JP2022028195A - Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric - Google Patents

Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric Download PDF

Info

Publication number
JP2022028195A
JP2022028195A JP2020131462A JP2020131462A JP2022028195A JP 2022028195 A JP2022028195 A JP 2022028195A JP 2020131462 A JP2020131462 A JP 2020131462A JP 2020131462 A JP2020131462 A JP 2020131462A JP 2022028195 A JP2022028195 A JP 2022028195A
Authority
JP
Japan
Prior art keywords
fiber
sound absorbing
absorbing material
dtex
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020131462A
Other languages
Japanese (ja)
Inventor
秀朗 唐崎
Hideaki Karasaki
誠 中原
Makoto Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2020131462A priority Critical patent/JP2022028195A/en
Publication of JP2022028195A publication Critical patent/JP2022028195A/en
Pending legal-status Critical Current

Links

Abstract

To provide a nonwoven fabric for a sound absorbing material excellent in sound absorbing performance in low and high frequency areas, and excellent in productivity and quality, and to provide a manufacturing method of the sound absorbing material and the nonwoven fabric.SOLUTION: A nonwoven fabric for a sound absorbing material contains 30 to 80 mass% of a staple fiber A having a fineness of 0.4 to 0.9 dtex and 2 mass% or more of a staple fiber B having a fineness of 0.0005-0.3 dtex, and a transmission coefficient of the staple fiber A represented by the following expression (1) is in a range of 15 to 260: transmission coefficient=(fineness×strength×√elongation×√number of crimps×√degree of crimp)/(fiber length)--(1), where the fineness is expressed by dtex, the strength is expressed by cN/dtex, the elongation is expressed by %, the number of crimps is expressed by the number of ridges/25 mm, the degree of crimp is expressed by %, and the fiber length is expressed by cm.SELECTED DRAWING: None

Description

本発明は、吸音材用不織布、吸音材、および吸音材用不織布の製造方法に関する。 The present invention relates to a non-woven fabric for a sound absorbing material, a sound absorbing material, and a method for manufacturing a non-woven fabric for a sound absorbing material.

近年、自動車や電気製品などにおいて静粛性が製品の商品価値の一つとしてこれまで以上に重要視されてきている。一般に騒音対策には対策部品となる吸音材の質量および厚みを増すことが有効とされるが、自動車室内や居室内の空間を広く保つことや自動車では低燃費化の観点から、吸音材の軽量化・コンパクト化が要求されている。 In recent years, quietness has become more important than ever as one of the commercial values of products in automobiles and electric products. Generally, it is effective to increase the mass and thickness of the sound absorbing material, which is a countermeasure component, as a noise countermeasure. It is required to be compact and compact.

特許文献1には、繊度が0.1~1.0dtexの極細繊維と繊度が1.2~5.0dtexの短繊維とを含むシート状の基材の片面を加熱および加圧して、通気調整膜を形成した車両用防音材の製造方法が提案されている。 In Patent Document 1, one side of a sheet-like base material containing ultrafine fibers having a fineness of 0.1 to 1.0 dtex and short fibers having a fineness of 1.2 to 5.0 dtex is heated and pressed to adjust air permeability. A method for manufacturing a soundproof material for a vehicle having a film formed has been proposed.

また、特許文献2には、繊度が0.4~0.8dtexの合成繊維とセルロース繊維を主成分とするフェイスマスク用混繊不織布が提案されている。 Further, Patent Document 2 proposes a mixed fiber non-woven fabric for a face mask containing synthetic fibers having a fineness of 0.4 to 0.8 dtex and cellulose fibers as main components.

また、特許文献3には、単繊維繊度0.0001~1.0dtexの極細繊維を含む吸音材構成部材が提案されている。 Further, Patent Document 3 proposes a sound absorbing material constituent member containing ultrafine fibers having a single fiber fineness of 0.0001 to 1.0 dtex.

特開2016―34828号公報Japanese Unexamined Patent Publication No. 2016-34828 国際公開第2020/31798号International Publication No. 2020/31798 特開2004―354844号公報Japanese Unexamined Patent Publication No. 2004-354844

本発明者らの知見によると、特許文献1に開示された車両用防音材は、極細繊維を含有するため、防音性能も比較的、優れたものとなる傾向がみられる。 According to the findings of the present inventors, since the soundproofing material for vehicles disclosed in Patent Document 1 contains ultrafine fibers, the soundproofing performance tends to be relatively excellent.

しかし、吸音材用不織布等は、これらの製造工程において、極細繊維を含有する繊維にカード機やフリースマシンによる開繊処理を施す工程(以下、カード工程)を経て得られるものである。そして、上記のカード工程では、極細繊維は、繊度が比較的大きい繊維に比べて糸切れや針布への巻き付きが発生する傾向がみられる。以上のことから、極細繊維を使用する吸音材用不織布などは生産性に劣るとの課題がある。また、吸音材用不織布などの内部に切れた極細繊維が繊維塊として発生する傾向もみられ、この場合には、吸音材用不織布などを用いた吸音材の吸音性能が劣ったものとなるとともに、上記の吸音材の品位も劣ったものとなるとの課題がある。 However, the non-woven fabric for a sound absorbing material or the like is obtained through a step (hereinafter referred to as a card step) in which fibers containing ultrafine fibers are subjected to a fiber opening treatment by a card machine or a fleece machine in these manufacturing steps. In the above-mentioned card process, the ultrafine fibers tend to have thread breakage and wrapping around the needle cloth as compared with the fibers having a relatively large fineness. From the above, there is a problem that the non-woven fabric for sound absorbing material using ultrafine fibers is inferior in productivity. In addition, there is also a tendency for ultrafine fibers that are cut inside the non-woven fabric for sound absorbing material to be generated as fiber lumps. There is a problem that the quality of the above-mentioned sound absorbing material is also inferior.

上記の生産性の課題について、特許文献2では、不織布に使用する極細繊維の物性を特定の範囲とすることで、カード工程における糸切れや針布への巻き付きの抑制が図れるとされている。しかし、特許文献2には、極細繊維の捲縮度と生産性の関係を示す開示は無く、吸音材用不織布を製造する際の生産性には劣るとの課題がある。また、極細繊維が繊維塊として発生する傾向もみられ、この場合には、吸音材としての吸音性能が劣ったものとなるとともに、品位も劣ったものとなるとの課題がある。 Regarding the above-mentioned productivity problem, Patent Document 2 states that by setting the physical properties of the ultrafine fibers used for the non-woven fabric within a specific range, it is possible to suppress thread breakage and wrapping around the needle cloth in the card process. However, Patent Document 2 does not disclose the relationship between the degree of crimping of ultrafine fibers and productivity, and there is a problem that the productivity when producing a nonwoven fabric for sound absorbing material is inferior. Further, there is a tendency that ultrafine fibers are generated as fiber lumps, and in this case, there is a problem that the sound absorbing performance as a sound absorbing material is inferior and the quality is also inferior.

他方、特許文献3には、500Hz以下の低周波域で優れた吸音効果を得るために、吸音材構成部材を構成する繊維として極細繊維を用いる開示がある。しかし、前記の極細繊維は、海島繊維からなる不織布の海成分を脱海して極細繊維を得る方法であり、生産性に劣るとの課題がある。また、分割型複合繊維のみを溶融紡糸し堆積させてウェブとし、さらに水流により分割して極細繊維を得る方法の開示があるが、溶融紡糸したフィラメントを堆積させる方法では、フィラメント同士が融着し、分割型複合繊維が分割しにくく、実質的に吸音性能が劣ったものとなるとの課題がある。 On the other hand, Patent Document 3 discloses that ultrafine fibers are used as fibers constituting the sound absorbing material constituent member in order to obtain an excellent sound absorbing effect in a low frequency region of 500 Hz or less. However, the above-mentioned ultrafine fiber is a method for obtaining ultrafine fiber by desealing the sea component of a non-woven fabric made of sea-island fiber, and has a problem of being inferior in productivity. Further, there is a disclosure of a method in which only split-type composite fibers are melt-spun and deposited to form a web, and further divided by a water stream to obtain ultrafine fibers. However, in the method of depositing melt-spun filaments, the filaments are fused to each other. There is a problem that the split type composite fiber is difficult to split and the sound absorption performance is substantially inferior.

そこで、本発明は、上記の事情に鑑み、低周波領域と高周波域の吸音性能、および生産性に優れるとともに、品位にも優れた吸音材を得るための吸音材用不織布、および上記の吸音材用不織布を用いた吸音材などを提供することを課題とする。 Therefore, in view of the above circumstances, the present invention comprises a non-woven fabric for a sound absorbing material for obtaining a sound absorbing material having excellent sound absorbing performance and productivity in a low frequency region and a high frequency region and also having excellent quality, and the above sound absorbing material. An object of the present invention is to provide a sound absorbing material or the like using a non-woven fabric for use.

上記課題を解決するため、本発明は以下の構成を有する。すなわち、
(1)繊度が0.4~0.9dtexの短繊維Aを30~80質量%含有し、繊度が0.0005~0.3dtexの短繊維Bを2質量%以上含有し、前記短繊維Aの下記の式(1)に示す通過係数は15~260の範囲内である、吸音材用不織布。
通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
(2)目付が、150g/m以上500g/m以下であり、厚さが、0.6mm以上4.0mm以下である、(1)に記載の吸音材用不織布。
(3)密度が、0.07g/cm以上0.40g/cm以下である、(1)または(2)に記載の吸音材用不織布。
(4)前記短繊維Aが、ポリエステル系短繊維である、(1)~(3)のいずれか一つに記載の吸音材用不織布。
(5)前記短繊維Aの引張強度が5cN/dtex以上であり、前記短繊維Aの引張伸度が20~35%である、(1)~(4)のいずれか一つに記載の吸音材用不織布。
(6)(1)~(5)のいずれかに記載の吸音材用不織布と、繊維系多孔質体層、発泡体層、または空気層からなる層状物とを、有し、前記層状物は、前記吸音材用不織布の一方の面に積層されており、前記層状物の厚さが、5~50mmである、吸音材。
(7)短繊維Aと、分割型複合繊維に開繊処理を施し、前記短繊維Aおよび前記分割型複合繊維の混繊ウェブを得る工程と、前記混繊ウェブがウォータージェットパンチノズルを3回以上通過し、前記分割型複合繊維から短繊維Bが分割される工程とを有し、前記短繊維Aの繊度が0.4~0.9dtexであり、前記短繊維Aの下記の式(1)に示す通過係数は15~260の範囲内であり、前記短繊維Bの繊度が0.0005~0.3dtexであり、前記混繊ウェブの全体に対し、前記短繊維Aの含有量が30~80質量%であり、前記混繊ウェブの全体に対し、前記分割型複合繊維の含有量が20~70質量%である、吸音材用不織布の製造方法である。
In order to solve the above problems, the present invention has the following configurations. That is,
(1) The staple fiber A containing 30 to 80% by mass of the staple fiber A having a fineness of 0.4 to 0.9 dtex and 2% by mass or more of the staple fiber B having a fineness of 0.0005 to 0.3 dtex. The non-woven fabric for sound absorbing material has a passing coefficient in the range of 15 to 260 shown in the following formula (1).
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
(2) The nonwoven fabric for sound absorbing material according to (1), wherein the basis weight is 150 g / m 2 or more and 500 g / m 2 or less, and the thickness is 0.6 mm or more and 4.0 mm or less.
(3) The nonwoven fabric for sound absorbing material according to (1) or (2), which has a density of 0.07 g / cm 3 or more and 0.40 g / cm 3 or less.
(4) The nonwoven fabric for a sound absorbing material according to any one of (1) to (3), wherein the staple fiber A is a polyester-based staple fiber.
(5) The sound absorption according to any one of (1) to (4), wherein the staple fiber A has a tensile strength of 5 cN / dtex or more and the staple fiber A has a tensile elongation of 20 to 35%. Non-woven fabric for materials.
(6) The nonwoven fabric for a sound absorbing material according to any one of (1) to (5) and a layered material composed of a fibrous porous body layer, a foam layer, or an air layer, and the layered material has. , A sound absorbing material laminated on one surface of the non-woven fabric for sound absorbing material, and the thickness of the layered material is 5 to 50 mm.
(7) A step of subjecting the short fiber A and the split type composite fiber to a fiber opening treatment to obtain a mixed fiber web of the short fiber A and the split type composite fiber, and the mixed fiber web using a water jet punch nozzle three times. It has a step of dividing the short fiber B from the split type composite fiber after passing through the above, and the fineness of the short fiber A is 0.4 to 0.9 dtex, and the following formula (1) of the short fiber A is provided. ) Is in the range of 15 to 260, the fineness of the short fiber B is 0.0005 to 0.3 dtex, and the content of the short fiber A is 30 with respect to the entire mixed fiber web. It is a method for producing a non-woven fabric for a sound absorbing material, which is ~ 80% by mass, and the content of the split type composite fiber is 20 to 70% by mass with respect to the entire mixed fiber web.

