JP2022043468A - Microbubble generation device - Google Patents

Microbubble generation device Download PDF

Info

Publication number
JP2022043468A
JP2022043468A JP2020148754A JP2020148754A JP2022043468A JP 2022043468 A JP2022043468 A JP 2022043468A JP 2020148754 A JP2020148754 A JP 2020148754A JP 2020148754 A JP2020148754 A JP 2020148754A JP 2022043468 A JP2022043468 A JP 2022043468A
Authority
JP
Japan
Prior art keywords
liquid
fine bubble
conical
gas
vortex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020148754A
Other languages
Japanese (ja)
Inventor
正 本田
Tadashi Honda
幹雄 小森
Mikio Komori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nano Bubble Laboratory Corp
Original Assignee
Nano Bubble Laboratory Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Bubble Laboratory Corp filed Critical Nano Bubble Laboratory Corp
Priority to JP2020148754A priority Critical patent/JP2022043468A/en
Publication of JP2022043468A publication Critical patent/JP2022043468A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Abstract

To provide a revolving liquid flow type microbubble generation device for generating micro air bubbles, such as microbubbles and nano-bubbles.SOLUTION: A microbubble generation device having conical-shaped appearance includes a conical-shaped outer member, a first columnar member disposed in the outer member, and a second columnar member disposed in the first columnar member. It includes a liquid supply part attached in a circumferential direction of the outer member and having a prescribed angle to generate vortex flow in liquid to be supplied into a space between the outer member and the first columnar member, a gas supply part for causing the vortex flow of the liquid to pass through the first and second columnar members to supply gas to the vortex flow of the liquid supplied into the second columnar member, and a micro air bubble-containing liquid discharge part for discharging gas/liquid with gas mixed with liquid in the second columnar member as micro air bubble-containing liquid containing micro air bubbles to the outside.SELECTED DRAWING: Figure 1

Description

本発明はマイクロバブルやナノバブル等の微細な気泡を発生させる微細バブル発生装置に関する。 The present invention relates to a fine bubble generator that generates fine bubbles such as microbubbles and nanobubbles.

今日、マイクロバブルやナノバブル等の微細バブルは、その物性や発生(気泡微細化)のメカニズム、具体的な用途、及びその実用化についての研究が急速に進んでいる。例えば、汚染水の浄化や殺菌等の研究や、マイクロオーダ或いはナノオーダの微細気泡を含有する微細バブル含有水を用いたウナギ等の水性生物の育成や、水田に微細バブルの含有水を供給して水質の向上を図る研究も行われている。 Today, research on the physical characteristics of microbubbles such as microbubbles and nanobubbles, the mechanism of generation (miniaturization of bubbles), specific uses, and their practical application is rapidly progressing. For example, research on purification and sterilization of contaminated water, cultivation of aquatic organisms such as eels using water containing fine bubbles of micro-order or nano-order, and supply of water containing fine bubbles to paddy fields. Research is also being conducted to improve water quality.

また、例えば土壌粒子に付着した油幕を微細バブルの表面に付着させることによる油汚染土壌の改善や、船体の周りに微細バブルを吹き出すことによって船体が進行する際の船体抵抗の低減や、凹凸のある建造物の内外壁の洗浄、更にオゾンを含むナノバブル化された水による抗菌効果の研究も行われている。 In addition, for example, improvement of oil-contaminated soil by adhering an oil curtain attached to soil particles to the surface of fine bubbles, reduction of hull resistance when the hull advances by blowing out fine bubbles around the hull, and unevenness. Cleaning of the inner and outer walls of a building with a hull, and research on the antibacterial effect of nanobubbled water containing ozone are also being conducted.

従来微細バブルの発生方法としては、旋回液流方式や、加圧溶解方式、オリフィスやベンチュリ管方式、超音波振動の利用や、微細孔フィルタの使用等、多くの方式が提案されている。例えば、一例として、特許文献1に開示する微細バブルの発生装置が知られている。 Conventionally, as a method for generating fine bubbles, many methods such as a swirling liquid flow method, a pressure melting method, an orifice or a venturi tube method, the use of ultrasonic vibration, and the use of a fine hole filter have been proposed. For example, as an example, a device for generating fine bubbles disclosed in Patent Document 1 is known.

図8(a)、(b)は、この微細バブル発生装置を説明する図であり、旋回液流方式の微細バブル発生装置である。尚、同図(b)は同図(a)の縦断面図である。 8 (a) and 8 (b) are views for explaining the fine bubble generator, which is a swirling liquid flow type fine bubble generator. The figure (b) is a vertical sectional view of the figure (a).

微細バブル発生装置50は、液体供給口51aと気体供給口51bを備えた外殻槽51と、この外殻槽51に覆われた気体発生槽52で構成され、気体発生槽52は円筒形状で内面の接線方向に後述する気泡混じり水を注入する複数の注入孔52a、52bが備えられている。 The fine bubble generator 50 is composed of an outer shell tank 51 provided with a liquid supply port 51a and a gas supply port 51b, and a gas generation tank 52 covered with the outer shell tank 51. The gas generation tank 52 has a cylindrical shape. A plurality of injection holes 52a and 52b for injecting water mixed with bubbles, which will be described later, are provided in the tangential direction of the inner surface.

そして、気体供給口51bから所望の気体をコンプレッサ等によって圧送すると共に、液体供給口51aから水を外殻槽51の円周方向に勢いよく供給し、外殻槽51内に気泡混じり水を注入する。この気泡混じり水は、上記注入孔52a、52bから気体発生槽52内に取り込まれ、気体発生槽52の内周面に沿って気泡混じり水が旋回する旋回流を生成する。この旋回流の剪断力によって気泡混じり水内の気泡はマイクロバブルの微細気泡となり、気液排出口53から微細気泡含有水として排出され、例えば洗浄や殺菌等の用途に使用される。 Then, a desired gas is pressure-fed from the gas supply port 51b by a compressor or the like, water is vigorously supplied from the liquid supply port 51a in the circumferential direction of the outer shell tank 51, and water mixed with bubbles is injected into the outer shell tank 51. do. The bubble-mixed water is taken into the gas generation tank 52 from the injection holes 52a and 52b, and generates a swirling flow in which the bubble-mixed water swirls along the inner peripheral surface of the gas generation tank 52. Due to the shearing force of this swirling flow, the bubbles in the water mixed with bubbles become fine bubbles of microbubbles and are discharged as water containing fine bubbles from the gas / liquid discharge port 53, and are used for, for example, cleaning and sterilization.

