JP2022040591A - Non-woven fabric for sound absorption material, sound absorption material and manufacturing method of non-woven fabric for sound absorption material - Google Patents

Non-woven fabric for sound absorption material, sound absorption material and manufacturing method of non-woven fabric for sound absorption material Download PDF

Info

Publication number
JP2022040591A
JP2022040591A JP2020145378A JP2020145378A JP2022040591A JP 2022040591 A JP2022040591 A JP 2022040591A JP 2020145378 A JP2020145378 A JP 2020145378A JP 2020145378 A JP2020145378 A JP 2020145378A JP 2022040591 A JP2022040591 A JP 2022040591A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
sound absorbing
fiber
absorbing material
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020145378A
Other languages
Japanese (ja)
Other versions
JP7468255B2 (en
Inventor
誠 中原
Makoto Nakahara
秀朗 唐崎
Hideaki Karasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020145378A priority Critical patent/JP7468255B2/en
Publication of JP2022040591A publication Critical patent/JP2022040591A/en
Application granted granted Critical
Publication of JP7468255B2 publication Critical patent/JP7468255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide a non-woven fabric for sound absorption material and a sound absorption material, which are excellent in sound absorption performance of a low frequency region, excellent in productivity and excellent in quality, and to provide a manufacturing method of the non-woven fabric for sound absorption material.SOLUTION: A non-woven fabric for sound absorption material has a laminated structure of a non-woven fabric A and a non-woven fabric B. The non-woven fabric A contains 80% by mass or more of fibers A1 with fineness of 0.002 to 0.3 dtex with respect to the entire non-woven fabric A, and the non-woven fabric B contains 30 to 80% by mass of short fibers A2 having fineness of 0.4 to 0.9 dtex with respect to the entire nonwoven fabric B. The nonwoven fabric B contains 20 to 70% by mass of the short fibers B with the fineness of 1.1 to 20.0 dtex with respect to the entire nonwoven fabric B. A passing coefficient of the short fibers A2 shown in the following formula (1) is in the range of 15 to 260. Passing coefficient=(fineness×strength×√ elongation×√ number of crimps×√ crimp degree)/(fiber length) (1)<fineness (dtex), strength (cN/dtex), elongation (%), number of crimps(crimps/25 mm), crimp degree(%), fiber length (cm)>.SELECTED DRAWING: None

Description

本発明は、吸音材用不織布、吸音材、および吸音材用不織布の製造方法に関する。 The present invention relates to a non-woven fabric for a sound absorbing material, a sound absorbing material, and a method for manufacturing a non-woven fabric for a sound absorbing material.

近年、自動車や電気製品などにおいて静粛性が製品の商品価値の一つとしてこれまで以上に重要視されてきている。一般に騒音対策には対策部品となる吸音材の質量および厚みを増すことが有効とされるが、自動車室内や居室内の空間を広く保つことや自動車では低燃費化の観点から、吸音材の軽量化・コンパクト化が要求されている。さらに、自動車分野ではエンジン廻りなどに適用できる耐熱性が要求されている。 In recent years, quietness has become more important than ever as one of the commercial values of products in automobiles and electric products. Generally, it is effective to increase the mass and thickness of the sound absorbing material, which is a countermeasure component, as a noise countermeasure. It is required to be compact and compact. Further, in the field of automobiles, heat resistance that can be applied around an engine is required.

特許文献1には、ナノファイバーからなる層とナノファイバーより太い繊維の層とを積層した吸音材用積層不織布が提案されている。 Patent Document 1 proposes a laminated non-woven fabric for a sound absorbing material in which a layer made of nanofibers and a layer of fibers thicker than nanofibers are laminated.

また、特許文献2には、繊度が0.1~1.0dtexの極細繊維と繊度が1.2~5.0dtexの短繊維とを含むシート状の基材の片面を加熱および加圧して、通気調整膜を形成した車両用防音材の製造方法が提案されている。 Further, in Patent Document 2, one side of a sheet-like base material containing ultrafine fibers having a fineness of 0.1 to 1.0 dtex and short fibers having a fineness of 1.2 to 5.0 dtex is heated and pressed. A method for manufacturing a soundproof material for a vehicle on which a ventilation adjusting film is formed has been proposed.

また、特許文献3には、繊度が0.4~0.8dtexの合成繊維とセルロース繊維を主成分とするフェイスマスク用混繊不織布が提案されている。 Further, Patent Document 3 proposes a mixed fiber non-woven fabric for a face mask containing synthetic fibers having a fineness of 0.4 to 0.8 dtex and cellulose fibers as main components.

また、特許文献4には、メルトブローン不織布と、繊維径が6~8μmの短繊維を含むニードルパンチ不織布基材を積層した吸音材が提案されている。 Further, Patent Document 4 proposes a sound absorbing material in which a meltblown nonwoven fabric and a needle punched nonwoven fabric base material containing short fibers having a fiber diameter of 6 to 8 μm are laminated.

国際公開第2016/143857号International Publication No. 2016/143857 特開2016―34828号公報Japanese Unexamined Patent Publication No. 2016-34828 国際公開第2020/31798号International Publication No. 2020/31798 国際公開第2019/106757号International Publication No. 2019/106757

本発明者らの知見によると、特許文献1に開示された吸音材用積層不織布および特許文献2に開示された車両用防音材(以下、吸音材用不織布など)は、いずれも極細繊維を含有するため、いずれの防音性能も比較的、優れたものとなる傾向がみられる。 According to the findings of the present inventors, both the laminated non-woven fabric for sound absorbing material disclosed in Patent Document 1 and the soundproofing material for vehicles disclosed in Patent Document 2 (hereinafter, non-woven fabric for sound absorbing material) contain ultrafine fibers. Therefore, there is a tendency that the soundproofing performance is relatively excellent.

しかし、吸音材用不織布などは、これらの製造工程において、極細繊維を含有する繊維にカード機やフリースマシンによる開繊処理を施す工程(以下、カード工程)を経て得られるものである。そして、上記のカード工程では、極細繊維は、繊度が比較的大きい繊維に比べて糸切れや針布への巻き付きが発生する傾向がみられる。以上のことから、極細繊維を使用する吸音材用不織布などは生産性に劣るとの課題がある。また、吸音材用不織布などの内部に切れた極細繊維が繊維塊として発生する傾向もみられ、この場合には、吸音材用不織布などを用いた吸音材の吸音性能が劣ったものとなるとともに、上記の吸音材の品位も劣ったものとなるとの課題がある。 However, the non-woven fabric for a sound absorbing material or the like is obtained through a step (hereinafter referred to as a card step) in which fibers containing ultrafine fibers are subjected to a fiber opening treatment by a card machine or a fleece machine in these manufacturing steps. In the above-mentioned card process, the ultrafine fibers tend to have thread breakage and wrapping around the needle cloth as compared with the fibers having a relatively large fineness. From the above, there is a problem that the non-woven fabric for sound absorbing material using ultrafine fibers is inferior in productivity. In addition, there is also a tendency for ultrafine fibers that are cut inside the non-woven fabric for sound absorbing material to be generated as fiber lumps. There is a problem that the quality of the above-mentioned sound absorbing material is also inferior.

上記の生産性の課題について、特許文献3では、不織布に使用する極細繊維の物性を特定の範囲とすることで、カード工程における糸切れや針布への巻き付きの抑制が図れるとされている。しかし、特許文献3には、極細繊維の捲縮度と生産性の関係を示す開示は無く、吸音材用不織布を製造する際の生産性には劣るとの課題がある。また、極細繊維が繊維塊として発生する傾向もみられ、この場合には、吸音材としての吸音性能が劣ったものとなるとともに、品位も劣ったものとなるとの課題がある。 Regarding the above-mentioned productivity problem, Patent Document 3 states that by setting the physical properties of the ultrafine fibers used for the non-woven fabric within a specific range, it is possible to suppress thread breakage and wrapping around the needle cloth in the card process. However, Patent Document 3 does not disclose the relationship between the degree of crimping of ultrafine fibers and productivity, and there is a problem that the productivity when producing a nonwoven fabric for sound absorbing material is inferior. Further, there is a tendency that ultrafine fibers are generated as fiber lumps, and in this case, there is a problem that the sound absorbing performance as a sound absorbing material is inferior and the quality is also inferior.

他方、特許文献4には、優れた吸音効果を得るために、極細短繊維を含むニードルパンチ不織布基材の表面にメルトブローン不織布を積層し吸音材とする開示がある。しかし、特許文献4には極細短繊維の物性と生産性の関係を示す開示はなく、吸音材用不織布を製造する際の生産性には劣るとの課題がある。また、極細繊維が繊維塊として発生する傾向もみられ、この場合には、吸音材としての吸音性能が劣ったものとなるとともに、品位も劣ったものとなるとの課題がある。 On the other hand, Patent Document 4 discloses that a meltblown nonwoven fabric is laminated on the surface of a needle punched nonwoven fabric base material containing ultrafine short fibers to form a sound absorbing material in order to obtain an excellent sound absorbing effect. However, Patent Document 4 does not disclose the relationship between the physical properties of the ultrafine staple fibers and the productivity, and there is a problem that the productivity in producing the nonwoven fabric for sound absorbing material is inferior. Further, there is a tendency that ultrafine fibers are generated as fiber lumps, and in this case, there is a problem that the sound absorbing performance as a sound absorbing material is inferior and the quality is also inferior.

そこで、本発明は、上記の事情に鑑み、特に低周波領域の吸音性能、および生産性に優れるとともに、品位にも優れた吸音材用不織布、吸音材、および吸音材用不織布の製造方法を提供することを課題とする。 Therefore, in view of the above circumstances, the present invention provides a non-woven fabric for sound absorbing material, a non-woven fabric for sound absorbing material, and a non-woven fabric for sound absorbing material, which are excellent in sound absorbing performance and productivity in a particularly low frequency region and also have excellent quality. The task is to do.

上記課題を解決するため、本発明は以下の構成を有する。すなわち、
(1)不織布Aと不織布Bとの積層構造を有し、前記不織布Aが、繊度0.002~0.3dtexの繊維A1を不織布A全体に対して80質量%以上含有し、前記不織布Bが、繊度0.4~0.9dtexの短繊維A2を不織布B全体に対して30~80質量%含有し、前記不織布Bが、繊度が1.1~20.0dtexの短繊維Bを不織布B全体に対して20~70質量%含有し、前記短繊維A2の下記の式(1)に示す通過係数は15~260の範囲内である、吸音材用不織布であり、
通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
(2)目付が、150g/m以上700g/m以下であり、厚さが、0.6mm以上4.0mm以下である、(1)の吸音材用不織布であることが好ましく、
(3)密度が、0.07g/cm以上0.40g/cm以下である、(1)または(2)の吸音材用不織布であることが好ましく、
(4)前記短繊維A2がポリエステル系短繊維である、(1)~(3)のいずれかの吸音材用不織布であることが好ましく、
(5)前記短繊維A2の引張強度が5cN/dtex以上であり、前記短繊維A2の引張伸度が20~35%である、(1)~(4)のいずれかの吸音材用不織布であることが好ましく、
(6)前記短繊維A2の繊度が0.4~0.9dtexであり、前記短繊維Bの繊度が1.1~1.8dtexであり、かつ前記短繊維A2と前記短繊維Bの繊度の比(短繊維A2の繊度/短繊維Bの繊度)が0.30~0.60である、(1)~(5)のいずれかの吸音材用不織布であることが好ましく、
(7)(1)~(6)のいずれかの吸音材用不織布と、繊維系多孔質体、発泡体、または空気層からなる層状物とを、有し、前記層状物は、前記吸音材用不織布の一方の面に積層されており、前記層状物の厚さが、5~50mmである、吸音材であり、
(8)メルトブロー法により、繊度0.002~0.3dtexの繊維A1を不織布A全体に対して80質量%以上含有する不織布Aを得る工程と、短繊維A2および短繊維Bに開繊処理を施し、短繊維A2および短繊維Bの混繊ウェブを得る工程と、前記混繊ウェブがウォータージェットパンチノズルを3回以上通過し、不織布Bを得る工程と、前記不織布Aと前記部織布Bとを積層する工程とを有し、前記短繊維A2の繊度が、0.4~0.9dtexであり、前記短繊維A2の下記の式(1)に示す通過係数が、15~260の範囲内であり、前記短繊維Bの繊度が、1.1~20.0dtexであり、前記混繊ウェブの全体に対する前記短繊維A2の含有量が、30~80質量%であり、前記混繊ウェブの全体に対する前記短繊維Bの含有量が、20~70質量%である、吸音材用不織布の製造方法である。
In order to solve the above problems, the present invention has the following configurations. That is,
(1) The nonwoven fabric A has a laminated structure of the nonwoven fabric A and the nonwoven fabric B, and the nonwoven fabric A contains fibers A1 having a fineness of 0.002 to 0.3 dtex in an amount of 80% by mass or more with respect to the entire nonwoven fabric A. The non-woven fabric B contains 30 to 80% by mass of short fibers A2 having a fineness of 0.4 to 0.9 dtex with respect to the entire non-woven fabric B, and the non-woven fabric B contains short fibers B having a fineness of 1.1 to 20.0 dtex as a whole. It is a non-woven fabric for a sound absorbing material, which contains 20 to 70% by mass with respect to the above, and the passing coefficient of the short fiber A2 represented by the following formula (1) is in the range of 15 to 260.
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
(2) The nonwoven fabric for sound absorbing material according to (1) having a basis weight of 150 g / m 2 or more and 700 g / m 2 or less and a thickness of 0.6 mm or more and 4.0 mm or less is preferable.
(3) The non-woven fabric for sound absorbing material according to (1) or (2) having a density of 0.07 g / cm 3 or more and 0.40 g / cm 3 or less is preferable.
(4) The non-woven fabric for a sound absorbing material according to any one of (1) to (3), wherein the short fiber A2 is a polyester-based staple fiber, is preferable.
(5) The nonwoven fabric for sound absorbing material according to any one of (1) to (4), wherein the staple fiber A2 has a tensile strength of 5 cN / dtex or more and the staple fiber A2 has a tensile elongation of 20 to 35%. It is preferable to have
(6) The fineness of the short fiber A2 is 0.4 to 0.9 dtex, the fineness of the short fiber B is 1.1 to 1.8 dtex, and the fineness of the short fiber A2 and the short fiber B is high. It is preferable that the non-woven fabric for a sound absorbing material according to any one of (1) to (5) has a ratio (fineness of short fiber A2 / fineness of short fiber B) of 0.30 to 0.60.
(7) The non-woven fabric for a sound absorbing material according to any one of (1) to (6) and a layered material composed of a fibrous porous body, a foam, or an air layer are provided, and the layered material is the sound absorbing material. A sound absorbing material which is laminated on one surface of a non-woven fabric for use and has a thickness of the layered material of 5 to 50 mm.
(8) A step of obtaining a non-woven fabric A containing 80% by mass or more of fibers A1 having a fineness of 0.002 to 0.3 dtex with respect to the entire non-woven fabric A by a melt blow method, and an opening treatment for the short fibers A2 and the short fibers B. A step of obtaining a mixed fiber web of short fibers A2 and short fibers B, a step of passing the mixed fiber web through a water jet punch nozzle three times or more to obtain a non-woven fabric B, and a step of obtaining the non-woven fabric A and the partial woven fabric B. The short fiber A2 has a fineness of 0.4 to 0.9 dtex, and the passage coefficient of the short fiber A2 represented by the following formula (1) is in the range of 15 to 260. The fineness of the short fiber B is 1.1 to 20.0 dtex, the content of the short fiber A2 with respect to the whole of the mixed fiber web is 30 to 80% by mass, and the mixed fiber web. This is a method for producing a non-woven fabric for a sound absorbing material, wherein the content of the short fibers B in the whole is 20 to 70% by mass.

通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>

本発明によれば、所定の物性を有する極細繊維を使用することにより、特に、低周波領域の吸音性能、および生産性に優れるとともに、品位にも優れた吸音材用不織布を提供することができる。 According to the present invention, by using ultrafine fibers having predetermined physical properties, it is possible to provide a nonwoven fabric for a sound absorbing material which is excellent in sound absorbing performance and productivity in a low frequency region and also in excellent quality. ..

以下、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本発明の吸音材用不織布は、不織布Aと不織布Bとの積層構造を有する。そして、不織布Aが、繊度0.002~0.3dtexの繊維A1を不織布A全体に対して80質量%以上含有する。 The nonwoven fabric for sound absorbing material of the present invention has a laminated structure of nonwoven fabric A and nonwoven fabric B. The nonwoven fabric A contains 80% by mass or more of the fibers A1 having a fineness of 0.002 to 0.3 dtex with respect to the entire nonwoven fabric A.