通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>

本発明によれば、所定の物性を有する極細繊維を使用することにより、低周波領域と高周波域の吸音性能、および生産性に優れるとともに、品位にも優れた吸音材を得るための吸音材用不織布を提供することができる。 According to the present invention, by using an ultrafine fiber having predetermined physical properties, it is used as a sound absorbing material for obtaining a sound absorbing material having excellent sound absorbing performance and productivity in the low frequency region and high frequency region and also having excellent quality. Non-woven fabrics can be provided.

以下、本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

本発明の吸音材用不織布は、繊度が0.4~0.9dtexの短繊維Aを30~80質量%含有し、さらに、繊度が0.0005~0.3dtexの短繊維Bを2質量%以上含有し、上記の短繊維Aの下記の式(1)に示す通過係数は15~260の範囲内である。
通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
このような吸音材用不織布(以下、単に「不織布」と称することがある)は、その製造工程におけるカード機等によるカード工程で、短繊維Aの糸切れや短繊維Aの針布への巻き付きの発生が抑制される。そして、短繊維Aの糸切れや短繊維Aの針布への巻き付きの発生が抑制されることで、吸音材用不織布の生産性が優れたものとなるとともに、吸音材用不織布の内部に切れた短繊維Aが繊維塊として発生することも抑制されるので、低周波領域および高周波域の両方で高い吸音性能が得られる。また、吸音材用不織布の内部に切れた短繊維Aが繊維塊として発生することも抑制されるので、吸音材用不織布の品位も優れたものとなるとの効果が得られることを本発明者は見出した。なお、これらの効果を総じて「本発明の効果」と称することがある。本発明の吸音材用不織布が上記の効果を奏することができるのは、短繊維Aの通過係数が15~260の範囲内であるためと推測する。
The nonwoven fabric for sound absorbing material of the present invention contains 30 to 80% by mass of staple fibers A having a fineness of 0.4 to 0.9 dtex, and further contains 2% by mass of staple fibers B having a fineness of 0.0005 to 0.3 dtex. With the above content, the passage coefficient of the staple fiber A shown in the following formula (1) is in the range of 15 to 260.
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
Such a non-woven fabric for sound absorbing material (hereinafter, may be simply referred to as "nonwoven fabric") is a thread breakage of the short fiber A or wrapping of the short fiber A around the staple cloth in the card process by a card machine or the like in the manufacturing process. Is suppressed. By suppressing the occurrence of thread breakage of the short fiber A and wrapping of the short fiber A around the staple cloth, the productivity of the non-woven fabric for sound absorbing material becomes excellent, and the non-woven fabric for sound absorbing material is cut inside. Since the generation of the staple fibers A as fiber lumps is also suppressed, high sound absorption performance can be obtained in both the low frequency region and the high frequency region. Further, since the short fibers A cut inside the non-woven fabric for sound absorbing material are suppressed from being generated as fiber lumps, the present inventor can obtain the effect that the quality of the non-woven fabric for sound absorbing material is also excellent. I found it. In addition, these effects may be collectively referred to as "effects of the present invention". It is presumed that the non-woven fabric for sound absorbing material of the present invention can exert the above effect because the passage coefficient of the staple fiber A is in the range of 15 to 260.

本発明の吸音材用不織布は、繊度が0.0005~0.3dtexの短繊維Bを吸音材用不織布の全質量に対して2質量以上含有するとの特徴(特徴点1)を有する。本発明の吸音材用不織布の構成において、吸音材用不織布が上記の特徴点1を満たすことで、本発明の効果が得られる。短繊維Bが上記範囲の繊度を有する繊維であることにより、微細な孔を多数有する多孔質部を吸音材用不織布の内部に形成することができ、この不織布を用いた吸音材の吸音性能が優れたものとなる。短繊維Bの繊度を0.0005dtex以上とすることで、短繊維B同士が束状に密集することが抑制され、多孔質部を一定の割合で吸音材用不織布の内部に形成することができ、吸音材用不織布の吸音性能が優れたものとなる。また、短繊維Bの繊度を0.3dtex以下とすることで、上記の多孔質部が微細なものとなり、これにより、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。前記の点で、短繊維Bの繊度は0.01~0.25dtexであることが好ましく、0.05~0.2dtexであることがさらに好ましい。 The nonwoven fabric for sound absorbing material of the present invention has a feature (feature point 1) that it contains 2 or more of short fibers B having a fineness of 0.0005 to 0.3 dtex with respect to the total mass of the nonwoven fabric for sound absorbing material. In the configuration of the nonwoven fabric for sound absorbing material of the present invention, the effect of the present invention can be obtained when the nonwoven fabric for sound absorbing material satisfies the above-mentioned feature 1. Since the staple fiber B is a fiber having a fineness in the above range, a porous portion having a large number of fine pores can be formed inside the non-woven fabric for sound absorbing material, and the sound absorbing performance of the sound absorbing material using this non-woven fabric can be improved. It will be excellent. By setting the fineness of the staple fibers B to 0.0005 dtex or more, it is possible to prevent the staple fibers B from being densely packed in a bundle, and to form a porous portion inside the non-woven fabric for sound absorbing material at a constant ratio. , The sound absorbing performance of the non-woven fabric for sound absorbing material is excellent. Further, by setting the fineness of the short fiber B to 0.3 dtex or less, the above-mentioned porous portion becomes fine, and as a result, when sound passes through the voids (that is, the porous portion) between the fibers. Sound can be efficiently converted into heat by air friction with fibers around the voids, and excellent sound absorption can be obtained when used as a sound absorbing material. In the above points, the fineness of the staple fiber B is preferably 0.01 to 0.25 dtex, and more preferably 0.05 to 0.2 dtex.

また、短繊維Bは、分割型複合繊維を構成する成分が、分割型複合繊維から剥離または分離してなるものであることが好ましい。ここで、分割型複合繊維とは、ニードルパンチ法やウォータージェットパンチ法等の機械的な交絡処理法により繊維にかかる外力または構成成分の熱収縮力等により、複数の成分に分割可能な繊維を指す。また、分割型複合繊維は、繊維断面において構成成分のうち少なくとも1成分が2個以上に区分されてなり、構成成分の少なくとも一部が繊維表面に露出し、その露出部分が繊維の長さ方向に連続的に形成されている繊維断面構造を有する繊維であることが好ましい。短繊維Bの前駆体が上記の分割型複合繊維であることにより、カード工程においては分割型複合繊維が比較的太い繊度を維持し、短繊維Aが不織布の内部で均一に分散し、吸音材用不織布の内部に、短繊維Aが繊維塊として発生することが抑制され、吸音材用不織布の品位が向上する。また、短繊維Aが均一に分散することで微細な孔を多数有する多孔質部を吸音材用不織布の内部に形成することができ、この不織布を吸音材とした際の吸音性能が優れたものとなる。さらに、短繊維Aのカード工程での糸切れや、針布への巻き付きを抑制し、結果として、吸音材用不織布の生産性を向上させることができる。前記の点で、分割型複合繊維の繊度は、1.1~20.0dtexであることが好ましい。分割型複合繊維の繊度を1.1dtex以上とすることにより、上記のとおり短繊維Aが均一に分散し、優れた吸音性と生産性を得ることができる。一方、分割型複合繊維の繊度を20.0dtex以下とすることにより、機械的な処理により短繊維Bを得るためのエネルギーを削減でき、生産性を高めることができる。前記の点で、分割型複合繊維の繊度は1.3~18.0dtexであることが好ましく、1.4~15.0dtexであることがさらに好ましい。 Further, the staple fiber B preferably has a component constituting the split type composite fiber peeled off or separated from the split type composite fiber. Here, the split type composite fiber is a fiber that can be split into a plurality of components by an external force applied to the fiber by a mechanical entanglement treatment method such as a needle punch method or a water jet punch method or a heat shrinkage force of a constituent component. Point to. Further, in the split type composite fiber, at least one of the constituent components is divided into two or more in the fiber cross section, at least a part of the constituent components is exposed on the fiber surface, and the exposed portion is in the length direction of the fiber. It is preferable that the fiber has a fiber cross-sectional structure continuously formed in the fiber. Since the precursor of the short fiber B is the above-mentioned split type composite fiber, the split type composite fiber maintains a relatively thick fineness in the card process, the short fiber A is uniformly dispersed inside the non-woven fabric, and the sound absorbing material is used. The generation of short fibers A as fiber lumps is suppressed inside the nonwoven fabric for sound absorbing material, and the quality of the nonwoven fabric for sound absorbing material is improved. Further, by uniformly dispersing the short fibers A, a porous portion having a large number of fine pores can be formed inside the non-woven fabric for sound absorbing material, and the sound absorbing performance when this non-woven fabric is used as the sound absorbing material is excellent. Will be. Further, it is possible to suppress the thread breakage of the short fiber A in the card process and the wrapping around the staple cloth, and as a result, the productivity of the non-woven fabric for the sound absorbing material can be improved. In the above points, the fineness of the split type composite fiber is preferably 1.1 to 20.0 dtex. By setting the fineness of the split type composite fiber to 1.1 dtex or more, the staple fibers A are uniformly dispersed as described above, and excellent sound absorption and productivity can be obtained. On the other hand, by setting the fineness of the split type composite fiber to 20.0 dtex or less, the energy for obtaining the staple fiber B can be reduced by mechanical treatment, and the productivity can be increased. In the above points, the fineness of the split type composite fiber is preferably 1.3 to 18.0 dtex, more preferably 1.4 to 15.0 dtex.

