JP2022041299A - Heat conduction member - Google Patents

Heat conduction member Download PDF

Info

Publication number
JP2022041299A
JP2022041299A JP2020146409A JP2020146409A JP2022041299A JP 2022041299 A JP2022041299 A JP 2022041299A JP 2020146409 A JP2020146409 A JP 2020146409A JP 2020146409 A JP2020146409 A JP 2020146409A JP 2022041299 A JP2022041299 A JP 2022041299A
Authority
JP
Japan
Prior art keywords
bent portion
housing
conductive member
heat conductive
pillars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020146409A
Other languages
Japanese (ja)
Inventor
雅昭 花野
Masaaki Hanano
淳一 石田
Junichi Ishida
敏彦 小関
Toshihiko Koseki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Chaun Choung Technology Corp
Original Assignee
Nidec Corp
Chaun Choung Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp, Chaun Choung Technology Corp filed Critical Nidec Corp
Priority to JP2020146409A priority Critical patent/JP2022041299A/en
Priority to CN202110986626.4A priority patent/CN114111403A/en
Priority to US17/458,626 priority patent/US20220065546A1/en
Publication of JP2022041299A publication Critical patent/JP2022041299A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/043Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D2015/0216Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having particular orientation, e.g. slanted, or being orientation-independent

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To provide a heat conduction member in a bent form which can be easily formed.SOLUTION: A heat conduction member 1 includes a housing 2 having a space 2S in an inside thereof, and a working medium 4 provided in the space. The housing has an upper plate 22 located in an upper side in a thickness direction of the housing and covering an upper side of the space, a lower plate 21 located in a lower side of the space to face the upper plate in the thickness direction, and a plurality of pillars 22P located between the upper plate and the lower plate. The housing further has bent parts 231, 232 in which the upper plate and the lower plate are bent in the same direction in the thickness direction. The bent part is located between the pillars of the plurality of pillars.SELECTED DRAWING: Figure 1

Description

本開示は、熱伝導部材に関する。 The present disclosure relates to heat conductive members.

従来、発熱体の放熱のために熱伝導部材としてベーパーチャンバーが利用されている。また、厚さを削減して薄型化を図ったベーパーチャンバーが提案されている。ベーパーチャンバー内の空間には、底部に形成された毛細管材と、毛細管材と蓋との間の蒸発空間と、が設けられる。ベーパーチャンバーは、毛細管材及び蓋に接触する複数の支持部を有する(例えば、特許文献1参照)。 Conventionally, a vapor chamber has been used as a heat conductive member for heat dissipation of a heating element. Further, a vapor chamber having a reduced thickness and a thinner thickness has been proposed. The space inside the vapor chamber is provided with a capillary material formed at the bottom and an evaporation space between the capillary material and the lid. The vapor chamber has a plurality of supports that come into contact with the capillary material and the lid (see, for example, Patent Document 1).

特開2019-194515号公報Japanese Unexamined Patent Publication No. 2019-194515

ベーパーチャンバーを設置場所等に応じて折り曲げる場合に、ベーパーチャンバー内に支持部があると、容易に折り曲げることができないという課題があった。これにより、ベーパーチャンバーを折り曲げ、所望の3次元的な形状にすることが容易ではなかった。 When the vapor chamber is bent according to the installation location or the like, there is a problem that it cannot be easily bent if there is a support portion in the vapor chamber. This made it difficult to bend the vapor chamber into the desired three-dimensional shape.

上記の点に鑑み、本開示は、容易に形成することができる折り曲げ形態の熱伝導部材を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a heat conductive member in a bent form that can be easily formed.

本開示の例示的な熱伝導部材は、内部に空間を有する筐体と、前記空間に配置される作動媒体と、を有する熱伝導部材である。前記筐体は、前記筐体の厚み方向の上側に位置し、前記空間の上側を覆う上プレートと、前記上プレートと前記厚み方向に対向して前記空間の下側に位置する下プレートと、前記上プレートと前記下プレートとの間に位置する複数のピラーと、を有する。前記筐体は、さらに前記上プレート及び前記下プレートがともに前記厚み方向の同じ方向に折り曲げられた折り曲げ部を有する。前記折り曲げ部は、前記複数のピラーの前記ピラー同士の間に位置する。 An exemplary heat conductive member of the present disclosure is a heat conductive member having a housing having a space inside and an operating medium arranged in the space. The housing is located on the upper side of the housing in the thickness direction and covers the upper side of the space, and the upper plate and the lower plate facing the upper plate in the thickness direction and located on the lower side of the space. It has a plurality of pillars located between the upper plate and the lower plate. The housing further has a bent portion in which both the upper plate and the lower plate are bent in the same direction in the thickness direction. The bent portion is located between the pillars of the plurality of pillars.

本開示の構成によれば、容易に形成することができる折り曲げ形態の熱伝導部材を提供することができる。 According to the configuration of the present disclosure, it is possible to provide a heat conductive member in a bent form that can be easily formed.

図1は、本開示の一実施形態の熱伝導部材の縦断面図である。FIG. 1 is a vertical sectional view of a heat conductive member according to an embodiment of the present disclosure. 図2は、熱伝導部材の製造工程の一部を示す縦断面図である。FIG. 2 is a vertical sectional view showing a part of a manufacturing process of a heat conductive member. 図3は、熱伝導部材の製造工程の一部を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing a part of the manufacturing process of the heat conductive member. 図4は、熱伝導部材の折り曲げ部を示す部分縦断面図である。FIG. 4 is a partial vertical sectional view showing a bent portion of the heat conductive member. 図5は、熱伝導部材の横断面図である。FIG. 5 is a cross-sectional view of the heat conductive member. 図6は、熱伝導部材の折り曲げ部とピラーの位置関係を示す部分縦断面図である。FIG. 6 is a partial vertical sectional view showing the positional relationship between the bent portion of the heat conductive member and the pillar. 図7は、変形例1の熱伝導部材の部分縦断面図である。FIG. 7 is a partial vertical sectional view of the heat conductive member of the modified example 1. 図8は、変形例1の熱伝導部材の部分平面図である。FIG. 8 is a partial plan view of the heat conductive member of the modified example 1. 図9は、変形例2の熱伝導部材の縦断面図である。FIG. 9 is a vertical cross-sectional view of the heat conductive member of the modified example 2.

以下、本開示の例示的な実施形態について、図面を参照しながら説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. The scope of the present disclosure is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present disclosure.

図面には、適宜、3次元直交座標系としてXYZ座標系を示した。X方向、Y方向、及びZ方向は、互いに直交する。本書では、後述する熱伝導部材1の発熱体Hと対向する一面の法線方向を「上下方向」(Z方向)と称し、当該上下方向と直交する方向を「水平方向」(X方向及びY方向)と称する。熱伝導部材1の、発熱体Hと対向する被加熱部11において、上下方向(Z方向)は、筐体2の「厚み方向」に一致する。発熱体Hに対して熱伝導部材1が位置する側を「上側」と称し、熱伝導部材1に対して発熱体Hが位置する側を「下側」と称する。これらの方向に基づき、熱伝導部材の各部の形状及び位置関係を説明する。なお、これらの方向の定義は、熱伝導部材の使用時の向き及び位置関係を限定するものではない。 In the drawings, the XYZ coordinate system is shown as a three-dimensional Cartesian coordinate system as appropriate. The X, Y, and Z directions are orthogonal to each other. In this document, the normal direction of one surface of the heat conductive member 1 facing the heating element H, which will be described later, is referred to as "vertical direction" (Z direction), and the direction orthogonal to the vertical direction is referred to as "horizontal direction" (X direction and Y). Direction). In the heated portion 11 of the heat conductive member 1 facing the heating element H, the vertical direction (Z direction) coincides with the "thickness direction" of the housing 2. The side on which the heating element 1 is located with respect to the heating element H is referred to as "upper side", and the side on which the heating element H is located with respect to the heating element H is referred to as "lower side". Based on these directions, the shape and positional relationship of each part of the heat conductive member will be described. The definition of these directions does not limit the orientation and positional relationship when the heat conductive member is used.

