JP2022043107A - Sludge incineration device and sludge incineration method - Google Patents

Sludge incineration device and sludge incineration method Download PDF

Info

Publication number
JP2022043107A
JP2022043107A JP2021196310A JP2021196310A JP2022043107A JP 2022043107 A JP2022043107 A JP 2022043107A JP 2021196310 A JP2021196310 A JP 2021196310A JP 2021196310 A JP2021196310 A JP 2021196310A JP 2022043107 A JP2022043107 A JP 2022043107A
Authority
JP
Japan
Prior art keywords
incinerator
fluidized bed
sand
sludge
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021196310A
Other languages
Japanese (ja)
Inventor
啓二 戸村
Keiji Tomura
敦 平山
Atsushi Hirayama
純 宮田
Jun Miyata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Publication of JP2022043107A publication Critical patent/JP2022043107A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sludge incineration device and a sludge incineration method capable of enhancing heat delivery efficiency to a whole fluidized bed and contributing to stable combustion of objects to be incinerated while maintaining a high fluidized bed temperature.
SOLUTION: A sludge incineration device includes: a fluidized bed type incinerator 1; an incinerated object supply device 2 and an incinerated object supply part 16 which are sludge supply parts supplying sludge from an upper side of a fluidized bed of the fluidized bed type incinerator 1 into the fluidized bed type incinerator 1; and a fuel supply device 3 and a fuel supply part 17 which are supply parts supplying solidified fuel B obtained by integrally solidifying at least combustibles including waste plastic and sand from the upper side of the fluidized bed of the fluidized bed type incinerator 1 into the fluidized bed type incinerator 1.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

従来から、汚泥等の可燃物である被焼却物を効率よく燃焼させる焼却炉として流動層式焼却炉が多用されている。この流動層式焼却炉は、助燃材を用い、流動層に対し、炉底部からノズルを介して流動・燃焼用空気を吹き込んで、この流動層を構成する砂層を流動させ、砂層の流動と砂の優れた伝熱特性を利用して被焼却物を解砕・ガス化させるとともに、発生した可燃ガスを燃焼させる燃焼室であるフリーボードを流動層の上方の空間に形成する。とりわけ、被焼却物の含有水分量が多い場合、被焼却物はそれ単体では自燃しないため、天然ガスや重油などの助燃材を砂層内で燃焼させることにより砂層を十分に加熱すれば、被焼却物を燃焼させることができる。 Conventionally, a fluidized bed incinerator has been widely used as an incinerator that efficiently burns incinerators that are combustibles such as sludge. This fluidized bed incinerator uses a combustion assisting material and blows fluidized / combustion air from the bottom of the fluidized bed through a nozzle to flow the sand layer constituting this fluidized bed, and the fluidized bed and sand. The incinerator is crushed and gasified by utilizing its excellent heat transfer characteristics, and a free board, which is a combustion chamber for burning the generated combustible gas, is formed in the space above the fluidized bed. In particular, when the water content of the incinerator is high, the incinerator does not self-combust by itself, so if the sand layer is sufficiently heated by burning a combustion aid such as natural gas or heavy oil in the sand layer, it will be incinerated. You can burn things.

ところで、近年、廃プラスチックの処理が課題となっており、それを有効利用できる場が求められているのは、周知の事実である。そこで、特許文献1では、流動層式汚泥焼却炉で、廃プラスチックと汚泥とを混在した状態で焼却させることを提案している。この特許文献1によれば、汚泥の焼却に際して、廃プラスチックを助燃材として有効利用することができるとともに、従来、流動層式汚泥焼却炉の助燃材として使用されていた化石燃料の削減に寄与するため、被焼却物としての汚泥の焼却の際のコストの削減になるという長所もある。 By the way, it is a well-known fact that the treatment of waste plastic has become an issue in recent years, and a place where it can be effectively used is required. Therefore, Patent Document 1 proposes incinerating waste plastic and sludge in a mixed state in a fluidized bed type sludge incinerator. According to this Patent Document 1, waste plastic can be effectively used as an auxiliary fuel when incinerating sludge, and it contributes to the reduction of fossil fuels conventionally used as an auxiliary material in a fluidized bed type sludge incinerator. Therefore, it also has the advantage of reducing the cost of incinerating sludge as an incinerator.

特開平11-182834Japanese Patent Application Laid-Open No. 11-182834

しかしながら、特許文献1に開示された技術に使用される廃プラスチックは、それ自体の密度が低く、汚泥と単に混合しても、廃プラスチックが砂層内へ降下する前に、砂層表面(層上面)付近で速やかに燃焼してしまうため、フリーボード部の温度は上がるものの砂層全体への着熱が良好とはいえず、ひいては砂層温度の低下を招き汚泥の燃焼に支障が出るという課題があった。また、廃プラスチックと汚泥を流動層式焼却炉への投入前に混合すると、廃プラスチックが汚泥搬送設備内でコンベアスクリューなどにからまり、詰まりを生ずるという課題もあった。 However, the waste plastic used in the technique disclosed in Patent Document 1 has a low density of itself, and even if it is simply mixed with sludge, the surface of the sand layer (upper surface of the layer) before the waste plastic falls into the sand layer. Since it burns quickly in the vicinity, the temperature of the freeboard part rises, but the heat applied to the entire sand layer is not good, which in turn causes the temperature of the sand layer to drop, which causes problems in sludge combustion. .. Further, when the waste plastic and the sludge are mixed before being put into the fluidized bed incinerator, there is a problem that the waste plastic gets entangled with the conveyor screw or the like in the sludge transport facility and causes clogging.

