの4つの吐出口のうち1つの吐出口からでたグラウトを注入ポンプにリターンし、残りの3つの吐出口から出たグラウトを1本の注入ホースにまとめて地表下2.0mの1地点に注入した。 However, in the injection performed as a comparison, the grout from one of the four discharge ports of the four-cylinder four-unit injection pump is returned to the injection pump, and the grout from the remaining three discharge ports is returned to the injection pump. It was injected into one injection hose at one point 2.0 m below the ground surface.

Figure 2022046072000002
Figure 2022046072000002

表1より、4筒4連式の注入ポンプを用いた多段同時注入では、極めて少ない毎分3Lの第1~第4段(地点)の実施例1~4で注入したところ、注入開始1分後の注入圧力は、0.05[MPa]であり、注入時間(測定時間)が経過するに従って、少しずつ上昇し、注入終了時(15分後)まで注入圧力が低下することなく上昇を続け、0.10~0.15[MPa]となるが、極めて低圧で注入できることが確認できた。 From Table 1, in the multi-stage simultaneous injection using a 4-cylinder 4-unit injection pump, when injection was performed in Examples 1 to 4 of the 1st to 4th stages (points) of 3 L / min, which was extremely small, the injection started 1 minute. The subsequent injection pressure is 0.05 [MPa], and gradually increases as the injection time (measurement time) elapses, and continues to increase until the end of injection (15 minutes later) without decreasing the injection pressure. , 0.10 to 0.15 [MPa], but it was confirmed that injection was possible at extremely low pressure.

これに対して、吐出量の多い毎分9.0Lの比較例1では、注入開始1分後でも0.20[MPa]と高く、2.5分後は、0.25[MPa]と上昇し、注入終了時には、0.30[MPa]と最も高い注入圧力を示していた。これにより、注入圧力は、吐出量が毎分3.0L(実施例1~4)の場合と、毎分9.0L(比較例1)の場合とでは、大差があることが判明した。 On the other hand, in Comparative Example 1 at 9.0 L / min, which has a large discharge rate, it was as high as 0.20 [MPa] even 1 minute after the start of injection, and increased to 0.25 [MPa] 2.5 minutes later. However, at the end of the injection, the highest injection pressure was shown at 0.30 [MPa]. As a result, it was found that the injection pressure differs greatly between the case where the discharge rate is 3.0 L / min (Examples 1 to 4) and the case where the discharge rate is 9.0 L / min (Comparative Example 1).

次に、図6~図8を用いて、グラウト固結体の形状等について説明する。図6は、グラウト固結体を模式的に示す平面図であり、(a)が前述の実施例1で形成したグラウト固結体であり、(b)が前述の比較例1で形成したグラウト固結体である。また、図7は、グラウト固結体を模式的に示す側面図であり、(a)が前述の実施例1で形成したグラウト固結体であり、(b)が前述の比較例1で形成したグラウト固結体である。 Next, the shape and the like of the grout consolidated body will be described with reference to FIGS. 6 to 8. 6A and 6B are plan views schematically showing the grout consolidated body, in which FIG. 6A is the grout consolidated body formed in the above-mentioned Example 1, and FIG. 6B is the grout formed in the above-mentioned Comparative Example 1. It is a consolidated body. Further, FIG. 7 is a side view schematically showing the grout consolidated body, in which (a) is the grout consolidated body formed in the above-mentioned Example 1 and (b) is formed in the above-mentioned Comparative Example 1. It is a grout consolidated body.

前述の多段同時注入で形成したグラウト固結体を注入一週間後に地表から2.5mまで掘り起こして、その形状を確認したところ、図6(a)に示すように、実施例1に係るグラウト固結体は、平面視でほぼ円形状(球体状)に浸透固結していることが確認できた。これに対して、図6(b)に示すように、比較例1に係るラウト固結体は、平面視で水平方向の2方向に長くなった楕円状となっていることが確認できた。 One week after the injection, the grout consolidation formed by the above-mentioned multi-stage simultaneous injection was dug up to 2.5 m from the ground surface, and the shape was confirmed. As shown in FIG. 6A, the grout consolidation according to Example 1 was observed. It was confirmed that the body was permeated and consolidated in an almost circular shape (spherical shape) in a plan view. On the other hand, as shown in FIG. 6B, it was confirmed that the consolidated solidified body according to Comparative Example 1 had an elliptical shape elongated in two horizontal directions in a plan view.