また、本書では、上下方向に平行な断面を「縦断面」と呼び、上下方向と直交する水平方向に平行な断面を「横断面」と呼ぶ。また、本書で用いる「平行」、「直交」は、厳密な意味で平行、直交を表すものではなく、略平行、略直交を含む。 Further, in this document, a cross section parallel to the vertical direction is referred to as a "vertical cross section", and a cross section parallel to the horizontal direction orthogonal to the vertical direction is referred to as a "horizontal cross section". In addition, "parallel" and "orthogonal" used in this document do not mean parallel and orthogonal in a strict sense, but include substantially parallel and substantially orthogonal.

<1.熱伝導部材の概略構成>
図1は、本開示の一実施形態の熱伝導部材1の縦断面図である。熱伝導部材1は、本実施形態において、発熱体Hの熱を輸送するいわゆるベーパーチャンバーである。発熱体Hは、例えば熱を発する電子部品、またはその電子部品を搭載する基板である。発熱体Hは、熱伝導部材1によって熱が輸送されることで冷却される。熱伝導部材1は、例えばスマートフォン、ノート型パーソナルコンピューターなどの、発熱体Hを有する電子機器に搭載される。なお、発熱体Hの個数は、1個に限定されるわけではなく、複数であっても良い。
<1. Schematic configuration of heat conductive member>
FIG. 1 is a vertical sectional view of the heat conductive member 1 according to the embodiment of the present disclosure. In the present embodiment, the heat conductive member 1 is a so-called vapor chamber that transports the heat of the heating element H. The heating element H is, for example, an electronic component that emits heat, or a substrate on which the electronic component is mounted. The heating element H is cooled by transporting heat by the heat conductive member 1. The heat conductive member 1 is mounted on an electronic device having a heating element H, such as a smartphone or a notebook personal computer. The number of heating elements H is not limited to one, and may be a plurality.

熱伝導部材1は、被加熱部11と、放熱部12と、を有する。被加熱部11は、例えば発熱体Hに隣接して位置し、発熱体Hが発する熱によって加熱される。放熱部12は、被加熱部11において発熱体Hから受けた熱を外部に放出する。さらに、熱伝導部材1は、本実施形態において、筐体2と、ウィック構造体3と、作動媒体4と、を有する。 The heat conductive member 1 has a heated portion 11 and a heat radiating portion 12. The heated portion 11 is located adjacent to the heating element H, for example, and is heated by the heat generated by the heating element H. The heat radiating unit 12 releases the heat received from the heating element H in the heated unit 11 to the outside. Further, the heat conductive member 1 has, in the present embodiment, a housing 2, a wick structure 3, and an actuating medium 4.

筐体2は、例えば銅などの金属により形成され、内部に空間2Sを有する、上下方向から見て長方形状の箱体である。筐体2の一部は、被加熱部11に含まれる。筐体2の他の一部は、放熱部12に含まれる。空間2Sは、密閉空間であり、例えば大気圧よりも気圧が低い減圧状態に維持される。空間2Sが減圧状態であることにより、空間2Sに収容される作動媒体4は蒸発し易くなる。 The housing 2 is a rectangular box body viewed from the vertical direction, which is formed of a metal such as copper and has a space 2S inside. A part of the housing 2 is included in the heated portion 11. The other part of the housing 2 is included in the heat radiating unit 12. The space 2S is a closed space, and is maintained in a decompressed state where the atmospheric pressure is lower than the atmospheric pressure, for example. When the space 2S is in a decompressed state, the working medium 4 housed in the space 2S is likely to evaporate.

ウィック構造体3は、筐体2の空間2Sに配置される。ウィック構造体3は、空間2Sの、被加熱部11に含まれる領域から放熱部12に含まれる領域にわたって連続して延びる。ウィック構造体3は、例えば金属製の網状部材(金属メッシュ)で構成され、毛細管現象によって作動媒体4を輸送する。 The wick structure 3 is arranged in the space 2S of the housing 2. The wick structure 3 continuously extends from the region included in the heated portion 11 to the region included in the heat radiating portion 12 in the space 2S. The wick structure 3 is composed of, for example, a metal mesh member (metal mesh), and transports the working medium 4 by a capillary phenomenon.

なお、ウィック構造体3は、作動媒体4を空間2S内で輸送できる構造であれば、金属製の網状部材(金属メッシュ)に限定されるわけではない。ウィック構造体3は、例えば多孔質の銅の焼結体で構成される焼結ウィック、溝構造を有するグルーブウィックなどであっても良い。 The wick structure 3 is not limited to a metal mesh member (metal mesh) as long as the working medium 4 can be transported in the space 2S. The wick structure 3 may be, for example, a sintered wick composed of a porous copper sintered body, a groove wick having a groove structure, or the like.

作動媒体4は、筐体2の空間2Sに収容される。作動媒体4は、例えば水であるが、アルコールなどの他の液体であっても良い。作動媒体4は、ウィック構造体3内を含む空間2S内を移動することで、熱を輸送する。 The working medium 4 is housed in the space 2S of the housing 2. The working medium 4 is, for example, water, but may be another liquid such as alcohol. The working medium 4 transports heat by moving in the space 2S including the inside of the wick structure 3.

このように、本実施形態の熱伝導部材1は、内部に空間2Sを有する筐体2と、空間2Sに配置される作動媒体4と、を有する。 As described above, the heat conductive member 1 of the present embodiment has a housing 2 having a space 2S inside and an operating medium 4 arranged in the space 2S.

筐体2は、下プレート21と、上プレート22と、を有する。さらに、筐体2は、複数のピラー22Pを有する。 The housing 2 has a lower plate 21 and an upper plate 22. Further, the housing 2 has a plurality of pillars 22P.

下プレート21は、筐体2の下部に位置する。下プレート21は、上プレート22と筐体2の厚み方向に対向して空間2Sの下側に位置する。下プレート21は、金属板であり、例えば銅板である。下プレート21は、例えばステンレス鋼などの銅以外の金属板の表面に銅メッキを施して形成しても良い。 The lower plate 21 is located at the lower part of the housing 2. The lower plate 21 is located below the space 2S so as to face the upper plate 22 in the thickness direction of the housing 2. The lower plate 21 is a metal plate, for example, a copper plate. The lower plate 21 may be formed by plating the surface of a metal plate other than copper, such as stainless steel, with copper plating.

下プレート21は、凹部21Dを有する。凹部21Dは、下プレート21の水平方向の外縁部に対して内側が下側に窪んだ凹形状で形成されている。ウィック構造体3は、凹部21Dに配置される。すなわち、下プレート21は、ウィック構造体3を下側から支持する。 The lower plate 21 has a recess 21D. The concave portion 21D is formed in a concave shape whose inside is recessed downward with respect to the horizontal outer edge portion of the lower plate 21. The wick structure 3 is arranged in the recess 21D. That is, the lower plate 21 supports the wick structure 3 from below.

上プレート22は、筐体2の上部に位置する。上プレート22は、下プレート21と同じ金属板で構成される。すなわち、上プレート22は、例えば銅板である。上プレート22は、例えばステンレス鋼などの銅以外の金属板の表面に銅メッキを施して形成しても良い。なお、上プレート22と、下プレート21とは、異なる金属で構成しても良い。 The upper plate 22 is located above the housing 2. The upper plate 22 is made of the same metal plate as the lower plate 21. That is, the upper plate 22 is, for example, a copper plate. The upper plate 22 may be formed by plating the surface of a metal plate other than copper, such as stainless steel, with copper. The upper plate 22 and the lower plate 21 may be made of different metals.