また、短繊維Bを吸音材用不織布の全質量に対して2質量%以上含有することで、吸音材用不織布の内部に一定の割合で形成される多孔質部が微細なものとなり、吸音材として使用した際に優れた吸音性を得ることができる。また、短繊維Bの前駆体が分割型複合繊維である場合には、カード工程において、吸音材用不織布全体で発生する糸切れや針布への巻き付き、繊維塊の発生の頻度が低下し、結果として、生産性や品位に優れた吸音材用不織布が得られるものと推測する。一方で、吸音材用不織布を構成する短繊維Bの含有量が多すぎると、短繊維Bの前駆体が分割型複合繊維であった場合においても、カード工程において、吸音材用不織布全体で発生する糸切れや針布への巻き付き、繊維塊が発生する傾向にある。したがって、短繊維Bの含有量は吸音材用不織布の全質量に対して70質量%以下であることが好ましい。また、前記の点で、短繊維Bの含有量は、吸音材用不織布の全質量に対して、4質量%以上であることが好ましく、6%質量以上であることがさらに好ましい。また、50質量%以下であることが好ましく、35質量%以下であることがさらに好ましい。 Further, by containing 2% by mass or more of the short fibers B with respect to the total mass of the non-woven fabric for sound absorbing material, the porous portion formed in a certain ratio inside the non-woven fabric for sound absorbing material becomes fine, and the sound absorbing material becomes fine. Excellent sound absorption can be obtained when used as a non-woven fabric. Further, when the precursor of the short fiber B is a split type composite fiber, the frequency of thread breakage, wrapping around the staple cloth, and fiber lumps generated in the entire non-woven fabric for sound absorbing material is reduced in the carding process. As a result, it is presumed that a non-woven fabric for a sound absorbing material having excellent productivity and quality can be obtained. On the other hand, if the content of the short fibers B constituting the non-woven fabric for sound absorbing material is too large, even if the precursor of the short fibers B is a split type composite fiber, it is generated in the entire non-woven fabric for sound absorbing material in the card process. There is a tendency for thread breakage, wrapping around staple cloth, and fiber lumps to occur. Therefore, the content of the staple fibers B is preferably 70% by mass or less with respect to the total mass of the non-woven fabric for sound absorbing material. Further, from the above point, the content of the staple fiber B is preferably 4% by mass or more, more preferably 6% by mass or more, based on the total mass of the nonwoven fabric for sound absorbing material. Further, it is preferably 50% by mass or less, and more preferably 35% by mass or less.

次に、本発明の吸音材用不織布は、繊度が0.4~0.9dtexの短繊維Aを30~80質量%含有し、かつ、前記短繊維Aの下記の式(1)に示す通過係数が15~260の範囲内であるとの特徴(特徴点2)を有する。 Next, the non-woven fabric for a sound absorbing material of the present invention contains 30 to 80% by mass of staple fibers A having a fineness of 0.4 to 0.9 dtex, and the short fibers A pass through the following formula (1). It has a feature (feature point 2) that the coefficient is in the range of 15 to 260.

通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
本発明の吸音材用不織布が上記の特徴点2を満たすことで、本発明の効果が得られる。上記のとおり、繊度の小さい短繊維Aは、カード工程において糸切れを起こしたり、針布へ巻き付いたり、吸音材用不織布の内部にて繊維塊を形成し易い傾向がある。しかし、繊度が0.4~0.9dtexの短繊維Aであっても、通過係数が15~260の範囲内である場合には、カード工程における短繊維Aの糸切れ等の発生は抑制される。すなわち、短繊維Aの繊度が0.4~0.9dtexであり、かつ、通過係数が15~260であることで、その短繊維Aを特定の含有量にて含有する吸音材用不織布は、カード工程における短繊維Aの糸切れ等の発生が抑制され、吸音材用不織布は生産性に優れるとともに、その吸音材用不織布を用いた吸音材の吸音性能が優れたものとなる。そのメカニズムは以下のとおりと推測する。短繊維Aの特性である、繊度、強度、伸度、捲縮数、捲縮度と、繊維長のバランスを最適化する(すなわち、短繊維Aの通過係数が15~260である)ことで、カード工程における短繊維Aと針布との間の摩擦による糸切れが抑制されたり(このことには、特に、短繊維Aの強度や短繊維Aの伸度の影響が大きいと考えられる)、カード工程における短繊維Aの針布への巻き付きが低減する(このことには、特に、短繊維Aの繊維長の影響が大きいと考える)ものと推測する。そして、カード工程において、不織布の内部で短繊維Aと短繊維Bとが均一に分散、交絡し、吸音材用不織布の内部にて、短繊維Aが繊維塊として発生することも抑制され(このことは、特に、短繊維Aの捲縮数および捲縮度の影響が大きいと考えられる)、吸音材用不織布の品位が向上するとともに、短繊維Aが不織布の内部で均一に分散することで微細な孔を多数有する多孔質部を吸音材用不織布の内部に形成することができ、この不織布を用いた吸音材の吸音性能が優れたものとなる。
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
When the nonwoven fabric for sound absorbing material of the present invention satisfies the above-mentioned feature point 2, the effect of the present invention can be obtained. As described above, the short fiber A having a low fineness tends to cause thread breakage in the card process, wrap around the staple cloth, and easily form a fiber lump inside the non-woven fabric for sound absorbing material. However, even if the staple fiber A has a fineness of 0.4 to 0.9 dtex, if the passage coefficient is within the range of 15 to 260, the occurrence of yarn breakage of the staple fiber A in the carding process is suppressed. To. That is, the non-woven fabric for a sound absorbing material containing the staple fiber A at a specific content has a fineness of 0.4 to 0.9 dtex and a passage coefficient of 15 to 260. The occurrence of thread breakage of the staple fiber A in the card process is suppressed, the non-woven fabric for sound absorbing material is excellent in productivity, and the sound absorbing performance of the sound absorbing material using the non-woven fabric for sound absorbing material is excellent. The mechanism is presumed to be as follows. By optimizing the balance between the fineness, strength, elongation, number of crimps, and crimping degree, which are the characteristics of the short fiber A, and the fiber length (that is, the passage coefficient of the short fiber A is 15 to 260). , Thread breakage due to friction between the short fiber A and the needle cloth in the card process is suppressed (this is considered to be particularly affected by the strength of the short fiber A and the elongation of the short fiber A). It is presumed that the wrapping of the short fiber A around the needle cloth in the card process is reduced (this is considered to be particularly affected by the fiber length of the short fiber A). Then, in the card process, the short fibers A and the short fibers B are uniformly dispersed and entangled inside the non-woven fabric, and the generation of the short fibers A as a fiber mass is suppressed inside the non-woven fabric for sound absorbing material (this). This is considered to be particularly affected by the number of crimps and the degree of crimp of the short fiber A), the quality of the non-woven fabric for sound absorbing material is improved, and the short fiber A is uniformly dispersed inside the non-woven fabric. A porous portion having a large number of fine pores can be formed inside the non-woven fabric for sound absorbing material, and the sound absorbing performance of the sound absorbing material using this non-woven fabric becomes excellent.

また、前記の短繊維Aの通過係数は、短繊維Aの繊度、強度、伸度、捲縮数、捲縮度および繊維長の全てを考慮した調整により、所望のものとすることができる。そして、上記の理由から、短繊維Aの通過係数は20以上であることが好ましく、150以下であることがさらに好ましい。また、25以上であることがより好ましく、100以下であることがより好ましい。 Further, the passage coefficient of the staple fiber A can be made desired by adjusting the fineness, strength, elongation, number of crimps, crimp degree and fiber length of the staple fiber A in consideration of all of them. For the above reasons, the passage coefficient of the staple fiber A is preferably 20 or more, and more preferably 150 or less. Further, it is more preferably 25 or more, and more preferably 100 or less.

短繊維Aの繊度、強度、伸度、捲縮数、捲縮度および繊維長の各々が取り得る範囲については、上記の通過係数が15~260の範囲となる限りにおいては特に限定されるものではないが、これらの個々についての好ましい範囲は以下のとおりである。 The range that each of the fineness, strength, elongation, number of crimps, crimping degree and fiber length of the staple fiber A can be taken is particularly limited as long as the above-mentioned passing coefficient is in the range of 15 to 260. However, the preferred range for each of these is as follows.

短繊維Aの繊度は0.4~0.9dtexである。短繊維Aの繊度を0.9dtex以下とすることで、繊度の小さい短繊維Aにより、吸音材用不織布の内部に、微細な孔を多数有する多孔質部を形成することができる。これにより、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。 The fineness of the staple fiber A is 0.4 to 0.9 dtex. By setting the fineness of the short fiber A to 0.9 dtex or less, the short fiber A having a low fineness can form a porous portion having a large number of fine pores inside the non-woven fabric for sound absorbing material. As a result, when sound passes through the voids (that is, the porous portion) between the fibers, the sound can be efficiently converted into heat by air friction with the fibers around the voids, and when used as a sound absorbing material. Excellent sound absorption can be obtained.

一方、短繊維Aの繊度を0.4dtex以上とすることで、カード工程において、不織布内部において短繊維Aが均一に分散し、吸音材用不織布の内部に、短繊維Aが繊維塊として発生することが抑制されるため、吸音材用不織布の品位が向上する。また、短繊維Aが不織布内部で均一に分散することで微細な孔を多数有する多孔質部を吸音材用不織布の内部に形成することができ、吸音材とした際の吸音性能が優れたものとなる。前記の点で、短繊維Aの繊度は0.5~0.8dtexであることが好ましく、0.5~0.7dtexであることがさらに好ましい。なお、0.4~0.9dtexよりも繊度の小さい極細繊維を得るためには、海島繊維を脱海する手法やエレクトロスピニング法を採用する必要があるが、これらの手法は短繊維等を製造する溶融紡糸法や湿式紡糸法等に比べ生産性に劣るとの課題がある。本発明の吸音材用不織布で用いる短繊維Aは、繊度が0.4~0.9dtexである。よって、この短繊維Aは溶融紡糸法や湿式紡糸法で生産することが可能である。すなわち、本発明の吸音材用不織布を得るのに海島繊維を脱海する手法やエレクトロスピニング法を用いる必要がない。よって、本発明の吸音材用不織布の生産性は、製造工程において海島繊維を脱海する手法やエレクトロスピニング法を用いる必要がある吸音材用不織布の生産性と比較し、優れたものとなる。 On the other hand, by setting the fineness of the short fibers A to 0.4 dtex or more, the short fibers A are uniformly dispersed inside the non-woven fabric in the card process, and the short fibers A are generated as fiber lumps inside the non-woven fabric for sound absorbing material. Therefore, the quality of the non-woven fabric for sound absorbing material is improved. Further, since the short fibers A are uniformly dispersed inside the nonwoven fabric, a porous portion having many fine pores can be formed inside the nonwoven fabric for sound absorbing material, and the sound absorbing performance when used as a sound absorbing material is excellent. Will be. In the above points, the fineness of the staple fiber A is preferably 0.5 to 0.8 dtex, and more preferably 0.5 to 0.7 dtex. In addition, in order to obtain ultrafine fibers having a fineness smaller than 0.4 to 0.9 dtex, it is necessary to adopt a method of desealing sea island fibers or an electrospinning method, but these methods produce short fibers and the like. There is a problem that the productivity is inferior to that of the melt spinning method and the wet spinning method. The staple fiber A used in the nonwoven fabric for sound absorbing material of the present invention has a fineness of 0.4 to 0.9 dtex. Therefore, the staple fibers A can be produced by a melt spinning method or a wet spinning method. That is, it is not necessary to use the method of desealing the sea island fibers or the electrospinning method to obtain the nonwoven fabric for sound absorbing material of the present invention. Therefore, the productivity of the non-woven fabric for sound-absorbing material of the present invention is superior to the productivity of the non-woven fabric for sound-absorbing material, which requires the use of a method for removing sea island fibers or an electrospinning method in the manufacturing process.

短繊維Aの引張強度(本明細書等においては、単に「強度」と称することがある)は2.5cN/dtex以上であることが好ましい。短繊維Aの引張強度を2.5cN/dtex以上とすることで、吸音材用不織布の製造工程における、カード工程での短繊維Aと針布との摩擦による糸切れがより抑制され、結果として、吸音材用不織布の生産性をより向上させることができる。前記の点で短繊維の引張強度については2.8cN/dtex以上であることがさらに好ましい。 The tensile strength of the staple fiber A (sometimes referred to simply as "strength" in the present specification and the like) is preferably 2.5 cN / dtex or more. By setting the tensile strength of the short fiber A to 2.5 cN / dtex or more, the yarn breakage due to the friction between the short fiber A and the staple cloth in the card process in the manufacturing process of the non-woven fabric for sound absorbing material is further suppressed, and as a result. , The productivity of the non-woven fabric for sound absorbing material can be further improved. In the above points, the tensile strength of the staple fibers is more preferably 2.8 cN / dtex or more.