また、図7(a)に示すように、側面視では、実施例1に係るグラウト固結体は、ほぼ円形状となっており、平面視と併せて球体状に浸透固結していることが確認できた。一方、図7(b)に示すように、比較例1に係るラウト固結体は、側面視でも水平方向の2方向に長くなった楕円状となっており、平面視と併せてある水平方向の長さが厚みより小さい扁平な形状となっていることが確認できた。 Further, as shown in FIG. 7A, in the side view, the grout consolidation body according to the first embodiment has a substantially circular shape, and is infiltrated and consolidated in a spherical shape together with the plan view. Was confirmed. On the other hand, as shown in FIG. 7B, the consolidated solid body according to Comparative Example 1 has an elliptical shape that is elongated in two horizontal directions even in the side view, and is in the horizontal direction together with the plan view. It was confirmed that the length was smaller than the thickness and the shape was flat.

さらに、グラウト固結体のグラウトの浸透形態を確認するために、グラウト固結体の中心部で半割りしても目視により確認し、図8に示した。図8は、グラウト固結体を模式的に示す水平断面図であり、(a)が前述の実施例1で形成したグラウト固結体であり、(b)が前述の比較例1で形成したグラウト固結体である。 Further, in order to confirm the permeation form of the grout of the grout consolidated body, it was visually confirmed even if it was divided in half at the center of the grout consolidated body, and it is shown in FIG. 8A and 8B are horizontal cross-sectional views schematically showing the grout consolidated body, in which FIG. 8A is the grout consolidated body formed in Example 1 described above, and FIG. 8B is formed in Comparative Example 1 described above. It is a grout consolidated body.

図8(a)に示すように、実施例1に係るグラウト固結体の断面は、グラウトが割裂浸入した痕跡が全く見られなかった。これは、グラウトを低吐出量で低圧でゆっくり注入したため、土粒子間隙に浸透しながら外側に徐々に浸透を拡げて球体状に浸透固結体を形成したからと考えられる。 As shown in FIG. 8A, the cross section of the grout consolidated body according to Example 1 showed no trace of split infiltration of the grout. It is considered that this is because the grout was slowly injected at a low discharge rate with a low discharge amount, so that the osmotic solidified body was formed into a spherical shape by gradually expanding the osmosis to the outside while penetrating into the soil particle gap.

このことを踏まえると、このグラウト固結体の半割目視検証により、前述の低吐出量で低圧で多段同時注入することにより、割裂浸入ではなく、きめ細かく浸透でき、且つ、短時間でグラウトを注入することができる極めて優れた浸透注入型の注入工法であることが実証できた。 Based on this, by half-split visual verification of this grout solidified body, by simultaneous injection in multiple stages at low pressure with the above-mentioned low discharge amount, it is possible to infiltrate finely and inject grout in a short time instead of split infiltration. It was proved that it is an extremely excellent permeation injection type injection method that can be performed.

これに対して、図8(b)に示すように、時間あたりの吐出量が実施例より多い比較例1に係るラウト固結体の断面は、中心部を中心に筋状に白色になった割裂浸入した痕跡を見て取ることができ、割裂に伴いその周辺に浸透していたことが確認できた。このことから、比較例1に係る注入形態は、割裂浸透であることが判明したといえる。 On the other hand, as shown in FIG. 8 (b), the cross section of the rout consolidated body according to Comparative Example 1 in which the discharge amount per hour was larger than that in the example became white in a streak-like manner centering on the central portion. It was possible to see the traces of splitting invasion, and it was confirmed that the cracks had penetrated into the surrounding area. From this, it can be said that the injection form according to Comparative Example 1 was found to be split permeation.

要するに、この両者の注入形態の違いは、グラウト吐出量の違いによるものと結論付けることができる。 In short, it can be concluded that the difference between the two injection forms is due to the difference in the grout discharge amount.