上プレート22は、下プレート21に対して上側に位置し、筐体2の厚み方向において下プレート21と対向する。上プレート22は、筐体2の厚み方向の上側に位置し、空間2Sの上側を覆う。すなわち、上プレート22は、空間2S内のウィック構造体3の上側を覆う。 The upper plate 22 is located above the lower plate 21 and faces the lower plate 21 in the thickness direction of the housing 2. The upper plate 22 is located on the upper side of the housing 2 in the thickness direction and covers the upper side of the space 2S. That is, the upper plate 22 covers the upper side of the wick structure 3 in the space 2S.

上プレート22は、複数のピラー22Pと一体に形成される。複数のピラー22Pは、上プレート22の下面から下側に延びてウィック構造体3に接触する。すなわち、複数のピラー22Pは、上プレート22と下プレート21との間に位置する。ピラー22Pは、上プレート22と同一部材で形成しても良いし、上プレート22と別部材で形成しても良い。ピラー22Pは、ウィック構造体3を空間2S内の下部に保持するための支柱であり、さらに筐体2の厚みを一定にすることができる。 The upper plate 22 is integrally formed with a plurality of pillars 22P. The plurality of pillars 22P extend downward from the lower surface of the upper plate 22 and come into contact with the wick structure 3. That is, the plurality of pillars 22P are located between the upper plate 22 and the lower plate 21. The pillar 22P may be formed of the same member as the upper plate 22 or may be formed of a separate member from the upper plate 22. The pillar 22P is a support column for holding the wick structure 3 in the lower portion in the space 2S, and the thickness of the housing 2 can be made constant.

なお、ピラーは、下プレート21に形成しても良い。この場合、ピラーは、下プレート21の凹部21内の底面から上側に延びる。すなわち、ウィック構造体3は、空間2S内の上側に配置される。 The pillar may be formed on the lower plate 21. In this case, the pillar extends upward from the bottom surface in the recess 21 of the lower plate 21. That is, the wick structure 3 is arranged on the upper side in the space 2S.

筐体2は、接合部2Bをさらに有する。接合部2Bは、下プレート21と上プレート22とをそれぞれの外縁でつなぎ合わせる接合構造である。接合部2Bは、上下方向から見て空間2Sの周囲に位置し、下プレート21と上プレート22とを接合する。下プレート21と上プレート22との接合方法は、特に限定されない。接合部2Bは、例えば熱と圧力を加えて接合する方法、ろう材を用いて接合する方法、などの様々な接合方法が用いられても良い。 The housing 2 further has a joint portion 2B. The joint portion 2B has a joint structure in which the lower plate 21 and the upper plate 22 are connected at their respective outer edges. The joint portion 2B is located around the space 2S when viewed from the vertical direction, and joins the lower plate 21 and the upper plate 22. The method of joining the lower plate 21 and the upper plate 22 is not particularly limited. As the joining portion 2B, various joining methods such as a method of joining by applying heat and pressure, a method of joining using a brazing material, and the like may be used.

接合部2Bは、封止部を含んでいても良い。封止部は、例えば熱伝導部材1の製造過程において、作動媒体4を筐体2内に注入するための注入口を溶接によって封止した箇所である。 The joint portion 2B may include a sealing portion. The sealing portion is, for example, a portion where an injection port for injecting the working medium 4 into the housing 2 is sealed by welding in the manufacturing process of the heat conductive member 1.

筐体2は、下面に発熱体取付部2Mを有する。発熱体取付部2Mは、被加熱部11に位置する。発熱体取付部2Mは、発熱体Hの数に合わせて、例えば1つ設けられる。発熱体取付部2Mは、上下方向から見てウィック構造体3と重なる。 The housing 2 has a heating element mounting portion 2M on the lower surface. The heating element mounting portion 2M is located at the heated portion 11. One heating element mounting portion 2M is provided, for example, according to the number of heating element H. The heating element mounting portion 2M overlaps with the wick structure 3 when viewed from the vertical direction.

図1には、作動媒体4が気化して生成される蒸気の流れを、筐体2内の黒矢印で示した。また、図1には、液状の作動媒体4の流れを、筐体2内の白抜き矢印で示した。 In FIG. 1, the flow of steam generated by vaporizing the working medium 4 is indicated by a black arrow in the housing 2. Further, in FIG. 1, the flow of the liquid working medium 4 is shown by a white arrow in the housing 2.

発熱体Hの熱は、被加熱部11において下プレート21を介してウィック構造体3に伝達される。ウィック構造体3が温度上昇すると、ウィック構造体3に含まれた液状の作動媒体4が気化し、蒸気が生成される。作動媒体4の蒸気は、空間2S内を放熱部12側に移動する。作動媒体4の蒸気は、放熱部12において放熱によって冷却され、液化する。 The heat of the heating element H is transferred to the wick structure 3 via the lower plate 21 in the heated portion 11. When the temperature of the wick structure 3 rises, the liquid working medium 4 contained in the wick structure 3 is vaporized to generate steam. The steam of the working medium 4 moves in the space 2S toward the heat radiating portion 12. The steam of the working medium 4 is cooled by heat dissipation in the heat radiating unit 12 and liquefied.

液化した作動媒体4は、筐体2の内面を伝って、毛細管現象によってウィック構造体3中を移動することで、被加熱部11に向かって流れる。このように作動媒体4が状態変化を伴いながら移動することにより、熱伝導部材1では、被加熱部11側から放熱部12側への熱の輸送が連続的に行われる。これにより、被加熱部11に接触する発熱体Hは、熱伝導部材1によって冷却される。 The liquefied working medium 4 travels along the inner surface of the housing 2 and moves in the wick structure 3 by a capillary phenomenon, so that it flows toward the heated portion 11. As the working medium 4 moves while changing its state in this way, the heat conductive member 1 continuously transfers heat from the heated portion 11 side to the heat radiating portion 12 side. As a result, the heating element H that comes into contact with the heated portion 11 is cooled by the heat conductive member 1.

<2.熱伝導部材の詳細構成>
<2-1.筐体の詳細構成>
筐体2は、さらに折り曲げ部23を有する。折り曲げ部23は、本実施形態において、第1折り曲げ部231と、第2折り曲げ部232と、を含む。第1折り曲げ部231及び第2折り曲げ部232は、熱伝導部材1の被加熱部11側の端部から放熱部12側の端部に向かって平行に並置される。
<2. Detailed configuration of heat conductive member>
<2-1. Detailed configuration of the housing>
The housing 2 further has a bent portion 23. In the present embodiment, the bent portion 23 includes a first bent portion 231 and a second bent portion 232. The first bent portion 231 and the second bent portion 232 are juxtaposed in parallel from the end portion of the heat conductive member 1 on the heated portion 11 side toward the end portion on the heat radiating portion 12 side.

