JP7201491B2 - Dehydrated sludge incineration method - Google Patents

Dehydrated sludge incineration method Download PDF

Info

Publication number
JP7201491B2
JP7201491B2 JP2019050637A JP2019050637A JP7201491B2 JP 7201491 B2 JP7201491 B2 JP 7201491B2 JP 2019050637 A JP2019050637 A JP 2019050637A JP 2019050637 A JP2019050637 A JP 2019050637A JP 7201491 B2 JP7201491 B2 JP 7201491B2
Authority
JP
Japan
Prior art keywords
sludge
combustion
dewatered sludge
granular aggregate
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019050637A
Other languages
Japanese (ja)
Other versions
JP2020151636A (en
Inventor
知志 竹下
正人 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2019050637A priority Critical patent/JP7201491B2/en
Publication of JP2020151636A publication Critical patent/JP2020151636A/en
Application granted granted Critical
Publication of JP7201491B2 publication Critical patent/JP7201491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、下水処理場などから発生する下水汚泥を脱水した脱水汚泥の焼却方法に関するものである。 The present invention relates to a method for incinerating dewatered sludge obtained by dewatering sewage sludge generated from a sewage treatment plant or the like.

廃棄物の焼却炉は、固定床焼却炉と流動床焼却炉に大別することができる。固定床焼却炉は特許文献1に示されるように火格子の上に焼却物を載せて焼却する構造の炉であり、流動床焼却炉は特許文献2に示されるように、焼却物を流動媒体とともに流動させながら焼却する構造の炉である。 Waste incinerators can be broadly classified into fixed bed incinerators and fluidized bed incinerators. As shown in Patent Document 1, the fixed bed incinerator is a furnace having a structure in which the incinerated material is placed on a fire grate and incinerated, and the fluidized bed incinerator is shown in Patent Document 2. It is a furnace with a structure that incinerates while flowing together.

固定床焼却炉は、都市ゴミのような不燃物が多く、粘着性の小さい廃棄物の焼却に適している。しかし下水脱水汚泥は粘着性および通気圧損が高いため、脱水汚泥の内部に燃焼用空気が進入し難い。特に高分子凝集剤で凝集させた脱水汚泥はこの傾向が顕著である。このため脱水汚泥を固定床焼却炉に投入しても均一に燃焼させることができず、不完全燃焼する部分と局部的に燃焼する部分とが生じ易い。そして局所高温場においてクリンカーが生成されるおそれがあるため、固定床焼却炉で焼却することは容易ではない。 Fixed-bed incinerators are suitable for incinerating waste that has a large amount of non-combustible materials and low adhesiveness, such as municipal waste. However, dehydrated sewage sludge is highly adhesive and has a high ventilation pressure loss, making it difficult for combustion air to enter inside the dewatered sludge. This tendency is particularly noticeable in dehydrated sludge flocculated with a polymer flocculant. For this reason, even if the dewatered sludge is put into a fixed-bed incinerator, it cannot be uniformly combusted, and incomplete combustion and local combustion tend to occur. And it is not easy to incinerate in a fixed bed incinerator because clinker may be generated in the local high temperature field.

そこで脱水汚泥の焼却には流動床炉が広く用いられているが、流動床炉は炉内に流動床を形成するために大量の空気を供給しなければならず、多額の動力費が必要となってランニングコストが高くなるという問題があった。また、流動床炉では焼却灰が排ガスとともに排ガス処理系に移行するため、サイクロンやバグフィルタなどを用いた大規模な排ガス処理設備が必要となるという問題があった。 Fluidized bed furnaces are widely used to incinerate dewatered sludge, but fluidized bed furnaces require a large amount of air to form a fluidized bed inside the furnace, requiring a large amount of power costs. As a result, there is a problem that the running cost increases. In addition, in the fluidized bed furnace, incineration ash is transferred to the exhaust gas treatment system together with the exhaust gas, so there is a problem that a large-scale exhaust gas treatment facility using a cyclone or bag filter is required.

特開2002-181311号公報Japanese Patent Application Laid-Open No. 2002-181311 特開平8-261427号公報JP-A-8-261427

従って本発明の目的は上記した従来の問題点を解決し、粘着性の高い脱水汚泥を、流動させることなく均一に燃焼させることができる新規な脱水汚泥の焼却方法を提供することである。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to solve the above-mentioned conventional problems and to provide a novel dewatered sludge incineration method capable of uniformly burning highly sticky dehydrated sludge without causing it to flow.