以上、本発明の実施形態に係る多段同時注入装置及びそれを用いた多段同時注入工法について説明した。しかし、前述した又は図示した実施形態は、いずれも本発明を実施するにあたって具体化した一実施形態を示したものに過ぎず、例示した実施形態によって本発明の技術的範囲が限定的に解釈されてはならないものである。 The multi-stage simultaneous injection device according to the embodiment of the present invention and the multi-stage simultaneous injection method using the same have been described above. However, the above-mentioned or illustrated embodiments are merely shown as one embodiment embodied in carrying out the present invention, and the technical scope of the present invention is limitedly interpreted by the illustrated embodiments. It should not be.

1:多段同時注入装置
2:外管
3~3’’’:外管ノズル
4:注入ポンプ
5~5’’’:吐出口
6~6’’’:注入ホース
7~7’’’:注入パイプ
8~8’’’:吐出孔
9;エア発生機
10:エアホース
11:エアパイプ(内管)
12~12’’’’:エアパッカー部材
13:エア流路
14:シールグラウト
15:内管
17:グラウト固結体
18:昇降機
19:ワイヤー
1: Multi-stage simultaneous injection device 2: Outer pipe 3 to 3''': Outer pipe nozzle 4: Injection pump 5 to 5''': Discharge port 6 to 6''': Injection hose 7 to 7''': Injection Pipe 8-8''': Discharge hole 9; Air generator 10: Air hose 11: Air pipe (inner pipe)
12-12'''': Air packer member 13: Air flow path 14: Seal grout 15: Inner pipe 17: Grout consolidation body 18: Elevator 19: Wire

第1発明に係る多段同時注入装置は、砂質土粒子間隙に深さ方向に4筒4連式の注入ポンプを用いて複数段において同時にグラウトを浸透させて止水や地盤強化を図る多段同時注入装置であって、グラウトを注入する注入ステップに応じた深さ方向に外管ノズルを4段以上設けた外管と、気体を圧送するエア発生機と、を備え、前記注入ポンプは、4つの吐出口を有し、これらの4つの吐出口は、注入ステップに応じた深さ方向に4段設置された吐出孔を有する注入パイプに接続され、前記エア発生機は、注入ステップの上下間を閉塞する5カ所のエアパッカー部材に連通するエアパイプを通じて各エアパッカー部材に気体を圧送可能に接続され、一本の前記エアパイプの周りに4本の前記注入パイプが配置されて束にして固定されて纏めて持ち上げ移動でき、前記エアパッカー部材を膨張させることで前記外管に固定可能な先端装置である内管を有し、前記内管は、前記外管内に挿入されて前記外管に対して昇降自在に構成されていることを特徴とする。 The multi-stage simultaneous injection device according to the first invention is a multi-stage simultaneous injection device for water stoppage and ground strengthening by simultaneously infiltrating gas in a plurality of stages using a 4-cylinder 4-unit injection pump in the depth direction in the sandy soil particle gap. It is an injection device and includes an outer pipe provided with four or more outer pipe nozzles in the depth direction corresponding to the injection step for injecting grout, and an air generator for pumping gas. The injection pump is 4 It has one discharge port, and these four discharge ports are connected to an injection pipe having four discharge holes provided in the depth direction corresponding to the injection step, and the air generator is located between the upper and lower parts of the injection step. Gas is pumped and connected to each air packer member through an air pipe that communicates with the five air packer members that block the air, and four injection pipes are arranged around one air pipe and fixed in a bundle. It has an inner pipe that is a tip device that can be lifted and moved together and can be fixed to the outer pipe by inflating the air packer member, and the inner pipe is inserted into the outer pipe and into the outer pipe. On the other hand, it is characterized in that it is configured to be able to move up and down.