本発明は、このような事情に鑑みてなされたもので、流動層全体への着熱効率を高めるとともに、流動層温度を高温に維持しながら被焼却物の安定燃焼に寄与することが可能な汚泥焼却装置及び汚泥焼却方法を提供することを課題とする。 The present invention has been made in view of such circumstances, and is a sludge capable of increasing the thermal efficiency of the entire fluidized bed and contributing to stable combustion of the incinerator while maintaining the fluidized bed temperature at a high temperature. An object of the present invention is to provide an incinerator and a sludge incineration method.

本発明に係る汚泥焼却装置は、流動層式の焼却炉と、前記焼却炉の流動層より上方から前記焼却炉内へ汚泥を供給する汚泥供給部と、少なくとも廃プラスチックを含む可燃物と砂とを一体に固化した固形化燃料を、前記焼却炉の流動層より上方から前記焼却炉内へ供給する供給部と、を有する。 The sludge incinerator according to the present invention includes a fluidized bed type incinerator, a sludge supply unit that supplies sludge into the incinerator from above the fluidized bed of the incinerator, and at least combustibles and sand containing waste plastic. It has a supply unit for supplying the solidified fuel integrally solidified into the incinerator from above the fluidized bed of the incinerator.

本発明に係る汚泥焼却方法は、流動層式の焼却炉を用いる汚泥焼却方法であって、前記焼却炉の流動層より上方から前記焼却炉内へ汚泥を供給し、少なくとも廃プラスチックを含む可燃物と砂とを一体に固化した固形化燃料を、前記焼却炉の流動層より上方から前記焼却炉内へ供給する。 The sludge incinerator method according to the present invention is a sludge incinerator using a fluidized bed type incinerator, in which sludge is supplied into the incinerator from above the fluidized bed of the incinerator, and at least a combustible substance containing waste plastic is contained. The solidified fuel in which and sand are integrally solidified is supplied into the incinerator from above the fluidized bed of the incinerator.

本発明によれば、流動層全体への着熱効率を高めるとともに、流動層温度を高温に維持しながら被焼却物の安定燃焼に寄与することが可能な汚泥焼却装置及び汚泥焼却方法を提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a sludge incinerator and a sludge incinerator method capable of increasing the thermal efficiency to the entire fluidized bed and contributing to stable combustion of the incinerator while maintaining the fluidized bed temperature at a high temperature.

本発明の固形化燃料を助燃材として用いて被焼却物を焼却処理する流動層式焼却炉及び関連設備を示す構成図である。It is a block diagram which shows the fluidized bed type incinerator which incinerates the incinerator using the solidified fuel of this invention as an auxiliary material, and the related equipment. 実施例1の実験結果を示すグラフである。It is a graph which shows the experimental result of Example 1. FIG. 実施例2の実験結果を示すグラフである。It is a graph which shows the experimental result of Example 2.

以下、添付図面に基づき本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の固形化燃料を助燃材として被焼却物を焼却処理する流動層式焼却炉及びその関連設備を示す概要構成図である。 FIG. 1 is a schematic configuration diagram showing a fluidized bed incinerator for incinerating an incinerator using the solidified fuel of the present invention as an auxiliary material and related equipment thereof.

図1において、符号1は被焼却物を焼却する流動層式焼却炉(以下、「焼却炉」)であり、焼却炉1には、焼却炉1に汚泥等の被焼却物Aを供給する被焼却物供給装置2、焼却炉1に助燃材としての固形化燃料Bを供給する燃料供給装置3、焼却炉1内で流動砂としての硅砂からなる流動層Cを形成する流動ガスとしての空気を供給するブロワ等の空気供給装置4、焼却炉1からの排ガスEを処理する排ガス処理装置5、空気供給装置4からの空気を排ガスEと熱交換して昇温させる熱交換器6が接続されている。なお、本実施形態では、流動砂として硅砂を使用することとしたが、他の砂を使用してもよい。 In FIG. 1, reference numeral 1 is a fluidized layer incinerator (hereinafter referred to as “incinerator”) for incinerating an incinerator, and the incinerator 1 is a subject for supplying an incinerator A such as sludge to the incinerator 1. Air as a fluid gas forming a fluid layer C made of silica sand as fluid sand in the fuel supply device 3 and the incinerator 1 for supplying the solidified fuel B as an auxiliary fuel to the incinerator 2 and the incinerator 1. An air supply device 4 such as a blower to be supplied, an exhaust gas treatment device 5 for treating the exhaust gas E from the incinerator 1, and a heat exchanger 6 for heat-exchanges the air from the air supply device 4 with the exhaust gas E to raise the temperature are connected. ing. In this embodiment, silica sand is used as the flowing sand, but other sand may be used.

焼却炉1は、縦長の炉本体11の底部に、空気透過材で形成される透気床12が設けられ、透気床12の下方を風箱13として形成している。風箱13の側壁には、空気供給装置4からの空気が熱交換器6で昇温された後にこの風箱13に送入されるための空気送入部14が設けられている。 In the incinerator 1, an air-permeable bed 12 formed of an air-permeable material is provided at the bottom of a vertically long furnace body 11, and the lower part of the air-permeable bed 12 is formed as a wind box 13. The side wall of the air box 13 is provided with an air feeding unit 14 for feeding the air from the air supply device 4 into the air box 13 after the temperature is raised by the heat exchanger 6.