上記の課題を解決するためになされた本発明の脱水汚泥の焼却方法は、脱水汚泥に、粒径が1~20mmであって、汚泥焼却温度よりも高融点の粒状物からなる粒状骨材を混合して分散性を向上させた混合汚泥としたうえ、縦型炉に投入して積層燃焼させることを特徴とするものである。 The method of incinerating dewatered sludge of the present invention, which has been made to solve the above problems, is to add granular aggregate to dewatered sludge , which has a particle size of 1 to 20 mm and a melting point higher than the sludge incineration temperature . The mixed sludge is mixed to improve dispersibility, and the mixed sludge is put into a vertical furnace for layered combustion.

粒状骨材として、脱水汚泥を粒状化して粒状骨材と混合したものを用いることが好ましい。また、混合汚泥中の(粒状骨材の重量)/(脱水汚泥の乾燥固形重量)を、1~4とすることが好ましい。 As the granular aggregate, it is preferable to use a mixture of granulated dewatered sludge and granular aggregate. In addition, (weight of granular aggregate)/(dry solid weight of dehydrated sludge) in the mixed sludge is preferably 1-4.

好ましい実施形態においては、縦型炉の炉体下部から空気を供給し、積層燃焼部の下方に冷却部を形成するとともに、積層燃焼部にその下方から燃焼用空気を進入させる。また、積層燃焼部の下面から落下する焼却灰と粒状骨材を冷却部で冷却して炉外に取り出し、分級したうえで粒状骨材は再使用する。なお、粒状骨材として、砂または焼却灰の造粒物を用いることができる。 In a preferred embodiment, air is supplied from the lower part of the furnace body of the vertical furnace, a cooling section is formed below the stack combustion section, and combustion air enters the stack combustion section from below. In addition, the incineration ash and granular aggregate falling from the lower surface of the laminated combustion section are cooled in the cooling section, taken out of the furnace, classified, and the granular aggregate is reused. As the granular aggregate, granules of sand or incinerated ash can be used.

本発明の脱水汚泥の焼却方法では、脱水汚泥に、粒径が1~20mmであって、汚泥焼却温度よりも高融点の粒状物からなる粒状骨材を混合し、分散性を向上させた混合汚泥として炉内に投入し積層燃焼させるので、炉体内部に形成される積層燃焼層の内部に燃焼用空気が浸入し易くなる。このため粘着性の高い脱水汚泥であっても、流動させることなく積層させたまま均一に焼却することができ、クリンカーの発生を防止することができる。また流動用の動力が不要となり、ランニングコストを低減させることができる。 In the dewatered sludge incineration method of the present invention, the dewatered sludge is mixed with granular aggregates having a particle size of 1 to 20 mm and having a melting point higher than the sludge incineration temperature, thereby improving dispersibility. Since the sludge is put into the furnace and burned in layers, the combustion air can easily enter the layered combustion layer formed inside the furnace body. Therefore, even highly sticky dehydrated sludge can be uniformly incinerated while being stacked without being fluidized, and the generation of clinker can be prevented. In addition, the running cost can be reduced because power for fluidity is no longer required.

また本発明の脱水汚泥の焼却方法では、焼却灰は積層燃焼層の下方に落下し、炉体の下部から取り出される。このため焼却灰が排ガス処理系に移動することがなく、大規模な排ガス処理設備は不要となる。その他の構成及び作用効果については、実施形態とともに説明する。 Further, in the dewatered sludge incineration method of the present invention, the incineration ash falls below the laminated combustion layer and is taken out from the lower part of the furnace body. Therefore, incineration ash does not move to the exhaust gas treatment system, and large-scale exhaust gas treatment equipment becomes unnecessary. Other configurations and effects will be described together with the embodiments.

実施形態で用いられる縦型炉の模式的な断面図である。1 is a schematic cross-sectional view of a vertical furnace used in an embodiment; FIG. 脱水汚泥と粒状骨材の混合汚泥の通気差圧を測定した結果を示すグラフである。It is a graph which shows the result of having measured the ventilation differential pressure of the mixed sludge of a dewatered sludge and a granular aggregate. 実験炉により脱水汚泥のみを積層燃焼させたときの温度変化を示すグラフである。It is a graph which shows a temperature change when lamination|stacking combustion of only dehydrated sludge is carried out with an experimental furnace. 実験炉により混合汚泥を積層燃焼させたときの温度変化を示すグラフである。It is a graph which shows a temperature change when layered combustion of mixed sludge is carried out by an experimental furnace.

以下に本発明の好ましい実施形態を説明するが、先ず、実施形態で用いられる縦型炉の構造を説明する。 Preferred embodiments of the present invention will be described below. First, the structure of a vertical furnace used in the embodiments will be described.