第1折り曲げ部231及び第2折り曲げ部232は、本実施形態において、筐体2の水平方向(図1のY方向)に沿って延びる。言い換えれば、第1折り曲げ部231及び第2折り曲げ部232は、上下方向から見て長方形状である筐体2の、被加熱部11及び放熱部12が並ぶ方向に対向する辺と平行な方向(図1及び図5のY方向)に延びる。すなわち、図1のY方向は、第1折り曲げ部231及び第2折り曲げ部232の延伸方向であって、第1折り曲げ部231及び第2折り曲げ部232の稜線23Rが延びる方向である(図5参照)。第1折り曲げ部231及び第2折り曲げ部232において、上プレート22及び下プレート21は、ともに筐体2の厚み方向の同じ方向に折り曲げられている。 The first bent portion 231 and the second bent portion 232 extend along the horizontal direction (Y direction in FIG. 1) of the housing 2 in the present embodiment. In other words, the first bent portion 231 and the second bent portion 232 are in a direction parallel to the side of the housing 2, which is rectangular when viewed from the vertical direction, facing the side in which the heated portion 11 and the heat radiating portion 12 are lined up. Extends in the Y direction of FIGS. 1 and 5). That is, the Y direction in FIG. 1 is the extending direction of the first bent portion 231 and the second bent portion 232, and is the direction in which the ridge line 23R of the first bent portion 231 and the second bent portion 232 extends (see FIG. 5). ). In the first bent portion 231 and the second bent portion 232, both the upper plate 22 and the lower plate 21 are bent in the same direction in the thickness direction of the housing 2.

なお、折り曲げ部23は、図1に示すように、Y方向に沿って直線状をなして折れ曲がった形態に限定されるわけではない。折り曲げ部23は、Y方向から見て、弧状に湾曲した形態であっても良い。 As shown in FIG. 1, the bent portion 23 is not limited to a bent form in a straight line along the Y direction. The bent portion 23 may be curved in an arc shape when viewed from the Y direction.

筐体2は、さらに第1水平部24と、第2水平部25と、傾斜部26と、を有する。第1水平部24と、第2水平部25と、傾斜部26とは、第1折り曲げ部231と、第2折り曲げ部232とによって区分される。熱伝導部材1は、被加熱部11側の端部から放熱部12側の端部に向かって、第1水平部24、傾斜部26、第2水平部25の順に連続する。被加熱部11は、第1水平部24に配置される。第1水平部24、第2水平部25、及び傾斜部26のそれぞれは、下プレート21及び上プレート22の一部を含む。 The housing 2 further has a first horizontal portion 24, a second horizontal portion 25, and an inclined portion 26. The first horizontal portion 24, the second horizontal portion 25, and the inclined portion 26 are separated by a first bent portion 231 and a second bent portion 232. The heat conductive member 1 is continuous in the order of the first horizontal portion 24, the inclined portion 26, and the second horizontal portion 25 from the end portion on the heated portion 11 side to the end portion on the heat radiating portion 12 side. The heated portion 11 is arranged in the first horizontal portion 24. Each of the first horizontal portion 24, the second horizontal portion 25, and the inclined portion 26 includes a part of the lower plate 21 and the upper plate 22.

第1水平部24及び第2水平部25は、水平方向(図1のX方向及びY方向)に沿って延びる。すなわち、第1水平部24及び第2水平部25のそれぞれにおいて、下プレート21及び上プレート22は、ともに水平方向に沿って延びる。本実施形態において、第1水平部24と、第2水平部25と、は互いに平行に延びる。第1水平部24と、第2水平部25は、Y方向から見て所定角度で傾斜していても良い。 The first horizontal portion 24 and the second horizontal portion 25 extend along the horizontal direction (X direction and Y direction in FIG. 1). That is, in each of the first horizontal portion 24 and the second horizontal portion 25, the lower plate 21 and the upper plate 22 both extend along the horizontal direction. In the present embodiment, the first horizontal portion 24 and the second horizontal portion 25 extend in parallel with each other. The first horizontal portion 24 and the second horizontal portion 25 may be inclined at a predetermined angle when viewed from the Y direction.

傾斜部26は、第1水平部24に対して所定の角度θ1で上下方向(図1のZ方向)の上側に向かって傾斜し、第2水平部25に対して所定の角度θ2で上下方向(図1のZ方向)の下側に向かって傾斜する。すなわち、傾斜部26において、下プレート21及び上プレート22は、ともに第1水平部24に対して所定の角度θ1で上下方向の上側に向かって傾斜し、第2水平部25に対して所定の角度θ2で上下方向の下側に向かって傾斜する。本実施形態において、第1水平部24と、第2水平部25とは互いに平行であるので、角度θ1と、角度θ2とはともに同じ角度である。角度θ1及び角度θ2は、適宜任意の角度に定めることができ、互いに異なる角度であっても良い。 The inclined portion 26 is inclined toward the upper side in the vertical direction (Z direction in FIG. 1) at a predetermined angle θ1 with respect to the first horizontal portion 24, and is vertically oriented at a predetermined angle θ2 with respect to the second horizontal portion 25. It tilts toward the lower side (Z direction in FIG. 1). That is, in the inclined portion 26, both the lower plate 21 and the upper plate 22 are inclined toward the upper side in the vertical direction at a predetermined angle θ1 with respect to the first horizontal portion 24, and are predetermined with respect to the second horizontal portion 25. It tilts downward at an angle θ2 in the vertical direction. In the present embodiment, since the first horizontal portion 24 and the second horizontal portion 25 are parallel to each other, the angle θ1 and the angle θ2 are both the same angle. The angle θ1 and the angle θ2 can be appropriately set to any angle, and may be different from each other.

これにより、第2水平部25は、第1水平部24よりも上下方向(図1のZ方向)の上側に位置する。 As a result, the second horizontal portion 25 is located above the first horizontal portion 24 in the vertical direction (Z direction in FIG. 1).

ウィック構造体3は、図1に示すように、折り曲げ部23の稜線23Rの延伸方向(Y方向)と交差する方向(X方向)において折り曲げ部23の両側の領域にわたって位置する。言い換えれば、ウィック構造体3は、熱伝導部材1の被加熱部11側の領域から放熱部12側の領域にわたって位置する。この構成によれば、作動媒体4を還流し易くすることが可能になる。 As shown in FIG. 1, the wick structure 3 is located over the regions on both sides of the bent portion 23 in the direction (X direction) intersecting the extending direction (Y direction) of the ridge line 23R of the bent portion 23. In other words, the wick structure 3 is located from the region on the heated portion 11 side of the heat conductive member 1 to the region on the heat radiating portion 12 side. According to this configuration, it becomes possible to facilitate the reflux of the working medium 4.

図2及び図3は、熱伝導部材1の製造工程の一部を示す縦断面図である。熱伝導部材1は、以下に示す方法で製造することができる。なお、熱伝導部材1の製造方法は、以下に示す方法に限定されるわけではなく、他の方法であっても良い。 2 and 3 are vertical cross-sectional views showing a part of the manufacturing process of the heat conductive member 1. The heat conductive member 1 can be manufactured by the method shown below. The method for manufacturing the heat conductive member 1 is not limited to the method shown below, and may be another method.

まず、水平方向の内側に下側に窪んだ凹部21Dが形成された下プレート21と、水平方向の内側に下側に延びる複数のピラー22Pが形成された上プレート22と、ウィック構造体3と、を製造する。次に、凹部21Dにウィック構造体3を配置した下プレート21と、上プレート22と、を接合部2Bで接合することで、平板状であって、折り曲げ部が形成されていない状態の筐体2(図2参照)を形成する。 First, the lower plate 21 in which the recess 21D recessed downward in the horizontal direction is formed, the upper plate 22 in which a plurality of pillars 22P extending downward in the horizontal direction are formed, and the wick structure 3 , To manufacture. Next, by joining the lower plate 21 in which the wick structure 3 is arranged in the recess 21D and the upper plate 22 at the joint portion 2B, the housing is flat and has no bent portion. 2 (see FIG. 2) is formed.