焼却炉1は、透気床12の上方が燃焼空間15として形成され、燃焼空間15には、流動砂が投入されていて、風箱13に空気供給装置4から空気が供給されている状態で、燃焼空間15に被焼却物Aと固形化燃料Bとが投入されると、透気床12の直上となる燃焼空間15の下部には、流動砂の流れにより流動層Cが形成され、また、流動層Cの上方には、フリーボード部Dが形成される。 In the incinerator 1, the upper part of the air-permeable bed 12 is formed as a combustion space 15, and fluidized sand is charged into the combustion space 15, and air is supplied to the air box 13 from the air supply device 4. When the incinerator A and the solidified fuel B are put into the combustion space 15, a fluidized bed C is formed in the lower part of the combustion space 15 directly above the air permeable bed 12 by the flow of fluidized sand. A free board portion D is formed above the fluidized bed C.

焼却炉1の高さ方向中間部には、流動層Cの上層部よりも上方位置に被焼却物供給装置2から被焼却物Aを炉内に供給する被焼却物供給部16が設けられ、同様に流動層Cの上層部よりも上方位置に固形化燃料Bを炉内に供給する燃料供給部17が設けられている。さらに、焼却炉1の頂部には、フリーボード部Dからの排ガスEを熱交換器6へ導入する管路が接続された排ガス排気部18が設けられている。 In the middle portion in the height direction of the incinerator 1, an incinerator supply unit 16 for supplying the incinerator A from the incinerator supply device 2 into the furnace is provided at a position above the upper layer portion of the fluidized bed C. Similarly, a fuel supply unit 17 for supplying the solidified fuel B into the furnace is provided at a position above the upper layer of the fluidized bed C. Further, at the top of the incinerator 1, an exhaust gas exhaust unit 18 is provided to which a pipeline for introducing the exhaust gas E from the freeboard unit D into the heat exchanger 6 is connected.

被焼却物供給装置2は、多湿な廃棄物の被焼却物Aとして、例えば汚泥あるいは汚泥を含む他の廃棄可燃物を適宜混合して、被焼却物供給部16から炉内へ供給するようになっている。被焼却物供給装置2は、被焼却物Aを混合し貯留する被焼却物貯留部2Aと、被焼却物Aを搬出して被焼却物供給部16へ向け搬出するフィーダ部2Bとを有している。ここで汚泥とは、流動層式焼却炉で焼却される多湿の廃棄物を指し、例えば、下水処理場から排出される下水汚泥、工場排水等の処理により排出される汚泥である。 The incinerator supply device 2 appropriately mixes sludge or other waste combustibles including sludge as the incinerator A of humid waste, and supplies the incinerator from the incinerator supply unit 16 into the furnace. It has become. The incinerator supply device 2 has an incinerator storage unit 2A that mixes and stores the incinerator A, and a feeder unit 2B that carries out the incinerator A and carries it out to the incinerator supply unit 16. ing. Here, sludge refers to humid waste that is incinerated in a fluidized bed incinerator, and is, for example, sludge discharged from sewage sludge discharged from a sewage treatment plant, sludge discharged by treatment of factory wastewater, or the like.

燃料供給装置3は、砂と廃プラスチック含有可燃物の供給を受けこれを加圧して固形化燃料Bを成形する燃料成形装置31と、燃料成形装置31から固形化燃料Bを受けて貯留し、この固形化燃料Bを所定量だけ搬出して焼却炉1の燃料供給部17へ向け搬出する燃料貯留搬出装置32とを有している。燃料貯留搬出装置32は、固形化燃料Bを貯留する槽状の燃料貯留部32Aと固形化燃料Bを所定量だけ切り出して搬出するスクリューフィーダ等のフィーダ部32Bとを有しており、フィーダ部32Bが燃料供給部17に管路を経て接続されている。 The fuel supply device 3 receives and stores the solidified fuel B from the fuel forming device 31 and the fuel forming device 31 that receives the supply of sand and combustibles containing waste plastic and pressurizes them to form the solidified fuel B. It has a fuel storage / carry-out device 32 that carries out a predetermined amount of the solidified fuel B and carries it out to the fuel supply unit 17 of the incinerator 1. The fuel storage / unloading device 32 has a tank-shaped fuel storage section 32A for storing the solidified fuel B and a feeder section 32B such as a screw feeder that cuts out a predetermined amount of the solidified fuel B and carries it out. 32B is connected to the fuel supply unit 17 via a pipeline.