(炉体構造)
図1はその模式的な断面図であり、10は縦型炉の炉体である。脱水汚泥は粒状骨材と混合された混合汚泥の状態で炉体10の上部の投入装置11、例えばスプレッダーによって投入され、下方部分に落下して堆積し、積層燃焼部12を形成している。炉体10の下部の空気供給管13から空気が供給され、積層燃焼部12の下方に冷却部14が形成されている。冷却部14に供給された空気は積層燃焼部12に進入して燃焼用空気となり、混合汚泥を燃焼させる。積層燃焼部12の上方にはガス燃焼部15が形成される。このガス燃焼部15にも適当数の空気供給管16を設けることができる。冷却部14の下方にはスクリューフィーダ等の移送手段17が設けられ、その出口側には分級装置18、例えば振動ふるい機や比重差による風力分級機が設けられている。分級装置18は積層燃焼部12の下方に落下してきた焼却灰と粒状骨材とを分級する装置である。
(Furnace structure)
FIG. 1 is a schematic cross-sectional view thereof, and 10 is a furnace body of a vertical furnace. The dehydrated sludge is mixed with granular aggregates and fed by a feeding device 11 such as a spreader at the upper part of the furnace body 10 , and is dropped and accumulated in the lower part to form a layered combustion section 12 . Air is supplied from an air supply pipe 13 at the bottom of the furnace body 10 , and a cooling section 14 is formed below the stack combustion section 12 . The air supplied to the cooling section 14 enters the layered combustion section 12 and becomes combustion air to burn the mixed sludge. A gas combustion section 15 is formed above the stack combustion section 12 . An appropriate number of air supply pipes 16 can also be provided in this gas combustion section 15 . A transfer means 17 such as a screw feeder is provided below the cooling section 14, and a classifying device 18 such as a vibrating sieve or a wind classifier based on the difference in specific gravity is provided at the outlet side. The classifier 18 is a device for classifying the incineration ash and granular aggregate that have fallen below the stacked combustion section 12 .

(混合汚泥)
前記したように、下水の脱水汚泥は粘着性があるため、図1のように積層させたままで均一に燃焼させることは容易ではなかった。そこで本発明では、脱水汚泥に粒状骨材を混合して分散性を向上させた混合汚泥としたうえ、縦型炉に投入して積層燃焼させる。
(Mixed sludge)
As described above, since the dehydrated sludge of sewage is sticky, it was not easy to burn it uniformly while it is stacked as shown in FIG. Therefore, in the present invention, dehydrated sludge is mixed with granular aggregates to obtain mixed sludge with improved dispersibility, and the mixed sludge is charged into a vertical furnace for layered combustion.

粒状骨材は脱水汚泥の間に入り込むことによって脱水汚泥の分散性を向上させる役割を持つ。このため汚泥焼却温度よりも高融点の粒状物を用いるものとする。汚泥焼却温度は従来の汚泥焼却炉と同様、750~950℃程度である。融点が汚泥焼却温度よりも低いと溶融し、粒状骨材としての機能を発揮できない。粒状骨材としては砂や、焼却灰の造粒物を用いることができる。焼却灰の造粒物は表面が多孔質となって脱水汚泥の水分を吸収できるので、脱水汚泥の分散性を向上させる効果に優れている。 Granular aggregates play a role in improving the dispersibility of dewatered sludge by entering between dewatered sludge. For this reason, granular materials having a melting point higher than the sludge incineration temperature are used. The sludge incineration temperature is about 750 to 950°C, the same as in conventional sludge incinerators. If the melting point is lower than the sludge incineration temperature, it melts and cannot function as a granular aggregate. As the granular aggregate, sand or granules of incineration ash can be used. Granules of incineration ash have a porous surface and can absorb water in dewatered sludge, so they are excellent in the effect of improving the dispersibility of dewatered sludge.

脱水汚泥の分散性を向上させるためには、粒状骨材と脱水汚泥とを混合したとき、両者間に多数の微細な空隙が形成されることが望ましい。そのためには、脱水汚泥も造粒して粒状化しておき、粒状物どうしを混合することが最も好ましい。 In order to improve the dispersibility of the dewatered sludge, it is desirable to form a large number of fine voids between the granular aggregate and the dewatered sludge when they are mixed. For this purpose, it is most preferable to granulate the dehydrated sludge as well and mix the granules with each other.