次に、図2に示すように、筐体2の水平方向(X方向)の一端部側を治具101で挟み、拘束する。次に、筐体2の水平方向(X方向)の他端部側を、例えば上下方向(Z方向)の上側に向かって押すことで折り曲げ、筐体2に1つめの折り曲げ部23(例えば第1折り曲げ部231)を形成する(図2参照)。 Next, as shown in FIG. 2, one end side of the housing 2 in the horizontal direction (X direction) is sandwiched between jigs 101 and restrained. Next, the other end side of the housing 2 in the horizontal direction (X direction) is bent by pushing it toward the upper side in the vertical direction (Z direction), for example, and the first bent portion 23 (for example, the first) in the housing 2 is bent. 1 Bent portion 231) is formed (see FIG. 2).

次に、図3に示すように、筐体2を持ち替えて、筐体2の水平方向(X方向)の他端部側を治具101で挟み、拘束する。次に、筐体2の水平方向(X方向)の一端部側を、上下方向(Z方向)の上側に向かって押すことで折り曲げ、筐体2に2つめの折り曲げ部23(例えば第2折り曲げ部232)を形成する。 Next, as shown in FIG. 3, the housing 2 is held and the other end side of the housing 2 in the horizontal direction (X direction) is sandwiched between jigs 101 and restrained. Next, the one end side of the housing 2 in the horizontal direction (X direction) is bent by pushing it toward the upper side in the vertical direction (Z direction), and the second bending portion 23 (for example, the second bending) is bent in the housing 2. Part 232) is formed.

なお、図2、図3では、筐体2の水平方向(X方向)の一端部側と、他端部側とを持ち替え、個別に治具101で挟むこととしたが、筐体2の水平方向(X方向)の両端部側を同時に治具で挟み、拘束して折り曲げ部23を形成しても良い。 In FIGS. 2 and 3, one end side and the other end side of the housing 2 in the horizontal direction (X direction) are switched and individually sandwiched between jigs 101, but the housing 2 is horizontal. The bent portions 23 may be formed by sandwiching both end portions in the direction (X direction) with a jig at the same time and restraining them.

<2-2.折り曲げ部の詳細構成>
図4は、熱伝導部材1の折り曲げ部23を示す部分縦断面図である。図5は、熱伝導部材1の横断面図である。なお、図5は、図1のV-V線で切断した熱伝導部材1の横断面図である。
<2-2. Detailed configuration of the bent part>
FIG. 4 is a partial vertical sectional view showing a bent portion 23 of the heat conductive member 1. FIG. 5 is a cross-sectional view of the heat conductive member 1. Note that FIG. 5 is a cross-sectional view of the heat conductive member 1 cut along the VV line of FIG.

折り曲げ部23は、複数のピラー22Pのピラー22P同士の間に位置する。言い換えれば、折り曲げ部23は、折り曲げ部23の稜線23Rの延伸方向(図4及び図5のY方向)と交差する方向(図4及び図5のX方向)に沿って並ぶピラー22P同士の間に位置する。詳細に言えば、第1折り曲げ部231と、第2折り曲げ部232とは、熱伝導部材1の被加熱部11及び放熱部12側が並ぶ方向(図4及び図5のX方向)に隣り合うピラー22P同士の間に位置する。 The bent portion 23 is located between the pillars 22P of the plurality of pillars 22P. In other words, the bent portion 23 is between the pillars 22P arranged along the direction intersecting the extending direction (Y direction in FIGS. 4 and 5) of the ridge line 23R of the bent portion 23 (X direction in FIGS. 4 and 5). Located in. More specifically, the first bent portion 231 and the second bent portion 232 are pillars adjacent to each other in the direction in which the heated portion 11 and the heat radiating portion 12 side of the heat conductive member 1 are arranged side by side (X direction in FIGS. 4 and 5). It is located between 22Ps.

上記の構成によれば、ピラー22Pは、折り曲げ部23に位置していない。これにより、熱伝導部材1は、折り曲げ易くなる。すなわち、折り曲げ部23を有する折り曲げ形態の熱伝導部材1を容易に形成することができる。これにより、平板状の熱伝導部材1を折り曲げ、所望の3次元的な形状にすることが容易になる。したがって、図1に示すように、被加熱部11の位置と、放熱部12の位置とがZ方向にずれていても、熱伝導部材1は、発熱体Hを効果的に冷却することが可能になる。 According to the above configuration, the pillar 22P is not located at the bent portion 23. This makes it easier for the heat conductive member 1 to bend. That is, it is possible to easily form the heat conductive member 1 in a bent form having the bent portion 23. This makes it easy to bend the flat plate-shaped heat conductive member 1 into a desired three-dimensional shape. Therefore, as shown in FIG. 1, even if the position of the heated portion 11 and the position of the heat radiating portion 12 are displaced in the Z direction, the heat conductive member 1 can effectively cool the heating element H. become.

熱伝導部材1は、上記のように、第1折り曲げ部231と、第2折り曲げ部232と、の複数の折り曲げ部を有する。図5に示すように、複数のピラー22Pが、第1折り曲げ部231と、第2折り曲げ部232との間に位置する。なお、第1折り曲げ部231と、第2折り曲げ部232との間に位置するピラー22Pは、1つであっても良い。すなわち、少なくとも1つのピラー22Pが、2つの折り曲げ部23の間に位置する。すなわち、少なくとも1つのピラー22Pが、筐体2の傾斜部26に位置する。 As described above, the heat conductive member 1 has a plurality of bent portions, that is, a first bent portion 231 and a second bent portion 232. As shown in FIG. 5, a plurality of pillars 22P are located between the first bent portion 231 and the second bent portion 232. The number of pillars 22P located between the first bent portion 231 and the second bent portion 232 may be one. That is, at least one pillar 22P is located between the two bent portions 23. That is, at least one pillar 22P is located on the inclined portion 26 of the housing 2.

上記の構成によれば、例えば本実施形態では、傾斜部26において外力に対して変形し難くすることができる。また、折り曲げ部23を形成することで、傾斜部26では空間2Sが筐体2の厚み方向に狭くなる虞があるが、ピラー22Pが傾斜部26に位置することで、上記の構成によって空間2Sを確保することが可能になる。 According to the above configuration, for example, in the present embodiment, the inclined portion 26 can be made difficult to be deformed by an external force. Further, by forming the bent portion 23, the space 2S may be narrowed in the inclined portion 26 in the thickness direction of the housing 2, but since the pillar 22P is located in the inclined portion 26, the space 2S is configured by the above configuration. It becomes possible to secure.

図6は、熱伝導部材1の折り曲げ部23とピラー22Pとの位置関係を示す部分縦断面図である。図6に示すように、例えば第1折り曲げ部231の稜線23Rの延伸方向と交差する方向(X方向)に並ぶ第1折り曲げ部231とピラー22Pとの距離L1は、第1折り曲げ部231の稜線23Rの延伸方向と交差する方向(X方向)に並ぶピラー22P同士の距離L2よりも短い。 FIG. 6 is a partial vertical sectional view showing the positional relationship between the bent portion 23 of the heat conductive member 1 and the pillar 22P. As shown in FIG. 6, for example, the distance L1 between the first bent portion 231 and the pillar 22P arranged in the direction intersecting the extending direction (X direction) of the ridge line 23R of the first bent portion 231 is the ridge line of the first bent portion 231. It is shorter than the distance L2 between the pillars 22P arranged in the direction intersecting the stretching direction (X direction) of the 23R.