燃料成形装置31は、固形化燃料Bの原料として、砂の供給を受けるとともに、廃プラスチック含有可燃物、すなわち廃プラスチックと他の可燃物(例えば、古紙、廃繊維、廃畳等)、あるいは廃プラスチックのみを受けて、廃プラスチック含有可燃物を適宜破砕しながら砂と混合し、この混合物を加圧して適度な大きさの粒塊状に圧縮成形して固形化燃料Bとするように構成されている。ここで、固形化燃料Bに使用される砂は、一般砂の他に、硅砂、さらに、鉄分含有粒体等であってもよい。本実施形態では、固形化燃料Bに使用される砂は硅砂、すなわち流動砂と同質の砂であることとする。なお、燃料成形装置31は焼却炉1の機側に設置され、燃料成形装置31に接続された燃料貯留搬出装置32から固形化燃料Bが焼却炉1へ供給されるようになっていても良いが、燃料成形装置31が焼却炉1とは別の敷地に設置され、焼却炉1が設置された敷地まで製造された固形化燃料Bを運搬し供給するようにしても良い。 The fuel forming apparatus 31 is supplied with sand as a raw material for the solidified fuel B, and is a waste plastic-containing combustible substance, that is, waste plastic and other combustible substances (for example, waste paper, waste fiber, waste tatami mat, etc.) or waste. It is configured to receive only the plastic, mix the combustibles containing waste plastic with sand while appropriately crushing them, pressurize this mixture, and compress-mold it into a lump of appropriate size to obtain solidified fuel B. There is. Here, the sand used for the solidified fuel B may be silica sand, iron-containing granules, or the like, in addition to general sand. In the present embodiment, the sand used for the solidified fuel B is silica sand, that is, sand of the same quality as liquid sand. The fuel forming apparatus 31 may be installed on the machine side of the incinerator 1 so that the solidified fuel B is supplied to the incinerator 1 from the fuel storage / carrying out apparatus 32 connected to the fuel forming apparatus 31. However, the fuel forming apparatus 31 may be installed on a site different from the incinerator 1, and the solidified fuel B produced may be transported and supplied to the site where the incinerator 1 is installed.

次に、図1に示された本実施形態の装置を用いた固形化燃料の製造要領、そしてこの固形化燃料を助燃材として用いた被焼却物の焼却要領を説明する。 Next, a procedure for producing a solidified fuel using the apparatus of the present embodiment shown in FIG. 1 and a procedure for incinerating an incinerator using this solidified fuel as a combustion improver will be described.

先ず、焼却炉1には、被焼却物Aとしての汚泥あるいは汚泥と他の廃棄物が被焼却物供給装置2で混合された状態で被焼却物供給部16から供給される。汚泥等の被焼却物Aは可燃物を含有しているので、外部から十分加熱することで燃焼する。 First, sludge or sludge as incinerator A and other waste are supplied to the incinerator 1 from the incinerator supply unit 16 in a state of being mixed by the incinerator supply device 2. Since the incinerator A such as sludge contains combustibles, it burns when sufficiently heated from the outside.

一方、燃料供給装置3の燃料成形装置31には、砂及び廃プラスチック含有可燃物が投入される。廃プラスチック含有可燃物は、廃プラスチックのみの場合もある。廃プラスチック含有可燃物は、燃料成形装置31内で適宜破砕されて砂と混合して混合物が形成され、混合物が加圧を受けて適度な大きさの粒塊状に圧縮成形されて固形化燃料Bを形成するようになる。この固形化燃料Bは、砂と一体に固化されているので比重が大きく、炉内の流動層C内を降下しやすくなっている。かかる固形化燃料Bは、燃料供給装置3の燃料貯留搬出装置32における燃料貯留部32Aに貯留されてから、適量がフィーダ部32Bで切り出されて搬出され、燃料供給部17から助燃材として炉内へ供給される。そして、焼却炉1内では、風箱13へ送入された空気が透気床12を透気して上昇し、透気床12上にある被焼却物Aと固形化燃料Bとが、流動砂による流動層C内で流動する。 On the other hand, combustibles containing sand and waste plastic are charged into the fuel molding device 31 of the fuel supply device 3. The combustibles containing waste plastic may be only waste plastic. The waste plastic-containing combustible material is appropriately crushed in the fuel molding apparatus 31 and mixed with sand to form a mixture, and the mixture is pressurized and compression-molded into granules of an appropriate size to solidify the fuel B. Will form. Since this solidified fuel B is solidified integrally with sand, it has a large specific gravity and easily descends into the fluidized bed C in the furnace. The solidified fuel B is stored in the fuel storage section 32A of the fuel storage / delivery device 32 of the fuel supply device 3, and then an appropriate amount is cut out by the feeder section 32B and carried out, and the solidified fuel B is taken out from the fuel supply section 17 as an auxiliary fuel in the furnace. Is supplied to. Then, in the incinerator 1, the air sent into the air box 13 permeates the air-permeable bed 12 and rises, and the incinerated material A and the solidified fuel B on the air-permeable bed 12 flow. It flows in the fluidized bed C made of sand.