粒状骨材の粒径は1~20mmとすることが好ましい。粒径がこの範囲よりも細かくなると形成される間隙が小さくなり、積層燃焼部12に燃焼用空気が進入しにくくなる。逆に20mmよりも大径の粒状物は造粒することに困難性があり、強度が低下して破壊や欠損を生じ易くなるので好ましくない。破壊などが発生すると粒状骨材は微細な粒子となり、間隙を埋めてしまう結果となる。 It is preferable that the particle size of the granular aggregate is 1 to 20 mm. If the particle size is finer than this range, the gap formed becomes smaller, making it difficult for the combustion air to enter the layered combustion section 12 . Conversely, granules with a diameter larger than 20 mm are not preferable because they are difficult to granulate, and the strength is lowered, and breakage and chipping are likely to occur. When fracture or the like occurs, the granular aggregate becomes fine particles, resulting in filling the gaps.

なお、汚泥粒子の粒径も同様の理由により、1~20mmとすることが好ましい。また(粒状骨材の粒径/脱水汚泥の粒径)の値は、0.5~2程度とし、極端に異なることは好ましくない。粒状骨材の粒径と脱水汚泥の粒径が大きく異なると、大径粒子同士が形成した間隙を小径粒子が埋めてしまう結果となり、分散性を向上させる効果が減少するからである。 The particle size of the sludge particles is also preferably 1 to 20 mm for the same reason. The value of (particle size of granular aggregate/particle size of dewatered sludge) should be about 0.5 to 2, and extreme differences are not preferred. This is because if the particle size of the granular aggregate and the particle size of the dewatered sludge are significantly different, the small-diameter particles will fill the gaps formed by the large-diameter particles, reducing the effect of improving the dispersibility.

混合汚泥中の(粒状骨材の重量)/(脱水汚泥の乾燥固形重量)は1~4の範囲とすることが好ましい。脱水汚泥の乾燥固形重量は、DS(Dry Solid)と呼ばれる値である。この値が1未満となると、即ち粒状骨材の重量が脱水汚泥の乾燥固形重量よりも少ないと、分散性を向上させる効果が不十分となる。逆に粒状骨材の重量が脱水汚泥の乾燥固形重量の4倍を超えると相対的に脱水汚泥が減少するため、処理能力が減少することとなる。なお、脱水汚泥と粒状粒子との混合手段としては、パドルミキサーなどの公知の撹拌式混合装置を用いることができる。 The ratio (weight of granular aggregate)/(dry solid weight of dewatered sludge) in the mixed sludge is preferably in the range of 1-4. The dry solid weight of dewatered sludge is a value called DS (Dry Solid). When this value is less than 1, that is, when the weight of the granular aggregate is less than the dry solid weight of the dewatered sludge, the effect of improving dispersibility becomes insufficient. Conversely, if the weight of the granular aggregate exceeds four times the weight of the dry solids of the dewatered sludge, the dewatered sludge is relatively reduced, resulting in a reduction in treatment capacity. As a means for mixing the dewatered sludge and the granular particles, a well-known agitating mixing device such as a paddle mixer can be used.

(焼却方法)
上記した混合汚泥は、図1に示した縦型炉の炉体10内に投入装置11から投入され、積層燃焼部12を形成する。炉体10の下部の空気供給管13から供給される空気量は、投入された混合汚泥に対する空気比で、0.2~1.0とすることが好ましい。
(Incineration method)
The mixed sludge described above is charged from the charging device 11 into the furnace body 10 of the vertical furnace shown in FIG. The amount of air supplied from the air supply pipe 13 in the lower part of the furnace body 10 is preferably 0.2 to 1.0 in terms of the ratio of air to mixed sludge charged.

上記したように混合汚泥は分散性を向上させた状態にあるため、冷却部14に供給された空気は積層燃焼部12に分散的に進入して燃焼用空気となり、混合汚泥を燃焼させる。従って燃焼は空気に直接接している積層燃焼部12の下面部分で主として行われる。また混合汚泥の内部には微細な空隙が保たれており、脱水汚泥の比表面積が大きくなる。これによってガス流れが均質化される。当該ガスには燃焼に余った空気や、汚泥の熱分解ガス、燃焼により生じた燃焼排ガスが含まれている。この燃焼は積層燃焼部12の下面全体で均等に進行し、局所高温場の形成を抑え、クリンカーの生成を抑制することができる。混合汚泥の燃焼により生じた焼却灰と、燃焼部分に含まれていた粒状骨材は積層燃焼部12の下面から落下するが、燃焼した分と等量の混合汚泥を投入装置11から投入することにより、積層燃焼部12は常に一定位置に維持される。なお、汚泥焼却温度は750~950℃である。 As described above, the mixed sludge is in a state of improved dispersibility, so the air supplied to the cooling section 14 dispersively enters the layered combustion section 12 and becomes combustion air to burn the mixed sludge. Combustion therefore takes place mainly in the lower surface portion of the layered combustion section 12, which is in direct contact with the air. In addition, fine voids are maintained inside the mixed sludge, which increases the specific surface area of the dehydrated sludge. This homogenizes the gas flow. The gas includes air remaining after combustion, pyrolysis gas of sludge, and flue gas generated by combustion. This combustion proceeds evenly over the entire lower surface of the stacked combustion section 12, suppressing the formation of a local high-temperature field and suppressing the generation of clinker. The incineration ash generated by the combustion of the mixed sludge and the granular aggregate contained in the combustion part fall from the bottom surface of the layered combustion part 12, but the mixed sludge of the same amount as the burned part is charged from the charging device 11. Thus, the stack combustion section 12 is always maintained at a fixed position. The sludge incineration temperature is 750-950°C.