特開2015―167946号公報JP-A-2015-167946

しかしながら、上記微細バブル発生装置50では、気体供給口51bに所望の気体を圧送する為のコンプレッサが必要である。また、気体発生槽52内の旋回流による剪断力のみでは充分な微細気泡を生成することができない。
そこで、本発明は気体を圧送する為のコンプレッサ等の圧送装置を使用することなく、微細な気泡を充分生成することができる旋回液流方式の微細バブル発生装置を提案するものである。
However, the fine bubble generator 50 requires a compressor for pumping a desired gas to the gas supply port 51b. In addition, sufficient fine bubbles cannot be generated only by the shearing force due to the swirling flow in the gas generation tank 52.
Therefore, the present invention proposes a swirling liquid flow type fine bubble generator capable of sufficiently generating fine bubbles without using a pressure feeding device such as a compressor for pumping gas.

上記課題は第1の発明によれば、外観が円錐形状の微細バブル発生装置であって、円錐形状の外側部材と、該外側部材内に配設された第1の円柱部材と、該第1の円柱部材内に配設された第2の円柱部材とを備え、上記外側部材の円周方向に対して所定の角度を有して取り付けられ、上記外側部材と第1の円柱部材間の空間内に供給する液体に渦流を生成させる液体供給部と、上記液体の渦流が上記第1、第2の円柱部材間を通って上記第2の円柱部材内に供給された液体の渦流に気体を供給する気体供給部と、上記第2の円柱部材内において上記液体に気体が混じった気液体を微細気泡を含有する微細気泡含有液体として外部に排出する微細気泡含有液体排出部と、を備えたことを特徴とする。 According to the first invention, the above-mentioned problem is a fine bubble generator having a conical appearance, the outer member having a conical shape, the first cylindrical member disposed in the outer member, and the first cylinder member. A second cylindrical member disposed in the cylindrical member of the above, and attached at a predetermined angle with respect to the circumferential direction of the outer member, and a space between the outer member and the first cylindrical member. The liquid supply unit that creates a vortex in the liquid supplied inside, and the vortex of the liquid passes between the first and second cylindrical members and causes gas to flow into the vortex of the liquid supplied into the second cylindrical member. It is provided with a gas supply unit for supplying, and a fine bubble-containing liquid discharge unit for discharging the gas liquid in which the gas is mixed with the liquid as a fine bubble-containing liquid in the second cylindrical member. It is characterized by that.

また、上記外側部材、及び第1、第2の円柱部材の内周面には、前記渦流の生成を促進する渦流生成促進加工が施されていることを特徴とする。 Further, the outer peripheral surface and the inner peripheral surfaces of the first and second cylindrical members are characterized by being subjected to a vortex generation promoting process for promoting the generation of the vortex flow.

上記課題は第2の発明によれば、外観が円錐形状の微細バブル発生装置であって、円錐形状の外側部材と、該外側部材内に配設された第1の内部円錐部材と、該第1の内部円錐部材内に配設された第2の内部円錐部材とを備え、上記外側部材の円周方向に対して所定の角度を有して取り付けられ、上記外側部材と第1の内部円錐部材間の空間内に供給する液体に渦流を生成させる液体供給部と、上記液体の渦流が上記第1、第2の内部円錐部材間を通って上記第2の内部円錐部材内に供給された液体の渦流に気体を供給する気体供給部と、上記第2の円錐部材内において上記液体に気体が混じった気液体を微細気泡を含有する微細気泡含有液体として外部に排出する微細気泡含有液体排出部と、を備えたことを特徴とする。 According to the second invention, the above-mentioned problem is a fine bubble generator having a conical appearance, the outer member having a conical shape, the first inner conical member disposed in the outer member, and the first one. It is provided with a second inner conical member disposed in the inner conical member of 1, and is attached at a predetermined angle with respect to the circumferential direction of the outer member, and the outer member and the first inner cone are attached. The liquid supply unit that creates a vortex in the liquid supplied in the space between the members and the vortex of the liquid are supplied into the second internal conical member through between the first and second internal conical members. A gas supply unit that supplies gas to the vortex of the liquid, and a fine bubble-containing liquid discharge that discharges the gas liquid in which the gas is mixed with the liquid in the second conical member to the outside as a fine bubble-containing liquid containing fine bubbles. It is characterized by having a part and.

また、上記外側部材、及び第1、第2の内部円錐部材の内周面にも、前記渦流の生成を促進する渦流生成促進加工が施されていることを特徴とする。 Further, the outer peripheral surface and the inner peripheral surfaces of the first and second inner conical members are also characterized by being subjected to a vortex generation promoting process for promoting the generation of the vortex.

本実施形態の微細バブル発生装置の外観図である。It is an external view of the fine bubble generator of this embodiment. 本実施形態の微細バブル発生装置の内部構成を説明する図である。It is a figure explaining the internal structure of the fine bubble generator of this embodiment. 微細気泡含有液体排出部の断面拡大図である。It is a cross-sectional enlarged view of the liquid discharge part containing fine bubbles. (a)は、第1、第2の円柱部材の内周面に形成する渦流生成促進加工の一例を示す図である。(b)は、凸状と凹溝が同間隔で形成された矩形形状である渦流生成促進加工の例を示す図である。(c)は、凹溝の断面を半円形状とした渦流生成促進加工の例を示す図である。(d)は、凸状の断面を直立辺と斜辺を有する三角形状とした渦流生成促進加工の例を示す図である。(A) is a figure which shows an example of the vortex generation promotion processing formed on the inner peripheral surface of the 1st and 2nd cylindrical members. (B) is a figure which shows an example of a vortex generation promotion processing which is a rectangular shape in which convex and concave grooves are formed at the same interval. (C) is a diagram showing an example of eddy current generation promoting processing in which the cross section of the concave groove has a semicircular shape. (D) is a figure which shows an example of a vortex generation promotion processing which made a convex cross section into a triangular shape which has an upright side and a hypotenuse. 本実施形態の微細バブル発生装置を使用した微細バブル発生システムを説明するシステム図である。It is a system diagram explaining the fine bubble generation system using the fine bubble generation apparatus of this embodiment. 図2のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. 本実施形態の微細バブル発生装置の他の実施例を説明する図である。It is a figure explaining another embodiment of the fine bubble generator of this embodiment. (a)、(b)は、従来の微細バブル発生装置の一例を説明する図である。(A) and (b) are diagrams for explaining an example of a conventional fine bubble generator.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は本実施形態の微細バブル発生装置の外観図である。同図において、本実施形態の微細バブル発生装置1は所定の厚さを有する外観が円錐形(逆円錐形)の円錐形部材2と、この円錐形部材2の上面に設けられた気体供給部3と、円錐形部材2の上部側面に設けられた液体供給部4と、円錐形部材2の下面に設けられた微細気泡含有液体排出部5で構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is an external view of the fine bubble generator of the present embodiment. In the figure, the fine bubble generator 1 of the present embodiment has a conical member 2 having a predetermined thickness and an appearance of a conical shape (inverted conical shape), and a gas supply unit provided on the upper surface of the conical member 2. 3. It is composed of a liquid supply unit 4 provided on the upper side surface of the conical member 2, and a fine bubble-containing liquid discharge unit 5 provided on the lower surface of the conical member 2.