被焼却物Aは、可燃物を含むので、焼却炉1の炉内で一旦着火すると、継続して燃焼することが可能であるが、被焼却物Aの含有水分量が多い場合には燃焼性が低い。そのため、被焼却物Aを燃焼させるために、助燃材としての固形化燃料Bが用いられ燃焼を促進させる。本実施形態では、固形化燃料Bは、砂と廃プラスチック含有可燃物とが加圧されて粒塊状をなしており、比重が大きいため、流動層Cの表面で燃え尽きることなく、速やかに降下し流動層Cの内部にまで達する。したがって、この固形化燃料Bは流動層C全体で燃焼し、流動層C全体の流動砂を加熱し流動砂への着熱効率を高める。その結果、被焼却物Aは流動砂により加熱され、流動層Cの内部で燃焼するとともに、可燃ガスと未燃物としての灰分を生じ、可燃ガスはフリーボード部Dで燃焼して高温の排ガスEを生じ排ガス排気部18から排気され、灰分は炉底部の排出口(図示せず)から炉外へ排出され、適宜処分される。また、流動層Cで固形化燃料Bの廃プラスチック含有可燃物が燃焼すると、固形化燃料Bを構成していた砂が残存する。本実施形態では、廃プラスチック含有可燃物と混合されて固形化燃料Bを構成している砂は、既述したように、硅砂である。つまり、廃プラスチック含有可燃物の燃焼後に残存する砂は硅砂であり、これは流動層Cを形成する流動砂である硅砂と同質であり、そのまま流動層C内に流動砂として留まっても、流動層の機能を何ら損なうことはない。 Since the incinerator A contains combustibles, once ignited in the incinerator 1, it can be continuously burned, but if the incinerator A contains a large amount of water, it is combustible. Is low. Therefore, in order to burn the incinerator A, the solidified fuel B as a combustion auxiliary material is used to promote the combustion. In the present embodiment, the solidified fuel B is formed into a grain mass by pressurizing sand and a combustible substance containing waste plastic, and has a large specific gravity, so that the solidified fuel B quickly drops without burning out on the surface of the fluidized bed C. It reaches the inside of the fluidized bed C. Therefore, this solidified fuel B burns in the entire fluidized bed C and heats the fluidized sand in the entire fluidized bed C to increase the thermal efficiency to the fluidized sand. As a result, the incinerator A is heated by the fluidized sand and burns inside the fluidized layer C, and at the same time, combustible gas and ash as unburnable matter are generated, and the combustible gas is burned by the free board portion D and is a high-temperature exhaust gas. E is generated and exhausted from the exhaust gas exhaust unit 18, and the ash content is discharged to the outside of the furnace from the discharge port (not shown) at the bottom of the furnace and is appropriately disposed of. Further, when the waste plastic-containing combustible material of the solidified fuel B is burned in the fluidized bed C, the sand constituting the solidified fuel B remains. In the present embodiment, the sand that is mixed with the waste plastic-containing combustible material to form the solidified fuel B is silica sand as described above. That is, the sand remaining after the combustion of the combustible waste containing waste plastic is silica sand, which is the same as the silica sand which is the fluidized sand forming the fluidized bed C, and even if it remains as the fluidized sand in the fluidized bed C, it flows. It does not impair the function of the layer.

高温の排ガスEは熱交換器6へもたらされ、空気供給装置4からの空気との熱交換により空気を昇温させ、排ガスE自体は降温し排ガス処理装置5で無害化された後、大気へ放出される。 The high-temperature exhaust gas E is brought to the heat exchanger 6, the air is raised by heat exchange with the air from the air supply device 4, the exhaust gas E itself is lowered in temperature, detoxified by the exhaust gas treatment device 5, and then the atmosphere. Is released to.

熱交換器6で排ガスEとの熱交換により昇温した空気は、空気送入部14から風箱13に送入された後、透気床12を透気上昇して、透気床12より上方の燃焼空間15で、流動砂による流動層Cの形成に寄与するとともに、フリーボード部Dでの可燃ガスの燃焼に寄与する。 The air whose temperature has risen due to heat exchange with the exhaust gas E in the heat exchanger 6 is sent from the air feeding unit 14 to the air box 13, and then the air permeates through the air permeation bed 12 and rises from the air permeation bed 12. In the upper combustion space 15, it contributes to the formation of the fluidized bed C by the fluidized sand and also contributes to the combustion of the combustible gas in the free board portion D.

固形化燃料Bに使用される砂は、本実施形態では流動砂と同質の砂である硅砂であることとしたが、流動砂と同質であることは必須ではない。例えば、流動砂よりも比重の大きい砂を固形化燃料Bに使用した場合には、この砂は、流動層C内で固形化燃料Bが燃焼した後、流動砂として炉内に留まることなく、灰分とともに炉底部の排出口から炉外へ排出されることとなる。 In the present embodiment, the sand used for the solidified fuel B is silica sand, which is the same quality as the fluidized sand, but it is not essential that the sand is the same as the fluidized sand. For example, when sand having a specific gravity higher than that of the fluidized sand is used for the solidified fuel B, the sand does not stay in the furnace as the fluidized sand after the solidified fuel B burns in the fluidized layer C. Together with the ash, it will be discharged to the outside of the furnace from the discharge port at the bottom of the furnace.

また、本発明は図1に示す流動層式焼却炉への適用に限定されるものではなく、焼却炉出口にサイクロンとサイクロンで捕捉された流動砂の炉への循環路を兼ね備えた循環流動層式焼却炉への適用も可能である。 Further, the present invention is not limited to the application to the fluidized bed incinerator shown in FIG. 1, and the circulating fluidized bed having a circulation path to the furnace at the outlet of the incinerator and the fluidized sand captured by the cyclone. It can also be applied to a type incinerator.

以下、固形化燃料に含まれる砂が硅砂である場合の実施例を「実施例1」として、また、固形化燃料に含まれる砂が鉄分含有粒体としての製鉄ダストである場合の実施例を「実施例2」として説明する。 Hereinafter, an embodiment in the case where the sand contained in the solidified fuel is silica sand will be referred to as “Example 1”, and an embodiment in the case where the sand contained in the solidified fuel is iron-making dust as iron-containing granules. This will be described as “Example 2”.