積層燃焼部12の下面から落下した焼却灰と粒状骨材は冷却部14の空気によって冷却され、スクリューフィーダ等の移送手段17により分級装置18に送られる。分級装置18としては、例えば公知の振動ふるい器や比重差を利用する風力選別機を用いることができる。分級された焼却灰は系外に排出される。一方、粒状骨材は混合装置19に返送され、再使用される。なお、焼却灰との熱交換により冷却部14に供給された空気は加熱され、積層燃焼部12内に進入するため、燃焼効率を高めることができる。 The incineration ash and granular aggregate that have fallen from the lower surface of the stacked combustion section 12 are cooled by the air in the cooling section 14 and sent to the classification device 18 by a conveying means 17 such as a screw feeder. As the classifier 18, for example, a known vibrating sieve or an air classifier using a difference in specific gravity can be used. The classified incineration ash is discharged out of the system. On the other hand, the granular aggregate is returned to the mixing device 19 and reused. The air supplied to the cooling section 14 is heated by heat exchange with the incineration ash and enters the stack combustion section 12, so that the combustion efficiency can be improved.

燃焼により生じた燃焼ガス及び加熱された積層燃焼部12の内部で発生した未燃ガスは、積層燃焼部12の上方のガス燃焼部15に移行し、未燃分は空気供給管16から供給される空気により完全燃焼される。下部の空気供給管13から供給される空気比を0.5とした場合、上部の各空気供給管16から供給される合計空気比を0.5以上 としておけば、ガス燃焼部15で完全燃焼させることができる。燃焼ガスは炉体10の上部から排出され、排ガス処理系で処理される。本発明では積層燃焼が行われ焼却灰は炉体10の下方から取り出されるため、燃焼ガス中にはほとんど焼却灰は含まれない。このため従来よりも排ガス処理系の負担が軽減され、冷却塔やバグフィルタなどが不要となり、設備を簡素化することができる。 The combustion gas generated by the combustion and the unburned gas generated inside the heated stacked combustion section 12 are transferred to the gas combustion section 15 above the stacked combustion section 12, and the unburned gas is supplied from the air supply pipe 16. It is completely combusted by the air. When the ratio of air supplied from the lower air supply pipe 13 is 0.5, if the total ratio of air supplied from the upper air supply pipes 16 is set to 0.5 or more, complete combustion can be achieved in the gas combustion section 15. can be made Combustion gas is discharged from the upper part of the furnace body 10 and treated by an exhaust gas treatment system. In the present invention, since layered combustion is performed and incinerated ash is taken out from below the furnace body 10, almost no incinerated ash is contained in the combustion gas. As a result, the load on the exhaust gas treatment system is reduced compared to the conventional system, and the need for a cooling tower, bag filter, etc. is eliminated, and the equipment can be simplified.

上記したように粒状骨材は循環使用されるが、使用を繰り返すと徐々に微細化して行くため、新しい粒状骨材を追加する必要がある。そこで分級された焼却灰の一部を造粒し、焼結して新しい粒状骨材とすることができる。これにより焼却灰の有効利用が可能となり、ランニングコストを引き下げることができる。 As described above, the granular aggregate is cyclically used, but as it is repeatedly used, it gradually becomes finer, so it is necessary to add new granular aggregate. Then, a part of the classified incineration ash can be granulated and sintered to make a new granular aggregate. As a result, the incineration ash can be effectively used, and the running cost can be reduced.