第1発明によれば、低圧、低吐出量により、土粒子間隙に割裂浸透注入ではなく、きめ細かく浸透させることができるだけでなく、多段(4地点)に同時注入できるため注入時間を短縮して施工労力を省力化し、施工費を低減することができる。その上、第1発明によれば、超多点注入工法と違い、グラウト注入完了後に、内管を簡単に回収することもできる。 According to the first invention, due to the low pressure and the low discharge amount, not only the soil particle gap can be finely infiltrated instead of split infiltration, but also the injection time can be shortened because it can be simultaneously injected into multiple stages (4 points). Labor can be saved and construction costs can be reduced. Moreover, according to the first invention, unlike the super-multi-point injection method, the inner tube can be easily recovered after the grout injection is completed.

Claims (3)

砂質土粒子間隙に深さ方向の複数段において同時にグラウトを浸透させて止水や地盤強化を図る多段同時注入装置であって、
グラウトを注入する注入ステップに応じた深さ方向に外管ノズルを4段以上設けた外管と、4筒4連式の注入ポンプと、気体を圧送するエア発生機と、を備え、
前記注入ポンプは、4つの吐出口を有し、これらの4つの吐出口は、注入ステップに応じた深さ方向に4段設置された吐出孔を有する注入パイプに接続され、
前記エア発生機は、注入ステップの上下間を閉塞する5カ所のエアパッカー部材に連通するエアパイプを通じて各エアパッカー部材に気体を圧送可能に接続され、
一本の前記エアパイプの周りに4本の前記注入パイプが配置されて束になった内管を有し、
前記内管は、前記外管内に挿入されて前記外管に対して昇降自在に構成されていること
を特徴とする多段同時注入装置。
It is a multi-stage simultaneous injection device that simultaneously infiltrates grout into the gaps between sandy soil particles in multiple stages in the depth direction to stop water and strengthen the ground.
It is equipped with an outer tube provided with four or more outer tube nozzles in the depth direction according to the injection step for injecting grout, a four-cylinder four-series injection pump, and an air generator that pumps gas.
The injection pump has four discharge ports, and these four discharge ports are connected to an injection pipe having four discharge holes provided in four stages in the depth direction according to the injection step.
The air generator is connected so as to be able to pump gas to each air packer member through an air pipe communicating with five air packer members that block the space between the upper and lower parts of the injection step.
It has an inner tube in which four injection pipes are arranged and bundled around one air pipe.
The multi-stage simultaneous injection device, wherein the inner pipe is inserted into the outer pipe and is configured to be able to move up and down with respect to the outer pipe.
前記注入ポンプで注入するグラウトは、ゲル化時間が30分以上の一液性グラウトであること
を特徴とする請求項1に記載の多段同時注入装置。
The multi-stage simultaneous injection device according to claim 1, wherein the grout injected by the injection pump is a one-component grout having a gelation time of 30 minutes or more.
請求項1又は2に記載の多段同時注入装置を用いて、砂質土粒子間隙に深さ方向の複数段において同時にグラウトを浸透させて止水や地盤強化を図る多段同時注入工法であって、
前記エアパイプを介して前記エア発生機から気体を前記エアパッカー部材に送り込み、5か所の各エアパッカー部材を膨らませて、注入ステップの上下間を閉塞するエアパッカー膨張工程を行い、
その後、前記注入ポンプを用いて、注入ステップに応じた深さ方向に4段設置された前記注入パイプの前記吐出孔からグラウトを毎分1~8Lの低吐出量で4段同時に注入するグラウト注入工程を行うとともに、
前記内管を上方の注入ステップまで引き上げ、前記エアパッカー膨張工程と前記グラウト注入工程を繰り返して注入ステップ4段毎にグラウトを注入していくこと
を特徴とする多段同時注入工法。
A multi-stage simultaneous injection method for simultaneously infiltrating grout into the sandy soil particle gaps in a plurality of stages in the depth direction to stop water and strengthen the ground by using the multi-stage simultaneous injection device according to claim 1 or 2.
Gas is sent from the air generator to the air packer member through the air pipe, each of the five air packer members is inflated, and an air packer expansion step of closing between the upper and lower parts of the injection step is performed.
Then, using the injection pump, grout injection is simultaneously injected into four stages at a low discharge rate of 1 to 8 L per minute from the discharge holes of the injection pipes installed in four stages in the depth direction according to the injection step. As well as performing the process
A multi-stage simultaneous injection method characterized in that the inner pipe is pulled up to the upper injection step, the air packer expansion step and the grout injection step are repeated, and the grout is injected every four injection steps.
JP2020151926A 2020-09-10 2020-09-10 Multi-stage simultaneous injection device Ceased JP6867662B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020151926A JP6867662B1 (en) 2020-09-10 2020-09-10 Multi-stage simultaneous injection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020151926A JP6867662B1 (en) 2020-09-10 2020-09-10 Multi-stage simultaneous injection device