<実施例1>
次の設定条件にて汚泥と固形化燃料を流動層式焼却炉で混焼する実験を行った。
(1)運転条件
・流動層寸法:直径500mm(流動層式焼却炉の炉本体内径)
・流動砂:硅砂5.5号
・ガス空塔速度:0.3m/s(炉本体底部への注入空気速度)
・被焼却物:汚泥と固形化燃料(汚泥は、脱水した下水汚泥である)
・汚泥の熱量(低位発熱量):5MJ/kg
・固形化燃料の熱量(低位発熱量):32MJ/kg
・固形化燃料の組成:プラスチック及び硅砂(プラスチックは、ポリエチレン、ポリプロピレン、PET等、多種のプラスチックの混合物であり、硅砂は流動砂と同じものであり、硅砂の混合比率は表1に記載されている)
・固形化燃料の形状:円柱状成形物
(外径は、20mmもしくは30mmであり、長さは30~60mmである)
<Example 1>
An experiment was conducted in which sludge and solidified fuel were co-firing in a fluidized bed incinerator under the following setting conditions.
(1) Operating conditions-Fluidized bed dimensions: diameter 500 mm (inner diameter of the main body of the fluidized bed incinerator)
・ Flowing sand: Silica No. 5.5 ・ Gas superficial velocity: 0.3m / s (air injection velocity to the bottom of the furnace body)
-Incinerator: sludge and solidified fuel (sludge is dehydrated sewage sludge)
・ Sludge calorific value (low calorific value): 5MJ / kg
-The calorific value of the solidified fuel (low calorific value): 32 MJ / kg
-Composition of solidified fuel: plastic and silica sand (plastic is a mixture of various plastics such as polyethylene, polypropylene, PET, etc., silica sand is the same as fluid sand, and the mixing ratio of silica sand is shown in Table 1. Yes)
-Shape of solidified fuel: Cylindrical molded product (outer diameter is 20 mm or 30 mm, length is 30 to 60 mm)

(2)運転方法および評価方法
・炉本体の炉頂より汚泥と固形化燃料を流動層に向けて投入した。
・各種外径、長さの固形化燃料に対する各条件とも、時間当たりの汚泥投入量を等しくした。
・固形化燃料は、時間当たりの供給熱量が等しくなるように供給速度を調整した。すなわち、硅砂は熱量をもたないため、プラスチック部分の供給量を一定とした。
・炉本体底部から流動層下部へ供給する空気量も一定とし、空気比1.35で供給した。
・各条件についての設定条件では、燃焼熱により流動層の砂層の温度が経時的に上昇していく。そこで、砂層の温度を一定値(750℃)に制御するために、便宜的に砂層内に連続的に水を供給した。その水の供給量を「冷却水供給量」とした。
・供給する固形化燃料の砂層への着熱効率が高いほど、冷却水供給量は増加する。そのため、冷却水供給量を着熱効率の指標とすることとした。すなわち、固形化燃料の砂混合比率0%の条件での冷却水供給量を1とし、これに対する相対値(着熱効率相対値)で各条件の冷却水供給量を評価した。
(2) Operation method and evaluation method-Sludge and solidified fuel were poured from the top of the furnace body toward the fluidized bed.
-The amount of sludge input per hour was made the same for each condition for solidified fuel of various outer diameters and lengths.
-For solidified fuel, the supply rate was adjusted so that the amount of heat supplied per hour was equal. That is, since silica sand does not have a calorific value, the supply amount of the plastic part was kept constant.
-The amount of air supplied from the bottom of the furnace body to the bottom of the fluidized bed was also constant, and the air ratio was 1.35.
-Under the set conditions for each condition, the temperature of the sand layer of the fluidized bed rises over time due to the heat of combustion. Therefore, in order to control the temperature of the sand layer to a constant value (750 ° C.), water was continuously supplied into the sand layer for convenience. The amount of water supplied was defined as the "cooling water supply amount".
-The higher the thermal efficiency of the solidified fuel to be supplied to the sand layer, the greater the amount of cooling water supplied. Therefore, we decided to use the amount of cooling water supply as an index of thermal efficiency. That is, the amount of cooling water supplied under the condition that the sand mixing ratio of the solidified fuel was 0% was set to 1, and the amount of cooling water supplied under each condition was evaluated by a relative value (relative value of thermal efficiency).

(3)実験結果

Figure 2022043107000002

砂混合比率(重量%)=(固形化燃料中の砂重量)/(固形化燃料中の砂重量+固形化燃料中のプラスチック重量) (3) Experimental results
Figure 2022043107000002

Sand mixing ratio (% by weight) = (weight of sand in solidified fuel) / (weight of sand in solidified fuel + weight of plastic in solidified fuel)

この表1の結果は、図2のごとくである。表1、図2からは、次のことがわかる。
・実験結果として、砂混合比率が0の場合に比べ、砂混合比率が5重量%~70重量%の範囲で着熱効率が上昇した。
・特に、砂混合比率が0の場合に比べ、砂混合比率が5重量%~60重量%の範囲では、着熱効率の上昇が顕著であった。
The results in Table 1 are as shown in FIG. From Table 1 and FIG. 2, the following can be seen.
-As a result of the experiment, the thermal efficiency increased in the range of 5% by weight to 70% by weight of the sand mixing ratio as compared with the case where the sand mixing ratio was 0.
-In particular, the increase in thermal efficiency was remarkable in the range of 5% by weight to 60% by weight of the sand mixing ratio as compared with the case where the sand mixing ratio was 0.