気体供給部3には後述するボンベから所望の気体が供給される。また、液体供給部4にはポンプ等によって所定の圧力が付加され、後述する水槽から水(又は所望の液体)が供給される。また、本例の微細バブル発生装置1で生成されたマイクロバブル又はナノバブルの微細気泡を含む気液体が微細気泡含有液体排出部5から排出される。 A desired gas is supplied to the gas supply unit 3 from a cylinder described later. Further, a predetermined pressure is applied to the liquid supply unit 4 by a pump or the like, and water (or a desired liquid) is supplied from a water tank described later. Further, the air liquid containing the microbubbles or nanobubble fine bubbles generated by the fine bubble generator 1 of this example is discharged from the fine bubble-containing liquid discharge unit 5.

尚、使用する液体として、本例では水を使用するが、水に限らず、例えばメタノール、エタノール、プロパノール等のアルコール類、アセトン、ヘキサン、トルエン等の有機溶媒や石油等の鉱油でもよい。また、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の塩基、塗料や乳等のコロイド、塩酸、硫酸、炭酸、リン酸等の無機酸、酢酸、クエン酸、シュウ酸等の有機酸を使用してもよい。 Although water is used in this example as the liquid to be used, it is not limited to water, and may be, for example, alcohols such as methanol, ethanol and propanol, organic solvents such as acetone, hexane and toluene, and mineral oil such as petroleum. In addition, bases such as sodium hydroxide, potassium hydroxide and calcium hydroxide, colloids such as paints and milk, inorganic acids such as hydrochloric acid, sulfuric acid, carbonic acid and phosphoric acid, and organic acids such as acetic acid, citric acid and oxalic acid are used. You may.

尚、円錐形部材2はステンレス等の金属や樹脂等で構成されている。また、上記気体供給部3や、液体供給部4、微細気泡含有液体排出部5は、上記円錐形部材2と一体構成であってもよく、又は別体で製造し、後に接合加工等によって製作してもよい。尚、例えば透明なアクリル樹脂等を使用することによって、装置1内での気泡の発生状況を観察することもできる。 The conical member 2 is made of a metal such as stainless steel, a resin, or the like. Further, the gas supply unit 3, the liquid supply unit 4, and the fine bubble-containing liquid discharge unit 5 may be integrally configured with the conical member 2, or may be manufactured separately, and later manufactured by joining or the like. You may. It should be noted that, for example, by using a transparent acrylic resin or the like, it is possible to observe the generation state of bubbles in the apparatus 1.

図2は上記外観構成の微細バブル発生装置1(円錐形部材2)の内部構成を説明する図である。微細バブル発生装置1の内部には上面が円錐形部材2の上壁2aに遮蔽された円柱部材6、及びこの円柱部材6の内側に設けられ、下面が円錐形部材2の下壁2bに遮蔽された内部円柱部材7が設けられている。上記内部構成から、本例の微細バブル発生装置1は円錐形部材2と円柱部材6との間に形成された外層空間(以下、単に外層で示す)8aと、円柱部材6と内部円柱部材7との間に形成された円筒状の中層空間(以下、単に中層で示す)8bと、内部円柱部材7内の内層空間(以下、単に内層で示す)8cを備える。 FIG. 2 is a diagram illustrating the internal configuration of the fine bubble generator 1 (conical member 2) having the appearance configuration. Inside the fine bubble generator 1, the upper surface is shielded by the upper wall 2a of the conical member 2, and the lower surface is shielded by the lower wall 2b of the conical member 2. The internal cylindrical member 7 is provided. From the above internal configuration, the fine bubble generator 1 of this example has an outer layer space (hereinafter, simply referred to as an outer layer) 8a formed between the conical member 2 and the cylindrical member 6, and the cylindrical member 6 and the internal cylindrical member 7. It is provided with a cylindrical middle layer space (hereinafter, simply referred to as an inner layer) 8b formed between the two, and an inner layer space (hereinafter, simply referred to as an inner layer) 8c in the inner cylindrical member 7.

尚、この円柱部材6及び内部円柱部材7も上記円錐形部材2と同じ材料で作成され、例えばステンレス等の金属や樹脂等で構成され、特に気体としてオゾンを使用する際には酸化防止の為、ステンレスが推奨される。 The cylindrical member 6 and the internal cylindrical member 7 are also made of the same material as the conical member 2, and are made of, for example, a metal such as stainless steel or a resin, and are used to prevent oxidation, especially when ozone is used as a gas. , Stainless is recommended.

気体供給部3は、図2に示すように円錐形部材2の上面中心部分に配設され、気体供給部3には上壁2aを貫通して設けられた微細孔9が形成され、微細孔9によって気体供給部3と上記内層8cの上部とを連通している。後述するように、この微細孔9を通して所望の気体が微細バブル発生装置1(円錐形部材2)の上記内層8cの上部に吸引される。尚、微細孔9の直径は、例えば1~2mm程度である。 As shown in FIG. 2, the gas supply unit 3 is arranged in the central portion of the upper surface of the conical member 2, and the gas supply unit 3 is formed with micropores 9 provided so as to penetrate the upper wall 2a. The gas supply unit 3 and the upper part of the inner layer 8c are communicated with each other by 9. As will be described later, the desired gas is sucked into the upper part of the inner layer 8c of the fine bubble generator 1 (conical member 2) through the fine pores 9. The diameter of the micropores 9 is, for example, about 1 to 2 mm.

一方、液体供給部4は円錐形部材2に対して所定角度αを有して配設され、後述する水槽等から水、又は所望の液体が供給される。尚、上記所定角度αは、例えば円錐形部材2に対して10°以上の角度であり、円錐形部材2に水等の液体を供給し、円錐形部材2内に回転する渦流を生成し易くする最適な角度である。 On the other hand, the liquid supply unit 4 is arranged with a predetermined angle α with respect to the conical member 2, and water or a desired liquid is supplied from a water tank or the like described later. The predetermined angle α is, for example, an angle of 10 ° or more with respect to the conical member 2, and it is easy to supply a liquid such as water to the conical member 2 to generate a rotating vortex in the conical member 2. Optimal angle to do.

一方、微細気泡含有液体排出部5は円錐形部材2の下面中心部分に設けられている。図3は微細気泡含有液体排出部5の断面拡大図である。 On the other hand, the fine bubble-containing liquid discharging portion 5 is provided in the center portion of the lower surface of the conical member 2. FIG. 3 is an enlarged cross-sectional view of the fine bubble-containing liquid discharging portion 5.