(通気性の測定)
粒度分布が1~20mmとなるよう造粒された脱水汚泥を用い、粒状骨材と混合して得られた混合汚泥の通気性を測定した。用いた脱水汚泥は愛知県内の下水処理場において高分子凝集剤を用いて凝集させた下水脱水汚泥である。粒状骨材として、1号珪砂、2号珪砂、5号珪砂の3種類を用いた。それぞれの粒径は、表1の通りである。
(Measurement of breathability)
Using dehydrated sludge granulated to have a particle size distribution of 1 to 20 mm, the air permeability of mixed sludge obtained by mixing with granular aggregate was measured. The dehydrated sludge used was sewage dewatered sludge flocculated using a polymer flocculant at a sewage treatment plant in Aichi Prefecture. As granular aggregates, three types of silica sand No. 1, silica sand No. 2 and silica sand No. 5 were used. Each particle size is shown in Table 1.

Figure 0007201491000001
Figure 0007201491000001

上記した粒状骨材を用い、次の4種類の混合汚泥のサンプルを作成した。
(サンプル1)脱水汚泥のみ。その含水率は75wt%である。
(サンプル2)脱水汚泥の乾燥固形重量と等量の5号珪砂を混合したもの。
(サンプル3)脱水汚泥の乾燥固形重量の2倍の2号珪砂を混合したもの。
(サンプル4)脱水汚泥の乾燥固形重量の2倍の1号珪砂を混合したもの。
Using the granular aggregate described above, the following four types of mixed sludge samples were prepared.
(Sample 1) Dehydrated sludge only. Its moisture content is 75 wt%.
(Sample 2) A mixture of No. 5 silica sand equal to the dry solid weight of dehydrated sludge.
(Sample 3) A mixture of No. 2 silica sand twice the dry solid weight of the dehydrated sludge.
(Sample 4) A mixture of No. 1 silica sand twice the dry solid weight of the dewatered sludge.

各サンプルを直径10cm、高さ1mの円筒に充填し、下端部から圧縮空気を供給して通気差圧を測定した。図2にその結果を示す。横軸は充填したサンプルの重量であり、充填高さに対応する。 Each sample was packed in a cylinder with a diameter of 10 cm and a height of 1 m, and compressed air was supplied from the lower end to measure the ventilation differential pressure. The results are shown in FIG. The horizontal axis is the weight of the filled sample and corresponds to the fill height.

図2のグラフに示されるように、サンプル2は脱水汚泥の粒径に比べて5号珪砂の粒径が小さすぎるため、添加しても脱水汚泥のみのサンプル1と大差はなく、通気性の改善効果は弱かった。サンプル3は脱水汚泥の粒径よりもやや大きい粒径の2号珪砂を混合したものであり、通気性が大幅に改善された。サンプル4は脱水汚泥の粒径のほぼ2倍程度の粒径の1号珪砂を混合したものであるが、サンプル3よりも通気性はやや悪化した。その原因は、1号珪砂によって形成された空隙を、脱水汚泥の粒子が埋めてしまったためと推察される。 As shown in the graph of FIG. 2, in sample 2, the particle size of No. 5 silica sand is too small compared to the particle size of the dewatered sludge, so even if it is added, there is not much difference from sample 1 with only dewatered sludge, and the air permeability improvement effect was weak. Sample 3 was mixed with No. 2 silica sand having a particle size slightly larger than that of the dewatered sludge, and the air permeability was greatly improved. Sample 4 is a mixture of No. 1 silica sand having a particle size approximately twice as large as that of the dehydrated sludge, but its air permeability is slightly worse than that of sample 3. The reason for this is presumed to be that the voids formed by the No. 1 silica sand were filled with particles of the dehydrated sludge.

(実験炉による燃焼実験)
次に円筒状の小型の実験炉を用い、脱水汚泥を単独で積層燃焼させる実験と、上記したサンプル3の混合汚泥を積層燃焼させる実験を行った。実験炉は図1に示した構造であるが移送手段17はなく、10時間ごとに炉体下部から焼却灰と粒状骨材をバッチ式に取り出す構造とした。なお燃焼温度は850℃に設定した。
(Combustion experiment using an experimental furnace)
Next, using a small cylindrical experimental furnace, an experiment in which the dewatered sludge alone was subjected to layered combustion and an experiment in which the mixed sludge of Sample 3 was subjected to layered combustion were conducted. The experimental furnace has the structure shown in FIG. 1, but does not have the transfer means 17, and has a structure in which incinerated ash and granular aggregates are taken out batchwise from the lower part of the furnace every 10 hours. The combustion temperature was set at 850°C.