なお、X方向に並ぶ第1折り曲げ部231とピラー22Pとの距離L1、及びX方向に並ぶピラー22P同士の距離L2は、Z方向(上下方向)の同じ位置(高さ)におけるX方向の距離を意味する。例えば本実施形態では、距離L1、L2は、X方向に並ぶピラー22Pの先端部(Z方向下端部)とZ方向の同じ位置におけるX方向の距離を意味する。距離L1、L2は、X方向に並ぶピラー22Pの根元部(Z方向上端部)、X方向に並ぶピラー22Pの上下方向の中間部などであっても良い。また、折り曲げ部23の第2折り曲げ部232とピラー22Pとの位置関係も同様であって良い。 The distance L1 between the first bent portions 231 arranged in the X direction and the pillars 22P, and the distance L2 between the pillars 22P arranged in the X direction are the distances in the X direction at the same position (height) in the Z direction (vertical direction). Means. For example, in the present embodiment, the distances L1 and L2 mean the distance in the X direction at the same position in the Z direction as the tip end portion (lower end portion in the Z direction) of the pillars 22P arranged in the X direction. The distances L1 and L2 may be the root portion (upper end portion in the Z direction) of the pillars 22P arranged in the X direction, the intermediate portion in the vertical direction of the pillars 22P arranged in the X direction, and the like. Further, the positional relationship between the second bent portion 232 of the bent portion 23 and the pillar 22P may be the same.

折り曲げ部23を形成することで空間2Sが狭くなる虞があるが、上記の構成にように、折り曲げ部23のできるだけ近い箇所にピラー22Pが位置することで、折り曲げ部23において空間2Sを確保することが可能である。 The space 2S may be narrowed by forming the bent portion 23, but as in the above configuration, the pillar 22P is located as close as possible to the bent portion 23 to secure the space 2S in the bent portion 23. It is possible.

<2-3.ピラーの詳細構成>
ピラー22Pは、図5に示すように、例えば上下方向から見て円形の円柱に形成される。複数のピラー22Pは、筐体2の水平方向(図5のX方向及びY方向)において2次元的に、規則的な間隔で配列される。すなわち、複数のピラー22Pは、筐体2の被加熱部11側の端部から放熱部12側の端部に向かって所定間隔で並置される。
<2-3. Detailed configuration of pillars>
As shown in FIG. 5, the pillar 22P is formed in, for example, a circular cylinder when viewed from the vertical direction. The plurality of pillars 22P are arranged two-dimensionally at regular intervals in the horizontal direction (X direction and Y direction in FIG. 5) of the housing 2. That is, the plurality of pillars 22P are juxtaposed at predetermined intervals from the end portion of the housing 2 on the heated portion 11 side toward the end portion on the heat radiating portion 12 side.

言い換えれば、複数のピラー22Pは、筐体2の外縁の一端部から、対向する他端部まで全域にわたって所定間隔で配置される。詳細に言えば、複数のピラー22Pは、筐体2の外縁の図5のX方向左端部から、対向する図5のX方向右端部まで全域にわたって所定間隔で配置される。或いは、複数のピラー22Pは、筐体2の外縁の図5のY方向下端部から、対向する図5のY方向上端部まで全域にわたって所定間隔で配置される。 In other words, the plurality of pillars 22P are arranged at predetermined intervals over the entire area from one end of the outer edge of the housing 2 to the other end facing each other. More specifically, the plurality of pillars 22P are arranged at predetermined intervals over the entire area from the left end portion in the X direction of FIG. 5 on the outer edge of the housing 2 to the right end portion in the X direction of FIG. 5 facing each other. Alternatively, the plurality of pillars 22P are arranged at predetermined intervals over the entire area from the lower end in the Y direction of FIG. 5 on the outer edge of the housing 2 to the upper end in the Y direction of FIG. 5 facing each other.

なお、本実施形態において、複数のピラー22Pは、三角格子状に配列される。複数のピラー22Pは、例えば正方格子状、長方格子状または斜方格子状に配列されることにしても良い。 In this embodiment, the plurality of pillars 22P are arranged in a triangular lattice pattern. The plurality of pillars 22P may be arranged, for example, in a square grid pattern, a rectangular grid pattern, or an orthorhombic grid pattern.

上記の構成によれば、筐体2の水平方向(図5のX方向及びY方向)の全域にわたって、ピラー22Pを配置することができる。これにより、筐体2全体における空間2Sの確保と、筐体2の強度の向上とを実現することが可能になる。 According to the above configuration, the pillars 22P can be arranged over the entire horizontal direction (X direction and Y direction in FIG. 5) of the housing 2. This makes it possible to secure the space 2S in the entire housing 2 and improve the strength of the housing 2.

<3.変形例>
続いて、熱伝導部材1の変形例について説明する。なお、変形例の基本的な構成は、図1から図6を用いて説明した上記実施形態と同じであるので、共通する構成要素には前と同じ符号または前と同じ名称を付してその説明を省略する場合がある。
<3. Modification example>
Subsequently, a modification of the heat conductive member 1 will be described. Since the basic configuration of the modified example is the same as that of the above-described embodiment described with reference to FIGS. 1 to 6, the common components are given the same reference numerals or the same names as before. The explanation may be omitted.

<3-1.変形例1>
図7は、変形例1の熱伝導部材1の部分縦断面図である。図8は、変形例1の熱伝導部材1の部分平面図である。変形例1の熱伝導部材1は、図7に示すように、折り曲げ部23(第1折り曲げ部231)と、複数のピラー22Pと、を有する。ピラー22Pは、図7のY方向に第1折り曲げ部231に沿って位置する。
<3-1. Modification 1>
FIG. 7 is a partial vertical sectional view of the heat conductive member 1 of the modified example 1. FIG. 8 is a partial plan view of the heat conductive member 1 of the modified example 1. As shown in FIG. 7, the heat conductive member 1 of the modification 1 has a bent portion 23 (first bent portion 231) and a plurality of pillars 22P. The pillar 22P is located along the first bent portion 231 in the Y direction of FIG. 7.

第1折り曲げ部231は、少なくとも1つのピラー22Pに隣接する。さらに、第1折り曲げ部231は、複数のピラー22Pに隣接することがより好ましい。なお、折り曲げ部23の第2折り曲げ部232とピラー22Pとの位置関係も同様であって良い。 The first bent portion 231 is adjacent to at least one pillar 22P. Further, it is more preferable that the first bent portion 231 is adjacent to the plurality of pillars 22P. The positional relationship between the second bent portion 232 of the bent portion 23 and the pillar 22P may be the same.

上記の構成によれば、折り曲げ部23がピラー22Pに隣接するので、折り曲げ部23の強度を向上させることができる。また、折り曲げ部23において空間2Sを確保することが可能である。さらに、折り曲げ部23が複数のピラー22Pに隣接すると、折り曲げ部23の稜線23Rに沿って、折り曲げ部23の強度を向上させることができる。また、折り曲げ部23の稜線23Rに沿って、空間2Sを確保することが可能である。 According to the above configuration, since the bent portion 23 is adjacent to the pillar 22P, the strength of the bent portion 23 can be improved. Further, it is possible to secure the space 2S in the bent portion 23. Further, when the bent portion 23 is adjacent to the plurality of pillars 22P, the strength of the bent portion 23 can be improved along the ridge line 23R of the bent portion 23. Further, it is possible to secure the space 2S along the ridge line 23R of the bent portion 23.

また、折り曲げ部23の稜線23Rは、ピラー22Pの形状や配置に応じた形状で延伸することになる。例えば、図8に示すように、折り曲げ部23の稜線23Rは、ピラー22Pの縁部に沿って波形状で延伸する。これにより、折り曲げ部23の強度をより一層向上させることができる。さらに、折り曲げ部23が複数のピラー22Pに隣接すると、波形状の山と山との間隔が狭くなる。これにより、折り曲げ部23の強度をさらに向上させることが可能になる。 Further, the ridge line 23R of the bent portion 23 is extended in a shape corresponding to the shape and arrangement of the pillar 22P. For example, as shown in FIG. 8, the ridge line 23R of the bent portion 23 extends in a wavy shape along the edge portion of the pillar 22P. As a result, the strength of the bent portion 23 can be further improved. Further, when the bent portion 23 is adjacent to the plurality of pillars 22P, the distance between the wavy peaks becomes narrow. This makes it possible to further improve the strength of the bent portion 23.