微細気泡含有液体排出部5には円錐形部材2の下壁2bを貫通して形成された開口10が設けられ、開口10を通して後述する気液体が排出される。開口10は同図に示すように、下壁2bの所定の範囲(例えば、下壁2bの厚さの半分程度)までは一定の直径の円柱状の開口10aであり、そこから外に向かって円錐台状に拡がる開口10bで構成されている。 The fine bubble-containing liquid discharging portion 5 is provided with an opening 10 formed through the lower wall 2b of the conical member 2, and the air liquid described later is discharged through the opening 10. As shown in the figure, the opening 10 is a columnar opening 10a having a constant diameter up to a predetermined range of the lower wall 2b (for example, about half the thickness of the lower wall 2b), and the opening 10 is outward from the columnar opening 10a. It is composed of an opening 10b that extends like a truncated cone.

このように微細気泡含有液体排出部5を構成することによって、微細バブル発生装置1内の内層8cによって気体が含有された気液体をマイクロオーダ或いはナノオーダの微細気泡を含有する微細気泡含有液体に生成する。 By configuring the fine bubble-containing liquid discharge unit 5 in this way, the gas-containing air-liquid is generated into a micro-order or nano-order fine bubble-containing liquid by the inner layer 8c in the fine bubble generator 1. do.

一方、円錐形部材2、及び円柱部材6、内部円柱部材7の内周面には渦流の生成を促進する渦流生成促進加工が施されている。この渦流生成促進加工は、例えば微小な凹凸を円柱部材6,7等の内周面に一様に形成することによって、内周面に沿った水の流れにおいて、圧力損失が抑制され、渦流の生成を促進する。 On the other hand, the inner peripheral surfaces of the conical member 2, the cylindrical member 6, and the internal cylindrical member 7 are subjected to eddy current generation promoting processing to promote eddy current generation. In this eddy current generation promotion processing, for example, by uniformly forming minute irregularities on the inner peripheral surfaces of the cylindrical members 6, 7 and the like, pressure loss is suppressed in the flow of water along the inner peripheral surface, and the vortex flow. Promote production.

図4(a)は上記渦流生成促進加工25の一例を示す図であり、微小な凹凸26、27が内部円柱部材7等の内周面の全面にわたって形成されている。
この渦流生成促進加工は、例えば同図(b)に示すように凸状26と凹溝27が同間隔で形成された矩形形状であり、矢印24で示す水の流れの交差方向に形成されている。このように構成することによって、上記凹凸の高低差は流れに対して流れの圧力変化を生じさせるような大きさの二次流れ生じさせないレベルの摩擦作用を発生させ、内周面に沿った水の流れの圧力損失が抑制され渦流の生成を促進する。
FIG. 4A is a diagram showing an example of the vortex generation promoting processing 25, in which minute irregularities 26 and 27 are formed over the entire inner peripheral surface of the internal cylindrical member 7 and the like.
This eddy current generation promoting processing has, for example, a rectangular shape in which the convex shape 26 and the concave groove 27 are formed at the same interval as shown in FIG. There is. With this configuration, the height difference of the unevenness causes a frictional action at a level that does not cause a secondary flow of a size that causes a pressure change of the flow with respect to the flow, and water along the inner peripheral surface. The pressure loss of the flow is suppressed and the generation of eddy current is promoted.

尚、渦流生成促進加工25の凹凸形状は同図(c)に示すように、凹溝27の断面を半円形状としてもよい。また、同図(d)に示すように、凸状26の断面を直立辺と斜辺を有する三角形状としてもよい。 As shown in FIG. 3C, the uneven shape of the eddy current generation promoting processing 25 may be a semicircular cross section of the concave groove 27. Further, as shown in FIG. 3D, the cross section of the convex shape 26 may be a triangular shape having an upright side and a hypotenuse.

図5は上記構成の微細バブル発生装置1を使用した微細バブル発生システムを説明するシステム図である。
同図に示すボンベ11a、11b、11cには異なる気体、例えば空気や、オゾン、水素、窒素等の気体が収納され、夫々のボンベ11a、11b、11cには、夫々バルブ12a、12b、12cが取り付けられている。そして、用途に応じて何れかのバルブ12a、12b、12cを開くことによって、選択されたボンベ11a、11b、11cから所望する気体を上記気体供給部3に供給する。
FIG. 5 is a system diagram illustrating a fine bubble generation system using the fine bubble generation device 1 having the above configuration.
The cylinders 11a, 11b, 11c shown in the figure contain different gases such as air and gases such as ozone, hydrogen, and nitrogen, and the cylinders 11a, 11b, and 11c have valves 12a, 12b, and 12c, respectively. It is attached. Then, by opening any of the valves 12a, 12b, 12c according to the application, the desired gas is supplied to the gas supply unit 3 from the selected cylinders 11a, 11b, 11c.

尚、同図に示すバルブ12dは、更に他の気体が入ったボンベを取り付ける場合に使用する為の予備のバルブである。
上記実施形態の説明では気体としてボンベ31aに収納した空気を使用したが、他のボンベ31b、31cに、例えば水素や、重水素、酸素、オゾン、窒素、二酸化炭素、塩素、二酸化窒素、硫化水素、ヘリウム、アルゴン、ネオン等の希ガスを収納し、用途に応じて使用する構成としてもよい。
The valve 12d shown in the figure is a spare valve for use when a cylinder containing another gas is attached.
In the description of the above embodiment, the air stored in the cylinder 31a is used as the gas, but hydrogen, heavy hydrogen, oxygen, ozone, nitrogen, carbon dioxide, chlorine, nitrogen dioxide, and hydrogen sulfide are used in the other cylinders 31b and 31c. , Helium, argon, neon and other rare gases may be stored and used depending on the application.

尚、同図に示すP1は気体の流路13に設けられた圧力インジケータであり、この流路13を流れる気体の圧力を計測する。また、F1は流量インジケータであり、流路13を介して気体供給部3に供給される気体流量を計測する。 Note that P1 shown in the figure is a pressure indicator provided in the gas flow path 13, and measures the pressure of the gas flowing through the gas flow path 13. Further, F1 is a flow rate indicator, and measures the gas flow rate supplied to the gas supply unit 3 via the flow path 13.

一方、貯水槽14には、本例の微細バブル発生装置1に供給する液体として、例えば水が蓄えられており、バルブ14a及び15を開くことによって、貯水槽14に蓄えられた水を微細バブル発生装置1に供給することができる。貯水槽14から供給される水は前述の液体供給部4から微細バブル発生装置1(円錐形部材2)内に供給される。 On the other hand, in the water tank 14, for example, water is stored as a liquid to be supplied to the fine bubble generator 1 of this example, and by opening the valves 14a and 15, the water stored in the water tank 14 is made into fine bubbles. It can be supplied to the generator 1. The water supplied from the water storage tank 14 is supplied from the liquid supply unit 4 described above into the fine bubble generator 1 (conical member 2).