短繊維Aの引張伸度(本明細書等においては、単に「伸度」と称することがある。)は20~40%であることが好ましい。短繊維Aの引張伸度を20%以上とすることで、カード工程での短繊維Aと針布との摩擦による糸切れがより抑制され、結果として、吸音材用不織布の生産性をより向上させることができる。一方、短繊維Aの引張伸度を40%以下とすることでカード工程での針布との摩擦による短繊維Aの伸びから発生する、針布への巻き付きがより低減し、結果として、吸音材用不織布の生産性をより向上させることができる。前記の点で短繊維Aの引張伸度については22%~35%であることがさらに好ましい。 The tensile elongation of the staple fiber A (in the present specification and the like, it may be simply referred to as “elongation”) is preferably 20 to 40%. By setting the tensile elongation of the short fiber A to 20% or more, the yarn breakage due to the friction between the short fiber A and the staple cloth in the card process is further suppressed, and as a result, the productivity of the non-woven fabric for sound absorbing material is further improved. Can be made to. On the other hand, by setting the tensile elongation of the short fiber A to 40% or less, the wrapping around the staple cloth caused by the elongation of the short fiber A due to the friction with the staple cloth in the card process is further reduced, and as a result, sound absorption is achieved. The productivity of the non-woven fabric for materials can be further improved. In this respect, the tensile elongation of the staple fiber A is more preferably 22% to 35%.

短繊維Aは、引張強度が5cN/dtex以上であり、かつ引張伸度が20~35%であることが、カード工程での短繊維Aと針布との摩擦による糸切れの抑制と、針布との摩擦による短繊維Aの伸びから発生する、針布への巻き付きがより低減し、吸音材用不織布の生産性をより向上させることができるため好ましい。また、摩擦による糸切れと針布への巻き付きを抑制することで、繊維塊の発生が抑制され、短繊維Aが均一に分散することで微細な孔を多数有する多孔質部を吸音材用不織布の内部に形成することができ、結果的にこの不織布を吸音材とした際の吸音性能が優れたものとなる。さらに、前記の点で、短繊維Aの引張強度は、6.0cN/dtex以上であることが特に好ましい。 The short fiber A has a tensile strength of 5 cN / dtex or more and a tensile elongation of 20 to 35%, which suppresses thread breakage due to friction between the short fiber A and the staple cloth in the card process and needles. It is preferable because the wrapping around the staple cloth, which is generated from the elongation of the short fibers A due to the friction with the cloth, can be further reduced, and the productivity of the non-woven fabric for sound absorbing material can be further improved. In addition, by suppressing thread breakage and wrapping around the staple cloth due to friction, the generation of fiber lumps is suppressed, and the short fibers A are uniformly dispersed to form a porous part having many fine pores as a non-woven fabric for sound absorbing material. As a result, the sound absorbing performance when this non-woven fabric is used as a sound absorbing material becomes excellent. Further, from the above point, the tensile strength of the staple fiber A is particularly preferably 6.0 cN / dtex or more.

短繊維Aの捲縮数は10.0山/25mm以上であることが好ましい。短繊維Aの捲縮数を10.0山/25mm以上とすることで、カード工程において、不織布の内部で短繊維Aと短繊維Bが均一に分散し、吸音材用不織布の内部に、短繊維Aが繊維塊として発生することが抑制され、吸音材用不織布の品位が向上する。また、短繊維Aが均一に分散することで微細な孔を多数有する多孔質部を吸音材用不織布の内部に形成することができ、この不織布を用いた吸音材の吸音性能が優れたものとなる。前記の点で短繊維Aの捲縮数は12.0山/25mm以上であることがさらに好ましく、12.5山/25mm以上であることが特に好ましい。短繊維Aの捲縮数の上限は特に限定はされないが、短繊維Aの分散性などの観点からは18山/25mm以下であることが好ましい。 The number of crimps of the staple fiber A is preferably 10.0 peaks / 25 mm or more. By setting the number of crimps of the short fiber A to 10.0 ridges / 25 mm or more, the short fiber A and the short fiber B are uniformly dispersed inside the non-woven fabric in the card process, and the short fiber A is formed inside the non-woven fabric for sound absorbing material. The generation of fibers A as fiber lumps is suppressed, and the quality of the non-woven fabric for sound absorbing material is improved. Further, by uniformly dispersing the short fibers A, a porous portion having many fine pores can be formed inside the non-woven fabric for sound absorbing material, and the sound absorbing performance of the sound absorbing material using this non-woven fabric is excellent. Become. In this respect, the number of crimps of the staple fiber A is more preferably 12.0 ridges / 25 mm or more, and particularly preferably 12.5 ridges / 25 mm or more. The upper limit of the number of crimps of the short fibers A is not particularly limited, but is preferably 18 threads / 25 mm or less from the viewpoint of dispersibility of the short fibers A.

短繊維Aの捲縮度は12.0%以上であることが好ましい。短繊維Aの捲縮度を12.0%とすることで、カード工程において、短繊維Aと短繊維Bが均一に分散し、吸音材用不織布の内部に、短繊維Aが繊維塊として発生することが抑制され、吸音材用不織布の品位が向上する。また、短繊維Aが均一に分散することで微細な孔を多数有する多孔質部を吸音材用不織布の内部に形成することができ、吸音材とした際の吸音性能が優れたものとなる。前記の点で短繊維Aの捲縮度は13.0%以上であることがさらに好ましく、14.0%以上であることが特に好ましい。短繊維Aの捲縮度の上限は特に限定はされないが、短繊維Aの分散性などの観点からは19%以下であることが好ましい。 The degree of crimping of the staple fibers A is preferably 12.0% or more. By setting the degree of crimp of the staple fiber A to 12.0%, the staple fiber A and the staple fiber B are uniformly dispersed in the card process, and the staple fiber A is generated as a fiber mass inside the non-woven fabric for sound absorbing material. This is suppressed, and the quality of the non-woven fabric for sound absorbing material is improved. Further, by uniformly dispersing the short fibers A, a porous portion having a large number of fine pores can be formed inside the non-woven fabric for a sound absorbing material, and the sound absorbing performance when used as a sound absorbing material becomes excellent. In the above points, the degree of crimping of the staple fiber A is more preferably 13.0% or more, and particularly preferably 14.0% or more. The upper limit of the degree of crimping of the staple fiber A is not particularly limited, but is preferably 19% or less from the viewpoint of dispersibility of the staple fiber A and the like.

短繊維Aの繊維長は2.5~4.5cmの範囲であることが好ましい。短繊維Aの繊維長を4.5cm以下とすることで、吸音材用不織布の製造工程におけるカード工程での針布への巻き付きを抑制することができ、結果として、吸音材用不織布の生産性を向上させることができる。一方、2.5cm以上とすることで、カード通過後のウェブにおいて、短繊維同士の交絡が高まり、後述のニードルパンチ工程やスパンレース工程へのウェブの搬送性が良好となり、結果として、吸音材用不織布の生産性を向上させることができる。上記の点で、短繊維Aの繊維長は、3.0~4.5cmの範囲であることがさらに好ましい。 The fiber length of the staple fiber A is preferably in the range of 2.5 to 4.5 cm. By setting the fiber length of the short fiber A to 4.5 cm or less, it is possible to suppress wrapping around the staple cloth in the card process in the manufacturing process of the non-woven fabric for sound absorbing material, and as a result, the productivity of the non-woven fabric for sound absorbing material is high. Can be improved. On the other hand, when the length is 2.5 cm or more, the entanglement of short fibers is enhanced in the web after passing through the card, and the transportability of the web to the needle punching process and the spunlacing process described later is improved, and as a result, the sound absorbing material is used. It is possible to improve the productivity of the non-woven fabric for use. In the above points, the fiber length of the staple fiber A is more preferably in the range of 3.0 to 4.5 cm.

なお、本発明の吸音材用不織布は、吸音材とした際の吸音性能を阻害しない範囲において、繊度が1.0dtex以上の、短繊維A、短繊維B以外の短繊維Cを含んでもよい。前記の短繊維Cは、カード工程における短繊維Aの分散性を向上するためや、吸音材用不織布の吸音材としての強度を得るために適宜使用することができる。ここで、短繊維Cを構成する素材については、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、およびポリオレフィン系樹脂等の熱可塑性樹脂を使用することができる。 The nonwoven fabric for sound absorbing material of the present invention may contain staple fibers A other than staple fibers A and staple fibers C having a fineness of 1.0 dtex or more as long as the sound absorbing performance of the sound absorbing material is not impaired. The staple fiber C can be appropriately used in order to improve the dispersibility of the staple fiber A in the carding process and to obtain the strength of the non-woven fabric for sound absorbing material as a sound absorbing material. Here, as the material constituting the short fiber C, a thermoplastic resin such as a polyester resin, a polyamide resin, an acrylic resin, and a polyolefin resin can be used.

本発明にかかる吸音材用不織布では、上記のような短繊維Aを吸音材用不織布の全質量に対して、30質量%以上含有することで、繊度の小さい短繊維Aにより、吸音材用不織布の内部に、微細な孔を多数有する多孔質部を形成することができ、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。一方、上記のような短繊維Aの含有量を吸音材用不織布の全質量に対して、80質量%以下とすることで、カード工程において発生する短繊維Aの糸切れなどの発生を極めて効果的に抑制することができる。前記の点で、短繊維Aの含有量は、吸音材用不織布の全質量に対して、40質量%以上であることが好ましく、45%質量以上であることがさらに好ましい。また、70質量%以下であることが好ましく、65%質量以下であることがさらに好ましい。 In the non-woven fabric for sound absorbing material according to the present invention, the short fibers A as described above are contained in an amount of 30% by mass or more with respect to the total mass of the non-woven fabric for sound absorbing material. A porous portion having a large number of fine pores can be formed inside the fabric, and the sound is generated by air friction with the fibers around the voids as the sound passes through the voids (that is, the porous portions) between the fibers. Can be efficiently converted into heat, and excellent sound absorption can be obtained when used as a sound absorbing material. On the other hand, by setting the content of the staple fiber A as described above to 80% by mass or less with respect to the total mass of the non-woven fabric for sound absorbing material, it is extremely effective to generate thread breakage of the staple fiber A generated in the card process. Can be suppressed. In the above points, the content of the staple fibers A is preferably 40% by mass or more, more preferably 45% by mass or more, based on the total mass of the nonwoven fabric for sound absorbing material. Further, it is preferably 70% by mass or less, and more preferably 65% by mass or less.

ここで、短繊維Aを構成する素材については、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等の熱可塑性樹脂を使用することができる。これらの中でも、短繊維Aは、耐熱性に優れる、すなわち、自動車などのエンジンルームに使用する際の吸音材用不織布の高温環境下における変形や変色が少なくできる点で、ポリエステル系樹脂からなる短繊維(ポリエステル系短繊維)であることが好ましく、中でも特に耐熱性に優れるポリエチレンテレフタレート樹脂からなる短繊維(ポリエチレンテレフタレート短繊維)であることがより好ましい。 Here, as the material constituting the short fiber A, a thermoplastic resin such as a polyester resin, a polyamide resin, an acrylic resin, or a polyolefin resin can be used. Among these, the staple fiber A is made of a polyester resin because it has excellent heat resistance, that is, it can reduce deformation and discoloration of the non-woven fabric for sound absorbing material in a high temperature environment when used in an engine room of an automobile or the like. Fibers (polyester-based staple fibers) are preferable, and among them, short fibers (polyester terephthalate staple fibers) made of polyethylene terephthalate resin having excellent heat resistance are more preferable.