積層燃焼層の内部の下部に2段、中部に2段の温度センサを配置し、燃焼中の温度変化を測定した。その結果を図3、図4に示す。温度センサは固定であり、積層燃焼層とともに、移動しないものである。 Two temperature sensors were placed in the lower part of the laminated combustion layer and two in the middle part to measure temperature changes during combustion. The results are shown in FIGS. 3 and 4. FIG. The temperature sensor is stationary and does not move with the stacked combustion layers.

図3に示した脱水汚泥を単独で積層燃焼させた実験では、まず下部1と記載された最下部が850℃で燃焼し、10時間後に炉体下部から焼却灰と粒状骨材をバッチ式に取り出すと、続いて下部2と記載された部分が最下段となり、その部分の燃焼が開始された。以下同様であるが、脱水汚泥単独では分散性が悪く、脱水汚泥の燃焼が均一に行われないため局所高温場が形成され、燃焼温度が1000℃に達した時間があることが分かる。また脱水汚泥の通気性が悪いため、積層燃焼層の下部の燃焼温度が、上部の層に伝わりにくいことも分かる。 In the experiment in which the dehydrated sludge shown in FIG. 3 was stacked and burned alone, the lowest part described as the lower part 1 was first burned at 850 ° C. After 10 hours, the incinerated ash and granular aggregate were batch-type from the lower part of the furnace body. Upon removal, the section labeled Lower 2 subsequently became the lowest stage, and combustion of that section began. Although the same applies to the following, it can be seen that the dewatered sludge alone has poor dispersibility and combustion of the dewatered sludge is not uniformly performed, so that a local high temperature field is formed and the combustion temperature reaches 1000° C. for some time. In addition, it can be seen that the combustion temperature in the lower part of the laminated combustion layer is less likely to be transmitted to the upper layer due to the poor air permeability of the dewatered sludge.

これに対してサンプル3の混合汚泥を積層燃焼させる実験では、下部1の燃焼が燃焼するとその上層部の温度も次第に昇温すること、及び局所高温場の形成がなく燃焼温度は設定通り850℃に維持されていることが分かる。この実験により、本発明の脱水汚泥の焼却方法の優位性を確認することができた。 On the other hand, in the experiment of layered combustion of the mixed sludge of sample 3, the temperature of the upper layer gradually increased when the combustion of the lower part 1 burned, and the combustion temperature was 850 ° C as set without the formation of a local high temperature field. It can be seen that the This experiment confirmed the superiority of the dehydrated sludge incineration method of the present invention.

以上に説明したように、本発明によれば粘着性の高い下水脱水汚泥を、流動させることなく均一に積層燃焼させることができ、流動用空気の動力費をなくすことができ、また排ガス処理系を簡素化することができる。よって汚泥焼却のコストを大きく引き下げることが可能となる。 As described above, according to the present invention, dehydrated sewage sludge with high adhesiveness can be uniformly combusted without fluidization, the power cost of fluidizing air can be eliminated, and the exhaust gas treatment system can be simplified. Therefore, the cost of sludge incineration can be greatly reduced.

10 炉体
11 投入装置
12 積層燃焼部
13 空気供給管
14 冷却部
15 ガス燃焼部
16 空気供給管
17 移送手段
18 分級装置
19 混合装置
10 Furnace body 11 Feeding device 12 Stacked combustion unit 13 Air supply pipe 14 Cooling unit 15 Gas combustion unit 16 Air supply pipe 17 Transfer means 18 Classifying device 19 Mixing device

Claims (6)