なお、図7及び図8では、例えば第1折り曲げ部231が、第1水平部24側のピラー22Pに隣接することとしたが、傾斜部26側のピラー22Pに隣接することにしても良いし、第1水平部24側及び傾斜部26側の両方のピラー22Pに隣接することにしても良い。第2折り曲げ部232についても同様である。 In addition, in FIGS. 7 and 8, for example, the first bent portion 231 is adjacent to the pillar 22P on the first horizontal portion 24 side, but it may be adjacent to the pillar 22P on the inclined portion 26 side. , It may be adjacent to both the pillars 22P on the first horizontal portion 24 side and the inclined portion 26 side. The same applies to the second bent portion 232.

<3-2.変形例2>
図9は、変形例2の熱伝導部材1の縦断面図である。変形例2の熱伝導部材1は、図9に示すように、折り曲げ部23を有する。単一の折り曲げ部23が、筐体2に形成されている。
<3-2. Modification 2>
FIG. 9 is a vertical cross-sectional view of the heat conductive member 1 of the modified example 2. As shown in FIG. 9, the heat conductive member 1 of the modification 2 has a bent portion 23. A single bent portion 23 is formed in the housing 2.

筐体2は、さらに水平部27と、垂直部28と、を有する。水平部27と、垂直部28とは、折り曲げ部23によって区分される。水平部27及び垂直部28は、熱伝導部材1の被加熱部11側の端部から放熱部12側の端部に向かって、水平部27、垂直部28の順に連続する。被加熱部11は、水平部27に配置される。水平部27及び垂直部28のそれぞれは、下プレート21及び上プレート22の一部を含む。 The housing 2 further has a horizontal portion 27 and a vertical portion 28. The horizontal portion 27 and the vertical portion 28 are separated by a bent portion 23. The horizontal portion 27 and the vertical portion 28 are continuous in the order of the horizontal portion 27 and the vertical portion 28 from the end portion on the heated portion 11 side of the heat conductive member 1 toward the end portion on the heat dissipation portion 12 side. The heated portion 11 is arranged on the horizontal portion 27. Each of the horizontal portion 27 and the vertical portion 28 includes a part of the lower plate 21 and the upper plate 22.

垂直部28は、水平部27に対して所定の角度θ3で上下方向(図9のZ方向)の上側に向かって延びる。本実施形態において、角度θ3は、90度である。すなわち、筐体2は、水平方向(図9のY方向)から見てL字形状に形成されている。 The vertical portion 28 extends upward in the vertical direction (Z direction in FIG. 9) at a predetermined angle θ3 with respect to the horizontal portion 27. In this embodiment, the angle θ3 is 90 degrees. That is, the housing 2 is formed in an L shape when viewed from the horizontal direction (Y direction in FIG. 9).

折り曲げ部23は、複数のピラー22Pのピラー22P同士の間に位置する。言い換えれば、折り曲げ部23は、折り曲げ部23の稜線23Rの延伸方向(図9のY方向)と交差する方向(図9のX方向及びZ方向)に沿って並ぶピラー22P同士の間に位置する。詳細に言えば、折り曲げ部23は、熱伝導部材1の被加熱部11側の端部から放熱部12側の端部に向かう方向(図9のX方向及びZ方向)に並ぶ複数のピラー22Pのうち、図9のY方向から見て、当該方向(X方向及びZ方向)に隣り合うピラー22P同士の間に位置する。 The bent portion 23 is located between the pillars 22P of the plurality of pillars 22P. In other words, the bent portion 23 is located between the pillars 22P arranged along the direction (X direction and Z direction in FIG. 9) intersecting the extending direction (Y direction in FIG. 9) of the ridge line 23R of the bent portion 23. .. More specifically, the bent portion 23 has a plurality of pillars 22P arranged in a direction (X direction and Z direction in FIG. 9) from the end portion on the heated portion 11 side of the heat conductive member 1 toward the end portion on the heat dissipation portion 12 side. Of these, it is located between the pillars 22P adjacent to each other in the direction (X direction and Z direction) when viewed from the Y direction in FIG.

このように、変形例2の熱伝導部材1は、折り曲げ部23が1箇所であり、水平部27と垂直部28とが直交する形状である。ピラー22Pは、折り曲げ部23に位置していない。これにより、熱伝導部材1は、折り曲げ易くなる。すなわち、容易に折り曲げることが可能な熱伝導部材1を提供することができる。 As described above, the heat conductive member 1 of the modified example 2 has one bent portion 23, and has a shape in which the horizontal portion 27 and the vertical portion 28 are orthogonal to each other. The pillar 22P is not located at the bent portion 23. This makes it easier for the heat conductive member 1 to bend. That is, it is possible to provide the heat conductive member 1 that can be easily bent.

<4.その他>
以上、本開示の実施形態につき説明したが、本開示の範囲はこれに限定されるものではなく、本開示の主旨を逸脱しない範囲で、構成の付加、省略、置換及び他の種々の変更を加えて実施することができる。
<4. Others>
Although the embodiments of the present disclosure have been described above, the scope of the present disclosure is not limited thereto, and additions, omissions, substitutions, and various other changes of the configuration may be made without departing from the gist of the present disclosure. In addition, it can be carried out.

例えば、折り曲げ部23の数量は、1つ、あるいは2つに限定されるわけではなく、3つ以上設けても良い。また、筐体2の、折り曲げ部23を挟んで隣り合う領域がなす角度は、上記実施形態で説明した傾斜角、直角に限定されるわけではなく、他の角度であっても良い。また、折り曲げ部23は、上下方向から見て長方形状である筐体2の、被加熱部11及び放熱部12が並ぶ方向に対向する辺と平行な方向(例えば図5のY方向)に延びることとしたが、被加熱部11及び放熱部12が並ぶ方向に対向する辺に対して傾斜して延びることにしても良い。 For example, the number of the bent portions 23 is not limited to one or two, and three or more may be provided. Further, the angle formed by the regions of the housing 2 adjacent to each other across the bent portion 23 is not limited to the inclination angle and the right angle described in the above embodiment, and may be other angles. Further, the bent portion 23 extends in a direction parallel to the side of the housing 2, which is rectangular when viewed from the vertical direction, facing the side in which the heated portion 11 and the heat radiating portion 12 are lined up (for example, the Y direction in FIG. 5). However, the heated portion 11 and the heat radiating portion 12 may be inclined and extended with respect to the side facing each other in the line-up direction.

また、複数のピラー22Pの数量及び配列は、図に示した構成に限定されるわけではなく、他の数量及び配列であっても良い。また、ピラー22Pは、上下方向から見て円形の断面形状の柱に限定されるわけではなく、例えば楕円形、長方形などの他の断面形状の柱であっても良い。 Further, the quantity and arrangement of the plurality of pillars 22P are not limited to the configuration shown in the figure, and may be other quantities and arrangements. Further, the pillar 22P is not limited to a pillar having a circular cross-sectional shape when viewed from the vertical direction, and may be a pillar having another cross-sectional shape such as an ellipse or a rectangle.

本開示は、例えば電子機器に搭載される基板または電子部品の放熱に利用することができる。 The present disclosure can be used, for example, for heat dissipation of a substrate or an electronic component mounted on an electronic device.