吸音材用不織布が、繊度0.002~0.3dtexの微細な繊維A1を不織布A全体に対して80質量%以上含有する不織布Aを有することにより、吸音材用不織布が、微細な孔を多数有する多孔質部を形成することができる。これにより、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。さらに、不織布Aが上記の微細な繊維A1を不織布A全体に対して80質量%以上含有することで、後述の吸音材用不織布に積層される繊維系多孔質体、発泡体、または空気層に含まれる空気と、吸音材用不織布が共鳴し、吸音材用不織布の膜振動効果により、特に低周波領域の吸音性能が向上する。なお、本件明細書において、吸音性能に優れるとの記載は、低周波領域の吸音性能に優れることを意味する。 Since the nonwoven fabric for sound absorbing material has a nonwoven fabric A containing 80% by mass or more of fine fibers A1 having a fineness of 0.002 to 0.3 dtex with respect to the entire nonwoven fabric A, the nonwoven fabric for sound absorbing material has a large number of fine holes. It is possible to form a porous portion having. As a result, when sound passes through the voids (that is, the porous portion) between the fibers, the sound can be efficiently converted into heat by air friction with the fibers around the voids, and when used as a sound absorbing material. Excellent sound absorption can be obtained. Further, when the nonwoven fabric A contains the above-mentioned fine fibers A1 in an amount of 80% by mass or more with respect to the entire nonwoven fabric A, the fiber-based porous body, foam, or air layer laminated on the nonwoven fabric for sound absorbing material described later has. The contained air resonates with the non-woven fabric for sound absorbing material, and the film vibration effect of the non-woven fabric for sound absorbing material improves the sound absorbing performance especially in the low frequency region. In the present specification, the description that the sound absorption performance is excellent means that the sound absorption performance in the low frequency region is excellent.

繊維A1の繊度を0.002dtex以上とすることで、不織布Aの表面における音の表面反射を低減することができ、不織布Aに含まれる繊維A1と音の空気摩擦による吸音性を高めることができる。一方、繊維A1の繊度を0.3dtex以下とすることで、吸音材用不織布の膜振動効果により、特に低周波の吸音性を高めることができる。前記の点で、繊維A1の繊度は、0.004~0.2dtexであることが好ましく、0.006~0.1dtexであることがさらに好ましい。 By setting the fineness of the fiber A1 to 0.002 dtex or more, the surface reflection of sound on the surface of the nonwoven fabric A can be reduced, and the sound absorption due to the air friction between the fiber A1 contained in the nonwoven fabric A and the sound can be enhanced. .. On the other hand, by setting the fineness of the fiber A1 to 0.3 dtex or less, the sound absorption property of a particularly low frequency can be enhanced by the film vibration effect of the non-woven fabric for sound absorbing material. In the above points, the fineness of the fiber A1 is preferably 0.004 to 0.2 dtex, and more preferably 0.006 to 0.1 dtex.

ここで、繊維A1を構成する素材については、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等の熱可塑性樹脂を使用することができる。これらの中でも、繊維A1は、耐熱性に優れる、すなわち、自動車などのエンジンルームに使用する際の吸音材用不織布の高温環境下における変形や変色が少なくできる点で、ポリエステル系樹脂からなる繊維(ポリエステル系繊維)、中でも耐熱性に優れるポリエチレンテレフタレート樹脂からなる繊維であることが好ましい。また、生産性の点では後述のメルトブロー法により効率的に不織布Aを生産できる、ポリオレフィン系樹脂からなる繊維(ポリオレフィン系繊維)、中でも生産性に優れるポリプロピレン樹脂からなる繊維であることが好ましい。なお、これらの熱可塑性樹脂は、複数種類のモノマーが重合されてなるものであっても良いし、また、安定剤などの添加物を含有するものであっても良い。 Here, as the material constituting the fiber A1, a thermoplastic resin such as a polyester resin, a polyamide resin, an acrylic resin, or a polyolefin resin can be used. Among these, the fiber A1 is a fiber made of a polyester resin because it has excellent heat resistance, that is, it can reduce deformation and discoloration of the non-woven fabric for sound absorbing material in a high temperature environment when used in an engine room of an automobile or the like. Polyester fiber), especially a fiber made of polyethylene terephthalate resin having excellent heat resistance is preferable. Further, from the viewpoint of productivity, a fiber made of a polyolefin-based resin (polyolefin-based fiber) capable of efficiently producing the nonwoven fabric A by the melt blow method described later, particularly a fiber made of a polypropylene resin having excellent productivity is preferable. It should be noted that these thermoplastic resins may be obtained by polymerizing a plurality of types of monomers, or may contain additives such as stabilizers.

本発明の不織布Bは、繊度が0.4~0.9dtexの短繊維A2を不織布B全体に対して30~80質量%含有し、繊度が1.1~20.0dtexの短繊維Bを不織布B全体に対して20~70質量%含有し、短繊維A2の下記の式(1)に示す通過係数は15~260の範囲内である。 The nonwoven fabric B of the present invention contains the short fibers A2 having a fineness of 0.4 to 0.9 dtex in an amount of 30 to 80% by mass with respect to the entire nonwoven fabric B, and the staple fibers B having a fineness of 1.1 to 20.0 dtex are contained in the nonwoven fabric B. It contains 20 to 70% by mass with respect to the entire B, and the passage coefficient of the staple fiber A2 represented by the following formula (1) is in the range of 15 to 260.

通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
上記の不織布Bを有することにより、吸音材用不織布が、微細な孔を多数有する多孔質部を形成することができる。これにより、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。更に、不織布層Bが一定の質量を有することで、不織布Aにより得られる吸音材用不織布の膜振動効果を、より高めることができ、特に低周波の吸音性が向上する。
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
By having the above-mentioned nonwoven fabric B, the nonwoven fabric for sound absorbing material can form a porous portion having a large number of fine pores. As a result, when sound passes through the voids (that is, the porous portion) between the fibers, the sound can be efficiently converted into heat by air friction with the fibers around the voids, and when used as a sound absorbing material. Excellent sound absorption can be obtained. Further, when the nonwoven fabric layer B has a certain mass, the film vibration effect of the nonwoven fabric for sound absorbing material obtained by the nonwoven fabric A can be further enhanced, and the sound absorbing property of a particularly low frequency is improved.

上記のような不織布Bは、その製造工程におけるカード機などによるカード工程で、短繊維A2の糸切れや短繊維A2の針布への巻き付きの発生が抑制される。そして、短繊維A2の糸切れや短繊維A2の針布への巻き付きの発生が抑制されることで、不織布Bの生産性が向上し、吸音材用不織布の生産性が優れたものとなるとともに、不織布Bの内部に切れた短繊維A2が繊維塊として発生することも抑制されるので、高い吸音性能が得られる。また、不織布Bの内部に切れた短繊維A2が繊維塊として発生することも抑制されるので、不織布Bの品位も向上し、吸音材用不織布の品位も優れたものとなるとの効果が得られることを本発明者は見出した。なお、これらの効果を総じて「本発明の効果」と称することがある。本発明の吸音材用不織布が上記の効果を奏することができるのは、短繊維A2のカード通過係数が15~260の範囲内であるためと推測する。 In the non-woven fabric B as described above, the occurrence of thread breakage of the short fiber A2 and the wrapping of the short fiber A2 around the staple cloth is suppressed in the card process by a card machine or the like in the manufacturing process. By suppressing the occurrence of thread breakage of the short fiber A2 and wrapping of the short fiber A2 around the staple cloth, the productivity of the nonwoven fabric B is improved, and the productivity of the nonwoven fabric for sound absorbing material is improved. Since the short fibers A2 cut inside the non-woven fabric B are also suppressed from being generated as fiber lumps, high sound absorption performance can be obtained. Further, since the generation of the short fibers A2 cut inside the nonwoven fabric B as fiber lumps is suppressed, the quality of the nonwoven fabric B is improved, and the quality of the nonwoven fabric for sound absorbing material is also excellent. The present inventor has found that. In addition, these effects may be collectively referred to as "effects of the present invention". It is presumed that the non-woven fabric for sound absorbing material of the present invention can exert the above effect because the card passing coefficient of the staple fiber A2 is in the range of 15 to 260.

本発明の不織布Bは、繊度が1.1~20.0dtexの短繊維Bを不織布Bの全質量に対して20~70質量%含有するとの特徴(特徴点1)を有する。本発明の吸音材用不織布の構成において、吸音材用不織布が上記の特徴点1を満たすことで、本発明の効果が得られる。上記のとおり、繊度の小さい短繊維A2は、短繊維Bと比較して、カード工程において糸切れを起こしたり、針布へ巻き付いたり、吸音材用不織布の内部において繊維塊となり易い傾向がみられる。その一方で、繊度が1.1~20.0dtexの短繊維Bは上記の糸切れや巻き付き、繊維塊の現象が発生しにくい。 The nonwoven fabric B of the present invention has a feature (feature point 1) that it contains 20 to 70% by mass of short fibers B having a fineness of 1.1 to 20.0 dtex with respect to the total mass of the nonwoven fabric B. In the configuration of the nonwoven fabric for sound absorbing material of the present invention, the effect of the present invention can be obtained when the nonwoven fabric for sound absorbing material satisfies the above-mentioned feature 1. As described above, the short fiber A2 having a low fineness tends to cause thread breakage in the card process, wrap around the staple cloth, and become a fiber lump inside the non-woven fabric for sound absorbing material, as compared with the short fiber B. .. On the other hand, the staple fiber B having a fineness of 1.1 to 20.0 dtex is less likely to cause the above-mentioned yarn breakage, winding, and fiber lump phenomenon.

よって、そのような短繊維Bを不織布Bの全質量に対して20質量%以上含有することで、不織布B全体で発生する糸切れや針布への巻き付き、繊維塊の発生の頻度が低下し、結果として、不織布Bの生産性や品位が向上し、生産性や品位に優れた吸音材用不織布が得られるものと推測する。一方で、不織布Bを構成する短繊維Bの含有量が多すぎると、不織布Bの多孔質部が粗く大きいものとなり、吸音材用不織布を吸音材として使用する際の吸音性能が低下する傾向にある。したがって、短繊維Bの含有量は不織布Bの全質量に対して70質量%以下である。前記の点で、短繊維Bの含有量は、不織布Bの全質量に対して、25質量%以上であることが好ましく、30%質量以上であることがさらに好ましい。また、60質量%以下であることが好ましく、55質量%以下であることがさらに好ましい。 Therefore, by containing 20% by mass or more of such short fibers B with respect to the total mass of the nonwoven fabric B, the frequency of yarn breakage, wrapping around the staple cloth, and occurrence of fiber lumps that occur in the entire nonwoven fabric B is reduced. As a result, it is presumed that the productivity and quality of the nonwoven fabric B are improved, and a nonwoven fabric for a sound absorbing material having excellent productivity and quality can be obtained. On the other hand, if the content of the short fibers B constituting the nonwoven fabric B is too large, the porous portion of the nonwoven fabric B becomes coarse and large, and the sound absorbing performance when the nonwoven fabric for sound absorbing material is used as the sound absorbing material tends to deteriorate. be. Therefore, the content of the staple fibers B is 70% by mass or less with respect to the total mass of the nonwoven fabric B. In the above points, the content of the staple fibers B is preferably 25% by mass or more, more preferably 30% by mass or more, based on the total mass of the nonwoven fabric B. Further, it is preferably 60% by mass or less, and more preferably 55% by mass or less.

また、短繊維Bの繊度は1.1~20.0dtexである。短繊維Bの繊度を20.0dtex以下とすることで、繊度の小さい短繊維A2にて得られる、微細な多孔質部の形成を阻害することなく、吸音材として使用した際に優れた吸音性を得ることができる。一方、短繊維Bの繊度を1.1dtex以上とすることで、カード工程において、短繊維A2が不織布の内部で均一に分散し、不織布Bの内部に、短繊維A2が繊維塊として発生することが抑制され、不織布Bの品位が向上し、吸音材用不織布の品位が向上する。また、短繊維A2が均一に分散することで微細な孔を多数有する多孔質部を不織布Bの内部に形成することができ、不織布Bを含む吸音材用不織布を吸音材とした際の吸音性能が優れたものとなる。さらに、短繊維A2のカード工程での糸切れや、針布への巻き付きを抑制し、結果として、不織布Bの生産性、さらには吸音材用不織布の生産性を向上させることができる。前記の点で、短繊維Bの繊度は1.3~18.0dtexであることが好ましく、1.4~15.0dtexであることがさらに好ましい。 The fineness of the staple fiber B is 1.1 to 20.0 dtex. By setting the fineness of the staple fiber B to 20.0 dtex or less, the short fiber A2 having a small fineness does not hinder the formation of fine porous portions, and has excellent sound absorption when used as a sound absorbing material. Can be obtained. On the other hand, by setting the fineness of the staple fiber B to 1.1 dtex or more, the staple fiber A2 is uniformly dispersed inside the nonwoven fabric B, and the staple fiber A2 is generated as a fiber mass inside the nonwoven fabric B. Is suppressed, the quality of the nonwoven fabric B is improved, and the quality of the nonwoven fabric for sound absorbing material is improved. Further, since the short fibers A2 are uniformly dispersed, a porous portion having a large number of fine pores can be formed inside the nonwoven fabric B, and the sound absorbing performance when the nonwoven fabric for sound absorbing material containing the nonwoven fabric B is used as the sound absorbing material. Will be excellent. Further, it is possible to suppress thread breakage and wrapping around the staple cloth of the short fiber A2 in the card process, and as a result, it is possible to improve the productivity of the nonwoven fabric B and the productivity of the nonwoven fabric for sound absorbing material. In the above points, the fineness of the staple fiber B is preferably 1.3 to 18.0 dtex, and more preferably 1.4 to 15.0 dtex.

次に、本発明の不織布Bは、繊度が0.4~0.9dtexの短繊維A2を30~80質量%含有し、かつ、前記短繊維A2の下記の式(1)に示す通過係数が15~260の範囲内であるとの特徴(特徴点2)を有する。 Next, the nonwoven fabric B of the present invention contains 30 to 80% by mass of staple fibers A2 having a fineness of 0.4 to 0.9 dtex, and the passage coefficient of the staple fibers A2 represented by the following formula (1) is It has a feature (feature point 2) that is in the range of 15 to 260.

通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (式1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
本発明の不織布Bが上記の特徴点2を満たすことで、本発明の効果が得られる。上記のとおり、繊度の小さい短繊維A2は、カード工程において糸切れを起こしたり、針布へ巻き付いたり、不織布Bの内部にて繊維塊を形成し易い傾向がある。しかし、繊度が0.4~0.9dtexの短繊維A2であっても、カード通過係数が15~260の範囲内である場合には、カード工程における短繊維A2の糸切れ等の発生は抑制される。すなわち、短繊維A2の繊度が0.4~0.9dtexであり、かつ、通過係数が15~260であることで、その短繊維A2を特定の含有量にて含有する吸音材用不織布は、カード工程における短繊維A2の糸切れ等の発生が抑制され、不織布Bの生産性は向上し、吸音材用不織布は生産性に優れると共に、その吸音材用不織布を用いた吸音材の吸音性能が優れたものとなる。そのメカニズムは以下のとおりと推測する。短繊維A2の特性である、繊度、強度、伸度、捲縮数、捲縮度と、繊維長のバランスを最適化する(すなわち、短繊維A2のカード通過係数が15~260である)ことで、カード工程における短繊維A2と針布との間の摩擦による糸切れが抑制されたり(このことには、特に、短繊維A2の強度や短繊維A2の伸度の影響が大きいと考えられる)、カード工程における短繊維A2の針布への巻き付きが低減する(このことには、特に、短繊維A2の繊維長の影響が大きいと考える)ものと推測する。そして、カード工程において、不織布の内部で短繊維A2と短繊維Bとが均一に分散、交絡し、不織布Bの内部にて、短繊維A2が繊維塊として発生することも抑制され(このことは、特に、短繊維A2の捲縮数および捲縮度の影響が大きいと考えられる)、不織布Bの品位が向上し、吸音材用不織布の品位が向上するとともに、短繊維A2が不織布Bの内部で均一に分散することで微細な孔を多数有する多孔質部を不織布Bの内部に形成することができ、不織布Bを含む吸音材用不織布を用いた吸音材の吸音性能が優れたものとなる。
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (Equation 1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
When the nonwoven fabric B of the present invention satisfies the above-mentioned feature point 2, the effect of the present invention can be obtained. As described above, the short fiber A2 having a low fineness tends to cause thread breakage in the carding process, wrap around the staple cloth, and easily form a fiber mass inside the non-woven fabric B. However, even if the staple fiber A2 has a fineness of 0.4 to 0.9 dtex, if the card passing coefficient is within the range of 15 to 260, the occurrence of yarn breakage of the staple fiber A2 in the carding process is suppressed. Will be done. That is, the non-woven fabric for a sound absorbing material containing the short fibers A2 at a specific content has a fineness of 0.4 to 0.9 dtex and a passage coefficient of 15 to 260. The occurrence of thread breakage of the staple fiber A2 in the card process is suppressed, the productivity of the non-woven fabric B is improved, the non-woven fabric for sound absorbing material is excellent in productivity, and the sound absorbing performance of the sound absorbing material using the non-woven fabric for sound absorbing material is excellent. It will be excellent. The mechanism is presumed to be as follows. Optimizing the balance between the fineness, strength, elongation, number of crimps, and crimping degree, which are the characteristics of the short fiber A2, and the fiber length (that is, the card passing coefficient of the short fiber A2 is 15 to 260). Therefore, it is considered that the thread breakage due to the friction between the short fiber A2 and the needle cloth in the card process is suppressed (this is particularly affected by the strength of the short fiber A2 and the elongation of the short fiber A2). ), It is presumed that the wrapping of the short fiber A2 around the needle cloth in the card process is reduced (this is considered to be particularly affected by the fiber length of the short fiber A2). Then, in the card process, the short fibers A2 and the short fibers B are uniformly dispersed and entangled inside the non-woven fabric, and the generation of the short fibers A2 as a fiber mass is suppressed inside the non-woven fabric B (this means that it is suppressed. In particular, the number of crimps and the degree of crimp of the short fiber A2 are considered to be large), the quality of the non-woven fabric B is improved, the quality of the non-woven fabric for sound absorbing material is improved, and the short fiber A2 is inside the non-woven fabric B. A porous portion having a large number of fine pores can be formed inside the non-woven fabric B by uniformly dispersing in the non-woven fabric B, and the sound absorbing performance of the sound absorbing material using the non-woven fabric for sound absorbing material containing the non-woven fabric B becomes excellent. ..