脱水汚泥に、粒径が1~20mmであって、汚泥焼却温度よりも高融点の粒状物からなる粒状骨材を混合して分散性を向上させた混合汚泥としたうえ、縦型炉に投入して積層燃焼させることを特徴とする脱水汚泥の焼却方法。 Dewatered sludge is mixed with granular aggregate consisting of granular substances with a particle size of 1 to 20 mm and a melting point higher than the sludge incineration temperature to obtain mixed sludge with improved dispersibility, and then put into a vertical furnace. A method of incinerating dewatered sludge, characterized by burning the dehydrated sludge in layers. 脱水汚泥を粒状化して粒状骨材と混合することを特徴とする請求項に記載の脱水汚泥の焼却方法。 2. The method of incinerating dewatered sludge according to claim 1 , wherein the dewatered sludge is granulated and mixed with granular aggregate. 混合汚泥中の(粒状骨材の重量)/(脱水汚泥の乾燥固形重量)を、1~4とすることを特徴とする請求項1~の何れかに記載の脱水汚泥の焼却方法。 The dewatered sludge incineration method according to any one of claims 1 and 2 , wherein (weight of granular aggregate)/(dry solid weight of dewatered sludge) in the mixed sludge is 1-4. 縦型炉の炉体下部から空気を供給し、積層燃焼部の下方に冷却部を形成するとともに、積層燃焼部にその下方から燃焼用空気を進入させることを特徴とする請求項1~の何れかに記載の脱水汚泥の焼却方法。 Air is supplied from the lower part of the furnace body of the vertical furnace, a cooling section is formed below the stacked combustion section , and combustion air is introduced into the stacked combustion section from below. A method for incinerating dewatered sludge according to any one of the above. 積層燃焼部の下面から落下する焼却灰と粒状骨材を冷却部で冷却して炉外に取り出し、分級したうえで粒状骨材は再使用することを特徴とする請求項1~の何れかに記載の脱水汚泥の焼却方法。 The incineration ash and granular aggregate falling from the lower surface of the stacked combustion section are cooled in the cooling section, taken out of the furnace, classified, and the granular aggregate is reused. The method for incinerating dehydrated sludge according to 1. 粒状骨材が、砂または焼却灰の造粒物であることを特徴とする請求項1~の何れかに記載の脱水汚泥の焼却方法。 The method of incinerating dehydrated sludge according to any one of claims 1 to 5 , wherein the granular aggregate is granulated sand or incinerated ash.
JP2019050637A 2019-03-19 2019-03-19 Dehydrated sludge incineration method Active JP7201491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019050637A JP7201491B2 (en) 2019-03-19 2019-03-19 Dehydrated sludge incineration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050637A JP7201491B2 (en) 2019-03-19 2019-03-19 Dehydrated sludge incineration method

Publications (2)

Publication Number Publication Date
JP2020151636A JP2020151636A (en) 2020-09-24
JP7201491B2 true JP7201491B2 (en) 2023-01-10

Family

ID=72557026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050637A Active JP7201491B2 (en) 2019-03-19 2019-03-19 Dehydrated sludge incineration method

Country Status (1)

Country Link
JP (1) JP7201491B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541076A (en) 2016-01-19 2016-05-04 盐城工学院 Vertical type drying and incineration equipment for municipal sludge

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58168807A (en) * 1982-03-30 1983-10-05 Okawara Mfg Co Ltd Incinerator for sludge
JPS6071100A (en) * 1983-09-28 1985-04-22 Kawasaki Heavy Ind Ltd Sludge treating method
JPH02238210A (en) * 1989-03-09 1990-09-20 Kurita Water Ind Ltd Disposal method for sand separated from human waste and septic-tank sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541076A (en) 2016-01-19 2016-05-04 盐城工学院 Vertical type drying and incineration equipment for municipal sludge

Also Published As

Publication number Publication date
JP2020151636A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP4319991B2 (en) Fuel and its use
CN102206091B (en) Method for making ceramsite by using sludge
WO2005085143A1 (en) A method for sewage sludge treatment by using circulating fluidized bed combustion
JPS5911545B2 (en) Portland cement production and waste utilization
JP4316486B2 (en) Fuel and its use
CN109899802A (en) Drying particles sludge cooperates with power generation by waste combustion system and method with rubbish in grate furnace
CN109734418A (en) The method and system of haydite are made by mixing with sludge for a kind of flyash
JP3320741B2 (en) Use of residue to produce Portland cement clinker
JP7201491B2 (en) Dehydrated sludge incineration method
JP6685601B2 (en) Sludge treatment method and sludge treatment device
KR20110012918A (en) Device for producing fuel of dyeing wastewater sludge in coal-fired power utility boiler plant and method thereof
JP5301185B2 (en) Utilization of waste oil-based solid fuel
CN109370699A (en) A kind of biomass straw sludge fuel and preparation method thereof
JP4432047B2 (en) Waste treatment furnace and waste treatment equipment that treats dust and sludge together
TWI826700B (en) Sludge treatment method and cement manufacturing system
JP5465140B2 (en) Method for treating exhaust gas from cement production equipment
CN106542709A (en) A kind of method for sludge treatment of environment protection multifunctional
JP5479167B2 (en) Manufacturing method of cement clinker using waste as raw fuel
CN100369849C (en) Method for manufacturing cement clinker with gas calcination and shaft kiln
JP3892545B2 (en) Lightweight aggregate manufacturing method
JP4300893B2 (en) Carbide molding method
CN109293259A (en) A kind of cement kiln synergic processing high-efficiency pulverized coal boiler fly ash technique
JP3723161B2 (en) Aggregate manufacturing method
KR20110068324A (en) Apparatus for re-treating bottom ash in coal-fired power station
JP3702256B2 (en) Aggregate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221222

R150 Certificate of patent or registration of utility model

Ref document number: 7201491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150