1・・・熱伝導部材、2・・・筐体、2B・・・接合部、2M・・・発熱体取付部、2S・・・空間、3・・・ウィック構造体、4・・・作動媒体、11・・・被加熱部、12・・・放熱部、21・・・下プレート、21D・・・凹部、22・・・上プレート、22P・・・ピラー、23・・・折り曲げ部、23R・・・稜線、24・・・第1水平部、25・・・第2水平部、26・・・傾斜部、27・・・水平部、28・・・垂直部、101・・・治具、231・・・第1折り曲げ部、232・・・第2折り曲げ部、H・・・発熱体、L1・・・距離、L2・・・距離、θ1・・・角度、θ2・・・角度、θ3・・・角度 1 ... heat conductive member, 2 ... housing, 2B ... joint, 2M ... heating element mounting part, 2S ... space, 3 ... wick structure, 4 ... operation Medium, 11 ... heated part, 12 ... heat dissipation part, 21 ... lower plate, 21D ... recess, 22 ... upper plate, 22P ... pillar, 23 ... bent part, 23R ... Ridge line, 24 ... 1st horizontal part, 25 ... 2nd horizontal part, 26 ... inclined part, 27 ... horizontal part, 28 ... vertical part, 101 ... cure Tool 231 ... 1st bent part, 232 ... 2nd bent part, H ... heating element, L1 ... distance, L2 ... distance, θ1 ... angle, θ2 ... angle , Θ3 ... Angle

Claims (7)

内部に空間を有する筐体と、前記空間に配置される作動媒体と、を有する熱伝導部材であって、
前記筐体は、
前記筐体の厚み方向の上側に位置し、前記空間の上側を覆う上プレートと、
前記上プレートと前記厚み方向に対向して前記空間の下側に位置する下プレートと、
前記上プレートと前記下プレートとの間に位置する複数のピラーと、
を有し、
前記筐体は、さらに前記上プレート及び前記下プレートがともに前記厚み方向の同じ方向に折り曲げられた折り曲げ部を有し、
前記折り曲げ部は、前記複数のピラーの前記ピラー同士の間に位置する、熱伝導部材。
A heat conductive member having a housing having a space inside and a working medium arranged in the space.
The housing is
An upper plate located on the upper side in the thickness direction of the housing and covering the upper side of the space,
A lower plate located on the lower side of the space facing the upper plate in the thickness direction, and a lower plate.
A plurality of pillars located between the upper plate and the lower plate,
Have,
The housing further has a bent portion in which both the upper plate and the lower plate are bent in the same direction in the thickness direction.
The bent portion is a heat conductive member located between the pillars of the plurality of pillars.
複数の前記折り曲げ部を有し、
少なくとも1つの前記ピラーは、2つの前記折り曲げ部の間に位置する、請求項1に記載の熱伝導部材。
It has a plurality of the bent portions and has a plurality of the bent portions.
The heat conductive member according to claim 1, wherein the at least one pillar is located between the two bent portions.
前記折り曲げ部の稜線の延伸方向と交差する方向に並ぶ前記折り曲げ部と前記ピラーとの距離は、前記折り曲げ部の稜線の延伸方向と交差する方向に並ぶ前記ピラー同士の距離よりも短い、請求項1または請求項2に記載の熱伝導部材。 Claimed that the distance between the bent portion arranged in the direction intersecting the extending direction of the ridge line of the bent portion and the pillar is shorter than the distance between the pillars arranged in the direction intersecting the extending direction of the ridge line of the bent portion. 1 or the heat conductive member according to claim 2. 前記折り曲げ部は、少なくとも1つの前記ピラーに隣接する、請求項1から請求項3のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 3, wherein the bent portion is adjacent to at least one of the pillars. 前記折り曲げ部は、前記複数のピラーに隣接する、請求項4に記載の熱伝導部材。 The heat conductive member according to claim 4, wherein the bent portion is adjacent to the plurality of pillars. 前記複数のピラーは、前記筐体の外縁の一端部から、対向する他端部まで全域にわたって所定間隔で配置される、請求項1から請求項5のいずれかに記載の熱伝導部材。 The heat conductive member according to any one of claims 1 to 5, wherein the plurality of pillars are arranged at predetermined intervals over the entire area from one end of the outer edge of the housing to the other end facing the housing. 前記空間に配置されるウィック構造体を有し、
前記ウィック構造体は、前記折り曲げ部の稜線の延伸方向と交差する方向において前記折り曲げ部の両側の領域にわたって位置する、請求項1から請求項6のいずれかに記載の熱伝導部材。
It has a wick structure arranged in the space and has a wick structure.
The heat conductive member according to any one of claims 1 to 6, wherein the wick structure is located over a region on both sides of the bent portion in a direction intersecting the extending direction of the ridgeline of the bent portion.
JP2020146409A 2020-08-31 2020-08-31 Heat conduction member Pending JP2022041299A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020146409A JP2022041299A (en) 2020-08-31 2020-08-31 Heat conduction member
CN202110986626.4A CN114111403A (en) 2020-08-31 2021-08-26 Heat conduction member
US17/458,626 US20220065546A1 (en) 2020-08-31 2021-08-27 Heat conduction member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020146409A JP2022041299A (en) 2020-08-31 2020-08-31 Heat conduction member

Publications (1)

Publication Number Publication Date
JP2022041299A true JP2022041299A (en) 2022-03-11

Family

ID=80356449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020146409A Pending JP2022041299A (en) 2020-08-31 2020-08-31 Heat conduction member

Country Status (3)

Country Link
US (1) US20220065546A1 (en)
JP (1) JP2022041299A (en)
CN (1) CN114111403A (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748971A (en) * 2011-04-18 2012-10-24 中国科学院理化技术研究所 Flexible heat-transfer device based on low-melting metal joints
CN103512414B (en) * 2012-06-15 2015-07-29 奇鋐科技股份有限公司 Heat pipe structure, heat radiation module and electronic installation
US11543188B2 (en) * 2016-06-15 2023-01-03 Delta Electronics, Inc. Temperature plate device
JP2021036175A (en) * 2017-09-29 2021-03-04 株式会社村田製作所 Vapor chamber
TWI633267B (en) * 2017-10-25 2018-08-21 神基科技股份有限公司 Bendable heat plate

Also Published As

Publication number Publication date
US20220065546A1 (en) 2022-03-03
CN114111403A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US10973151B2 (en) Vapor chamber
KR102442311B1 (en) Vapor chamber, electronic device, metal sheet for vapor chamber and manufacturing method of vapor chamber
US20190021188A1 (en) Vapor chamber
CN111712682B (en) Vapor chamber
US11421942B2 (en) Vapor chamber
US11160197B2 (en) Heat dissipation unit
JP2022016147A (en) Heat conductive member
CN114111410A (en) Vapor chamber
JP6988681B2 (en) Heat pipes and electronic devices
JP2022041300A (en) Heat conduction member
US10497640B2 (en) Heat pipe
JP2022041299A (en) Heat conduction member
JP2022041301A (en) Heat conduction member
JP6917006B2 (en) Manufacturing method of vapor chamber, metal sheet for vapor chamber and vapor chamber
JP2015102269A (en) Heat pipe, heat pipe production method and electronic apparatus
CN217818298U (en) Heat conduction member
CN218483134U (en) Thermal diffusion device and electronic apparatus
JP2022161366A (en) Heat conduction member
WO2023238626A1 (en) Heat diffusion device and electronic appliance
WO2023238625A1 (en) Heat spreading device and electronic apparatus
JP2021181874A (en) Heat transporting device
JP2022157408A (en) Heat conduction member
JP2023118134A (en) Thermally conductive member
JP2022134067A (en) Heat conductive member and electronic device
JP2023006702A (en) Heat conductive member