また、前記の短繊維A2の通過係数は、短繊維A2の繊度、強度、伸度、捲縮数、捲縮度および繊維長の全てを考慮した調整により、所望のものとすることができる。そして、上記の理由から、短繊維A2の通過係数は20以上であることが好ましく、150以下であることがさらに好ましい。また、25以上であることがより好ましく、100以下であることがより好ましい。 Further, the passage coefficient of the staple fiber A2 can be made desired by adjusting the fineness, strength, elongation, number of crimps, crimp degree and fiber length of the staple fiber A2. For the above reasons, the passage coefficient of the staple fiber A2 is preferably 20 or more, and more preferably 150 or less. Further, it is more preferably 25 or more, and more preferably 100 or less.

短繊維A2の繊度、強度、伸度、捲縮数、捲縮度および繊維長の各々が取り得る範囲については、上記の通過係数が15~260の範囲となる限りにおいては特に限定されるものではないが、これらの個々についての好ましい範囲は以下のとおりである。 The range that each of the fineness, strength, elongation, number of crimps, crimp degree and fiber length of the staple fiber A2 can be taken is particularly limited as long as the above-mentioned passage coefficient is in the range of 15 to 260. However, the preferred range for each of these is as follows.

短繊維A2の繊度は0.4~0.9dtexである。短繊維A2の繊度を0.9dtex以下とすることで、繊度の小さい短繊維A2により、不織布Bの内部に、微細な孔を多数有する多孔質部を形成することができる。これにより、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。 The fineness of the staple fiber A2 is 0.4 to 0.9 dtex. By setting the fineness of the staple fiber A2 to 0.9 dtex or less, the short fiber A2 having a low fineness can form a porous portion having a large number of fine pores inside the nonwoven fabric B. As a result, when sound passes through the voids (that is, the porous portion) between the fibers, the sound can be efficiently converted into heat by air friction with the fibers around the voids, and when used as a sound absorbing material. Excellent sound absorption can be obtained.

一方、短繊維A2の繊度を0.4dtex以上とすることで、カード工程において、不織布内部において短繊維A2が均一に分散し、不織布Bの内部に、短繊維A2が繊維塊として発生することが抑制されるため、不織布Bの品位が向上し、吸音材用不織布の品位が向上する。また、短繊維A2が不織布内部で均一に分散することで微細な孔を多数有する多孔質部を不織布Bの内部に形成することができ、吸音材とした際の吸音性能が優れたものとなる。前記の点で、短繊維A2の繊度は0.5~0.8dtexであることが好ましく、0.5~0.7dtexであることがさらに好ましい。なお、0.4~0.9dtexよりも繊度の小さい極細繊維を得るためには、海島繊維を脱海する手法やエレクトロスピニング法を採用する必要があるが、これらの手法は短繊維等を製造する溶融紡糸法や湿式紡糸法等に比べ生産性に劣るとの課題がある。本発明の吸音材用不織布で用いる短繊維A2は、繊度が0.4~0.9dtexである。よって、この短繊維A2は溶融紡糸法や湿式紡糸法で生産することが可能である。すなわち、本発明の吸音材用不織布を得るのに海島繊維を脱海する手法やエレクトロスピニング法を用いる必要がない。よって、本発明の吸音材用不織布の生産性は、製造工程において海島繊維を脱海する手法やエレクトロスピニング法を用いる必要がある吸音材用不織布の生産性と比較し、優れたものとなる。 On the other hand, by setting the fineness of the short fibers A2 to 0.4 dtex or more, the short fibers A2 may be uniformly dispersed inside the non-woven fabric in the card process, and the short fibers A2 may be generated as fiber lumps inside the non-woven fabric B. Since it is suppressed, the quality of the nonwoven fabric B is improved, and the quality of the nonwoven fabric for sound absorbing material is improved. Further, since the short fibers A2 are uniformly dispersed inside the nonwoven fabric, a porous portion having many fine pores can be formed inside the nonwoven fabric B, and the sound absorbing performance when used as a sound absorbing material is excellent. .. In the above points, the fineness of the staple fiber A2 is preferably 0.5 to 0.8 dtex, and more preferably 0.5 to 0.7 dtex. In addition, in order to obtain ultrafine fibers having a fineness smaller than 0.4 to 0.9 dtex, it is necessary to adopt a method of desealing sea island fibers or an electrospinning method, but these methods produce short fibers and the like. There is a problem that the productivity is inferior to that of the melt spinning method and the wet spinning method. The staple fiber A2 used in the nonwoven fabric for sound absorbing material of the present invention has a fineness of 0.4 to 0.9 dtex. Therefore, the staple fibers A2 can be produced by a melt spinning method or a wet spinning method. That is, it is not necessary to use the method of desealing the sea island fibers or the electrospinning method to obtain the nonwoven fabric for sound absorbing material of the present invention. Therefore, the productivity of the non-woven fabric for sound-absorbing material of the present invention is superior to the productivity of the non-woven fabric for sound-absorbing material, which requires the use of a method for removing sea island fibers or an electrospinning method in the manufacturing process.

吸音材用不織布の吸音性を更に高めるためには、繊度が0.4~0.9dtexの短繊維A2と、繊度が1.1~1.8dtexの短繊維Bとを使用し、かつ短繊維A2と短繊維Bの繊度の比(短繊維A2の繊度/短繊維Bの繊度)が0.30~0.60とすることが好ましい。短繊維A2と短繊維Bの繊度を上記の範囲とすることで、繊度の小さい短繊維A2と、短繊維A2よりは大きい繊度であるが、比較的繊度の小さい短繊維Bによって、不織布Bの内部に、微細な孔を多数有する多孔質部を形成することができ、不織布Bを含む吸音材用不織布による吸音性を向上でき、特に優れた吸音性を備える吸音材とすることができる。 In order to further enhance the sound absorption property of the non-woven fabric for sound absorbing material, short fibers A2 having a fineness of 0.4 to 0.9 dtex and short fibers B having a fineness of 1.1 to 1.8 dtex are used, and the staple fibers are used. The ratio of the fineness of A2 to the short fiber B (the fineness of the short fiber A2 / the fineness of the short fiber B) is preferably 0.30 to 0.60. By setting the fineness of the short fiber A2 and the short fiber B in the above range, the short fiber A2 having a small fineness and the short fiber B having a finer fineness than the short fiber A2 but having a relatively low fineness make the nonwoven fabric B. It is possible to form a porous portion having a large number of fine pores inside, and it is possible to improve the sound absorption property of the non-woven fabric for sound absorbing material including the non-woven fabric B, and it is possible to obtain a sound absorbing material having particularly excellent sound absorbing property.

また、短繊維A2と短繊維Bの繊度の比(短繊維A2の繊度/短繊維Bの繊度)を0.30以上とすることで、短繊維A2の相対的な繊度が小さくなることによるカード通過工程での繊維塊の発生が抑制されると共に、短繊維Bの相対的な繊度が大きくなることによる吸音性の低下が抑制されるため好ましい。また、短繊維A2と短繊維Bの繊度の比(短繊維A2の繊度/短繊維Bの繊度)を0.60以下とすることで、相対的に繊度の小さな短繊維A2と、相対的に繊度の大きい短繊維Bにより、カード工程において、短繊維A2と短繊維Bが不織布の内部で均一に分散し、不織布Bの内部に、短繊維A2が繊維塊として発生することが抑制され、短繊維A2が均一に分散することで微細な孔を多数有する多孔質部を不織布Bの内部に形成することができ、結果的に不織布Bを含む吸音材用不織布を吸音材とした際の吸音性能が優れたものとなる。 Further, by setting the ratio of the fineness of the short fiber A2 and the short fiber B (the fineness of the short fiber A2 / the fineness of the short fiber B) to 0.30 or more, the relative fineness of the short fiber A2 becomes smaller. It is preferable because the generation of fiber lumps in the passing step is suppressed and the decrease in sound absorption due to the increase in the relative fineness of the staple fibers B is suppressed. Further, by setting the ratio of the fineness of the short fiber A2 and the short fiber B (the fineness of the short fiber A2 / the fineness of the short fiber B) to 0.60 or less, the short fiber A2 having a relatively small fineness is relatively different from the short fiber A2. Due to the short fiber B having a high fineness, the short fiber A2 and the short fiber B are uniformly dispersed inside the non-woven fabric B in the card process, and the short fiber A2 is suppressed from being generated as a fiber mass inside the non-woven fabric B. By uniformly dispersing the fibers A2, a porous portion having many fine pores can be formed inside the non-woven fabric B, and as a result, the sound absorbing performance when the non-woven fabric for sound absorbing material containing the non-woven fabric B is used as the sound absorbing material. Will be excellent.

短繊維A2の引張強度(本明細書等においては、単に「強度」と称することがある)は2.5cN/dtex以上であることが好ましい。短繊維A2の引張強度を2.5cN/dtex以上とすることで、不織布Bの製造工程における、カード工程での短繊維A2と針布との摩擦による糸切れがより抑制され、結果として、不織布Bの生産性、さらには不織布Bを含む吸音材用不織布の生産性をより向上させることができる。前記の点で短繊維A2の引張強度については2.8cN/dtex以上であることがさらに好ましい。 The tensile strength of the staple fibers A2 (sometimes referred to simply as "strength" in the present specification and the like) is preferably 2.5 cN / dtex or more. By setting the tensile strength of the short fiber A2 to 2.5 cN / dtex or more, yarn breakage due to friction between the short fiber A2 and the staple cloth in the card process in the manufacturing process of the non-woven fabric B is further suppressed, and as a result, the non-woven fabric is used. It is possible to further improve the productivity of B and the productivity of the nonwoven fabric for sound absorbing material including the nonwoven fabric B. In the above points, the tensile strength of the staple fiber A2 is more preferably 2.8 cN / dtex or more.

短繊維A2の引張伸度(本明細書等においては、単に「伸度」と称することがある。)は20~40%であることが好ましい。短繊維A2の引張伸度を20%以上とすることで、カード工程での短繊維A2と針布との摩擦による糸切れがより抑制され、吸不織布Bの生産性を高め、結果的に吸音材用不織布の生産性をより向上させることができる。一方、短繊維A2の引張伸度を40%以下とすることでカード工程での針布との摩擦による短繊維A2の伸びから発生する、針布への巻き付きがより低減し、不織布Bの生産性が向上し、結果として、吸音材用不織布の生産性をより向上させることができる。前記の点で短繊維A2の引張伸度については22%~35%であることがさらに好ましい。 The tensile elongation of the staple fiber A2 (in the present specification and the like, it may be simply referred to as “elongation”) is preferably 20 to 40%. By setting the tensile elongation of the short fiber A2 to 20% or more, thread breakage due to friction between the short fiber A2 and the staple cloth in the card process is further suppressed, and the productivity of the non-woven fabric B is increased, resulting in sound absorption. The productivity of the non-woven fabric for materials can be further improved. On the other hand, by setting the tensile elongation of the short fiber A2 to 40% or less, the wrapping around the staple cloth caused by the elongation of the short fiber A2 due to the friction with the staple cloth in the card process is further reduced, and the non-woven fabric B is produced. The property is improved, and as a result, the productivity of the non-woven fabric for sound absorbing material can be further improved. In this respect, the tensile elongation of the staple fiber A2 is more preferably 22% to 35%.

短繊維A2は、引張強度が5cN/dtex以上であり、かつ引張伸度が20~35%であることが、カード工程での短繊維A2と針布との摩擦による糸切れの抑制と、針布との摩擦による短繊維A2の伸びから発生する、針布への巻き付きがより低減し、不織布Bの生産性、さらには吸音材用不織布の生産性をより向上させることができるため好ましい。また、摩擦による糸切れと針布への巻き付きを抑制することで、繊維塊の発生が抑制され、短繊維A2が均一に分散することで微細な孔を多数有する多孔質部を不織布Bの内部に形成することができ、結果的に不織布Bを含む吸音材用不織布を吸音材とした際の吸音性能が優れたものとなる。さらに、前記の点で、短繊維A2の引張強度は、6.0cN/dtex以上であることが特に好ましい。 The short fiber A2 has a tensile strength of 5 cN / dtex or more and a tensile elongation of 20 to 35%, which suppresses thread breakage due to friction between the short fiber A2 and the staple cloth in the card process and needles. It is preferable because the wrapping around the staple cloth, which is generated from the elongation of the short fibers A2 due to the friction with the cloth, can be further reduced, and the productivity of the non-woven fabric B and the productivity of the non-woven fabric for sound absorbing material can be further improved. Further, by suppressing thread breakage and wrapping around the staple cloth due to friction, the generation of fiber lumps is suppressed, and the short fibers A2 are uniformly dispersed so that the porous portion having many fine pores is formed inside the non-woven fabric B. As a result, the sound absorbing performance when the non-woven fabric for sound absorbing material containing the non-woven fabric B is used as the sound absorbing material is excellent. Further, from the above point, the tensile strength of the staple fiber A2 is particularly preferably 6.0 cN / dtex or more.

短繊維A2の捲縮数は10.0山/25mm以上であることが好ましい。短繊維A2の捲縮数を10.0山/25mm以上とすることで、カード工程において、不織布の内部で短繊維A2と短繊維Bが均一に分散し、不織布Bの内部に、短繊維A2が繊維塊として発生することが抑制され、不織布Bの品位が向上し、結果的に吸音材用不織布の品位が向上する。また、短繊維A2が均一に分散することで微細な孔を多数有する多孔質部を不織布Bの内部に形成することができ、不織布Bを含む吸音材用不織布を用いた吸音材の吸音性能が優れたものとなる。前記の点で短繊維A2の捲縮数は12.0山/25mm以上であることがさらに好ましく、12.5山/25mm以上であることが特に好ましい。短繊維A2の捲縮数の上限は特に限定はされないが、短繊維A2の分散性などの観点からは18.0山/25mm以下であることが好ましい。 The number of crimps of the staple fiber A2 is preferably 10.0 peaks / 25 mm or more. By setting the number of crimps of the short fibers A2 to 10.0 ridges / 25 mm or more, the short fibers A2 and the short fibers B are uniformly dispersed inside the non-woven fabric in the card process, and the short fibers A2 are inside the non-woven fabric B. Is suppressed from being generated as a fiber mass, the quality of the nonwoven fabric B is improved, and as a result, the quality of the nonwoven fabric for sound absorbing material is improved. Further, by uniformly dispersing the short fibers A2, a porous portion having a large number of fine pores can be formed inside the nonwoven fabric B, and the sound absorbing performance of the sound absorbing material using the nonwoven fabric for sound absorbing material containing the nonwoven fabric B can be improved. It will be excellent. In this respect, the number of crimps of the staple fiber A2 is more preferably 12.0 ridges / 25 mm or more, and particularly preferably 12.5 ridges / 25 mm or more. The upper limit of the number of crimps of the staple fibers A2 is not particularly limited, but is preferably 18.0 peaks / 25 mm or less from the viewpoint of dispersibility of the staple fibers A2.

短繊維A2の捲縮度は12.0%以上であることが好ましい。短繊維A2の捲縮度を12.0%とすることで、カード工程において、短繊維A2と短繊維Bが均一に分散し、不織布Bの内部に、短繊維A2が繊維塊として発生することが抑制され、不織布Bの品位が向上し、結果的に吸音材用不織布の品位が向上する。また、短繊維A2が均一に分散することで微細な孔を多数有する多孔質部を不織布Bの内部に形成することができ、不織布Bを含む吸音材用不織布を吸音材とした際の吸音性能が優れたものとなる。前記の点で短繊維A2の捲縮度は13.0%以上であることがさらに好ましく、14.0%以上であることが特に好ましい。短繊維A2の捲縮度の上限は特に限定はされないが、短繊維A2の分散性などの観点からは19.0%以下であることが好ましい。 The degree of crimping of the staple fibers A2 is preferably 12.0% or more. By setting the degree of crimp of the staple fiber A2 to 12.0%, the staple fiber A2 and the staple fiber B are uniformly dispersed in the card process, and the staple fiber A2 is generated as a fiber mass inside the nonwoven fabric B. Is suppressed, the quality of the nonwoven fabric B is improved, and as a result, the quality of the nonwoven fabric for sound absorbing material is improved. Further, since the short fibers A2 are uniformly dispersed, a porous portion having a large number of fine pores can be formed inside the nonwoven fabric B, and the sound absorbing performance when the nonwoven fabric for sound absorbing material containing the nonwoven fabric B is used as the sound absorbing material. Will be excellent. In this respect, the degree of crimping of the staple fiber A2 is more preferably 13.0% or more, and particularly preferably 14.0% or more. The upper limit of the degree of crimping of the short fibers A2 is not particularly limited, but is preferably 19.0% or less from the viewpoint of dispersibility of the short fibers A2.