Publications (2)

Publication Number Publication Date
JP6867662B1 JP6867662B1 (en) 2021-05-12
JP2022046072A true JP2022046072A (en) 2022-03-23

Family

ID=75801763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020151926A Ceased JP6867662B1 (en) 2020-09-10 2020-09-10 Multi-stage simultaneous injection device

Country Status (1)

Country Link
JP (1) JP6867662B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411691B (en) * 2022-02-09 2024-04-05 深圳百勤建设工程有限公司 Soft soil foundation reinforcing device and construction method thereof
CN115030139B (en) * 2022-06-27 2023-06-23 新疆博际建筑工程有限责任公司 Novel steel pipe pile for soft soil site and construction method thereof

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040412A (en) * 1983-08-11 1985-03-02 Yamaguchi Kikai Kogyo Kk Method and apparatus for injection of chemical grout
JPH09165574A (en) * 1995-12-14 1997-06-24 Mitsui Toatsu Chem Inc High-strength grouting agent composed mainly of slag
JP2001131953A (en) * 1999-08-20 2001-05-15 Kyokado Eng Co Ltd Injection pipe device and ground-injecting method
JP2002004265A (en) * 2000-06-23 2002-01-09 Kyokado Eng Co Ltd Assembly type injection pipe for ground grouting
JP2003232030A (en) * 2002-02-06 2003-08-19 Kyokado Eng Co Ltd Construction method and apparatus for multi-point grouting
JP2005083002A (en) * 2003-09-05 2005-03-31 Kyokado Eng Co Ltd Ground grouting method and method of anchoring injection pipe to ground
JP2005307508A (en) * 2004-04-20 2005-11-04 Kyokado Eng Co Ltd Ground grouting method and injection pipe device
JP2006009401A (en) * 2004-06-25 2006-01-12 Kyokado Eng Co Ltd Soil grouting method
JP2006132301A (en) * 2004-10-06 2006-05-25 Kyokado Eng Co Ltd Ground injector
US20080314591A1 (en) * 2007-06-21 2008-12-25 Hales John H Single trip well abandonment with dual permanent packers and perforating gun
JP2011140872A (en) * 2011-04-18 2011-07-21 Kyokado Kk Ground improvement method and device
JP2012149442A (en) * 2011-01-19 2012-08-09 Kyokado Kk Injection material manufacturing device, injection material manufacturing method and injection material injection method
JP2013256824A (en) * 2012-06-13 2013-12-26 Kyokado Kk Injection pipe device and injection method
JP2015036503A (en) * 2013-08-16 2015-02-23 有限会社シモダ技術研究所 Grout pumping device and method
JP2016008437A (en) * 2014-06-25 2016-01-18 ライト工業株式会社 Chemical injection pipe and chemical injection method
JP2020020248A (en) * 2018-07-24 2020-02-06 強化土エンジニヤリング株式会社 Ground injection device and ground injection method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040412A (en) * 1983-08-11 1985-03-02 Yamaguchi Kikai Kogyo Kk Method and apparatus for injection of chemical grout
JPH09165574A (en) * 1995-12-14 1997-06-24 Mitsui Toatsu Chem Inc High-strength grouting agent composed mainly of slag
JP2001131953A (en) * 1999-08-20 2001-05-15 Kyokado Eng Co Ltd Injection pipe device and ground-injecting method
JP2002004265A (en) * 2000-06-23 2002-01-09 Kyokado Eng Co Ltd Assembly type injection pipe for ground grouting
JP2003232030A (en) * 2002-02-06 2003-08-19 Kyokado Eng Co Ltd Construction method and apparatus for multi-point grouting
JP2005083002A (en) * 2003-09-05 2005-03-31 Kyokado Eng Co Ltd Ground grouting method and method of anchoring injection pipe to ground
JP2005307508A (en) * 2004-04-20 2005-11-04 Kyokado Eng Co Ltd Ground grouting method and injection pipe device
JP2006009401A (en) * 2004-06-25 2006-01-12 Kyokado Eng Co Ltd Soil grouting method
JP2006132301A (en) * 2004-10-06 2006-05-25 Kyokado Eng Co Ltd Ground injector
US20080314591A1 (en) * 2007-06-21 2008-12-25 Hales John H Single trip well abandonment with dual permanent packers and perforating gun
JP2012149442A (en) * 2011-01-19 2012-08-09 Kyokado Kk Injection material manufacturing device, injection material manufacturing method and injection material injection method
JP2011140872A (en) * 2011-04-18 2011-07-21 Kyokado Kk Ground improvement method and device
JP2013256824A (en) * 2012-06-13 2013-12-26 Kyokado Kk Injection pipe device and injection method
JP2015036503A (en) * 2013-08-16 2015-02-23 有限会社シモダ技術研究所 Grout pumping device and method
JP2016008437A (en) * 2014-06-25 2016-01-18 ライト工業株式会社 Chemical injection pipe and chemical injection method
JP2020020248A (en) * 2018-07-24 2020-02-06 強化土エンジニヤリング株式会社 Ground injection device and ground injection method