また、短繊維Bを構成する素材については、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等の熱可塑性樹脂を使用することができる。これらの中でも、短繊維Bは、分割型複合繊維の成分として好適に使用されるポリプロピレン樹脂からなる短繊維(ポリプロピレン短繊維)、または、ナイロン6樹脂からなる短繊維(ナイロン6短繊維)であることが好ましい。 Further, as the material constituting the short fiber B, a thermoplastic resin such as a polyester resin, a polyamide resin, an acrylic resin, or a polyolefin resin can be used. Among these, the short fiber B is a short fiber made of polypropylene resin (polypropylene short fiber) preferably used as a component of the split type composite fiber, or a short fiber made of nylon 6 resin (nylon 6 short fiber). Is preferable.

本発明の吸音材用不織布の目付は、150g/m以上500g/m以下であることが好ましい。目付を150g/m以上とすることにより、空気摩擦による吸音性能を向上することができる。一方で、目付を500g/m以下とすることで柔軟性を向上させることができ、自動車部材などとして使用する際の立体追従性に優れた吸音材用不織布が得られる。前記の観点から、目付は、200g/m以上が好ましく、250g/m以上がさらに好ましい。また目付の上限については400g/m以下が好ましく、350g/m以下がさらに好ましい。 The basis weight of the nonwoven fabric for sound absorbing material of the present invention is preferably 150 g / m 2 or more and 500 g / m 2 or less. By setting the basis weight to 150 g / m 2 or more, the sound absorption performance due to air friction can be improved. On the other hand, by setting the basis weight to 500 g / m 2 or less, the flexibility can be improved, and a non-woven fabric for a sound absorbing material having excellent three-dimensional followability when used as an automobile member or the like can be obtained. From the above viewpoint, the basis weight is preferably 200 g / m 2 or more, and more preferably 250 g / m 2 or more. The upper limit of the basis weight is preferably 400 g / m 2 or less, and more preferably 350 g / m 2 or less.

また、吸音材用不織布の厚さは、0.6mm以上4.0mm以下であることが好ましい。厚さを0.6mm以上とすることで、吸音材用不織布に十分なサイズの多孔質部が形成され、吸音材用不織布の厚さ方向に音が貫通する際の、空気摩擦による音の熱への変換を、より効率的なものとすることができる。一方で厚さを4.0mm以下とすることで、吸音材用不織布がより緻密な構造となり、短繊維Aによる微細な多孔質部が形成され、空気摩擦による音の熱への変換を、より効率的なものとすることができ、結果として、吸音材用不織布を吸音材として用いた際の吸音性能がより優れたものとなる。前記の観点から、厚さは0.7mm以上が好ましく、0.8mm以上がさらに好ましい。また厚さの上限については3.0mm以下が好ましく、2.5mm以下がさらに好ましい。なお、本発明の厚さはJIS L1913:1998 6.1.2 A法に基づき、不織布に0.36kPaの圧力をかけた際の厚さによって測定される。 The thickness of the non-woven fabric for sound absorbing material is preferably 0.6 mm or more and 4.0 mm or less. By setting the thickness to 0.6 mm or more, a porous portion of sufficient size is formed in the non-woven fabric for sound absorbing material, and the heat of the sound due to air friction when the sound penetrates in the thickness direction of the non-woven fabric for sound absorbing material. The conversion to can be made more efficient. On the other hand, by making the thickness 4.0 mm or less, the non-woven fabric for sound absorbing material has a more dense structure, fine porous parts are formed by the short fibers A, and the conversion of sound into heat by air friction becomes more. It can be made efficient, and as a result, the sound absorbing performance when the non-woven fabric for sound absorbing material is used as the sound absorbing material becomes more excellent. From the above viewpoint, the thickness is preferably 0.7 mm or more, more preferably 0.8 mm or more. The upper limit of the thickness is preferably 3.0 mm or less, more preferably 2.5 mm or less. The thickness of the present invention is measured by the thickness when a pressure of 0.36 kPa is applied to the nonwoven fabric based on the JIS L1913: 1998 6.1.2 A method.

吸音材用不織布の密度は、0.07g/cm以上0.40g/cm以下であることが好ましい。密度を0.07g/cm以上とすることで、吸音材用不織布が緻密な構造となり、短繊維Aによる微細な多孔質部が形成され、空気摩擦による音の熱への変換を、より効率的なものとすることができ、結果として、吸音材用不織布を吸音材として用いた際の吸音性能がより優れたものとなる。一方で密度を0.40g/cm以下とすることで、吸音材用不織布に十分なサイズの多孔質部が形成され、空気摩擦による吸音性能がより優れたものとなる。前記の観点から、密度は0.09g/cm以上が好ましく、0.10g/cm以上がさらに好ましい。また密度の上限については0.35g/cm以下が好ましく、0.32g/cm以下がさらに好ましい。 The density of the non-woven fabric for sound absorbing material is preferably 0.07 g / cm 3 or more and 0.40 g / cm 3 or less. By setting the density to 0.07 g / cm 3 or more, the non-woven fabric for sound absorbing material has a dense structure, fine porous portions are formed by the short fibers A, and the conversion of sound into heat by air friction is more efficient. As a result, the sound absorbing performance when the non-woven fabric for sound absorbing material is used as the sound absorbing material becomes more excellent. On the other hand, when the density is 0.40 g / cm 3 or less, a porous portion having a sufficient size is formed in the non-woven fabric for sound absorbing material, and the sound absorbing performance due to air friction becomes more excellent. From the above viewpoint, the density is preferably 0.09 g / cm 3 or more, and more preferably 0.10 g / cm 3 or more. The upper limit of the density is preferably 0.35 g / cm 3 or less, and more preferably 0.32 g / cm 3 or less.

吸音材用不織布は、5μm以上10μm未満の径の細孔が10~90%、10μm以上15μm未満の径の細孔が5~70%である細孔径分布を有することが好ましい。このような細細孔径分布を有することにより、空気摩擦による音の熱への変換を、より効率的なものとすることができ、結果として、吸音材用不織布を吸音材として用いた際の吸音性能がより優れたものとなる。前記の点で、5μm以上10μm未満の径の細孔が15~85%、10μm以上15μm未満の径の細孔が7~60%である細孔径分布を有することがさらに好ましい。特に、5μm以上10μm未満の径の細孔が20~80%、10μm以上15μm未満の径の細孔が10~50%である細孔径分布を有することがさらに好ましい。なお、前記の細孔径分布は、ASTM F316-86に規定される方法によって測定される。 The nonwoven fabric for sound absorbing material preferably has a pore diameter distribution in which pores having a diameter of 5 μm or more and less than 10 μm are 10 to 90%, and pores having a diameter of 10 μm or more and less than 15 μm are 5 to 70%. By having such a fine pore size distribution, the conversion of sound by air friction into heat can be made more efficient, and as a result, sound absorption when a non-woven fabric for sound absorbing material is used as a sound absorbing material. The performance will be better. In the above points, it is more preferable to have a pore diameter distribution in which pores having a diameter of 5 μm or more and less than 10 μm are 15 to 85%, and pores having a diameter of 10 μm or more and less than 15 μm are 7 to 60%. In particular, it is more preferable to have a pore diameter distribution in which pores having a diameter of 5 μm or more and less than 10 μm are 20 to 80%, and pores having a diameter of 10 μm or more and less than 15 μm are 10 to 50%. The pore size distribution is measured by the method specified in ASTM F316-86.

本発明の吸音材用不織布の通気度は4~35cm/cm/sであることが好ましい。吸音材用不織布の通気度が4cm/cm/s以上であることにより、空気摩擦による吸音材用不織布の吸音性能がより優れたものとなるため好ましい。前記の観点で通気度は5cm/cm/s以上が好ましく、6cm/cm/s以上であることが特に好ましい。一方で、吸音材用不織布の通気度が35cm/cm/s以下であることにより、空気摩擦による吸音性能が向上するため好ましい。前記の観点で通気度は30cm/cm/s以下が好ましく、20cm/cm/s以下がさらに好ましい。なお、通気度はJIS L 1096-1999 8.27.1 A法(フラジール形法)に準じて測定される。 The air permeability of the nonwoven fabric for sound absorbing material of the present invention is preferably 4 to 35 cm 3 / cm 2 / s. When the air permeability of the non-woven fabric for sound absorbing material is 4 cm 3 / cm 2 / s or more, the sound absorbing performance of the non-woven fabric for sound absorbing material due to air friction becomes more excellent, which is preferable. From the above viewpoint, the air permeability is preferably 5 cm 3 / cm 2 / s or more, and particularly preferably 6 cm 3 / cm 2 / s or more. On the other hand, it is preferable that the air permeability of the non-woven fabric for sound absorbing material is 35 cm 3 / cm 2 / s or less because the sound absorbing performance due to air friction is improved. From the above viewpoint, the air permeability is preferably 30 cm 3 / cm 2 / s or less, and more preferably 20 cm 3 / cm 2 / s or less. The air permeability is measured according to JIS L 1096-1999 8.27.1 A method (Frazil type method).

次に、本発明の吸音材用不織布を製造するための好ましい製造方法について説明する。本発明の不織布の好ましい製造方法は、以下の工程を有する。
(a)短繊維Aと、短繊維Bの発生が可能な分割型複合繊維を開繊する工程と、
(b)短繊維Aおよび短繊維Bの発生が可能な分割型複合繊維とをウェブ状とし、混繊ウェブを得る工程と、
(c)ニードルまたは水流により、上記の混繊ウェブに含まれる短繊維Aおよび分割型複合繊維を交絡し不織布を得る工程とを有する。
Next, a preferable manufacturing method for manufacturing the nonwoven fabric for sound absorbing material of the present invention will be described. The preferred method for producing a nonwoven fabric of the present invention has the following steps.
(A) A step of opening the staple fiber A and the split type composite fiber capable of generating the staple fiber B, and
(B) A step of forming a web-like split-type composite fiber capable of generating staple fibers A and B to obtain a mixed fiber web, and
(C) The step comprises a step of entwining the short fibers A and the split type composite fibers contained in the above-mentioned mixed fiber web with a needle or a water stream to obtain a nonwoven fabric.

以下、これら(a)~(c)の工程の詳細について説明する。 Hereinafter, the details of these steps (a) to (c) will be described.

まず、(a)短繊維Aと短繊維Bの発生が可能な分割型複合繊維を開繊させる工程(オープナー工程)ついて説明する。 First, (a) a step (opener step) of opening a split type composite fiber capable of generating short fibers A and B will be described.

オープナー工程は、吸音材用不織布における短繊維Aの含有量と短繊維Bの含有量が所望のものとなるように短繊維Aおよび短繊維Bの発生が可能な分割型複合繊維(以下、各短繊維ともいう)を計量した後、エアー等を用いて各短繊維を十分に開繊させ混繊する。 In the opener step, split-type composite fibers (hereinafter, each) capable of generating short fibers A and short fibers B so that the content of short fibers A and the content of short fibers B in the non-woven fabric for sound absorbing material are desired are desired. After weighing (also referred to as short fibers), each short fiber is sufficiently opened and mixed using air or the like.

次に、(b)短繊維Aおよび短繊維Bの発生が可能な分割型複合繊維とをウェブ状とし、混繊ウェブを得る工程(カード工程)について説明する。 Next, a step (card step) of (b) forming the short fibers A and the split-type composite fibers capable of generating the short fibers B into a web shape and obtaining a mixed fiber web will be described.

カード工程は、オープナー工程で得た混繊された各短繊維を針布ローラーで引き揃えて混繊ウェブを得る。 In the card process, each of the mixed short fibers obtained in the opener process is aligned with a staple cloth roller to obtain a mixed fiber web.