短繊維A2の繊維長は2.5~4.5cmの範囲であることが好ましい。短繊維A2の繊維長を4.5cm以下とすることで、不織布Bの製造工程におけるカード工程での針布への巻き付きを抑制することができ、不織布Bの生産性が向上し、結果として、吸音材用不織布の生産性を向上させることができる。一方、2.5cm以上とすることで、カード通過後のウェブにおいて、短繊維同士の交絡が高まり、後述のニードルパンチ工程やスパンレース工程へのウェブの搬送性が良好となり、不織布Bの生産性が向上し、結果として、吸音材用不織布の生産性を向上させることができる。上記の点で、短繊維A2の繊維長は、3.0~4.5cmの範囲であることがさらに好ましい。 The fiber length of the staple fiber A2 is preferably in the range of 2.5 to 4.5 cm. By setting the fiber length of the short fiber A2 to 4.5 cm or less, it is possible to suppress the wrapping around the staple cloth in the card process in the manufacturing process of the nonwoven fabric B, and the productivity of the nonwoven fabric B is improved, as a result. The productivity of the non-woven fabric for sound absorbing material can be improved. On the other hand, when the length is 2.5 cm or more, the entanglement of short fibers is enhanced in the web after passing through the card, the transportability of the web to the needle punching process and the span race process described later is improved, and the productivity of the nonwoven fabric B is improved. As a result, the productivity of the non-woven fabric for sound absorbing material can be improved. In the above points, the fiber length of the staple fiber A2 is more preferably in the range of 3.0 to 4.5 cm.

本発明の不織布Bは、上記のような短繊維A2を不織布Bの全質量に対して、30質量%以上含有することで、繊度の小さい短繊維A2により、不織布Bの内部に、微細な孔を多数有する多孔質部を形成することができ、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、不織布Bを含む吸音材用不織布を吸音材として使用した際に優れた吸音性を得ることができる。一方、上記のような短繊維A2の含有量を不織布Bの全質量に対して、80質量%以下とすることで、カード工程において発生する短繊維A2の糸切れなどの発生を極めて効果的に抑制することができる。前記の点で、短繊維A2の含有量は、不織布Bの全質量に対して、40質量%以上であることが好ましく、45%質量以上であることがさらに好ましい。また、75質量%以下であることが好ましく、70%質量以下であることがさらに好ましい。 The nonwoven fabric B of the present invention contains the above-mentioned short fibers A2 in an amount of 30% by mass or more based on the total mass of the nonwoven fabric B, and the short fibers A2 having a small fineness make fine pores inside the nonwoven fabric B. It is possible to form a porous portion having a large number of fibers, and when the sound passes through the voids between the fibers (that is, the porous portions), the sound is efficiently converted into heat by air friction with the fibers around the voids. Therefore, when a nonwoven fabric for a sound absorbing material containing the nonwoven fabric B is used as the sound absorbing material, excellent sound absorbing properties can be obtained. On the other hand, by setting the content of the staple fiber A2 as described above to 80% by mass or less with respect to the total mass of the nonwoven fabric B, the occurrence of yarn breakage of the staple fiber A2 generated in the carding process is extremely effective. It can be suppressed. In the above points, the content of the staple fibers A2 is preferably 40% by mass or more, more preferably 45% by mass or more, based on the total mass of the nonwoven fabric B. Further, it is preferably 75% by mass or less, and more preferably 70% by mass or less.

ここで、短繊維A2を構成する素材については、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等の熱可塑性樹脂を使用することができる。これらの中でも、短繊維A2は、耐熱性に優れる、すなわち、自動車などのエンジンルームに使用する際の吸音材用不織布の高温環境下における変形や変色が少なくできる点で、ポリエステル系樹脂からなる短繊維(ポリエステル系短繊維)であることが好ましく、中でも特に耐熱性に優れる、ポリエチレンテレフタレート樹脂からなる短繊維(ポリエチレンテレフタレート短繊維)であることが好ましい。 Here, as the material constituting the short fiber A2, a thermoplastic resin such as a polyester resin, a polyamide resin, an acrylic resin, or a polyolefin resin can be used. Among these, the short fiber A2 is made of a polyester resin because it has excellent heat resistance, that is, it can reduce deformation and discoloration of the non-woven fabric for sound absorbing material when used in an engine room of an automobile or the like in a high temperature environment. Fibers (polyester-based staple fibers) are preferable, and among them, short fibers made of polyethylene terephthalate resin (polyester terephthalate staple fibers), which are particularly excellent in heat resistance, are preferable.

また、短繊維Bを構成する素材については、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等の熱可塑性樹脂を使用することができる。これらの中でも、短繊維Bは、耐熱性に優れる、すなわち、自動車などのエンジンルームに使用する際の吸音材用不織布の高温環境下における変形や変色が少なくできる点でポリエステル系樹脂からなる短繊維(ポリエステル系短繊維)であることが好ましく、中でも特に耐熱性に優れる、ポリエチレンテレフタレート樹脂からなる短繊維(ポリエチレンテレフタレート短繊維)であることが好ましい。 Further, as the material constituting the short fiber B, a thermoplastic resin such as a polyester resin, a polyamide resin, an acrylic resin, or a polyolefin resin can be used. Among these, the short fiber B is a short fiber made of a polyester resin because it has excellent heat resistance, that is, it can reduce deformation and discoloration of the non-woven fabric for sound absorbing material when used in an engine room of an automobile or the like in a high temperature environment. (Polyester-based staple fibers) are preferable, and among them, short fibers made of polyethylene terephthalate resin (polyester terephthalate staple fibers), which are particularly excellent in heat resistance, are preferable.

本発明の吸音材用不織布の目付は、150g/m以上700g/m以下であることが好ましい。目付を150g/m以上とすることにより、空気摩擦による吸音性能を向上することができる。さらに、吸音材用不織布が一定の質量を有することで、不織布Aによる膜振動効果をより高めることができ、共鳴周波数をより低周波領域へシフトさせ、特に低周波領域の吸音性能を高めることができる。一方で、目付を700g/m以下とすることで柔軟性を向上させることができ、自動車部材などとして使用する際の立体追従性に優れた吸音材用不織布が得られる。前記の観点から、目付は、170g/m以上が好ましく、190g/m以上がさらに好ましい。また目付の上限については600g/m以下が好ましく、550g/m以下がさらに好ましい。 The basis weight of the nonwoven fabric for sound absorbing material of the present invention is preferably 150 g / m 2 or more and 700 g / m 2 or less. By setting the basis weight to 150 g / m 2 or more, the sound absorption performance due to air friction can be improved. Further, since the nonwoven fabric for sound absorbing material has a certain mass, the membrane vibration effect of the nonwoven fabric A can be further enhanced, the resonance frequency can be shifted to a lower frequency region, and the sound absorbing performance in a particularly low frequency region can be enhanced. can. On the other hand, by setting the basis weight to 700 g / m 2 or less, the flexibility can be improved, and a non-woven fabric for a sound absorbing material having excellent three-dimensional followability when used as an automobile member or the like can be obtained. From the above viewpoint, the basis weight is preferably 170 g / m 2 or more, and more preferably 190 g / m 2 or more. The upper limit of the basis weight is preferably 600 g / m 2 or less, and more preferably 550 g / m 2 or less.

本発明の不織布Aの目付は、5g/m以上50g/m以下であることが好ましい。不織布Aの目付を5g/m以上とすることで、後述の吸音材用不織布に積層される繊維系多孔質体、発泡体、または空気層に含まれる空気と、吸音材用不織布が共鳴し、吸音材用不織布の膜振動効果により、特に低周波の吸音性が向上するため好ましい。一方、目付を50g/m以下とすることで、不織布Aの生産性を高めることができ、結果的に吸音材用不織布の生産性が高められるため好ましい。 The basis weight of the nonwoven fabric A of the present invention is preferably 5 g / m 2 or more and 50 g / m 2 or less. By setting the texture of the non-woven fabric A to 5 g / m 2 or more, the air contained in the fibrous porous body, foam, or air layer laminated on the non-woven fabric for sound absorbing material described later resonates with the non-woven fabric for sound absorbing material. The film vibration effect of the non-woven fabric for sound absorbing material is particularly preferable because the sound absorbing property of low frequency is improved. On the other hand, when the basis weight is 50 g / m 2 or less, the productivity of the nonwoven fabric A can be increased, and as a result, the productivity of the nonwoven fabric for sound absorbing material is increased, which is preferable.

本発明の不織布Bの目付は、100g/m以上650g/m以下であることが好ましい。目付を100g/m以上とすることにより、空気摩擦による吸音性能を向上することができる。さらに、不織布Bが一定の質量を有することで、不織布Aによる膜振動効果をより高めることができ、特に低周波領域の吸音性能を高めることができる。一方で、目付を450g/m以下とすることで柔軟性を向上させることができ、自動車部材などとして使用する際の立体追従性に優れた吸音材用不織布が得られる。前記の観点から、目付は、120g/m以上が好ましく、140g/m以上がさらに好ましい。また目付の上限については550g/m以下が好ましく、500g/m以下がさらに好ましい。 The basis weight of the nonwoven fabric B of the present invention is preferably 100 g / m 2 or more and 650 g / m 2 or less. By setting the basis weight to 100 g / m 2 or more, the sound absorption performance due to air friction can be improved. Further, since the nonwoven fabric B has a constant mass, the film vibration effect of the nonwoven fabric A can be further enhanced, and the sound absorption performance in a particularly low frequency region can be enhanced. On the other hand, by setting the basis weight to 450 g / m 2 or less, the flexibility can be improved, and a non-woven fabric for a sound absorbing material having excellent three-dimensional followability when used as an automobile member or the like can be obtained. From the above viewpoint, the basis weight is preferably 120 g / m 2 or more, and more preferably 140 g / m 2 or more. The upper limit of the basis weight is preferably 550 g / m 2 or less, and more preferably 500 g / m 2 or less.

また、吸音材用不織布の厚さは、0.6mm以上4.0mm以下であることが好ましい。厚さを0.6mm以上とすることで、吸音材用不織布に十分なサイズの多孔質部が形成され、吸音材用不織布の厚さ方向に音が貫通する際の、空気摩擦による音の熱への変換を、より効率的なものとすることができる。一方で厚さを4.0mm以下とすることで、吸音材用不織布がより緻密な構造となり、繊維A1や短繊維A2による微細な多孔質部が形成され、空気摩擦による音の熱への変換を、より効率的なものとすることができ、結果として、吸音材用不織布を吸音材として用いた際の吸音性能がより優れたものとなる。さらに、吸音材用不織布を一定の厚さ以下とすることで、不織布が柔軟なものとなり、吸音材用不織布の膜振動効果をより高めることができ、特に低周波領域の吸音性能を高めることができる。前記の観点から、厚さは0.7mm以上が好ましく、0.8mm以上がさらに好ましい。また厚さの上限については3.0mm以下が好ましく、2.5mm以下がさらに好ましい。なお、本発明の厚さはJIS L1913:1998 6.1.2 A法に基づき、不織布に0.36kPaの圧力をかけた際の厚さによって測定される。 The thickness of the non-woven fabric for sound absorbing material is preferably 0.6 mm or more and 4.0 mm or less. By setting the thickness to 0.6 mm or more, a porous portion of sufficient size is formed in the non-woven fabric for sound absorbing material, and the heat of the sound due to air friction when the sound penetrates in the thickness direction of the non-woven fabric for sound absorbing material. The conversion to can be made more efficient. On the other hand, by reducing the thickness to 4.0 mm or less, the non-woven fabric for sound absorbing material has a more dense structure, and fine porous portions are formed by the fibers A1 and the short fibers A2, and the sound is converted into heat by air friction. As a result, the sound absorbing performance when the non-woven fabric for sound absorbing material is used as the sound absorbing material becomes more excellent. Furthermore, by reducing the thickness of the non-woven fabric for sound absorbing material to a certain thickness or less, the non-woven fabric becomes flexible, the film vibration effect of the non-woven fabric for sound absorbing material can be further enhanced, and the sound absorbing performance in a particularly low frequency region can be enhanced. can. From the above viewpoint, the thickness is preferably 0.7 mm or more, more preferably 0.8 mm or more. The upper limit of the thickness is preferably 3.0 mm or less, more preferably 2.5 mm or less. The thickness of the present invention is measured by the thickness when a pressure of 0.36 kPa is applied to the non-woven fabric based on the JIS L1913: 1998 6.1.2 A method.

また、吸音材用不織布は、吸音材用不織布の目付が150g/m以上700g/m以下であり、かつ、吸音材用不織布の厚さが0.6mm以上4.0mm以下であることが好ましい。吸音材用不織布の目付が上記の範囲にあり、さらに、吸音材用不織布の厚さも上記の範囲にあることで、吸音性能がより一層優れたものとなる。 Further, the non-woven fabric for sound absorbing material has a basis weight of 150 g / m 2 or more and 700 g / m 2 or less, and the thickness of the non-woven fabric for sound absorbing material is 0.6 mm or more and 4.0 mm or less. preferable. The basis weight of the non-woven fabric for sound absorbing material is in the above range, and the thickness of the non-woven fabric for sound absorbing material is also in the above range, so that the sound absorbing performance is further improved.

吸音材用不織布の密度は、0.07g/cm以上0.40g/cm以下であることが好ましい。密度を0.07g/cm以上とすることで、吸音材用不織布が緻密な構造となり、繊維A1や短繊維A2による微細な多孔質部が形成され、空気摩擦による音の熱への変換を、より効率的なものとすることができ、結果として、吸音材用不織布を吸音材として用いた際の吸音性能がより優れたものとなる。さらに、一方で密度を0.40g/cm以下とすることで、吸音材用不織布に十分なサイズの多孔質部が形成され、空気摩擦による吸音性能がより優れたものとなる。前記の観点から、密度は0.09g/cm以上が好ましく、0.10g/cm以上がさらに好ましい。また密度の上限については0.35g/cm以下が好ましく、0.32g/cm以下がさらに好ましい。 The density of the non-woven fabric for sound absorbing material is preferably 0.07 g / cm 3 or more and 0.40 g / cm 3 or less. By setting the density to 0.07 g / cm 3 or more, the non-woven fabric for sound absorbing material has a dense structure, fine porous parts are formed by fibers A1 and short fibers A2, and conversion of sound into heat by air friction is performed. As a result, the sound absorbing performance when the non-woven fabric for sound absorbing material is used as the sound absorbing material becomes more excellent. Further, on the other hand, by setting the density to 0.40 g / cm 3 or less, a porous portion having a sufficient size is formed in the nonwoven fabric for sound absorbing material, and the sound absorbing performance due to air friction becomes more excellent. From the above viewpoint, the density is preferably 0.09 g / cm 3 or more, and more preferably 0.10 g / cm 3 or more. The upper limit of the density is preferably 0.35 g / cm 3 or less, and more preferably 0.32 g / cm 3 or less.

吸音材用不織布は、0μmを超え5μm未満の径の細孔が5~100%である細孔径分布を有することが好ましい。このような細細孔径分布を有することにより、空気摩擦による音の熱への変換を、より効率的なものとすることができ、結果として、吸音材用不織布を吸音材として用いた際の吸音性能がより優れたものとなる。さらに、吸音材用不織布の膜振動効果をより高めることができ、特に低周波領域の吸音性能を高めることができる。前記の点で、0μmを超え10μm未満の径の細孔が10~100%であることが好ましく、特に、0μmを超え10μm未満の径の細孔が15~100%であることがさらに好ましい。なお、前記の細孔径分布は、ASTM F316-86に規定される方法によって測定される。 The nonwoven fabric for sound absorbing material preferably has a pore diameter distribution in which pores having a diameter of more than 0 μm and less than 5 μm are 5 to 100%. By having such a fine pore size distribution, it is possible to make the conversion of sound into heat by air friction more efficient, and as a result, the sound absorption when the non-woven fabric for sound absorbing material is used as the sound absorbing material. The performance will be better. Further, the film vibration effect of the non-woven fabric for sound absorbing material can be further enhanced, and the sound absorbing performance in a particularly low frequency region can be enhanced. In the above points, the number of pores having a diameter of more than 0 μm and less than 10 μm is preferably 10 to 100%, and more preferably 15 to 100% of the pores having a diameter of more than 0 μm and less than 10 μm. The pore size distribution is measured by the method specified in ASTM F316-86.