ポンプ20は貯水槽14又は16に蓄積された水を使用する際に駆動する装置である。例えば、バルブ16aを開き、更にバルブ17~19を順次開き、ポンプ20を駆動することによって、貯水槽16に溜まった水を微細バブル発生装置1(円錐形部材2)に戻し、再使用する。尚、ポンプ20を駆動し、バルブ17を貯水槽14側に開き、更にバルブ21を開くことによって、貯水槽16に溜まった水を貯水槽14に戻すこともできる。 The pump 20 is a device that drives the water stored in the water tank 14 or 16 when it is used. For example, by opening the valves 16a, opening the valves 17 to 19 in sequence, and driving the pump 20, the water accumulated in the water storage tank 16 is returned to the fine bubble generator 1 (conical member 2) and reused. By driving the pump 20, opening the valve 17 toward the water tank 14, and further opening the valve 21, the water accumulated in the water tank 16 can be returned to the water tank 14.

尚、同図に示すP2は水の流路22に設けられた圧力インジケータであり、この流路22を流れる水圧を計測する。また、F2は流量インジケータであり、流路22を介して微細バブル発生装置1(円錐形部材2)に供給される水の流量を計測する。 Note that P2 shown in the figure is a pressure indicator provided in the water flow path 22, and measures the water pressure flowing through the water flow path 22. Further, F2 is a flow rate indicator, and measures the flow rate of water supplied to the fine bubble generator 1 (conical member 2) via the flow path 22.

以上の構成の微細バブル発生装置1及び微細バブル発生システムを使用して、以下に微細バブルの生成処理について説明する。
先ず、貯水槽14から微細バブル発生装置1に水を供給する。この為、先ずバルブ14a、及び15を開き、貯水槽14に溜められた水を流路22を介して液体供給部4から微細バブル発生装置1(円錐形部材2)内に供給する。
Using the fine bubble generator 1 and the fine bubble generation system having the above configuration, the fine bubble generation process will be described below.
First, water is supplied from the water storage tank 14 to the fine bubble generator 1. Therefore, first, the valves 14a and 15 are opened, and the water stored in the water storage tank 14 is supplied from the liquid supply unit 4 into the fine bubble generator 1 (conical member 2) via the flow path 22.

円錐形部材2内の外層8aの空間に水が勢いよく供給されると、外層8aの円周方向に水が旋回し、旋回流となる。図6は図2のA-A断面図であり、微細バブル発生装置1内の水の流れを説明する図である。 When water is vigorously supplied to the space of the outer layer 8a in the conical member 2, the water swirls in the circumferential direction of the outer layer 8a to form a swirling flow. FIG. 6 is a cross-sectional view taken along the line AA of FIG. 2 and is a diagram illustrating a flow of water in the fine bubble generator 1.

同図に示すように、外層8a内に供給された水は時計周りに勢いよく旋回する。この時、液体には旋回による矢印Bで示す方向に遠心力が働く。そして、水は旋回しながら円錐形部材2の下壁2bに向かって下方に流れる。 As shown in the figure, the water supplied into the outer layer 8a swirls vigorously clockwise. At this time, centrifugal force acts on the liquid in the direction indicated by the arrow B due to swirling. Then, the water swirls and flows downward toward the lower wall 2b of the conical member 2.

その後、円錐形部材2の下壁2bに達した水は、旋回運動を維持したまま円筒部材6の内部に流れ込む。円筒部材6の内部に流れ込んだ水には、旋回による遠心力が矢印B方向に同様に働き、水は円筒部材6の内周面に沿って上方に移動し、上壁2aに達する。 After that, the water that has reached the lower wall 2b of the conical member 2 flows into the inside of the cylindrical member 6 while maintaining the turning motion. Centrifugal force due to swirling acts on the water flowing into the cylindrical member 6 in the same manner in the direction of arrow B, and the water moves upward along the inner peripheral surface of the cylindrical member 6 and reaches the upper wall 2a.

この間、前述のように円柱部材6及び7等の内周面には、図4(a)~(d)に示すような渦流生成促進加工が施されており、微細バブル発生装置1内の渦流の生成を促進し、効率良く渦流を生成させることができる。 During this period, as described above, the inner peripheral surfaces of the cylindrical members 6 and 7 and the like are subjected to vortex generation promoting processing as shown in FIGS. 4A to 4D, and the vortex flow in the fine bubble generator 1 is performed. It is possible to promote the generation of a vortex and efficiently generate a vortex.

そして、上壁2aに達した水は、図2に示す矢印方向に流れ、内部円筒部材7(内層8c)の上部中心部が圧力の低い状態となる。この時、気体供給部3にはボンベ11aから気体が供給されており、気体供給部3の微細孔9を通して気体が微細バブル発生装置1(内部円柱部材7)の内部に吸引される。 Then, the water that has reached the upper wall 2a flows in the direction of the arrow shown in FIG. 2, and the pressure is low at the upper center of the inner cylindrical member 7 (inner layer 8c). At this time, gas is supplied to the gas supply unit 3 from the cylinder 11a, and the gas is sucked into the fine bubble generator 1 (internal cylindrical member 7) through the fine holes 9 of the gas supply unit 3.

そして、吸引された気体は内部円柱部材7の内層8c内で気体渦流となって、旋回しながら円錐形部材2の下壁2bに向かって流れる。この時、内部円柱部材7の内径は最も狭く、回転力が強まり、水の旋回による遠心力が最も強く働く。
この結果、旋回する水流に吸引された気体は気体渦流となり下壁2bに形成された開口10に流れ込む。
Then, the sucked gas becomes a gas vortex in the inner layer 8c of the inner cylindrical member 7 and flows toward the lower wall 2b of the conical member 2 while swirling. At this time, the inner diameter of the internal cylindrical member 7 is the narrowest, the rotational force is strengthened, and the centrifugal force due to the swirling of water works the strongest.
As a result, the gas sucked by the swirling water flow becomes a gas vortex and flows into the opening 10 formed in the lower wall 2b.

そして、気体渦流は微細気泡含有液体排出部5において急激に不安定となり、気体渦流が強制的に切断されて微細な気泡となる。すなわち、微細気泡含有液体排出部5内の開口10の構造によって、旋回流内の気体は、微細な気泡に切断され、微細気泡含有液体排出部5から外部に排出される際、大気又は液体の外部環境との質量差等により、気泡が更に微細に切断されたマイクロバブル又はナノバブルの微細な気泡を大量に生成する。 Then, the gas vortex suddenly becomes unstable in the fine bubble-containing liquid discharge unit 5, and the gas vortex is forcibly cut off to become fine bubbles. That is, due to the structure of the opening 10 in the fine bubble-containing liquid discharge section 5, the gas in the swirling flow is cut into fine bubbles, and when the gas is discharged to the outside from the fine bubble-containing liquid discharge section 5, the atmosphere or liquid Due to the difference in mass from the external environment or the like, a large amount of fine bubbles of microbubbles or nanobubbles in which bubbles are further finely cut are generated.