着熱効率が向上することは、実際には炉に供給しなければならない固形化燃料の供給量を少なくすることに繋がり、コスト削減や二酸化炭素排出量の抑制等に寄与する効果がある。 Improving the thermal efficiency leads to a reduction in the amount of solidified fuel that must actually be supplied to the furnace, and has the effect of contributing to cost reduction and reduction of carbon dioxide emissions.

<実施例2>
次の設定条件にて汚泥と固形化燃料を流動層式焼却炉で混焼する実験を行った。
(1)運転条件
・流動層寸法:直径500mm(流動層式焼却炉の炉本体内径)
・流動砂:硅砂5.5号
・ガス空塔速度:0.3m/s(炉本体底部への注入空気速度)
・被焼却物:汚泥と固形化燃料(汚泥は、脱水した下水汚泥である)
・汚泥の熱量(低位発熱量):5MJ/kg
・固形化燃料の熱量(低位発熱量):32MJ/kg
・固形化燃料の組成:プラスチック及び製鉄ダスト(プラスチックは、ポリエチレン、ポリプロピレン、PET等、多種のプラスチックの混合物であり、製鉄ダストは鉄が主成分で粒径は0.2~0.5mmであり、製鉄ダストの混合比率は表2に記載されている)
・固形化燃料の形状:円柱状成形物
(外径は、30mmであり、長さは30~60mmである)
<Example 2>
An experiment was conducted in which sludge and solidified fuel were co-firing in a fluidized bed incinerator under the following setting conditions.
(1) Operating conditions-Fluidized bed dimensions: diameter 500 mm (inner diameter of the main body of the fluidized bed incinerator)
・ Flowing sand: Silica No. 5.5 ・ Gas superficial velocity: 0.3m / s (air injection velocity to the bottom of the furnace body)
-Incinerator: sludge and solidified fuel (sludge is dehydrated sewage sludge)
・ Sludge calorific value (low calorific value): 5MJ / kg
-The calorific value of the solidified fuel (low calorific value): 32 MJ / kg
-Composition of solidified fuel: plastic and iron-making dust (plastic is a mixture of various plastics such as polyethylene, polypropylene, PET, etc., and iron-making dust is mainly composed of iron and has a particle size of 0.2 to 0.5 mm. , The mixing ratio of ironmaking dust is shown in Table 2)
-Shape of solidified fuel: Cylindrical molded product (outer diameter is 30 mm, length is 30 to 60 mm)

(2)運転方法および評価方法
実施例1と同様とした。
(2) Operation method and evaluation method The same as in Example 1 was applied.

(3)実験結果

Figure 2022043107000003

製鉄ダスト混合比率(重量%)=(固形化燃料中の製鉄ダスト重量)/(固形化燃料中の製鉄ダスト重量+固形化燃料中のプラスチック重量) (3) Experimental results
Figure 2022043107000003

Iron-making dust mixing ratio (% by weight) = (Weight of iron-making dust in solidified fuel) / (Weight of iron-making dust in solidified fuel + Weight of plastic in solidified fuel)

この表2の結果は、図3のごとくである。表2、図3からは、次のことがわかる。
・実験結果として、製鉄ダスト混合比率が0の場合に比べ、製鉄ダスト混合比率が5重量%~70重量%の範囲で着熱効率が上昇した。
・特に、製鉄ダスト混合比率が0の場合に比べ、製鉄ダスト混合比率が5重量%~60重量%の範囲では、着熱効率の上昇が顕著であった。
The results in Table 2 are as shown in FIG. From Table 2 and FIG. 3, the following can be seen.
-As a result of the experiment, the thermal efficiency increased in the range of 5% by weight to 70% by weight of the iron-making dust mixing ratio as compared with the case where the iron-making dust mixing ratio was 0.
-In particular, the increase in thermal efficiency was remarkable in the range of 5% by weight to 60% by weight of the iron-making dust mixing ratio as compared with the case where the iron-making dust mixing ratio was 0.

着熱効率が向上することは、実際には炉に供給しなければならない固形化燃料の供給量を少なくすることに繋がり、コスト削減や二酸化炭素排出量の抑制等に寄与する効果がある。 Improving the thermal efficiency leads to a reduction in the amount of solidified fuel that must actually be supplied to the furnace, and has the effect of contributing to cost reduction and reduction of carbon dioxide emissions.

1 流動層式焼却炉
A 被焼却物
B 固形化燃料
1 Fluidized bed incinerator A Incinerator B Solidified fuel

Claims (2)

流動層式の焼却炉と、
前記焼却炉の流動層より上方から前記焼却炉内へ汚泥を供給する汚泥供給部と、
少なくとも廃プラスチックを含む可燃物と砂とを一体に固化した固形化燃料を、前記焼却炉の流動層より上方から前記焼却炉内へ供給する供給部と、
を有する汚泥焼却装置。
A fluidized bed incinerator and
A sludge supply unit that supplies sludge into the incinerator from above the fluidized bed of the incinerator, and
A supply unit that supplies solidified fuel, which is a solidified product of at least combustibles containing waste plastic and sand, into the incinerator from above the fluidized bed of the incinerator.
Sludge incinerator with.
流動層式の焼却炉を用いる汚泥焼却方法であって、
前記焼却炉の流動層より上方から前記焼却炉内へ汚泥を供給し、
少なくとも廃プラスチックを含む可燃物と砂とを一体に固化した固形化燃料を、前記焼却炉の流動層より上方から前記焼却炉内へ供給する、
汚泥焼却方法。
It is a sludge incinerator using a fluidized bed incinerator.
Sludge is supplied into the incinerator from above the fluidized bed of the incinerator.
A solidified fuel obtained by integrally solidifying at least combustibles containing waste plastic and sand is supplied into the incinerator from above the fluidized bed of the incinerator.
Sludge incinerator method.
JP2021196310A 2019-09-11 2021-12-02 Sludge incineration device and sludge incineration method Pending JP2022043107A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019165397 2019-09-11
JP2019165397 2019-09-11
JP2020151985A JP2021046543A (en) 2019-09-11 2020-09-10 Solidified fuel and method of incinerating incineration object