本発明の吸音材用不織布の通気度は0.1~15cm/cm/sであることが好ましい。吸音材用不織布の通気度が0.1cm/cm/s以上であることにより、吸音材用不織布の表面における音の表面反射を抑制し、空気摩擦による吸音材用不織布の吸音性能がより優れたものとなるため好ましい。前記の観点で通気度は0.2cm/cm/s以上が好ましく、0.4cm/cm/s以上であることが特に好ましい。一方で、吸音材用不織布の通気度が15cm/cm/s以下であることにより、空気摩擦による吸音性能が向上するため好ましい。さらに、吸音材用不織布の膜振動効果をより高めることができ、特に低周波領域の吸音性能を高めることができる。前記の観点で通気度は12cm/cm/s以下が好ましく、10cm/cm/s以下がさらに好ましい。なお、通気度はJIS L 1096-1999 8.27.1 A法(フラジール形法)に準じて測定される。 The air permeability of the nonwoven fabric for sound absorbing material of the present invention is preferably 0.1 to 15 cm 3 / cm 2 / s. When the air permeability of the non-woven fabric for sound absorbing material is 0.1 cm 3 / cm 2 / s or more, the surface reflection of sound on the surface of the non-woven fabric for sound absorbing material is suppressed, and the sound absorbing performance of the non-woven fabric for sound absorbing material due to air friction is improved. It is preferable because it is excellent. From the above viewpoint, the air permeability is preferably 0.2 cm 3 / cm 2 / s or more, and particularly preferably 0.4 cm 3 / cm 2 / s or more. On the other hand, it is preferable that the air permeability of the non-woven fabric for sound absorbing material is 15 cm 3 / cm 2 / s or less because the sound absorbing performance due to air friction is improved. Further, the film vibration effect of the non-woven fabric for sound absorbing material can be further enhanced, and the sound absorbing performance in a particularly low frequency region can be enhanced. From the above viewpoint, the air permeability is preferably 12 cm 3 / cm 2 / s or less, and more preferably 10 cm 3 / cm 2 / s or less. The air permeability is measured according to JIS L 1096-1999 8.27.1 A method (Frazil type method).

次に、本発明の吸音材用不織布を製造するための好ましい製造方法について説明する。本発明の吸音材用不織布の好ましい製造方法は、以下の工程を有する。 Next, a preferable manufacturing method for manufacturing the nonwoven fabric for sound absorbing material of the present invention will be described. The preferred method for producing a nonwoven fabric for a sound absorbing material of the present invention has the following steps.

(不織布Aの製造)
(a)メルトブロー法により、繊度0.002~0.3dtexの繊維A1を不織布A全体に対して80質量%以上含有する不織布Aを得る工程。
(Manufacturing of non-woven fabric A)
(A) A step of obtaining a nonwoven fabric A containing 80% by mass or more of fibers A1 having a fineness of 0.002 to 0.3 dtex with respect to the entire nonwoven fabric A by a melt blow method.

(不織布Bの製造)
(b)短繊維A2および短繊維Bに開繊処理を施し、短繊維A2および短繊維Bの混繊ウェブを得る工程
(c)混繊ウェブがウォータージェットパンチノズルを3回以上通過し、不織布Bを得る工程。
(Manufacturing of non-woven fabric B)
(B) Step of opening the short fibers A2 and B to obtain a mixed fiber web of the short fibers A2 and the short fiber B (c) The mixed fiber web passes through the water jet punch nozzle three times or more, and the non-woven fabric is used. The process of obtaining B.

(吸音材用不織布の製造)
(d)不織布Aおよび不織布Bを積層させ吸音材用不織布を得る工程。
(Manufacturing of non-woven fabric for sound absorbing material)
(D) A step of laminating the nonwoven fabric A and the nonwoven fabric B to obtain a nonwoven fabric for a sound absorbing material.

以下、これら(a)~(d)の工程の詳細について説明する。 Hereinafter, the details of these steps (a) to (d) will be described.

(不織布Aの製造)
まず、(a)メルトブロー法により、不織布Aを得る工程について説明する。
(Manufacturing of non-woven fabric A)
First, a step of (a) obtaining a nonwoven fabric A by the melt blow method will be described.

メルトブロー工程では、加熱された押出機に熱可塑性樹脂を供給し、溶融押し出しを行い、メルトブロー口金を用いて、溶融樹脂をノズルから吐出すると共に、吐出された溶融樹脂に加熱エアーを吹き付けることで、繊度0.002~0.3dtexの繊維A1を不織布A全体に対して80質量%以上含有する不織布Aを得ることができる。 In the melt blow process, the thermoplastic resin is supplied to the heated extruder, melt extruded, and the molten resin is discharged from the nozzle using the melt blow mouthpiece, and heated air is blown onto the discharged molten resin. It is possible to obtain a nonwoven fabric A containing 80% by mass or more of fibers A1 having a fineness of 0.002 to 0.3 dtex with respect to the entire nonwoven fabric A.

なお、不織布Aについては、カレンダー加工機などを用いてロールプレスすることにより、不織布Aを緻密化することで、吸音材用不織布の通気度を低減させ、低周波領域の吸音性を高めることができる。 Regarding the non-woven fabric A, by roll-pressing the non-woven fabric A using a calendar processing machine or the like, the non-woven fabric A can be densified to reduce the air permeability of the non-woven fabric for sound absorbing material and improve the sound absorbing property in the low frequency region. can.

(不織布Bの製造)
次に、(b)混繊ウェブを得る工程について説明する。まず、上記の工程に含まれる、短繊維A2と短繊維Bを開繊させる工程(オープナー工程)ついて説明する。
(Manufacturing of non-woven fabric B)
Next, (b) a step of obtaining a mixed fiber web will be described. First, a step (opener step) for opening the staple fibers A2 and the staple fibers B included in the above steps will be described.

オープナー工程は、吸音材用不織布における短繊維A2の含有量と短繊維Bの含有量が所望のものとなるように短繊維A2および短繊維B(以下、各短繊維ともいう)を計量した後、エアー等を用いて各短繊維を十分に開繊させ混繊する。 In the opener step, the short fibers A2 and the short fibers B (hereinafter, also referred to as each short fiber) are weighed so that the content of the short fibers A2 and the content of the short fibers B in the non-woven fabric for sound absorbing material are desired. , Air, etc. are used to sufficiently open each staple fiber and mix it.

次に、短繊維A2と短繊維Bとが混繊したものをウェブ状にする工程(カード工程)について説明する。 Next, a step (card step) of forming a web-like mixture of the staple fibers A2 and the staple fibers B will be described.

カード工程は、オープナー工程で得た混繊された各短繊維を針布ローラーで引き揃えて混繊ウェブを得る。 In the card process, each of the mixed short fibers obtained in the opener process is aligned with a staple cloth roller to obtain a mixed fiber web.

次に、(c)ニードルまたは水流により、混繊ウェブに含まれる短繊維A2と短繊維Bとを交絡させ不織布Bを得る工程(交絡工程)について説明する。 Next, a step (c) of entwining the short fibers A2 and the short fibers B contained in the mixed fiber web with a needle or a water stream to obtain a nonwoven fabric B will be described (entanglement step).

交絡工程において、各短繊維同士の交絡は、ニードルパンチ法、またはウォータージェットパンチ法(水流交絡法)で機械的交絡法を実施することが好ましい。この方法は、ケミカルボンド法などに比べ不織布Bを緻密化することができ、好ましい厚さ、および密度の吸音材用不織布が得られやすいため好ましく採用される。 In the entanglement step, it is preferable to carry out a mechanical entanglement method by a needle punching method or a water jet punching method (water flow entanglement method) for entanglement of each short fiber. This method is preferably adopted because the nonwoven fabric B can be densified as compared with the chemical bond method or the like, and a nonwoven fabric for a sound absorbing material having a preferable thickness and density can be easily obtained.

また、ニードルパンチ法で各短繊維を交絡させる場合は、その針密度を200本/cm以上とし、交絡処理させることが好ましい。さらに好ましくは、250本/cm以上、特に好ましくは、300本/cm以上の針密度で交絡させることが好ましい。上記の針密度とすることで、不織布Bを緻密化することができ、不織布Bを含む吸音材用不織布を吸音材として用いる際の吸音性能を向上できるため好ましい。 When each short fiber is entangled by the needle punch method, it is preferable that the staple density is 200 fibers / cm 2 or more and the entanglement treatment is performed. More preferably, the needles are entangled at a needle density of 250 lines / cm 2 or more, and particularly preferably 300 lines / cm 2 or more. By setting the needle density as described above, the nonwoven fabric B can be densified, and the sound absorbing performance when the nonwoven fabric for sound absorbing material containing the nonwoven fabric B is used as the sound absorbing material is preferable.

ウォータージェットパンチ法で各短繊維を交絡させる場合は、ウォータージェットパンチノズルの圧力を12.0MPa以上の圧力で、3回以上ウォーターノズルを通過させることが好ましい。ウォータージェットパンチノズルの圧力を12.0MPa以上とすることで、不織布Bを緻密化することができ、不織布Bを含む吸音材用不織布を吸音材として用いる際の吸音性能を向上できるため好ましい。また、3回以上ウォーターノズルを通すことで、前記と同様に不織布Bを緻密化することができ、不織布Bを含む吸音材用不織布を吸音材として用いる際の吸音性能を向上できるため好ましい。ウォーターノズルを通す方法としては、連続して3回以上ウォーターノズルを通したり、1回ウォーターノズルを通して不織布を巻き取った後に再びウォーターノズルを通す方法があり、生産性を向上する点で好ましくは連続して3回以上通す方法である。 When each short fiber is entangled by the water jet punch method, it is preferable that the pressure of the water jet punch nozzle is 12.0 MPa or more and the water nozzle is passed through the water nozzle three times or more. By setting the pressure of the water jet punch nozzle to 12.0 MPa or more, the non-woven fabric B can be densified, and the sound-absorbing performance when the non-woven fabric for a sound-absorbing material containing the non-woven fabric B can be used as the sound-absorbing material is preferable. Further, it is preferable to pass the nonwoven fabric B three times or more because the nonwoven fabric B can be densified in the same manner as described above and the sound absorbing performance when the nonwoven fabric for a sound absorbing material containing the nonwoven fabric B is used as the sound absorbing material can be improved. As a method of passing the water nozzle, there are a method of passing the water nozzle three times or more in succession, or a method of winding the non-woven fabric through the water nozzle once and then passing the water nozzle again, which is preferable in terms of improving productivity. It is a method of passing it three times or more.

ウォータージェットパンチ法で繊維を交絡させる場合に、最初に上向きでノズル面に接する面を表面とし、その逆面を裏面とした場合、ノズルから水流を流す面は表面/裏面/表面や表面/裏面/裏面、表面/表面/裏面/表面/裏面など任意に設定することができる。 When entwining fibers by the water jet punch method, if the surface that first faces upward and contacts the nozzle surface is the front surface and the opposite surface is the back surface, the surface that allows water flow from the nozzle is the front surface / back surface / front surface or front surface / back surface. It can be set arbitrarily such as / back surface, front surface / front surface / back surface / front surface / back surface.

特に、ウォータージェットパンチ法は、細繊度の短繊維をその交絡工程で糸切れなく効率的に交絡することができ、繊度が0.4~0.9dtexの短繊維A2を含む本発明の不織布Bを製造するために好適に利用できる。 In particular, the water jet punching method can efficiently entangle short fibers having a fine fineness without thread breakage in the entanglement step, and the nonwoven fabric B of the present invention containing the staple fibers A2 having a fineness of 0.4 to 0.9 dtex. Can be suitably used for manufacturing.

最後に、(d)不織布Aと不織布Bとを積層させ、吸音材用不織布を得る工程について説明する。不織布Aと不織布Bを積層し、一体化させる方法としては、ポリオレフィンやポリアミド、ポリエステル等の低融点共重合樹脂を用い、前記低融点共重合樹脂からなるパウダーを不織布Aと不織布Bの間に散布し、加熱ロールで前記樹脂を溶融させて接着させる方法を用いることができる。 Finally, (d) a step of laminating the nonwoven fabric A and the nonwoven fabric B to obtain a nonwoven fabric for a sound absorbing material will be described. As a method of laminating and integrating the nonwoven fabric A and the nonwoven fabric B, a low melting point copolymer resin such as polyolefin, polyamide or polyester is used, and the powder made of the low melting point copolymer resin is sprayed between the nonwoven fabric A and the nonwoven fabric B. Then, a method of melting the resin with a heating roll and adhering the resin can be used.

次に、吸音材について説明する。本発明の吸音材用不織布を備える吸音材は、本発明の吸音材用不織布と、繊維系多孔質体層、発泡体層、または空気層からなる層状物とを、有しており、上記の層状物は、上記の吸音材用不織布の一方の面に積層されている。このような吸音材においては、吸音材用不織布の音が入射する側の面の反対側の面に、上記の層状物が位置するようにして吸音材を用いることで、吸音材の吸音性能が優れたものとなる。また、上記の層状物の厚さは、5~50mmであることが好ましい。そして、上記の層状物は、繊維系多孔質体、発泡体または空気層であることが好ましい。すなわち、本発明の吸音材用不織布は、音が入射する側の面の反対側の面に、厚さが5~50mmの熱塑性樹脂繊維を用いた繊維系多孔質体または無機繊維を用いた繊維系多孔質体からなる基材や、発泡ウレタンなどの発泡体からなる基材等を貼り合わせて使用することで、これらの複合製品(吸音材)の吸音性能は極めて優れたものとなる。また、本発明の吸音材用不織布の音が入射する側の面の反対側の面に厚さ5~50mmの空気層を設けることで、吸音材用積層不織布と空気層との複合製品(吸音材)の吸音性能が極めて優れたものとなる。さらに上記のような構成とすることで、繊維系多孔質体、発泡体、または空気層に含まれる空気と、吸音材用不織布が共鳴し、吸音材用不織布の膜振動効果により、特に低周波の吸音性が向上する。なお、層状物の厚さは、層状物の側面の厚さ方向の長さを金属定規を用いて測定することができる。 Next, the sound absorbing material will be described. The sound absorbing material provided with the non-woven fabric for sound absorbing material of the present invention has the non-woven fabric for sound absorbing material of the present invention and a layered material composed of a fibrous porous body layer, a foam layer, or an air layer. The layered material is laminated on one surface of the above-mentioned non-woven fabric for sound absorbing material. In such a sound absorbing material, the sound absorbing performance of the sound absorbing material can be improved by using the sound absorbing material so that the above-mentioned layered material is located on the surface opposite to the surface on the side where the sound of the non-woven fabric for sound absorbing material is incident. It will be excellent. The thickness of the layered material is preferably 5 to 50 mm. The layered material is preferably a fibrous porous body, a foam, or an air layer. That is, the nonwoven fabric for sound absorbing material of the present invention is a fiber-based porous body using a thermoplastic resin fiber having a thickness of 5 to 50 mm or a fiber using an inorganic fiber on the surface opposite to the surface on the side where sound is incident. The sound absorption performance of these composite products (sound absorbing materials) becomes extremely excellent by using a base material made of a porous material, a base material made of a foam material such as urethane foam, or the like by laminating them. Further, by providing an air layer having a thickness of 5 to 50 mm on the surface opposite to the surface on the side where the sound of the nonwoven fabric for sound absorbing material of the present invention is incident, a composite product (sound absorbing material) of the laminated nonwoven fabric for sound absorbing material and the air layer is provided. The sound absorption performance of the material) is extremely excellent. Further, with the above configuration, the air contained in the fibrous porous body, foam, or air layer resonates with the non-woven fabric for sound absorbing material, and the film vibration effect of the non-woven fabric for sound absorbing material causes a particularly low frequency. Sound absorption is improved. The thickness of the layered material can be measured by using a metal ruler to measure the length of the side surface of the layered material in the thickness direction.

本実施例で用いた測定法を後述する。 The measurement method used in this example will be described later.

(測定方法)
(1)吸音材用不織布を構成する各繊維と含有量
不織布Aと不織布Bを分離させ、それぞれの不織布について、JIS L 1030-1:2006「繊維製品の混用率試験方法-第1部:繊維識別」、およびJIS L 1030-2:2005「繊維製品の混用率試験方法-第2部:繊維混用率」に基づいて、正量混用率(標準状態における各繊維の質量比)を測定し、これを吸音材用不織布を構成する繊維の含有量(質量%)とした。これにより、吸音材用不織布(不織布A、および不織布B)を構成する繊維素材と、その含有量(質量%)を特定した。
(Measuring method)
(1) Fibers and content of each fiber constituting the non-woven fabric for sound absorbing material Non-woven fabric A and non-woven fabric B are separated, and JIS L 1030-1: 2006 "Mixing rate test method for textile products-Part 1: Fibers" is used for each non-woven fabric. Based on "Identification" and JIS L 1030-2: 2005 "Test method for mixing ratio of textile products-Part 2: Fiber mixing ratio", the positive amount mixing ratio (mass ratio of each fiber in the standard state) was measured. This was defined as the content (% by mass) of the fibers constituting the non-woven fabric for sound absorbing material. Thereby, the fiber material constituting the nonwoven fabric for sound absorbing material (woven fabric A and nonwoven fabric B) and its content (mass%) were specified.