この様にして生成されたマイクロバブル又はナノバブルの微細な気泡を含む微細気泡含有水は、微細気泡含有液体排出部5から放出され、必要な用途に使用される。 The fine bubble-containing water containing the fine bubbles of the microbubbles or nanobubbles thus generated is discharged from the fine bubble-containing liquid discharge unit 5 and used for necessary purposes.

その後、バルブ15を閉じ、ポンプ20を駆動してバルブ16a、17~19を開放することによって、貯水槽16に放出された水を循環させ、ボンベ11aから空気を気体供給部3に自動的に送り、継続的に微細気泡含有液体排出部5から微細気泡含有水を放出して、必要な用途に使用することができる。 After that, by closing the valve 15 and driving the pump 20 to open the valves 16a, 17 to 19, the water discharged to the water storage tank 16 is circulated, and the air from the cylinder 11a is automatically sent to the gas supply unit 3. It can be fed and continuously discharged from the fine bubble-containing liquid discharge unit 5 to be used for a required purpose.

以上のように、本例の微細バブル発生装置1は、多重層構造となっている為、注入する水等の液体の圧力や流速が低くても安定して微細な気泡を生成することが可能である。また、水等の液体の旋回によって気体を吸い込む構造であるため、気体をボンベ11から気体供給部3に送る際、気体を加圧する必要がなく、気体を導入するための複雑な機構等も省略することができる。 As described above, since the fine bubble generator 1 of this example has a multi-layer structure, it is possible to stably generate fine bubbles even if the pressure or flow velocity of the liquid such as water to be injected is low. Is. Further, since the structure sucks the gas by swirling the liquid such as water, it is not necessary to pressurize the gas when the gas is sent from the cylinder 11 to the gas supply unit 3, and a complicated mechanism for introducing the gas is omitted. can do.

さらに、本例の微細バブル発生装置1の円柱部材6及び7等の内周面には、渦流生成促進加工が施されており、渦流の生成を促進することによって、水流速度を加速させることができ、微細気泡含有液体の生成を促進させることができる。 Further, the inner peripheral surfaces of the cylindrical members 6 and 7 of the fine bubble generator 1 of this example are subjected to eddy current generation promotion processing, and the water flow velocity can be accelerated by accelerating the vortex generation. It is possible to promote the production of a liquid containing fine bubbles.

図7は本発明の微細バブル発生装置の他の実施例を説明する図であり、他の実施例の微細バブル発生装置31の内部構成を説明する図である。尚、本例においても、微細バブル発生装置31の外観は前述の実施形態の図1に示す円錐形(逆円錐形)である。 FIG. 7 is a diagram for explaining another embodiment of the fine bubble generator of the present invention, and is a diagram for explaining the internal configuration of the fine bubble generator 31 of the other embodiment. Also in this example, the appearance of the fine bubble generator 31 is a conical shape (inverted conical shape) shown in FIG. 1 of the above-described embodiment.

本例の微細バブル発生装置31には前述の実施形態と同様、円錐形部材32、気体供給部33、液体供給部34、及び微細気泡含有液体排出部35が配設され、気体供給部33には前述のボンベ11a等から所望の気体が供給され、液体供給部34には前述のポンプ20によって所定の圧力が付加された水が供給され、微細気泡含有液体排出部35から装置31内で生成されたマイクロバブルやナノバブルの微細気泡を含む微細気泡含有液体が排出される。 Similar to the above-described embodiment, the fine bubble generator 31 of this example is provided with a conical member 32, a gas supply unit 33, a liquid supply unit 34, and a fine bubble-containing liquid discharge unit 35, and the gas supply unit 33 is provided. Is supplied with a desired gas from the above-mentioned bomb 11a or the like, water to which a predetermined pressure is applied by the above-mentioned pump 20 is supplied to the liquid supply unit 34, and is generated in the apparatus 31 from the fine bubble-containing liquid discharge unit 35. The fine bubble-containing liquid containing the fine bubbles of the microbubbles and nanobubbles is discharged.

同図において、本例の微細バブル発生装置31は円錐形部材32と、この円錐形部材32内に配設された内部円錐形部材36、37で構成されている。すなわち、前述の実施例と異なる構成は、円柱部材6及び内部円柱部材7に対して内部円錐形部材36、37が使用されている点である。 In the figure, the fine bubble generator 31 of this example is composed of a conical member 32 and internal conical members 36 and 37 arranged in the conical member 32. That is, the configuration different from the above-described embodiment is that the internal conical members 36 and 37 are used for the cylindrical member 6 and the internal cylindrical member 7.

具体的には、円柱部材6に代えて内部円錐形部材36が使用され、内部円柱部材7に代えて内部円錐形部材37が使用されている。このように構成することによって、前述と同様、円錐形部材32内の外層38aの空間に水を勢いよく供給すると、外層38aの円周方向に水が旋回し、旋回流となり、矢印Bで示す方向に遠心力が働く。そして、水は旋回しながら円錐形部材32の下壁32bに向かって下方に流れる。 Specifically, the internal conical member 36 is used instead of the cylindrical member 6, and the internal conical member 37 is used instead of the internal cylindrical member 7. With this configuration, when water is vigorously supplied to the space of the outer layer 38a in the conical member 32 as described above, the water swirls in the circumferential direction of the outer layer 38a to form a swirling flow, which is indicated by an arrow B. Centrifugal force works in the direction. Then, the water swirls and flows downward toward the lower wall 32b of the conical member 32.

その後、円錐形部材32の下壁32bに達した水は、前述と同様、旋回運動を維持したまま内部円錐部材36の内部に流れ込み、内部円錐部材36の内部に流れ込んだ水には、旋回による遠心力が矢印B方向に同様に働き、水は内部円錐部材36の内周面に沿って上方に移動し、上壁32aに達する。 After that, the water reaching the lower wall 32b of the conical member 32 flows into the inside of the internal conical member 36 while maintaining the swirling motion as described above, and the water flowing into the inside of the internal conical member 36 is swirled. Centrifugal force acts in the same direction in the direction of arrow B, and water moves upward along the inner peripheral surface of the inner conical member 36 and reaches the upper wall 32a.

この間、前述のように内部円錐部材36及び37の内周面には、図4(a)~(d)に示すような渦流生成促進加工が施されており、微細バブル発生装置31内の渦流の生成を促進し、効率良く渦流を生成させることができる。 During this period, as described above, the inner peripheral surfaces of the internal conical members 36 and 37 are subjected to vortex generation promoting processing as shown in FIGS. 4A to 4D, and the vortex flow in the fine bubble generator 31 is performed. It is possible to promote the generation of vortex and efficiently generate a vortex.

そして、上壁32aに達した水は、図7に示す矢印方向に流れ、内部円錐部材37(内層38c)の上部中心部が圧力の低い状態となり、気体供給部33の微細孔39を通して気体が微細バブル発生装置31(内部円錐部材37)の内部に吸引される。 Then, the water that has reached the upper wall 32a flows in the direction of the arrow shown in FIG. 7, the upper central portion of the inner conical member 37 (inner layer 38c) becomes in a low pressure state, and the gas passes through the micropores 39 of the gas supply portion 33. It is sucked into the inside of the fine bubble generator 31 (internal conical member 37).