ここで、混繊ウェブに含まれる短繊維Aの含有量は、混繊ウェブの全体に対し、30~80質量%である。また、混繊ウェブに含まれる分割型複合繊維の含有量は、混繊ウェブの全体に対し、20~70質量%である。 Here, the content of the short fibers A contained in the mixed fiber web is 30 to 80% by mass with respect to the entire mixed fiber web. The content of the split type composite fiber contained in the mixed fiber web is 20 to 70% by mass with respect to the entire mixed fiber web.

次に、(c)ニードルまたは水流により短繊維Aと短繊維Bの発生が可能な分割型複合繊維とを交絡し不織布を得る工程(交絡工程)について説明する。 Next, a step (c) of entwining the short fibers A and the split type composite fibers capable of generating the short fibers B by a needle or a water stream to obtain a nonwoven fabric (entanglement step) will be described.

交絡工程において、各短繊維同士の交絡は、ニードルパンチ法、またはウォータージェットパンチ法(水流交絡法)で機械的交絡法を実施することが好ましい。この方法は、ケミカルボンド法などに比べ吸音材用不織布を緻密化することができ、好ましい厚さ、および密度の吸音材用不織布が得られやすく、また、分割型複合繊維の分割を促進して、短繊維Bを発生させるために好ましく採用される。 In the entanglement step, it is preferable to carry out a mechanical entanglement method by a needle punching method or a water jet punching method (water flow entanglement method) for entanglement of each short fiber. Compared with the chemical bond method, this method can densify the non-woven fabric for sound absorbing material, and it is easy to obtain the non-woven fabric for sound absorbing material having a preferable thickness and density, and it promotes the division of the split type composite fiber. , Is preferably used to generate the short fibers B.

ニードルパンチ法で各短繊維を交絡させる場合は、その針密度を200本/cm以上とし、交絡処理させることが好ましい。さらに好ましくは、250本/cm以上、特に好ましくは、300本/cm以上の針密度で交絡させることが好ましい。上記の針密度とすることで、吸音材用不織布を緻密化することができ、吸音材用不織布を吸音材として用いる際の吸音性能を向上できるため好ましい。 When each short fiber is entangled by the needle punch method, it is preferable that the staple density is 200 lines / cm 2 or more and the entanglement treatment is performed. More preferably, the needles are entangled at a needle density of 250 lines / cm 2 or more, and particularly preferably 300 lines / cm 2 or more. By setting the needle density as described above, the non-woven fabric for sound absorbing material can be densified, and the sound absorbing performance when the non-woven fabric for sound absorbing material is used as the sound absorbing material can be improved, which is preferable.

ウォータージェットパンチ法で各短繊維を交絡させる場合は、ウォータージェットパンチノズルの圧力を12.0MPa以上の圧力で、3回以上ウォーターノズルを通過させることが好ましい。ウォータージェットパンチノズルの圧力を12.0MPa以上とすることで、吸音材用不織布を緻密化することができ、かつ、分割型複合繊維から効率よく短繊維Bを発生させ、吸音材用不織布を吸音材として用いる際の吸音性能を向上できるため好ましい。また、3回以上ウォーターノズルを通すことで、前記と同様に吸音材用不織布を緻密化し、さらに分割型複合繊維から効率よく短繊維Bを発生させることができ、吸音材用不織布を吸音材として用いる際の吸音性能を向上できるため好ましい。ウォーターノズルを通す方法としては、連続して3回以上ウォーターノズルを通したり、1回ウォーターノズルを通して不織布を巻き取った後に再びウォーターノズルを通す方法があり、生産性を向上する点で好ましくは連続して3回以上通す方法である。 When each short fiber is entangled by the water jet punch method, it is preferable that the pressure of the water jet punch nozzle is 12.0 MPa or more and the water nozzle is passed through the water nozzle three times or more. By setting the pressure of the water jet punch nozzle to 12.0 MPa or more, the non-woven fabric for sound absorbing material can be densified, and short fibers B are efficiently generated from the split type composite fiber to absorb sound from the non-woven fabric for sound absorbing material. It is preferable because it can improve the sound absorption performance when used as a material. Further, by passing the water nozzle three times or more, the non-woven fabric for sound absorbing material can be densified in the same manner as described above, and the short fibers B can be efficiently generated from the split type composite fiber, and the non-woven fabric for sound absorbing material can be used as the sound absorbing material. It is preferable because it can improve the sound absorption performance when used. As a method of passing the water nozzle, there are a method of passing the water nozzle three times or more in succession, or a method of winding the non-woven fabric through the water nozzle once and then passing the water nozzle again, which is preferable in terms of improving productivity. It is a method of passing it three times or more.

ウォータージェットパンチ法で繊維を交絡させる場合に、最初に上向きでノズル面に接する面を表面とし、その逆面を裏面とした場合、ノズルから水流を流す面は表面/裏面/表面や表面/裏面/裏面、表面/表面/裏面/表面/裏面など任意に設定することができる。 When entwining fibers by the water jet punch method, if the surface that first faces upward and contacts the nozzle surface is the front surface and the opposite surface is the back surface, the surface that allows water flow from the nozzle is the front surface / back surface / front surface or front surface / back surface. It can be set arbitrarily such as / back surface, front surface / front surface / back surface / front surface / back surface.

特に、ウォータージェットパンチ法は、細繊度の短繊維をその交絡工程で糸切れなく効率的に交絡することができ、さらに、分割型複合繊維から効率よく短繊維Bを分割させ、短繊維Bを発生させることができるため、繊度が0.4~0.9dtexであり、上記に定義する通過係数が15~260である短繊維Aと、繊度が0.0005~0.3dtexの短繊維Bを含む本発明の吸音材用不織布を製造するために好適に利用できる。 In particular, the water jet punch method can efficiently entangle short fibers having a fine fineness without thread breakage in the entanglement process, and further efficiently divide the short fibers B from the split type composite fibers to obtain the short fibers B. Since it can be generated, the staple fibers A having a fineness of 0.4 to 0.9 dtex and the passage coefficient defined above of 15 to 260 and the staple fibers B having a fineness of 0.0005 to 0.3 dtex are produced. It can be suitably used for producing the non-woven fiber for a sound absorbing material of the present invention.

次に、吸音材について説明する。本発明の吸音材用不織布を備える吸音材は、本発明の吸音材用不織布と、繊維系多孔質体層、発泡体層、または空気層からなる層状物とを、有しており、上記の層状物は、前記吸音材用不織布の一方の面に積層されている。このような吸音材においては、吸音材用不織布の音が入射する側の面の反対側の面に、上記の層状物が位置するようにして吸音材を用いることで、吸音材の吸音性能が優れたものとなる。また、上記の層状物の厚さは、5~50mmであることが好ましい。そして、上記の層状物は、繊維系多孔質体、発泡体または空気層であることが好ましい。すなわち、本発明の吸音材用不織布は、音が入射する側の面の反対側の面に、厚さが5~50mmの熱塑性樹脂繊維を用いた繊維系多孔質体または無機繊維を用いた繊維系多孔質体からなる基材や、発泡ウレタンなどの発泡体からなる基材等を貼り合わせて使用することで、これらの複合製品(吸音材)の吸音性能は極めて優れたものとなる。また、本発明の吸音材用不織布の音が入射する側の面の反対側の面に厚さ5~50mmの空気層を設けることで、吸音材用積層不織布と空気層との複合製品(吸音材)の吸音性能が極めて優れたものとなる。 Next, the sound absorbing material will be described. The sound absorbing material provided with the non-woven fabric for sound absorbing material of the present invention has the non-woven fabric for sound absorbing material of the present invention and a layered material composed of a fibrous porous body layer, a foam layer, or an air layer. The layered material is laminated on one surface of the non-woven fabric for sound absorbing material. In such a sound absorbing material, the sound absorbing performance of the sound absorbing material can be improved by using the sound absorbing material so that the above-mentioned layered material is located on the surface opposite to the surface on the side where the sound of the non-woven fabric for sound absorbing material is incident. It will be excellent. The thickness of the layered material is preferably 5 to 50 mm. The layered material is preferably a fibrous porous body, a foam, or an air layer. That is, the nonwoven fabric for sound absorbing material of the present invention is a fiber-based porous body using a thermoplastic resin fiber having a thickness of 5 to 50 mm or a fiber using an inorganic fiber on the surface opposite to the surface on the side where sound is incident. The sound absorption performance of these composite products (sound absorbing materials) becomes extremely excellent by using a base material made of a porous material, a base material made of a foam material such as urethane foam, or the like by laminating them. Further, by providing an air layer having a thickness of 5 to 50 mm on the surface opposite to the surface on the side where the sound of the sound absorbing material nonwoven fabric of the present invention is incident, a composite product (sound absorbing material) of the laminated nonwoven fabric for sound absorbing material and the air layer is provided. The sound absorption performance of the material) is extremely excellent.

本実施例で用いた測定法を後述する。 The measurement method used in this example will be described later.

(測定方法)
(1)吸音材用不織布を構成する各短繊維と含有量
JIS L 1030-1:2006「繊維製品の混用率試験方法-第1部:繊維識別」、およびJIS L 1030-2:2005「繊維製品の混用率試験方法-第2部:繊維混用率」に基づいて、正量混用率(標準状態における各短繊維の質量比)を測定し、これを吸音材用不織布を構成する繊維の含有量(質量%)とした。これにより、吸音材用不織布を構成する繊維素材と、その含有量(質量%)を特定した。
(Measuring method)
(1) Each short fiber and content constituting the non-woven fabric for sound absorbing material JIS L 1030-1: 2006 "Mixing ratio test method for textile products-Part 1: Fiber identification", and JIS L 1030-2: 2005 "Fiber". Based on "Product mixing ratio test method-Part 2: Fiber mixing ratio", the positive amount mixing ratio (mass ratio of each staple fiber in the standard state) is measured, and this is used to contain the fibers that make up the non-woven fabric for sound absorbing material. The amount (% by mass) was used. As a result, the fiber material constituting the non-woven fabric for sound absorbing material and its content (mass%) were specified.

(2)吸音材用不織布を構成する短繊維の繊度と含有量
上記(1)のJIS L 1030-2:2005「繊維製品の混用率試験方法-第2部:繊維混用率」の6.溶解法における、残留不織布について、その断面を走査型電子顕微鏡(SEM)(日立ハイテク社製S-3500N型)で観察し、無作為に30箇所の観察範囲を抽出し、倍率1,000倍の断面写真を撮影した。さらに断面写真内に存在する全ての繊維について単繊維直径を測定した。また、繊維の断面形状が異形断面形状の場合は、断面写真から繊維の断面積を測定し、前記の断面積から真円直径に換算することで、繊維の単繊維直径とした。得られた単繊維直径データを、0.1μmの区間毎に峻別し、区間毎の平均単繊維直径と区間毎の繊維本数を集計した。得られた区間毎の平均単繊維直径と、上記(1)にて特定した各短繊維の比重から、下記式(2)により区間毎の繊維の繊度を算出した。
(2) Fineness and content of short fibers constituting the non-woven fabric for sound absorbing material JIS L 1030-2: 2005 "Test method for mixing ratio of textile products-Part 2: Fiber mixing ratio" in (1) above. The cross section of the residual non-woven fabric in the melting method was observed with a scanning electron microscope (SEM) (S-3500N type manufactured by Hitachi High-Tech), and 30 observation ranges were randomly extracted to obtain a magnification of 1,000 times. A cross-sectional photograph was taken. Furthermore, the single fiber diameter was measured for all the fibers present in the cross-sectional photograph. When the cross-sectional shape of the fiber is an irregular cross-sectional shape, the cross-sectional area of the fiber is measured from the cross-sectional area, and the cross-sectional area is converted into a perfect circle diameter to obtain the single fiber diameter of the fiber. The obtained single fiber diameter data was sharply classified for each section of 0.1 μm, and the average single fiber diameter for each section and the number of fibers for each section were totaled. From the obtained average single fiber diameter for each section and the specific gravity of each staple fiber specified in (1) above, the fineness of the fiber for each section was calculated by the following formula (2).