(2)吸音材用不織布を構成する繊維の繊度と含有量
上記(1)のJIS L 1030-2:2005「繊維製品の混用率試験方法-第2部:繊維混用率」の6.溶解法における、不織布A、不織布Bのそれぞれの残留不織布について、その断面を走査型電子顕微鏡(SEM)(日立ハイテク社製S-3500N型)で観察し、無作為に30箇所の観察範囲を抽出し、倍率1,000倍の断面写真を撮影した。さらに断面写真内に存在する全ての繊維について単繊維直径を測定した。また、繊維の断面形状が異形断面形状の場合は、断面写真から繊維の断面積を測定し、前記の断面積から真円直径に換算することで、繊維の単繊維直径とした。得られた単繊維直径データを、0.1μmの区間毎に峻別し、区間毎の平均単繊維直径と区間毎の繊維本数を集計した。得られた区間毎の平均単繊維直径と、上記(1)にて特定した各繊維の比重から、下記式(2)により区間毎の繊維の繊度を算出した。
(2) Fineness and content of fibers constituting the non-woven fabric for sound absorbing material JIS L 1030-2: 2005 "Test method for mixing ratio of textile products-Part 2: Fiber mixing ratio" in (1) above. The cross section of each of the residual non-woven fabrics of the non-woven fabric A and the non-woven fabric B in the melting method was observed with a scanning electron microscope (SEM) (S-3500N type manufactured by Hitachi High-Tech), and 30 observation ranges were randomly extracted. Then, a cross-sectional photograph with a magnification of 1,000 times was taken. Furthermore, the single fiber diameter was measured for all the fibers present in the cross-sectional photograph. When the cross-sectional shape of the fiber is an irregular cross-sectional shape, the cross-sectional area of the fiber is measured from the cross-sectional area, and the cross-sectional area is converted into a perfect circle diameter to obtain the single fiber diameter of the fiber. The obtained single fiber diameter data was sharply classified for each section of 0.1 μm, and the average single fiber diameter for each section and the number of fibers for each section were totaled. From the obtained average single fiber diameter for each section and the specific gravity of each fiber specified in (1) above, the fineness of the fiber for each section was calculated by the following formula (2).

繊度(dtex)=(平均単繊維直径(μm)/2)×3.14×繊維の比重/100 (2)
不織布Aについては、繊度が0.002~0.3dtexの繊維について、その区間毎の繊度と区間毎の繊維本数、繊維素材の比重から、繊度が0.002~0.3dtexの繊維の含有量(質量%)を下記式(3)により算出した。
Fineness (dtex) = (average single fiber diameter (μm) / 2) 2 × 3.14 × fiber specific density / 100 (2)
Regarding the non-woven fabric A, for fibers having a fineness of 0.002 to 0.3 dtex, the content of the fibers having a fineness of 0.002 to 0.3 dtex based on the fineness of each section, the number of fibers in each section, and the specific gravity of the fiber material. (Mass%) was calculated by the following formula (3).

繊度が0.002~0.3dtexの繊維の含有量(質量%)=((繊度が0.002~0.3dtexの繊維の区間毎の繊度(dtex)×同区間毎の繊維本数(本))/(繊度が0.002~0.3dtex以外の繊維の区間毎の繊度(dtex)×同区間毎の繊維本数(本))×100 (3)
不織布Bについては、繊度が0.4~0.9dtexの繊維について、その区間毎の繊度と区間毎の繊維本数、繊維素材の比重から、繊度が0.4~0.9dtexの繊維の含有量(質量%)を下記式(4)により算出した。
Content (% by mass) of fibers having a fineness of 0.002 to 0.3 dtex = ((Fibers of fibers having a fineness of 0.002 to 0.3 dtex (dtex) x number of fibers per section (lines)) ) / (Fiberity (dtex) for each section of fiber other than 0.002 to 0.3 dtex x number of fibers (line) for each section) x 100 (3)
Regarding the non-woven fabric B, for fibers having a fineness of 0.4 to 0.9 dtex, the content of the fibers having a fineness of 0.4 to 0.9 dtex based on the fineness of each section, the number of fibers in each section, and the specific gravity of the fiber material. (Mass%) was calculated by the following formula (4).

繊度が0.4~0.9dtexの繊維の含有量(質量%)=((繊度が0.4~0.9dtexの繊維の区間毎の繊度(dtex)×同区間毎の繊維本数(本))/(繊度が0.4~0.9dtex以外の繊維の区間毎の繊度(dtex)×同区間毎の繊維本数(本))×100 (4)
不織布Bについて、同様にして、繊度が1.1~20.0dtexの繊維の含有量(質量%)を求めた。
Content (% by mass) of fibers having a fineness of 0.4 to 0.9 dtex = ((Fibers of fibers having a fineness of 0.4 to 0.9 dtex (dtex) x number of fibers per section (lines)) ) / (Fiberity (dtex) for each section of fibers other than 0.4 to 0.9 dtex x number of fibers (lines) for each section) x 100 (4)
For the nonwoven fabric B, the content (% by mass) of the fibers having a fineness of 1.1 to 20.0 dtex was determined in the same manner.

また、吸音材用不織布を構成する不織布A、または不織布Bの繊維素材が複数である場合は、上記の繊度、含有量の測定を、溶解法における残留不織布を用いて、各繊維素材について実施し、吸音材用不織布を構成する繊維の繊度と含有量を求めた。 When there are a plurality of fiber materials of the non-woven fabric A or the non-woven fabric B constituting the non-woven fabric for sound absorbing material, the above-mentioned fineness and content are measured for each non-woven fabric using the residual nonwoven fabric in the dissolving method. , The fineness and content of the fibers constituting the non-woven fabric for sound absorbing material were determined.

(3)不織布Bを構成する短繊維の繊維長
JIS L 1015:2010 8.4.1 直接法(C法)で単位をcmで測定した。
(3) Fiber length of short fibers constituting the non-woven fabric B JIS L 1015: 2010 8.4.1 The unit was measured in cm by the direct method (C method).

(4)不織布Bを構成する短繊維の強度、および伸度
JIS L 1015(1999)8.7.1に基づき、空間距離20mm、短繊維を一本ずつ区分線に緩く張った状態で両端を接着剤で紙片にはり付けて固着し、区分ごとを1試料とする。試料を引張試験器のつかみに取り付け、上部つかみの近くで紙片を切断し、つかみ間隔20mm、引張速度20mm/分の速度で引っ張り、試料が切断したときの荷重(N)及び伸び(mm)を測定、次の式により引張強度(cN/dtex)及び伸度(%)を算出した。
Tb=SD/F0
Tb:引張強度(cN/dtex)
SD:破断時の荷重(cN)
F0:試料の正量繊度(dtex)
S={(E2-E1)/(L+E1)}×100
S:伸度(%)
E1:緩み(mm)
E2:切断時の伸び(mm)又は最大荷重時の伸び(mm)
L:つかみ間隔(mm) 。
(4) Strength and elongation of the short fibers constituting the non-woven fabric B Based on JIS L 1015 (1999) 8.7.1, both ends are loosely stretched one by one with a space distance of 20 mm and a staple. Adhere to a piece of paper with an adhesive and fix it, and make one sample for each category. Attach the sample to the grip of the tensile tester, cut a piece of paper near the upper grip, pull at a grip interval of 20 mm and a tensile speed of 20 mm / min, and apply the load (N) and elongation (mm) when the sample is cut. Measurement, tensile strength (cN / dtex) and elongation (%) were calculated by the following formulas.
Tb = SD / F0
Tb: Tensile strength (cN / dtex)
SD: Load at break (cN)
F0: Positive fineness of the sample (dtex)
S = {(E2-E1) / (L + E1)} × 100
S: Elongation (%)
E1: Looseness (mm)
E2: Elongation at cutting (mm) or elongation at maximum load (mm)
L: Grab interval (mm).

(5)不織布Bを構成する短繊維の捲縮数
JIS L 1015-8-12-1,2(2010年改正版)の方法に準じて不織布を構成する繊維の捲縮数(山/25mm)を測定した。
(5) Number of crimps of staple fibers constituting non-woven fabric B Number of crimps of fibers constituting non-woven fabric according to the method of JIS L 1015-8-12-1, 2 (2010 revised edition) Was measured.

(6)不織布Bを構成する短繊維の捲縮度
JIS L 1015-8-12-1,2(2010年改正版)の方法に準じて不織布を構成する繊維の捲縮率(%)を測定し、これを繊維の捲縮度(%)とした。
(6) Degree of crimp of short fibers constituting non-woven fabric B Measure the crimping rate (%) of fibers constituting non-woven fabric according to the method of JIS L 1015-8-12-1, 2 (2010 revised edition). This was defined as the degree of crimping (%) of the fiber.

(7)不織布Bのカード工程通過率(生産性および品質)
使用する短繊維比率に調整し、オープナー工程に処した原綿を20gに計量して、ラボカードマシン(シリンダー回転数300rpm、ドッファー速度10m/min)に投入し、糸切れによるカード工程での落綿や針布に巻き付かずにカードから出てきたウェブの質量(g)を測定する。測定したウェブの質量等を用いて、以下式にてカード工程通過率を求めた。このカード工程通過率の値が大きいほど、カード工程通過率は優れているといえる。
(7) Card process pass rate (productivity and quality) of non-woven fabric B
Adjust to the short fiber ratio to be used, weigh 20 g of raw cotton processed in the opener process, put it in a lab card machine (cylinder rotation speed 300 rpm, doffer speed 10 m / min), and drop cotton in the card process due to thread breakage. Measure the mass (g) of the web coming out of the card without wrapping it around the or staple cloth. Using the measured mass of the web and the like, the card process pass rate was calculated by the following formula. It can be said that the larger the value of the card process passing rate, the better the card process passing rate.

カード工程通過率(%)=ウェブ質量(g)/投入量(g)×100
また、得られた不織布Bについて目視にて外観観察を行った。不織布Bの試料から300mm×300mmの試験片を、鋼製定規とかみそり刃とを用いて3枚採取し、繊維塊の個数を数え、繊維塊の個数(個/m)に換算した。
Card process pass rate (%) = web mass (g) / input amount (g) x 100
Moreover, the appearance of the obtained nonwoven fabric B was visually observed. Three 300 mm × 300 mm test pieces were collected from the sample of the non-woven fabric B using a steel ruler and a razor blade, the number of fiber lumps was counted, and the number was converted into the number of fiber lumps (pieces / m 2 ).

(8)吸音材用不織布の目付
JIS L 1913:1998 6.2に基づいて測定した。吸音材用不織布の試料から300mm×300mmの試験片を、鋼製定規とかみそり刃とを用いて3枚採取した。標準状態における試験片の質量を測定して、単位面積当たりの質量である目付を次の式によって求め、平均値を算出した。なお、不織布A、不織布Bのそれぞれの目付については、不織布Aと不織布Bを分離し、同様にして目付を測定した。
ms=m/S
ms:単位面積当たりの質量(g/m
m:吸音材用不織布の試験片の平均質量(g)
S:吸音材用不織布の試験片の面積(m) 。
(8) Metsuke of non-woven fabric for sound absorbing material Measured based on JIS L 1913: 1998 6.2. Three 300 mm × 300 mm test pieces were collected from a sample of the non-woven fabric for sound absorbing material using a steel ruler and a razor blade. The mass of the test piece in the standard state was measured, and the basis weight, which is the mass per unit area, was calculated by the following formula, and the average value was calculated. Regarding the basis weights of the nonwoven fabric A and the nonwoven fabric B, the nonwoven fabric A and the nonwoven fabric B were separated and the basis weight was measured in the same manner.
ms = m / S
ms: Mass per unit area (g / m 2 )
m: Average mass (g) of test piece of non-woven fabric for sound absorbing material
S: Area (m 2 ) of the test piece of the non-woven fabric for sound absorbing material.

(9)吸音材用不織布の厚さ
JIS L1913:1998 6.1.2 A法に基づいて測定した。吸音材用不織布の試料から50mm×50mmの試験片を5枚採取した。厚さ測定器(TECLOCK社製定圧厚さ測定器、型式PG11J)を用いて標準状態で試験片に0.36kPaの圧力を10秒間かけて厚さを測定した。測定は各試験片(5枚)について行い、平均値を算出した。
(9) Thickness of non-woven fabric for sound absorbing material Measured based on JIS L1913: 1998 6.1.2 A method. Five 50 mm × 50 mm test pieces were collected from a sample of the non-woven fabric for sound absorbing material. Using a thickness measuring device (constant pressure thickness measuring device manufactured by TECLOCK, model PG11J), the thickness was measured by applying a pressure of 0.36 kPa to the test piece in a standard state over 10 seconds. The measurement was performed on each test piece (5 pieces), and the average value was calculated.

(10)吸音材用不織布の密度
上記(8)の吸音材用積層不織布の目付と、上記(9)の吸音材用積層不織布の厚さから、次の式によって求めた。
(10) Density of non-woven fabric for sound absorbing material From the basis weight of the laminated non-woven fabric for sound absorbing material of (8) above and the thickness of the laminated non-woven fabric for sound absorbing material of (9) above, it was calculated by the following formula.

吸音材用不織布の密度(g/cm)=吸音材用不織布の目付(g/m)/吸音材用不織布の厚さ(mm)/1000
(11)吸音材用不織布の細孔径分布度数
ASTM F316-86に規定される方法によって測定した。測定装置としてはPorous Materials,Inc(米国)社製“パームポロメーター”を用い、測定試薬としてはPMI社製の“ガルヴィック”を用い、シリンダー圧力を100kPaとし、測定モードとしてはWET UP-DRY UPの条件にて細孔径分布(%)を測定し、0を超え5μm未満、5μm以上10μm未満の細孔径分布(%)を示した。
Density of non-woven fabric for sound absorbing material (g / cm 3 ) = Metsuke of non-woven fabric for sound absorbing material (g / m 2 ) / Thickness of non-woven fabric for sound absorbing material (mm) / 1000
(11) Pore diameter distribution frequency of non-woven fabric for sound absorbing material Measured by the method specified in ASTM F316-86. A "Palm Porometer" manufactured by Pourous Materials, Inc. (USA) is used as the measuring device, "Galvic" manufactured by PMI is used as the measuring reagent, the cylinder pressure is 100 kPa, and the measuring mode is WET UP-DRY UP. The pore size distribution (%) was measured under the above conditions, and the pore size distribution (%) was more than 0 and less than 5 μm, and 5 μm or more and less than 10 μm.

(12)吸音材用不織布の通気度
JIS L 1096-1999 8.27.1 A法(フラジール形法)に準じて測定した。吸音材用不織布の試料から、200mm×200mmの試験片を5枚採取した。フラジール形試験機を用い、円筒の一端(吸気側)に試験片を取り付けた。試験片の取り付けに際し、円筒の上に試験片を置き、試験片上から吸気部分を塞がないように均等に約98N(10kgf)の荷重を加え試験片の取り付け部におけるエアーの漏れを防止した。試験片を取り付けた後、加減抵抗器によって傾斜形気圧計が125Paの圧力を示すように吸込みファンを調整し、そのときの垂直形気圧計の示す圧力と、使用した空気孔の種類とから、試験機に付属の表によって試験片を通過する通気量(cm/cm/s)を求め、5枚の試験片についての平均値を算出した。
(12) Air permeability of non-woven fabric for sound absorbing material Measured according to JIS L 1096-1999 8.27.1 A method (Frazil type method). Five 200 mm × 200 mm test pieces were collected from a sample of the non-woven fabric for sound absorbing material. A test piece was attached to one end (intake side) of the cylinder using a Frazier type tester. When mounting the test piece, the test piece was placed on a cylinder, and a load of about 98 N (10 kgf) was evenly applied from above the test piece so as not to block the intake portion to prevent air leakage at the test piece mounting portion. After attaching the test piece, adjust the suction fan so that the inclined barometer shows a pressure of 125 Pa with an adjusting resistor, and from the pressure shown by the vertical barometer at that time and the type of air hole used, The air flow rate (cm 3 / cm 2 / s) passing through the test pieces was determined from the table attached to the tester, and the average value for the five test pieces was calculated.

(13)吸音材用不織布の垂直入射吸音率
JIS A 1405(1998)の垂直入射吸音測定法(管内法)に準じて測定した。吸音材用不織布の試料から直径92mmの円形の試験片を3枚採取した。試験装置としては、電子測器株式会社製の自動垂直入射吸音率測定器(型式10041A)を用いた。試験片を、測定用のインピーダンス管の一端に、試験片と金属反射板との間に20mmの厚さの空気層ができるようにスペーサーを設置し、試験片を取り付けた。周波数毎の吸音率は測定で得られた吸音係数を100倍した値を採用した。そして、得られた1000Hzの吸音率の平均値を低周波吸音率(%)とした。
(13) Vertically incident sound absorption coefficient of non-woven fabric for sound absorbing material The measurement was performed according to the vertical incident sound absorption measuring method (in-pipe method) of JIS A 1405 (1998). Three circular test pieces having a diameter of 92 mm were collected from a sample of the non-woven fabric for sound absorbing material. As a test device, an automatic vertical incident sound absorption coefficient measuring device (model 10041A) manufactured by Electronic Measuring Instruments Co., Ltd. was used. A spacer was installed at one end of the impedance tube for measurement so that an air layer having a thickness of 20 mm could be formed between the test piece and the metal reflector, and the test piece was attached. For the sound absorption coefficient for each frequency, a value obtained by multiplying the sound absorption coefficient obtained by the measurement by 100 was adopted. Then, the average value of the obtained 1000 Hz sound absorption coefficient was defined as the low frequency sound absorption coefficient (%).