Also Published As

Publication number Publication date
JP6867662B1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
CN101575983B (en) Directional fracturing permeability improvement outburst elimination method in coal mine and device thereof.
CN105332719A (en) Cement-polyurethane composite grouting process capable of blocking water fast
CN108119143B (en) A kind of vertical shaft working surface cement soluble glass paste combines grouting method with chemical grout double-round curtain
CN104929114A (en) High pressure jet grouting pile waterproof curtain construction device and method
JP6867662B1 (en) Multi-stage simultaneous injection device
CN204753574U (en) High pressure jet grouting pile stagnant water curtain construction equipment
CN109973067A (en) Horizontal well crack blocks pit shaft and reproduces refracturing method
CN204849738U (en) Can pierce through static pressure tubular pile of sand bed and construction equipment thereof
CN111927384A (en) High-strength pure liquid plugging agent plugging process for plugging leaking layer and water plugging
CN101509264A (en) One-step pore-creating, segmenting high pressure cement grout construction method
CN102011591A (en) Grouting process for working surface of deep well
CN106321046A (en) Hydraulic sand fracturing gas extraction method for underground coal seam with low air permeability
CN105443098A (en) Coal mine underground borehole segmented fixed hydraulic fracturing fixation hole device and method
CN109403914A (en) Water column only starches two fluid grouting method in a kind of down-hole extra-deep hole drilling
CN1414209A (en) Oil-water well composite sand prevention method
CN103938637B (en) Folder hard formation Soft Clay rigid-flexible mechanical arm base pit stand construction
RU2603783C1 (en) Method of leveling buildings and structures
CN103498478A (en) Curtain grouting construction method for rock dam foundation
CN105888604B (en) A kind of old well in low pressure gas field that is suitable for repeats to transform the method that nearly wellbore formation permanently blocks
CN109750668A (en) A kind of reinforcing of rich water boulder bed Deep Foundation Pit bottom mini-valve tube and construction technology
CN107461182B (en) Layering fracturing sand control method
CN103470221A (en) Underbalance tubing, no-killing gas lifting, shaft pumping and pump detecting combined method
CN107218010B (en) Water plugging bridge plug for damaged drilling sleeve and double-bridge plug type water plugging method
CN111472374B (en) Seepage-proofing treatment method for weak permeable stratum
CN109458194A (en) A kind of section grouting technology processing method of regulation tunnel cross section deformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200910

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200910

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R150 Certificate of patent or registration of utility model

Ref document number: 6867662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RVOP Cancellation by post-grant opposition