そして、吸引された気体は内部円錐部材37の内層38c内で気体渦流となって、旋回しながら円錐形部材32の下壁2bに向かって流れ、水の旋回による遠心力も強く働き、旋回する水流に吸引された気体は気体渦流となり下壁32bに形成された開口40に流れ込む。 Then, the sucked gas becomes a gas vortex in the inner layer 38c of the inner conical member 37 and flows toward the lower wall 2b of the conical member 32 while swirling, and the centrifugal force due to the swirling of water also works strongly to swirl the water flow. The gas sucked into the gas becomes a gas vortex and flows into the opening 40 formed in the lower wall 32b.

そして、気体渦流は微細気泡含有液体排出部35において急激に不安定となり、気体渦流が強制的に切断されて微細な気泡となり、微細気泡含有液体排出部35から外部に排出する際、大気又は液体の外部環境との質量差等により、気泡が更に微細に切断され、マイクロバブル又はナノバブルの微細な気泡を大量に生成する。 Then, the gas vortex suddenly becomes unstable in the fine bubble-containing liquid discharge unit 35, the gas vortex is forcibly cut into fine bubbles, and when the gas vortex is discharged to the outside from the fine bubble-containing liquid discharge unit 35, the atmosphere or liquid. Bubbles are cut into finer particles due to the difference in mass from the external environment, and a large amount of fine bubbles of microbubbles or nanobubbles are generated.

この様にして生成されたマイクロバブル又はナノバブルの微細な気泡を含む微細気泡含有水は、前述と同様、微細気泡含有液体排出部35から放出され、必要な用途に使用される。 The fine bubble-containing water containing the fine bubbles of the microbubbles or nanobubbles thus generated is discharged from the fine bubble-containing liquid discharge unit 35 as described above, and is used for necessary purposes.

以上のように、本例の旋回液流方式の微細バブル発生装置31によっても、注入する水等の液体の圧力や流速が低くても安定して微細な気泡を生成することが可能であり、また、水等の液体の旋回によって気体を吸い込む構造であるため、気体をボンベ11から気体供給部33に送る際、気体を加圧する必要がなく、気体を導入するための複雑な機構等を省略することができる。 As described above, even with the swirling liquid flow type fine bubble generator 31 of this example, it is possible to stably generate fine bubbles even if the pressure or flow velocity of the liquid such as water to be injected is low. Further, since the structure sucks the gas by swirling the liquid such as water, it is not necessary to pressurize the gas when the gas is sent from the bomb 11 to the gas supply unit 33, and a complicated mechanism for introducing the gas is omitted. can do.

さらに、本例の微細バブル発生装置31の内部円錐部材36及び37等の内周面には、渦流生成促進加工が施されており、渦流の生成を促進することによって、水流速度を加速させることができ、微細気泡含有液体の生成を促進させることができる。 Further, the inner peripheral surfaces of the internal conical members 36 and 37 of the fine bubble generator 31 of this example are subjected to eddy current generation promoting processing, and the water flow velocity is accelerated by accelerating the vortex generation. It is possible to promote the production of a liquid containing fine bubbles.

尚、上記実施形態の説明では、微細バブル発生装置1内に配設する円柱部材は円柱部材6及び7の2円筒としたが、3円筒以上の円柱部材を設けて構成しても良く、又は1個の円柱部材のみを設ける構成としても良い。 In the description of the above embodiment, the cylindrical member arranged in the fine bubble generator 1 is two cylinders of the cylinder members 6 and 7, but a cylinder member of three or more cylinders may be provided or configured. A configuration may be provided in which only one cylindrical member is provided.

同様に、微細バブル発生装置31内に配設する内部円錐部材36及び37も2円錐部材で構成したが、3円錐部材以上設けて構成しても良く、又は1個の内部円錐部材のみを設ける構成としても良い。 Similarly, the internal conical members 36 and 37 arranged in the fine bubble generator 31 are also composed of two conical members, but may be configured by providing three or more conical members, or only one internal conical member is provided. It may be configured.

また、本実施形態の説明では微細バブルの発生装置について説明したが、外部が外気の場合には、微細気泡含有液体を放出する微細バブルを含む霧発生装置の発明としてもよい。 Further, although the device for generating fine bubbles has been described in the description of the present embodiment, the invention may be an invention of a mist generator containing fine bubbles that discharges a liquid containing fine bubbles when the outside is outside air.

さらに、本実施形態の説明において、円柱部材や円錐部材の内面に凹凸形状の渦流生成促進加工を施したが、凹凸形状に限定される訳ではなく、他の形状の渦流生成促進加工を施す構成としても良い。 Further, in the description of the present embodiment, the inner surface of the cylindrical member or the conical member is subjected to the eddy current generation promoting processing of the uneven shape, but the present invention is not limited to the uneven shape, and the eddy current generation promoting processing of another shape is performed. May be.

1・・・微細バブル発生装置
2・・・円錐形部材
2a・・上壁
2b・・下壁
3・・・気体供給部
4・・・液体供給部
5・・・微細気泡含有液体排出部
6・・・円柱部材
7・・・内部円錐形部材
8a・・外層
8b・・中層
8c・・内層
9・・・微細孔
10、10a、10b・・開口
11a、11b、11c・・ボンベ
12a、12b、12c、12d・・バルブ
13・・気体流路
14、16・・貯水槽
14a、15、16a、17~19・・バルブ
20・・ポンプ
21・・バルブ
22・・液体流路
24・・水流
25・・渦流生成促進加工
26・・凸状
27・・凹溝
31・・微細バブル発生装置
32・・円錐形部材
32a・・上壁
32b・・下壁
33・・気体供給部
34・・液体供給部
35・・微細気泡含有液体排出部
36・・円錐部材
37・・内部円錐部材
38a・・外層
38b・・中層
38c・・内層
39・・微細孔
40・・開口
P1、P2・・圧力インジケータ
F1、F2・・流量インジケータ
1 ... Fine bubble generator 2 ... Conical member 2a ... Upper wall 2b ... Lower wall 3 ... Gas supply unit 4 ... Liquid supply unit 5 ... Fine bubble-containing liquid discharge unit 6 ... Cylindrical member 7 ... Inner conical member 8a ... Outer layer 8b ... Middle layer 8c ... Inner layer 9 ... Micropores 10, 10a, 10b ... Openings 11a, 11b, 11c ... Bombs 12a, 12b , 12c, 12d ... Valve 13 ... Gas flow path 14, 16 ... Water storage tank 14a, 15, 16a, 17-19 ... Valve 20 ... Pump 21 ... Valve 22 ... Liquid flow path 24 ... Water flow 25 ... Vortex generation promotion processing 26 ... Convex 27 ... Concave groove 31 ... Fine bubble generator 32 ... Conical member 32a ... Upper wall 32b ... Lower wall 33 ... Gas supply unit 34 ... Liquid Supply unit 35 ... Fine bubble-containing liquid discharge unit 36 ... Conical member 37 ... Internal conical member 38a ... Outer layer 38b ... Middle layer 38c ... Inner layer 39 ... Micropores 40 ... Opening P1, P2 ... Pressure indicator F1, F2 ... Flow indicator