繊度(dtex)=(平均単繊維直径(μm)/2)×3.14×短繊維の比重/100 (2)
上記の繊維の繊度の内、繊度が0.4~0.9dtexの繊維について、その区間毎の繊度と区間毎の繊維本数、繊維素材の比重から、繊度が0.4~0.9dtexの繊維の含有量(質量%)を算出した。
Fineness (dtex) = (Average single fiber diameter (μm) / 2) 2 × 3.14 × Staple density / 100 (2)
Among the fineness of the above fibers, for fibers having a fineness of 0.4 to 0.9 dtex, the fibers having a fineness of 0.4 to 0.9 dtex are based on the fineness of each section, the number of fibers in each section, and the specific gravity of the fiber material. Content (% by mass) was calculated.

繊度が0.4~0.9dtexの繊維の含有量(質量%)=((繊度が0.4~0.9dtexの繊維の区間毎の繊度(dtex)×同区間毎の繊維本数(本))/(繊度が0.4~0.9dtex以外の繊維の区間毎の繊度(dtex)×同区間毎の繊維本数(本))×100 (3)
同様にして、繊度が0.0005~0.3dtexの繊維の含有量(質量%)を求めた。
Content (% by mass) of fibers having a fineness of 0.4 to 0.9 dtex = ((Fibers of fibers having a fineness of 0.4 to 0.9 dtex (dtex) x number of fibers per section (lines)) ) / (Fiberity (dtex) for each section of fibers other than 0.4 to 0.9 dtex x number of fibers (lines) for each section) x 100 (3)
Similarly, the content (% by mass) of the fiber having a fineness of 0.0005 to 0.3 dtex was determined.

また、吸音材用不織布を構成する繊維素材が複数である場合は、上記の繊度、含有量の測定を、溶解法における残留不織布を用いて、各繊維素材について実施し、吸音材用不織布を構成する繊維の繊度と含有量を求めた。 When there are a plurality of fiber materials constituting the non-woven fabric for sound absorbing material, the above-mentioned fineness and content are measured for each fiber material using the residual non-woven fabric in the dissolution method to form the non-woven fabric for sound absorbing material. The fineness and content of the fiber to be used were determined.

(3)吸音材用不織布を構成する短繊維の繊維長
JIS L 1015:2010 8.4.1 直接法(C法)で単位をcmで測定した。
(3) Fiber length of short fibers constituting the non-woven fabric for sound absorbing material JIS L 1015: 2010 8.4.1 The unit was measured in cm by the direct method (C method).

(4)吸音材用不織布を構成する短繊維の強度、および伸度
JIS L 1015(1999)8.7.1に基づき、空間距離20mm、短繊維を一本ずつ区分線に緩く張った状態で両端を接着剤で紙片にはり付けて固着し、区分ごとを1試料とする。試料を引張試験器のつかみに取り付け、上部つかみの近くで紙片を切断し、つかみ間隔20mm、引張速度20mm/分の速度で引っ張り、試料が切断したときの荷重(N)及び伸び(mm)を測定、次の式により引張強度(cN/dtex)及び伸度(%)を算出した。
Tb=SD/F0
Tb:引張強度(cN/dtex)
SD:破断時の荷重(cN)
F0:試料の正量繊度(dtex)
S={(E2-E1)/(L+E1)}×100
S:伸度(%)
E1:緩み(mm)
E2:切断時の伸び(mm)又は最大荷重時の伸び(mm)
L:つかみ間隔(mm)
(5)吸音材用不織布を構成する短繊維の捲縮数
JIS L 1015-8-12-1,2(2010年改正版)の方法に準じて不織布を構成する繊維の捲縮数(山/25mm)を測定した。
(4) Strength and elongation of the short fibers constituting the non-woven fabric for sound absorbing material Based on JIS L 1015 (1999) 8.7.1, the space distance is 20 mm, and the short fibers are loosely stretched one by one on the dividing line. Both ends are attached to a piece of paper with an adhesive and fixed, and each category is made into one sample. Attach the sample to the grip of the tensile tester, cut a piece of paper near the upper grip, pull at a grip interval of 20 mm and a tensile speed of 20 mm / min, and apply the load (N) and elongation (mm) when the sample is cut. Measurement, tensile strength (cN / dtex) and elongation (%) were calculated by the following formulas.
Tb = SD / F0
Tb: Tensile strength (cN / dtex)
SD: Load at break (cN)
F0: Positive fineness of the sample (dtex)
S = {(E2-E1) / (L + E1)} × 100
S: Elongation (%)
E1: Looseness (mm)
E2: Elongation at cutting (mm) or elongation at maximum load (mm)
L: Grab interval (mm)
(5) Number of crimps of short fibers constituting non-woven fabric for sound absorbing material Number of crimps of fibers constituting non-woven fabric according to the method of JIS L 1015-8-12-1, 2 (2010 revised edition) 25 mm) was measured.

(6)吸音材用不織布を構成する短繊維の捲縮度
JIS L 1015-8-12-1,2(2010年改正版)の方法に準じて不織布を構成する繊維の捲縮率(%)を測定し、これを繊維の捲縮度(%)とした。
(6) Degree of crimping of short fibers constituting the non-woven fabric for sound absorbing material The crimping rate (%) of the fibers constituting the non-woven fabric according to the method of JIS L 1015-8-12-1, 2 (2010 revised edition). Was measured, and this was taken as the degree of crimping (%) of the fiber.

(7)カード工程通過率(生産性および品質)
使用する短繊維比率に調整し、オープナー工程に処した原綿を20gに計量して、ラボカードマシン(シリンダー回転数300rpm、ドッファー速度10m/min)に投入し、糸切れによるカード工程での落綿や針布に巻き付かずにカードから出てきたウェブの質量(g)を測定する。測定したウェブの質量等を用いて、以下式にてカード工程通過率を求めた。このカード工程通過率の値が大きいほど、カード工程通過率は優れているといえる
カード工程通過率(%)=ウェブ質量(g)/投入量(g)×100。
(7) Card process pass rate (productivity and quality)
Adjust to the short fiber ratio to be used, weigh 20 g of raw cotton processed in the opener process, put it in a lab card machine (cylinder rotation speed 300 rpm, doffer speed 10 m / min), and drop cotton in the card process due to thread breakage. Measure the mass (g) of the web coming out of the card without wrapping it around the or staple cloth. Using the measured mass of the web and the like, the card process pass rate was calculated by the following formula. It can be said that the larger the value of the card process pass rate, the better the card process pass rate. Card process pass rate (%) = web mass (g) / input amount (g) × 100.

また、得られた吸音材用不織布について目視にて外観観察を行った。吸音材用不織布の試料から300mm×300mmの試験片を、鋼製定規とかみそり刃とを用いて3枚採取し、繊維塊の個数を数え、繊維塊の個数(個/m)に換算した。 In addition, the appearance of the obtained nonwoven fabric for sound absorbing material was visually observed. Three 300 mm × 300 mm test pieces were collected from a sample of non-woven fabric for sound absorbing material using a steel ruler and a razor blade, and the number of fiber lumps was counted and converted into the number of fiber lumps (pieces / m 2 ). ..

(8)吸音材用不織布の目付
JIS L 1913:1998 6.2に基づいて測定した。吸音材用不織布の試料から300mm×300mmの試験片を、鋼製定規とかみそり刃とを用いて3枚採取した。標準状態における試験片の質量を測定して、単位面積当たりの質量である目付を次の式によって求め、平均値を算出した。
ms=m/S
ms:単位面積当たりの質量(g/m
m:吸音材用不織布の試験片の平均質量(g)
S:吸音材用不織布の試験片の面積(m
(9)吸音材用不織布の厚さ
JIS L1913:1998 6.1.2 A法に基づいて測定した。吸音材用不織布の試料から50mm×50mmの試験片を5枚採取した。厚さ測定器(TECLOCK社製定圧厚さ測定器、型式PG11J)を用いて標準状態で試験片に0.36kPaの圧力を10秒間かけて厚さを測定した。測定は各試験片(5枚)について行い、平均値を算出した。
(8) Metsuke of non-woven fabric for sound absorbing material Measured based on JIS L 1913: 1998 6.2. Three 300 mm × 300 mm test pieces were collected from a sample of the non-woven fabric for sound absorbing material using a steel ruler and a razor blade. The mass of the test piece in the standard state was measured, and the basis weight, which is the mass per unit area, was calculated by the following formula, and the average value was calculated.
ms = m / S
ms: Mass per unit area (g / m 2 )
m: Average mass (g) of test piece of non-woven fabric for sound absorbing material
S: Area of test piece of non-woven fabric for sound absorbing material (m 2 )
(9) Thickness of non-woven fabric for sound absorbing material Measured based on JIS L1913: 1998 6.1.2 A method. Five 50 mm × 50 mm test pieces were collected from a sample of the non-woven fabric for sound absorbing material. Using a thickness measuring device (constant pressure thickness measuring device manufactured by TECLOCK, model PG11J), the thickness was measured by applying a pressure of 0.36 kPa to the test piece in a standard state over 10 seconds. The measurement was performed on each test piece (5 pieces), and the average value was calculated.

(10)吸音材用不織布の密度
上記(8)の吸音材用積層不織布の目付と、上記(9)の吸音材用積層不織布の厚さから、次の式によって求めた。
(10) Density of non-woven fabric for sound absorbing material From the basis weight of the laminated non-woven fabric for sound absorbing material of (8) above and the thickness of the laminated non-woven fabric for sound absorbing material of (9) above, it was determined by the following formula.

吸音材用不織布の密度(g/cm)=吸音材用不織布の目付(g/m)/吸音材用不織布の厚さ(mm)/1000
(11)吸音材用不織布の細孔径分布
ASTM F316-86に規定される方法によって測定した。測定装置としてはPorous Materials,Inc(米国)社製“パームポロメーター”を用い、測定試薬としてはPMI社製の“ガルヴィック”を用い、シリンダー圧力を100kPaとし、測定モードとしてはWET UP-DRY UPの条件にて細孔径分布(%)を測定し、5μm以上10μm未満、10μm以上15μm未満、15μm以上20μm未満の細孔径分布(%)を示した。
Density of non-woven fabric for sound absorbing material (g / cm 3 ) = Texture of non-woven fabric for sound absorbing material (g / m 2 ) / Thickness of non-woven fabric for sound absorbing material (mm) / 1000
(11) Pore diameter distribution of non-woven fabric for sound absorbing material Measured by the method specified in ASTM F316-86. A "Palm Porometer" manufactured by Pourous Materials, Inc. (USA) is used as the measuring device, "Galvic" manufactured by PMI is used as the measuring reagent, the cylinder pressure is 100 kPa, and the measuring mode is WET UP-DRY UP. The pore size distribution (%) was measured under the above conditions, and the pore size distribution (%) of 5 μm or more and less than 10 μm, 10 μm or more and less than 15 μm, and 15 μm or more and less than 20 μm was shown.