(実施例1)
(不織布A)
ポリプロピレン(PP)樹脂を、押出機に供給して260℃の温度で溶融させ、メルトブロー口金から押出した。この際に吐出された樹脂流体に向けて300℃、0.09MPaの加熱エアーを吹き付け、前記口金から20cmの距離にある、金網製の堆積装置に積層させ、繊度0.002~0.3dtex区間における平均繊度0.017dtex 、繊維A1の含有量が99質量%、目付20g/mの不織布Aを得た。
(Example 1)
(Nonwoven fabric A)
Polypropylene (PP) resin was supplied to an extruder, melted at a temperature of 260 ° C., and extruded from a melt blow mouthpiece. At this time, heated air at 300 ° C. and 0.09 MPa was blown toward the discharged resin fluid and laminated on a wire mesh depositing device at a distance of 20 cm from the base, and the fineness was 0.002 to 0.3 dtex section. A non-woven fabric A having an average fineness of 0.017 dtex, a content of fiber A1 of 99% by mass, and a basis weight of 20 g / m 2 was obtained.

(不織布B)
短繊維A2として繊度0.56dtex、繊維長3.8cm、強度5.4cN/dtex、伸度23%、捲縮数13.4山/25mm、捲縮度15.3%で通過係数が55のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして繊度1.60dtex、繊維長5.1cmのポリエチレンテレフタレート(PET)短繊維を50質量%使用し、各短繊維をオープナー工程に処した後、カード工程(シリンダー回転数300rpm、ドッファー速度10m/min)に処した。その後、下記の条件の水流交絡工程(圧力条件:上面8.0MPa、上面10.0MPa、下面13.5MPa、上面16.0MPa、下面13.5MPaの5回通し)に処した後、乾燥工程にて120℃で乾燥し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 23%, the number of crimps is 13.4 threads / 25 mm, the crimp degree is 15.3%, and the passage coefficient is 55. 50% by mass of polyethylene terephthalate (PET) staples, 50% by mass of polyethylene terephthalate (PET) staples having a fineness of 1.60 dtex as short fibers B and a fiber length of 5.1 cm were used, and each short fiber was subjected to an opener process. After that, it was subjected to a card process (cylinder rotation speed 300 rpm, doffer speed 10 m / min). Then, it was subjected to a water flow entanglement step (pressure condition: upper surface 8.0 MPa, upper surface 10.0 MPa, lower surface 13.5 MPa, upper surface 16.0 MPa, lower surface 13.5 MPa 5 times) under the following conditions, and then subjected to a drying step. The stapled fabric B was dried at 120 ° C. to obtain a non-woven fabric B having a fineness ratio of 0.35 between the staple fibers A2 and the staple fibers B and a grain size of 200 g / m 2 .

(吸音材用不織布)
不織布Bの上面に融点が83℃のエチレン酢酸ビニル共重合樹脂からなる低融点パウダーを5g/m散布し、さらに不織布Bの上面に不織布Aを積層させ、120℃の加熱ロールで貼り合せて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
5 g / m 2 of low melting point powder made of ethylene-vinyl acetate copolymer resin having a melting point of 83 ° C. is sprayed on the upper surface of the nonwoven fabric B, and the nonwoven fabric A is laminated on the upper surface of the nonwoven fabric B and bonded with a heating roll at 120 ° C. A nonwoven fabric for a sound absorbing material having a grain size of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 was obtained.

実施例1の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く品位が良好であった。 In the non-woven fabric for sound absorbing material of Example 1, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例2)
(不織布A)
実施例1の不織布Aを用いた。
(Example 2)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維A2を用い、短繊維Bとして実施例1の短繊維Bを用い、含有量をそれぞれ35質量%、65質量%に変更した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
Same as Example 1 except that the short fibers A2 of Example 1 were used as the short fibers A2 and the short fibers B of Example 1 were used as the short fibers B, and the contents were changed to 35% by mass and 65% by mass, respectively. The non-woven fabric B having a fineness ratio of 0.35 between the staple fibers A2 and the staple fibers B and a grain size of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

実施例2の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く品位が良好であった。 In the non-woven fabric for sound absorbing material of Example 2, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例3)
(不織布A)
実施例1の不織布Aを用いた。
(Example 3)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維A2を用い、短繊維Bとして実施例1の短繊維Bを用い、含有量をそれぞれ65質量%、35質量%に変更した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
Same as Example 1 except that the short fibers A2 of Example 1 were used as the short fibers A2 and the short fibers B of Example 1 were used as the short fibers B, and the contents were changed to 65% by mass and 35% by mass, respectively. The non-woven fabric B having a fineness ratio of 0.35 between the staple fibers A2 and the staple fibers B and a grain size of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 .

実施例3の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも少なく、カード工程通過性も94%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく品位が良好であった。 The non-woven fabric for sound absorbing material of Example 3 had less cotton drop due to thread breakage in the card process of the non-woven fabric B and wrapping around the needle cloth, and the card process passability was relatively good at 94%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.


(実施例4)
(不織布A)
実施例1の不織布Aを用いた。

(Example 4)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維A2を用い、短繊維Bとして実施例1の短繊維Bを用い、含有量をそれぞれ75質量%、25質量%に変更した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
Same as Example 1 except that the short fibers A2 of Example 1 were used as the short fibers A2 and the short fibers B of Example 1 were used as the short fibers B, and the contents were changed to 75% by mass and 25% by mass, respectively. The non-woven fabric B having a fineness ratio of 0.35 between the staple fibers A2 and the staple fibers B and a grain size of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 .

実施例4の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも少なく、カード工程通過性も92%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が比較的少なく、品位も比較的良好であった。 The non-woven fabric for sound absorbing material of Example 4 had less cotton drop due to thread breakage in the card process of the non-woven fabric B and wrapping around the needle cloth, and the card process passability was relatively good at 92%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was relatively small, and the quality was also relatively good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例5)
(不織布A)
ポリプロピレン(PP)樹脂を、押出機に供給して240℃の温度で溶融させ、メルトブロー口金から押出した。この際に吐出された樹脂流体に向けて300℃、0.06MPaの加熱エアーを吹き付け、前記口金から20cmの距離にある、金網製の堆積装置に積層させ、繊度0.002~0.3dtex区間における平均繊度0.142dtex 、繊維A1の含有量が90質量%、目付20g/mの不織布Aを得た。
(Example 5)
(Nonwoven fabric A)
Polypropylene (PP) resin was supplied to an extruder, melted at a temperature of 240 ° C., and extruded from a melt blow mouthpiece. At this time, heated air at 300 ° C. and 0.06 MPa was blown toward the discharged resin fluid and laminated on a wire mesh depositing device at a distance of 20 cm from the base, and the fineness was 0.002 to 0.3 dtex section. A non-woven fabric A having an average fineness of 0.142 dtex, a content of fiber A1 of 90% by mass, and a basis weight of 20 g / m 2 was obtained.

(不織布B)
実施例1の不織布Bを用いた。
(Nonwoven fabric B)
The non-woven fabric B of Example 1 was used.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

実施例5の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く品位が良好であった。 In the non-woven fabric for sound absorbing material of Example 5, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率は比較的高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was relatively high.

(実施例6)
(不織布A)
実施例1の不織布Aを用い、金属ロールとペーパーロールを有するカレンダー加工機を用いて、金属ロール温度90℃、ペーパーロール温度60℃、線圧力600N/cm、速度2m/minの条件で金属ロール/ペーパーロール間でロールプレスし、繊度0.002~0.3dtex区間における平均繊度0.018dtex 、繊維A1の含有量が99質量%、目付20g/mの不織布Aを得た。
(Example 6)
(Nonwoven fabric A)
Using the nonwoven fabric A of Example 1, using a calender processing machine having a metal roll and a paper roll, the metal roll is under the conditions of a metal roll temperature of 90 ° C., a paper roll temperature of 60 ° C., a linear pressure of 600 N / cm, and a speed of 2 m / min. / Roll-pressed between paper rolls to obtain a non-woven fabric A having an average fineness of 0.018 dtex in the fineness section of 0.002 to 0.3 dtex, a fiber A1 content of 99% by mass, and a grain size of 20 g / m 2 .

(不織布B)
実施例1の不織布Bを用いた。
(Nonwoven fabric B)
The non-woven fabric B of Example 1 was used.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.0mm、不織布密度0.225g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.0 mm, and a nonwoven fabric density of 0.225 g / cm 3 .

実施例6の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く品位が良好であった。 In the non-woven fabric for sound absorbing material of Example 6, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例7)
(不織布A)
実施例1の不織布Aを用いた。
(Example 7)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.56dtex、繊維長3.8cm、強度5.4cN/dtex、伸度24%、捲縮数7.5山/25mm、捲縮度9.1%で通過係数が32のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 24%, the number of crimps is 7.5 peaks / 25 mm, the crimp degree is 9.1%, and the passage coefficient is 32. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the short fibers were shorter than the short fibers A2. A non-woven fabric B having a fiber B fineness ratio of 0.35 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

実施例7の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも少なく、カード工程通過性も85%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が比較的少なく、品位も比較的良好であった。 The non-woven fabric for sound absorbing material of Example 7 had less cotton drop due to thread breakage in the card process of the non-woven fabric B and wrapping around the needle cloth, and the card process passability was relatively good at 85%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was relatively small, and the quality was also relatively good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例8)
(不織布A)
実施例1の不織布Aを用いた。
(Example 8)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.56dtex、繊維長3.8cm、強度4.7cN/dtex、伸度24%、捲縮数13.5山/25mm、捲縮度15.2%で通過係数が49のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 4.7 cN / dtex, the elongation is 24%, the number of crimps is 13.5 threads / 25 mm, the crimp degree is 15.2%, and the passage coefficient is 49. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the short fibers were shorter than the short fibers A2. A non-woven fabric B having a fiber B fineness ratio of 0.35 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

実施例8の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも少なく、カード工程通過性も92%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Example 8 had less cotton drop due to thread breakage in the card process of the non-woven fabric B and wrapping around the needle cloth, and the card process passability was relatively good at 92%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例9)
(不織布A)
実施例1の不織布Aを用いた。
(Example 9)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.57dtex、繊維長3.8cm、強度6.3cN/dtex、伸度24%、捲縮数13.5山/25mm、捲縮度15.3%で通過係数が67のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.36、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.57 dtex, the fiber length is 3.8 cm, the strength is 6.3 cN / dtex, the elongation is 24%, the number of crimps is 13.5 threads / 25 mm, the crimp degree is 15.3%, and the passage coefficient is 67. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the short fibers were shorter than the short fibers A2. A non-woven fabric B having a fiber B fineness ratio of 0.36 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 .

実施例9の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も98%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く、品位も良好であった。 In the non-woven fabric for sound absorbing material of Example 9, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 98%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was also good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例10)
(不織布A)
実施例1の不織布Aを用いた。
(Example 10)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維A2を50質量%、短繊維Bとして、繊度2.20dtex、繊維長5.1cmのポリエチレンテレフタレート(PET)短繊維を50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.25、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
Examples except that 50% by mass of the short fiber A2 of Example 1 was used as the short fiber A2 and 50% by mass of polyethylene terephthalate (PET) short fibers having a fineness of 2.20 dtex and a fiber length of 5.1 cm were used as the short fiber B. The treatment was carried out under the same steps and conditions as in No. 1, to obtain a nonwoven fabric B having a fineness ratio of 0.25 between the staple fibers A2 and the staple fibers B and a grain size of 200 g / m 2 .

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 .

実施例10の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も98%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く、品位も良好であった。 In the non-woven fabric for sound absorbing material of Example 10, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 98%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was also good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例11)
(不織布A)
実施例1の不織布Aを用いた。
(Example 11)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.85dtex、繊維長5.1cm、強度5.3cN/dtex、伸度25%、捲縮数13.3山/25mm、捲縮度15.4%で通過係数が63のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして、繊度1.21dtex、繊維長5.1cmのポリエチレンテレフタレート(PET)短繊維を50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.70、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.85 dtex, the fiber length is 5.1 cm, the strength is 5.3 cN / dtex, the elongation is 25%, the number of crimps is 13.3 peaks / 25 mm, the crimp degree is 15.4%, and the passage coefficient is 63. Same as Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of polyethylene terephthalate (PET) staple fibers having a fineness of 1.21 dtex and a fiber length of 5.1 cm were used as short fibers B. Treatment was performed according to the process and conditions to obtain a non-woven fabric B having a fineness ratio of 0.70 between the staple fibers A2 and the staple fibers B and a grain size of 200 g / m 2 .

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 .

実施例11の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも少なく、カード工程通過性も94%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が比較的少なく、品位も比較的良好であった。 The non-woven fabric for sound absorbing material of Example 11 had less cotton drop due to thread breakage in the card process of the non-woven fabric B and wrapping around the needle cloth, and the card process passability was relatively good at 94%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was relatively small, and the quality was also relatively good.

得られた吸音材用積層不織布の低周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was high.

(実施例12)
(不織布A)
実施例1の不織布Aを用いた。
(Example 12)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維A2を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用し、実施例1と同一の工程で、目付のみ変更し、他は実施例1と同一の条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付140g/mの不織布Bを得た。
(Nonwoven fabric B)
50% by mass of the short fiber A2 of Example 1 was used as the short fiber A2, and 50% by mass of the short fiber B of Example 1 was used as the short fiber B. The treatment was carried out under the same conditions as in Example 1 to obtain a non-woven fabric B having a fineness ratio of 0.35 between the staple fibers A2 and the staple fibers B and a grain size of 140 g / m 2 .

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付165g/m、厚さ0.9mm、不織布密度0.183g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 165 g / m 2 , a thickness of 0.9 mm, and a nonwoven fabric density of 0.183 g / cm 3 .

実施例12の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く、品位も良好であった。 In the non-woven fabric for sound absorbing material of Example 12, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was also good.

得られた吸音材用積層不織布の低周波吸音率は比較的高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was relatively high.

(実施例13)
(不織布A)
実施例1の不織布Aを用いた。
(Example 13)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維A2を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用し、実施例1と同一の工程で、水流交絡工程の圧力条件を上面8.0MPa、上面10.0MPa、下面11.0MPa、上面11.0MPa、下面11.0MPaの5回通しに変更し、他は実施例1と同一の条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
50% by mass of the short fiber A2 of Example 1 was used as the short fiber A2, and 50% by mass of the short fiber B of Example 1 was used as the short fiber B. The upper surface was changed to 8.0 MPa, the upper surface was 10.0 MPa, the lower surface was 11.0 MPa, the upper surface was 11.0 MPa, and the lower surface was 11.0 MPa. A non-woven fabric B having a fiber B fineness ratio of 0.35 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ4.1mm、不織布密度0.055g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 4.1 mm, and a nonwoven fabric density of 0.055 g / cm 3 .

実施例13の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く、品位も良好であった。 In the non-woven fabric for sound absorbing material of Example 13, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was also good.

得られた吸音材用積層不織布の低周波吸音率は比較的高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was relatively high.

(実施例14)
(不織布A)
実施例1の不織布Aを用いた。
(Example 14)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.58dtex、繊維長3.8cm、強度3.5cN/dtex、伸度23%、捲縮数13.1山/25mm、捲縮度15.5%で通過係数が37のアクリル短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.36、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.58 dtex, the fiber length is 3.8 cm, the strength is 3.5 cN / dtex, the elongation is 23%, the number of crimps is 13.1 peaks / 25 mm, the crimp degree is 15.5%, and the passage coefficient is 37. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of the acrylic short fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the fineness of the short fibers A2 and the short fibers B was increased. A non-woven fiber B having a ratio of 0.36 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 .

実施例14の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も95%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 In the non-woven fabric for sound absorbing material of Example 14, there was no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 95%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用積層不織布の低周波吸音率は比較的高かった。 The low-frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was relatively high.

(比較例1)
(不織布A)
実施例1の不織布Aを用いた。
(Comparative Example 1)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維A2を用い、短繊維Bとして実施例1の短繊維Bを用い、含有量をそれぞれ20質量%、80質量%に変更した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
Same as Example 1 except that the short fibers A2 of Example 1 were used as the short fibers A2 and the short fibers B of Example 1 were used as the short fibers B, and the contents were changed to 20% by mass and 80% by mass, respectively. The non-woven fabric B having a fineness ratio of 0.35 between the staple fibers A2 and the staple fibers B and a grain size of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

比較例1の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も98%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く、品位も良好であった。 The non-woven fabric for sound absorbing material of Comparative Example 1 had no cotton drop due to thread breakage in the card process of the non-woven fabric B or wrapping around the needle cloth, and the card process passability was as good as 98%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was also good.

得られた吸音材用積層不織布の低周波吸音率は低かった。 The low frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was low.