Claims (6)

外観が円錐形状の微細バブル発生装置であって、
円錐形状の外側部材と、該外側部材内に配設された第1の円柱部材と、該第1の円柱部材内に配設された第2の円柱部材とを備え、
前記外側部材の円周方向に対して所定の角度を有して取り付けられ、前記外側部材と第1の円柱部材間の空間内に供給する液体に渦流を生成する液体供給部と、
前記液体の渦流が前記第1、第2の円柱部材間を通って前記第2の円柱部材内に供給された液体の渦流に気体を供給する気体供給部と、
前記第2の円柱部材内において前記液体に前記気体が混じった気液体を微細気泡を含有する微細気泡含有液体として外部に排出する微細気泡含有液体排出部と、
を備えたことを特徴とする微細バブル発生装置。
It is a fine bubble generator with a conical appearance.
It comprises a conical outer member, a first cylindrical member disposed within the outer member, and a second cylindrical member disposed within the first cylindrical member.
A liquid supply unit that is attached at a predetermined angle with respect to the circumferential direction of the outer member and generates a vortex in the liquid supplied into the space between the outer member and the first cylindrical member.
A gas supply unit that supplies gas to the liquid vortex flow in which the liquid vortex flows between the first and second cylindrical members and is supplied into the second cylindrical member.
A fine bubble-containing liquid discharge portion that discharges an air-liquid in which the gas is mixed with the liquid in the second cylindrical member as a fine bubble-containing liquid containing fine bubbles.
A fine bubble generator characterized by being equipped with.
前記第1、第2の円柱部材の内周面には、前記渦流の生成を促進する渦流生成促進加工が施されていることを特徴とする請求項1に記載の微細バブル発生装置。 The fine bubble generator according to claim 1, wherein the inner peripheral surfaces of the first and second cylindrical members are subjected to a vortex generation promoting process for promoting the generation of the vortex. 前記第1、第2の円柱部材は複数形成されていることを特徴とする請求項1、又は2に記載の微細バブル発生装置。 The fine bubble generator according to claim 1 or 2, wherein a plurality of the first and second cylindrical members are formed. 外観が円錐形状の微細バブル発生装置であって、
円錐形状の外側部材と、該外側部材内に配設された第1の円錐部材と、該第1の円錐部材内に配設された第2の円錐部材とを備え、
前記外側部材の円周方向に対して所定の角度を有して取り付けられ、前記外側部材と第1の円錐部材間の空間内に供給する液体に渦流を生成する液体供給部と、
前記液体の渦流が前記第1、第2の円錐部材間を通って前記第2の円錐部材内に供給された液体の渦流に気体を供給する気体供給部と、
前記第2の円錐部材内において前記液体に前記気体が混じった気液体を微細気泡を含有する微細気泡含有液体として外部に排出する微細気泡含有液体排出部と、
を備えたことを特徴とする微細バブル発生装置。
It is a fine bubble generator with a conical appearance.
It comprises a conical outer member, a first conical member disposed within the outer member, and a second conical member disposed within the first conical member.
A liquid supply unit that is attached at a predetermined angle with respect to the circumferential direction of the outer member and generates a vortex in the liquid supplied into the space between the outer member and the first conical member.
A gas supply unit that supplies gas to the liquid vortex flow in which the liquid vortex flows between the first and second conical members and is supplied into the second conical member.
In the second conical member, a fine bubble-containing liquid discharge portion that discharges an air liquid in which the gas is mixed with the liquid as a fine bubble-containing liquid containing fine bubbles,
A fine bubble generator characterized by being equipped with.
前記第1、第2の円錐部材の内周面には、前記渦流の生成を促進する渦流生成促進加工が施されていることを特徴とする請求項4に記載の微細バブル発生装置。 The fine bubble generator according to claim 4, wherein the inner peripheral surface of the first and second conical members is subjected to a vortex generation promoting process for promoting the generation of the vortex. 前記第1、第2の円錐部材は複数形成されていることを特徴とする請求項4、又は5に記載の微細バブル発生装置。 The fine bubble generator according to claim 4, wherein a plurality of the first and second conical members are formed.
JP2020148754A 2020-09-04 2020-09-04 Microbubble generation device Pending JP2022043468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020148754A JP2022043468A (en) 2020-09-04 2020-09-04 Microbubble generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020148754A JP2022043468A (en) 2020-09-04 2020-09-04 Microbubble generation device

Publications (1)

Publication Number Publication Date
JP2022043468A true JP2022043468A (en) 2022-03-16

Family

ID=80668514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020148754A Pending JP2022043468A (en) 2020-09-04 2020-09-04 Microbubble generation device

Country Status (1)

Country Link
JP (1) JP2022043468A (en)

Similar Documents

Publication Publication Date Title
JP4652478B1 (en) Micro bubble generator
JP6169749B1 (en) Microbubble generator
US20090293920A1 (en) Nanofluid Generator and Cleaning Apparatus
US6357725B2 (en) Gas/liquid mixing device
TW201607620A (en) Loop flow bubble-generating nozzle
JPWO2008143319A1 (en) Microbubble generator and method
JP2006116365A (en) Revolving type fine air bubble generator and fine air bubble generating method
US5783118A (en) Method for generating microbubbles of gas in a body of liquid
JP6449531B2 (en) Microbubble generator
KR20150019299A (en) Module for generating micro bubbles
KR101922665B1 (en) Micro bubble generator
JP2007111616A (en) Fine air-bubble generating device
JP6809671B2 (en) Fine bubble generator
WO2017056323A1 (en) Device for dissolving oxygen in water and method for dissolving oxygen in water using same
JP2022043468A (en) Microbubble generation device
JP2002166151A (en) Minute foam supply method and minute foam supply apparatus
JPWO2019207651A1 (en) Fine bubble generating method and fine bubble generating apparatus
WO2018131714A1 (en) Fluid mixing device, and method for producing mixed fluid using this mixing device
JP6889957B1 (en) Fine bubble generator
JP2012091153A (en) Fine-air-bubble generator
JP2008274394A (en) Pickling apparatus and method
JP4264089B2 (en) Ultra miniaturization equipment
JP5802878B2 (en) Micro-nano bubble generator
JP6345546B2 (en) Power-saving aeration stirrer
TW201904654A (en) A microbubble generation module and an application device thereof