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020151985A Division JP2021046543A (en) 2019-09-11 2020-09-10 Solidified fuel and method of incinerating incineration object

Publications (1)

Publication Number Publication Date
JP2022043107A true JP2022043107A (en) 2022-03-15

Family

ID=74877871

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020151985A Pending JP2021046543A (en) 2019-09-11 2020-09-10 Solidified fuel and method of incinerating incineration object
JP2021196310A Pending JP2022043107A (en) 2019-09-11 2021-12-02 Sludge incineration device and sludge incineration method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020151985A Pending JP2021046543A (en) 2019-09-11 2020-09-10 Solidified fuel and method of incinerating incineration object

Country Status (1)

Country Link
JP (2) JP2021046543A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104021A (en) * 1980-12-18 1982-06-28 Mitsubishi Heavy Ind Ltd Method for disposal of waste plastic
JPS59183209A (en) * 1983-03-31 1984-10-18 Kawasaki Heavy Ind Ltd Fluidized-bed combustion method for refuse containing large amount of waste plastic
US5251684A (en) * 1991-12-06 1993-10-12 Gmd Engineered Systems, Inc. Method for controlling the oxidation and calcination of waste foundry sands
JPH09269113A (en) * 1996-03-29 1997-10-14 Nikko Kinzoku Kk Method for treating industrial waste
JPH11182834A (en) * 1997-12-24 1999-07-06 Chugai Ro Co Ltd Incineration method of fluidized bed type sludge-incineration furnace
JP2001082711A (en) * 1999-09-07 2001-03-30 Tsukishima Kikai Co Ltd Treatment of waste

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3222117B2 (en) * 1999-06-28 2001-10-22 株式会社 サカタ Solidified waste fuel and method for producing the same
JP3108720B1 (en) * 1999-06-30 2000-11-13 環境資源株式会社 Thermal recycling system
JP2003261887A (en) * 2002-03-11 2003-09-19 Taiheiyo Cement Corp Carbonization gasification method for plastic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57104021A (en) * 1980-12-18 1982-06-28 Mitsubishi Heavy Ind Ltd Method for disposal of waste plastic
JPS59183209A (en) * 1983-03-31 1984-10-18 Kawasaki Heavy Ind Ltd Fluidized-bed combustion method for refuse containing large amount of waste plastic
US5251684A (en) * 1991-12-06 1993-10-12 Gmd Engineered Systems, Inc. Method for controlling the oxidation and calcination of waste foundry sands
JPH09269113A (en) * 1996-03-29 1997-10-14 Nikko Kinzoku Kk Method for treating industrial waste
JPH11182834A (en) * 1997-12-24 1999-07-06 Chugai Ro Co Ltd Incineration method of fluidized bed type sludge-incineration furnace
JP2001082711A (en) * 1999-09-07 2001-03-30 Tsukishima Kikai Co Ltd Treatment of waste

Also Published As

Publication number Publication date
JP2021046543A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US3818846A (en) Method and apparatus for liquid disposal in a fluid bed reactor
CN101395427B (en) Method of handling substance from which combustible gas volatilizes, process for producing solid fuel, method of storing solid fuel, method of using solid fuel, and apparatus using solid fuel
RU2508503C2 (en) Operating method of bioethanol production unit
JP2022043107A (en) Sludge incineration device and sludge incineration method
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
JP2021046544A (en) Solidified fuel and method of incinerating incineration object
JP3774803B2 (en) Sludge incineration method
JP2005270874A (en) Treatment method of polluted soil and apparatus thereof
JP4179948B2 (en) Millpyrite effective utilization method and apparatus
JP2005221195A (en) Method for treating organic waste and device therefor
JP2004060927A (en) Sludge incinerating method and incinerating equipment using fluidized incinerator
JP3973310B2 (en) Detoxification method for incineration ash
JP2022098619A (en) Solidified fuel, method of producing solidified fuel, and method of incinerating object to be incinerated
JPH11337040A (en) Sludge incineration method
JP4300893B2 (en) Carbide molding method
JP2022099303A (en) Solidified fuel, incineration method of matter to be incinerated, sludge incineration device, and sludge incineration method
JP3790418B2 (en) Operating method of external circulating fluidized bed furnace for waste incinerator with high water content and high volatility such as sewage sludge
JP2001349520A (en) Incinerator for general wastes and operating method therefor
JP2799550B2 (en) Melting furnace
JP4194983B2 (en) Waste disposal method
JP7201491B2 (en) Dehydrated sludge incineration method
JP2005239521A (en) Method and apparatus for burning cellulose-based material
JP2022150356A (en) Solidified fuel and incineration method of matter to be incinerated
JPH0160730B2 (en)
JP2005121342A (en) Operation method of circulating fluidized bed furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307