(比較例2)
(不織布A)
実施例1の不織布Aを用いた。
(Comparative Example 2)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として実施例1の短繊維Aを用い、短繊維Bとして実施例1の短繊維Bを用い、含有量をそれぞれ90質量%、10質量%に変更した以外は、実施例1と同一の工程、条件で処理し、短繊維Aと短繊維Bの繊度の比0.35、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
Same as Example 1 except that the short fibers A of Example 1 were used as the short fibers A2 and the short fibers B of Example 1 were used as the short fibers B, and the contents were changed to 90% by mass and 10% by mass, respectively. The non-woven fabric B having a fineness ratio of 0.35 between the staple fibers A and the staple fibers B and a grain size of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.1mm、不織布密度0.205g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.205 g / cm 3 .

比較例2の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も70%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 In the non-woven fabric for sound absorbing material of Comparative Example 2, the non-woven fabric B was often dropped due to thread breakage in the card process and wrapped around the needle cloth, and the card process passability was inferior to 70%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用積層不織布の低周波吸音率は低かった。 The low frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was low.

(比較例3)
(不織布A)
ポリプロピレン(PP)樹脂を、押出機に供給して220℃の温度で溶融させ、メルトブロー口金から押出した。この際に吐出された樹脂流体に向けて300℃、0.04MPaの加熱エアーを吹き付け、前記口金から20cmの距離にある、金網製の堆積装置に積層させ、繊度0.002~0.3dtex区間における平均繊度0.307dtex 、繊維A1の含有量が46質量%、目付20g/mの不織布Aを得た。
(Comparative Example 3)
(Nonwoven fabric A)
Polypropylene (PP) resin was supplied to an extruder, melted at a temperature of 220 ° C., and extruded from a melt blow cap. At this time, heated air at 300 ° C. and 0.04 MPa was blown toward the discharged resin fluid and laminated on a wire mesh depositing device at a distance of 20 cm from the base, and the fineness was 0.002 to 0.3 dtex section. A non-woven fabric A having an average fineness of 0.307 dtex, a content of fiber A1 of 46% by mass, and a basis weight of 20 g / m 2 was obtained.

(不織布B)
実施例1の不織布Bを用いた。
(Nonwoven fabric B)
The non-woven fabric B of Example 1 was used.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

比較例3の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く品位が良好であった。 The non-woven fabric for sound absorbing material of Comparative Example 3 had no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率は低かった。 The low frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was low.

(比較例4)
(不織布A)
実施例1の不織布Aを用いた。
(Comparative Example 4)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.34dtex、繊維長3.8cm、強度5.4cN/dtex、伸度23%、捲縮数13.4山/25mm、捲縮度15.3%で通過係数が33のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.21、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.34 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 23%, the number of crimps is 13.4 threads / 25 mm, the crimp degree is 15.3%, and the passage coefficient is 33. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the short fibers were shorter than the short fibers A2. A non-woven fabric B having a fiber B fineness ratio of 0.21 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

比較例4の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も75%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 In the non-woven fabric for sound absorbing material of Comparative Example 4, the non-woven fabric B was often dropped due to thread breakage in the card process and wrapped around the needle cloth, and the card process passability was as poor as 75%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用積層不織布の低周波吸音率は低かった。 The low frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was low.

(比較例5)
(不織布A)
実施例1の不織布Aを用いた。
(Comparative Example 5)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.97dtex、繊維長3.8cm、強度5.4cN/dtex、伸度24%、捲縮数13.3山/25mm、捲縮度15.4%で通過係数が97のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.61、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.97 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 24%, the number of crimps is 13.3 peaks / 25 mm, the crimp is 15.4%, and the passage coefficient is 97. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the short fibers were shorter than the short fibers A2. A non-woven fabric B having a fiber B fineness ratio of 0.61 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

比較例5の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も97%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が無く品位が良好であった。 The non-woven fabric for sound absorbing material of Comparative Example 5 had no cotton drop or wrapping around the needle cloth due to thread breakage in the card process of the non-woven fabric B, and the card process passability was as good as 97%. In addition, the dispersion of each staple fiber was good, no fiber lumps were generated, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率は低かった。 The low frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was low.


(比較例6)
(不織布A)
実施例1の不織布Aを用いた。

(Comparative Example 6)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.55dtex、繊維長3.8cm、強度1.5cN/dtex、伸度17%、捲縮数13.5山/25mm、捲縮度15.2%で通過係数が13のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.34、目付200g/mの不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.55 dtex, the fiber length is 3.8 cm, the strength is 1.5 cN / dtex, the elongation is 17%, the number of crimps is 13.5 threads / 25 mm, the crimp degree is 15.2%, and the passage coefficient is 13. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the short fibers were shorter than the short fibers A2. A non-woven fabric B having a fiber B fineness ratio of 0.34 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

比較例6の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も72%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 In the non-woven fabric for sound absorbing material of Comparative Example 6, the non-woven fabric B was often dropped due to thread breakage in the card process and wrapped around the needle cloth, and the card process passability was as poor as 72%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用積層不織布の低周波吸音率は低かった。 The low frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was low.

(比較例7)
(不織布A)
実施例1の不織布Aを用いた。
(Comparative Example 7)
(Nonwoven fabric A)
The non-woven fabric A of Example 1 was used.

(不織布B)
短繊維A2として繊度0.56dtex、繊維長3.8cm、強度4.8cN/dtex、伸度21%、捲縮数4.0山/25mm、捲縮度4.5%で通過係数が14のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bとして実施例1の短繊維Bを50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維A2と短繊維Bの繊度の比0.35、目付200g/m、の不織布Bを得た。
(Nonwoven fabric B)
As a staple fiber A2, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 4.8 cN / dtex, the elongation is 21%, the number of crimps is 4.0 ridges / 25 mm, the crimp degree is 4.5%, and the passage coefficient is 14. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) staple fibers and 50% by mass of the short fibers B of Example 1 were used as the short fibers B, and the short fibers were shorter than the short fibers A2. A non-woven fabric B having a fiber B fineness ratio of 0.35 and a texture of 200 g / m 2 was obtained.

(吸音材用不織布)
実施例1と同一の方法で不織布Aと不織布Bを貼り合わせて、目付225g/m、厚さ1.2mm、不織布密度0.188g/cmの吸音材用不織布を得た。
(Non-woven fabric for sound absorbing material)
The nonwoven fabric A and the nonwoven fabric B were bonded together by the same method as in Example 1 to obtain a nonwoven fabric for sound absorbing material having a basis weight of 225 g / m 2 , a thickness of 1.2 mm, and a nonwoven fabric density of 0.188 g / cm 3 .

比較例6の吸音材用不織布は、不織布Bのカード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も76%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 In the non-woven fabric for sound absorbing material of Comparative Example 6, the non-woven fabric B was often dropped due to thread breakage in the card process and wrapped around the needle cloth, and the card process passability was as poor as 76%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用積層不織布の低周波吸音率は低かった。 The low frequency sound absorption coefficient of the obtained laminated nonwoven fabric for sound absorbing material was low.

実施例および比較例の吸音材用不織布の構成と特性を表1~表4にまとめた。 The configurations and characteristics of the nonwoven fabrics for sound absorbing materials of Examples and Comparative Examples are summarized in Tables 1 to 4.

Figure 2022040591000001
Figure 2022040591000001

Figure 2022040591000002
Figure 2022040591000002

Figure 2022040591000003
Figure 2022040591000003

Figure 2022040591000004
Figure 2022040591000004

本発明の吸音材用不織布は、特に、低周波領域の吸音性能に優れ、生産性に優れるとともに、品位にも優れるため、特に自動車などの吸音材として好適に用いられる。 The nonwoven fabric for sound absorbing material of the present invention is particularly suitable as a sound absorbing material for automobiles and the like because it is excellent in sound absorbing performance in a low frequency region, excellent in productivity, and excellent in quality.

Claims (8)

不織布Aと不織布Bとの積層構造を有し、
前記不織布Aが、繊度0.002~0.3dtexの繊維A1を不織布A全体に対して80質量%以上含有し、
前記不織布Bが、繊度0.4~0.9dtexの短繊維A2を不織布B全体に対して30~80質量%含有し、
前記不織布Bが、繊度が1.1~20.0dtexの短繊維Bを不織布B全体に対して20~70質量%含有し、
前記短繊維A2の下記の式(1)に示す通過係数は15~260の範囲内である、吸音材用不織布。
通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
It has a laminated structure of non-woven fabric A and non-woven fabric B, and has a laminated structure.
The nonwoven fabric A contains fibers A1 having a fineness of 0.002 to 0.3 dtex in an amount of 80% by mass or more with respect to the entire nonwoven fabric A.
The nonwoven fabric B contains 30 to 80% by mass of short fibers A2 having a fineness of 0.4 to 0.9 dtex with respect to the entire nonwoven fabric B.
The nonwoven fabric B contains 20 to 70% by mass of short fibers B having a fineness of 1.1 to 20.0 dtex with respect to the entire nonwoven fabric B.
A non-woven fabric for a sound absorbing material, wherein the passing coefficient of the staple fiber A2 represented by the following formula (1) is in the range of 15 to 260.
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
目付が、150g/m以上700g/m以下であり、
厚さが、0.6mm以上4.0mm以下である、請求項1に記載の吸音材用不織布。
The basis weight is 150 g / m 2 or more and 700 g / m 2 or less.
The nonwoven fabric for a sound absorbing material according to claim 1, which has a thickness of 0.6 mm or more and 4.0 mm or less.
密度が、0.07g/cm以上0.40g/cm以下である、請求項1または2に記載の吸音材用不織布。 The nonwoven fabric for a sound absorbing material according to claim 1 or 2, wherein the density is 0.07 g / cm 3 or more and 0.40 g / cm 3 or less. 前記短繊維A2がポリエステル系短繊維である、請求項1~3のいずれか一つに記載の吸音材用不織布。 The nonwoven fabric for a sound absorbing material according to any one of claims 1 to 3, wherein the staple fiber A2 is a polyester-based staple fiber. 前記短繊維A2の引張強度が5cN/dtex以上であり、前記短繊維A2の引張伸度が20~35%である、請求項1~4のいずれか一つに記載の吸音材用不織布。 The nonwoven fabric for a sound absorbing material according to any one of claims 1 to 4, wherein the staple fiber A2 has a tensile strength of 5 cN / dtex or more and the staple fiber A2 has a tensile elongation of 20 to 35%. 前記短繊維A2の繊度が0.4~0.9dtexであり、前記短繊維Bの繊度が1.1~1.8dtexであり、かつ前記短繊維A2と前記短繊維Bの繊度の比(短繊維A2の繊度/短繊維Bの繊度)が0.30~0.60である、請求項1~5のいずれかに記載の吸音材用不織布。 The fineness of the short fiber A2 is 0.4 to 0.9 dtex, the fineness of the short fiber B is 1.1 to 1.8 dtex, and the ratio of the fineness of the short fiber A2 to the short fiber B (short). The nonwoven fabric for a sound absorbing material according to any one of claims 1 to 5, wherein the fineness of the fiber A2 / the fineness of the staple fiber B) is 0.30 to 0.60. 請求項1~6のいずれか一つに記載の吸音材用不織布と、
繊維系多孔質体、発泡体、または空気層からなる層状物とを、有し、
前記層状物は、前記吸音材用不織布の一方の面に積層されており、
前記層状物の厚さが、5~50mmである、吸音材。
The nonwoven fabric for sound absorbing material according to any one of claims 1 to 6.
It has a fibrous porous body, a foam, or a layered material composed of an air layer.
The layered material is laminated on one surface of the non-woven fabric for sound absorbing material.
A sound absorbing material having a layered material having a thickness of 5 to 50 mm.
メルトブロー法により、繊度0.002~0.3dtexの繊維A1を不織布A全体に対して80質量%以上含有する不織布Aを得る工程と、
短繊維A2および短繊維Bに開繊処理を施し、短繊維A2および短繊維Bの混繊ウェブを得る工程と、
前記混繊ウェブがウォータージェットパンチノズルを3回以上通過し、不織布Bを得る工程と、
前記不織布Aと前記不織布Bとを積層する工程とを有し、
前記短繊維A2の繊度が、0.4~0.9dtexであり、
前記短繊維A2の下記の式(1)に示す通過係数が、15~260の範囲内であり、
前記短繊維Bの繊度が、1.1~20.0dtexであり、
前記混繊ウェブの全体に対する前記短繊維A2の含有量が、30~80質量%であり、
前記混繊ウェブの全体に対する前記短繊維Bの含有量が、20~70質量%である、吸音材用不織布の製造方法。
通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
A step of obtaining a nonwoven fabric A containing 80% by mass or more of fibers A1 having a fineness of 0.002 to 0.3 dtex with respect to the entire nonwoven fabric A by a melt blow method.
A step of subjecting the short fibers A2 and the short fibers B to a fiber opening treatment to obtain a mixed fiber web of the short fibers A2 and the short fibers B,
The step of obtaining the nonwoven fabric B by passing the mixed fiber web through the water jet punch nozzle three times or more.
It has a step of laminating the nonwoven fabric A and the nonwoven fabric B.
The fineness of the staple fiber A2 is 0.4 to 0.9 dtex, and the staple fiber A2 has a fineness of 0.4 to 0.9 dtex.
The passage coefficient of the staple fiber A2 represented by the following formula (1) is in the range of 15 to 260.
The fineness of the staple fiber B is 1.1 to 20.0 dtex, and the staple fiber B has a fineness of 1.1 to 20.0 dtex.
The content of the staple fiber A2 with respect to the entire mixed fiber web is 30 to 80% by mass.
A method for producing a nonwoven fabric for a sound absorbing material, wherein the content of the staple fibers B in the entire mixed fiber web is 20 to 70% by mass.
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
JP2020145378A 2020-08-31 2020-08-31 Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing Active JP7468255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020145378A JP7468255B2 (en) 2020-08-31 2020-08-31 Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020145378A JP7468255B2 (en) 2020-08-31 2020-08-31 Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing

Publications (2)

Publication Number Publication Date
JP2022040591A true JP2022040591A (en) 2022-03-11
JP7468255B2 JP7468255B2 (en) 2024-04-16

Family

ID=80499521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020145378A Active JP7468255B2 (en) 2020-08-31 2020-08-31 Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing

Country Status (1)

Country Link
JP (1) JP7468255B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198611A (en) 2002-12-17 2004-07-15 Towa Orimono Kk Sound-absorbing floor mat
JP4770228B2 (en) 2005-03-28 2011-09-14 東レ株式会社 Leather-like sheet and manufacturing method thereof
JP2011208346A (en) 2010-03-11 2011-10-20 Toray Ind Inc Polyester fiber structure
CN107429456B (en) 2015-03-12 2021-07-30 东丽株式会社 Laminated nonwoven fabric
JP6035405B2 (en) 2015-11-18 2016-11-30 株式会社ヒロタニ Manufacturing method of soundproofing material for vehicle
US20180339491A1 (en) 2017-05-24 2018-11-29 Zephyros, Inc. Insulation for modular buildings
WO2019069202A1 (en) 2017-10-06 2019-04-11 3M Innovative Properties Company Acoustic composite and methods thereof
WO2019106757A1 (en) 2017-11-29 2019-06-06 豊通マテックス株式会社 Sound absorbing material
JPWO2020031798A1 (en) 2018-08-06 2021-08-12 東レ株式会社 Manufacturing method of mixed non-woven fabric for face mask and mixed non-woven fabric for face mask
US20220076653A1 (en) 2018-12-04 2022-03-10 Maxell Holdings, Ltd. Control method of sound absorption characteristics of soundproof material
JP7468229B2 (en) 2020-07-31 2024-04-16 東レ株式会社 Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing

Also Published As

Publication number Publication date
JP7468255B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
JP6801643B2 (en) Laminated non-woven fabric
US8118902B2 (en) Filtering medium and filter unit
CN107675354B (en) Method and device for preparing three-component sound-absorbing cotton by electrostatic spinning, melt blowing and dry method web forming
JP6362400B2 (en) Nonwoven web
CN101351328A (en) Porous membrane
JP2010515837A (en) Microfiber split film filter felt and manufacturing method thereof
JP7468505B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
JP6950525B2 (en) Laminate
JP2022026479A (en) Non-woven fabric for sound absorbing material, sound absorbing material, and manufacturing method of non-woven fabric for sound absorbing material
JP7468255B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
EP3781286B1 (en) High burst strength wet-laid nonwoven filtration media and its use
JP2010095815A (en) Mixed staple, nonwoven fabric comprising the same, and method for producing mixed staple
JP2022028195A (en) Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric
EP4253037A1 (en) Non-woven-fabric layered body for sound-absorbing material, and sound-absorbing material
US12008981B2 (en) Sound-absorbing material nonwoven fabric, sound-absorbing material, and method for producing sound-absorbing material nonwoven fabric
KR101282785B1 (en) Manufacturing method of melt blown nonwoven fabric having high bulkiness
JP2007314906A (en) Carpet backing
JP2023027449A (en) Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material
WO2017068811A1 (en) Nanofiber nonwoven cloth and sound-absorbing member using same
JP4211496B2 (en) Sound absorbing material component and sound absorbing material
JP2020020856A (en) Laminated nonwoven fabric for sound absorber
JP2019131903A (en) Laminated nonwoven fabric
JP2001340716A (en) Filter and its manufacturing method
JPH0445810A (en) Cartridge filter
CN117621583A (en) Waterproof breathable material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7468255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150