(12)吸音材用不織布の通気度
JIS L 1096-1999 8.27.1 A法(フラジール形法)に準じて測定した。吸音材用不織布の試料から、200mm×200mmの試験片を5枚採取した。フラジール形試験機を用い、円筒の一端(吸気側)に試験片を取り付けた。試験片の取り付けに際し、円筒の上に試験片を置き、試験片上から吸気部分を塞がないように均等に約98N(10kgf)の荷重を加え試験片の取り付け部におけるエアーの漏れを防止した。試験片を取り付けた後、加減抵抗器によって傾斜形気圧計が125Paの圧力を示すように吸込みファンを調整し、そのときの垂直形気圧計の示す圧力と、使用した空気孔の種類とから、試験機に付属の表によって試験片を通過する通気量(cm/cm/s)を求め、5枚の試験片についての平均値を算出した。
(12) Air permeability of non-woven fabric for sound absorbing material Measured according to JIS L 1096-1999 8.27.1 A method (Frazil type method). Five 200 mm × 200 mm test pieces were collected from a sample of the non-woven fabric for sound absorbing material. A test piece was attached to one end (intake side) of the cylinder using a Frazier type tester. When mounting the test piece, the test piece was placed on a cylinder, and a load of about 98 N (10 kgf) was evenly applied from above the test piece so as not to block the intake portion to prevent air leakage at the test piece mounting portion. After attaching the test piece, adjust the suction fan so that the inclined barometer shows a pressure of 125 Pa with an adjusting resistor, and from the pressure shown by the vertical barometer at that time and the type of air hole used, The air flow rate (cm 3 / cm 2 / s) passing through the test pieces was determined from the table attached to the tester, and the average value for the five test pieces was calculated.

(13)吸音材用不織布の垂直入射吸音率
JIS A 1405(1998)の垂直入射吸音測定法(管内法)に準じて測定した。吸音材用不織布の試料から直径92mmの円形の試験片を3枚採取した。試験装置としては、電子測器株式会社製の自動垂直入射吸音率測定器(型式10041A)を用いた。試験片を、測定用のインピーダンス管の一端に、試験片と金属反射板との間に20mmの厚さの空気層ができるようにスペーサーを設置し、試験片を取り付けた。周波数毎の吸音率は測定で得られた吸音係数を100倍した値を採用した。そして、得られた1000Hzの吸音率の平均値を低周波吸音率(%)とし、得られた2000Hzの吸音率の平均値を高周波吸音率(%)とした。
(13) Vertically incident sound absorption coefficient of non-woven fabric for sound absorbing material The measurement was performed according to the vertical incident sound absorption measuring method (in-pipe method) of JIS A 1405 (1998). Three circular test pieces having a diameter of 92 mm were collected from a sample of the non-woven fabric for sound absorbing material. As a test device, an automatic vertical incident sound absorption coefficient measuring device (model 10041A) manufactured by Electronic Measuring Instruments Co., Ltd. was used. A spacer was installed at one end of the impedance tube for measurement so that an air layer having a thickness of 20 mm could be formed between the test piece and the metal reflector, and the test piece was attached. For the sound absorption coefficient for each frequency, a value obtained by multiplying the sound absorption coefficient obtained by the measurement by 100 was adopted. Then, the average value of the obtained 1000 Hz sound absorption coefficient was defined as the low frequency sound absorption coefficient (%), and the average value of the obtained 2000 Hz sound absorption coefficient was defined as the high frequency sound absorption coefficient (%).

(実施例1)
短繊維Aとして繊度0.56dtex、繊維長3.8cm、強度5.4cN/dtex、伸度23%、捲縮数13.4山/25mm、捲縮度15.3%で通過係数が55のポリエチレンテレフタレート(PET)短繊維を50質量%、短繊維Bの発生が可能な短繊維として、繊度2.05dtex、繊維長5.1cm、分割後の短繊維Bの繊度が0.008dtexとなるポリプロピレン(PP)と、ポリブチレンテレフタレート(PBT)の分割型複合短繊維(PP:PBT質量比=10:90)を50質量%使用し、各短繊維をオープナー工程に処した後、カード工程(シリンダー回転数300rpm、ドッファー速度10m/min)に処した。その後、下記の条件の水流交絡工程(圧力条件:上面8.0MPa、上面10.0MPa、下面13.5MPa、上面16.0MPa、下面13.5MPaの5回通し)に処した後、乾燥工程にて120℃で乾燥し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Example 1)
As short fiber A, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 23%, the number of crimps is 13.4 threads / 25 mm, the crimp degree is 15.3%, and the passage coefficient is 55. Polybutylene terephthalate (PET) short fiber is 50% by mass, and as a short fiber capable of generating short fiber B, the fineness is 2.05 dtex, the fiber length is 5.1 cm, and the fineness of the short fiber B after division is 0.008 dtex. 50% by mass of split composite short fibers (PP: PBT mass ratio = 10: 90) of (PP) and polybutylene terephthalate (PBT) are used, and after each short fiber is subjected to an opener step, a card step (cylinder) is performed. It was subjected to a rotation speed of 300 rpm and a doffer speed of 10 m / min). Then, it was subjected to a water flow entanglement step (pressure condition: upper surface 8.0 MPa, upper surface 10.0 MPa, lower surface 13.5 MPa, upper surface 16.0 MPa, lower surface 13.5 MPa 5 times) under the following conditions, and then subjected to a drying step. And dried at 120 ° C. to obtain a nonwoven fabric for sound absorbing material having a staple fiber B content of 5% by mass, a grain of 200 g / m 2 , a thickness of 1.4 mm, and a nonwoven fabric density of 0.143 g / cm 3 .

実施例1の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も92%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位が良好であった。 The non-woven fabric for sound absorbing material of Example 1 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 92%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was good.

得られた吸音材用積層不織布の低周波吸音率、および高周波吸音率は高かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained laminated non-woven fabric for sound absorbing material were high.

(実施例2)
短繊維Aとして実施例1の短繊維Aを用い、分割型複合短繊維として実施例1の分割型複合短繊維を用い、含有量をそれぞれ35質量%、65質量%に変更したこと以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が7質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Example 2)
Except for the fact that the short fiber A of Example 1 was used as the short fiber A and the split type composite short fiber of Example 1 was used as the split type composite short fiber, and the contents were changed to 35% by mass and 65% by mass, respectively. Treated under the same steps and conditions as in Example 1, a non-woven fabric for sound absorbing material having a staple fiber B content of 7% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was prepared. Obtained.

実施例2の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も93%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Example 2 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 93%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は高かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were high.

(実施例3)
短繊維Aとして実施例1の短繊維Aを用い、分割型複合短繊維として実施例1の分割型複合短繊維を用い、含有量をそれぞれ75質量%、25質量%に変更したこと以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が3質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Example 3)
Except for the fact that the short fiber A of Example 1 was used as the short fiber A and the split type composite short fiber of Example 1 was used as the split type composite short fiber, and the contents were changed to 75% by mass and 25% by mass, respectively. Treated under the same steps and conditions as in Example 1, a non-woven fabric for sound absorbing material having a staple fiber B content of 3% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was prepared. Obtained.

実施例3の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も90%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が比較的少なく、品位も比較的良好であった。 The non-woven fabric for sound absorbing material of Example 3 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 90%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was relatively small, and the quality was also relatively good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は高かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were high.

(実施例4)
短繊維Aとして繊度0.56dtex、繊維長3.8cm、強度5.4cN/dtex、伸度24%、捲縮数7.5山/25mm、捲縮度9.1%で通過係数が32のポリエチレンテレフタレート(PET)短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Example 4)
As a staple fiber A, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 24%, the number of crimps is 7.5 peaks / 25 mm, the crimp degree is 9.1%, and the passage coefficient is 32. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) short fibers and 50% by mass of the split type composite staple fibers of Example 1 were used as the split type composite staple fibers. A nonwoven fabric for a sound absorbing material having a fiber B content of 5% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a nonwoven fabric density of 0.143 g / cm 3 was obtained.

実施例4の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも比較的少なく、カード工程通過性も82%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が比較的少なく、品位も比較的良好であった。 The non-woven fabric for sound absorbing material of Example 4 had relatively little cotton drop due to thread breakage in the card process and wrapping around the needle cloth, and the card process passability was relatively good at 82%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was relatively small, and the quality was also relatively good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は高かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were high.

(実施例5)
短繊維Aとして繊度0.56dtex、繊維長3.8cm、強度4.7cN/dtex、伸度24%、捲縮数13.5山/25mm、捲縮度15.2%で通過係数が49のポリエチレンテレフタレート(PET)短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Example 5)
As a staple fiber A, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 4.7 cN / dtex, the elongation is 24%, the number of crimps is 13.5 threads / 25 mm, the crimp degree is 15.2%, and the passage coefficient is 49. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) short fibers and 50% by mass of the split type composite staple fibers of Example 1 were used as the split type composite staple fibers. A nonwoven fabric for a sound absorbing material having a fiber B content of 5% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a nonwoven fabric density of 0.143 g / cm 3 was obtained.

実施例5の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも比較的少なく、カード工程通過性も87%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が比較的少なく、品位も比較的良好であった。 The non-woven fabric for sound absorbing material of Example 5 had relatively little cotton drop due to thread breakage in the card process and wrapping around the needle cloth, and the card process passability was relatively good at 87%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was relatively small, and the quality was also relatively good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は高かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were high.

(実施例6)
短繊維Aとして繊度0.57dtex、繊維長3.8cm、強度6.3cN/dtex、伸度24%、捲縮数13.5山/25mm、捲縮度15.3%で通過係数が67のポリエチレンテレフタレート(PET)短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Example 6)
As a staple fiber A, the fineness is 0.57 dtex, the fiber length is 3.8 cm, the strength is 6.3 cN / dtex, the elongation is 24%, the number of crimps is 13.5 threads / 25 mm, the crimp degree is 15.3%, and the passage coefficient is 67. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of polyethylene terephthalate (PET) short fibers and 50% by mass of the split type composite staple fibers of Example 1 were used as the split type composite staple fibers. A nonwoven fabric for a sound absorbing material having a fiber B content of 5% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a nonwoven fabric density of 0.143 g / cm 3 was obtained.

実施例6の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も94%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Example 6 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 94%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は高かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were high.

(実施例7)
短繊維Aとして実施例1の短繊維Aを50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用し、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付140g/m、厚さ1.1mm、不織布密度0.127g/cmの吸音材用不織布を得た。
(Example 7)
50% by mass of the short fiber A of Example 1 was used as the short fiber A, and 50% by mass of the split type composite short fiber of Example 1 was used as the split type composite short fiber, and the staple fibers were treated under the same steps and conditions as in Example 1. A nonwoven fabric for a sound absorbing material having a staple fiber B content of 5% by mass, a grain of 140 g / m 2 , a thickness of 1.1 mm, and a nonwoven fabric density of 0.127 g / cm 3 was obtained.

実施例7の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も92%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Example 7 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 92%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用不織布の低周波吸音率は比較的高く、高周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained nonwoven fabric for sound-absorbing material was relatively high, and the high-frequency sound absorption coefficient was high.

(実施例8)
短繊維Aとして実施例1の短繊維Aを50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用し、実施例1と同一の工程で、水流交絡工程の圧力条件を上面8.0MPa、上面10.0MPa、下面11.0MPa、上面11.0MPa、下面11.0MPaの5回通しに変更し、他は実施例1と同一の条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ4.1mm、不織布密度0.049g/cmの吸音材用不織布を得た。
(Example 8)
50% by mass of the short fiber A of Example 1 was used as the short fiber A, and 50% by mass of the split type composite short fiber of Example 1 was used as the split type composite short fiber. The pressure condition was changed to 8.0 MPa on the upper surface, 10.0 MPa on the upper surface, 11.0 MPa on the lower surface, 11.0 MPa on the upper surface, and 11.0 MPa on the lower surface. A nonwoven fabric for a sound absorbing material having a fiber B content of 5% by mass, a texture of 200 g / m 2 , a thickness of 4.1 mm, and a nonwoven fabric density of 0.049 g / cm 3 was obtained.

実施例8の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も92%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Example 8 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 92%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用不織布の低周波吸音率は比較的高く、高周波吸音率は高かった。 The low-frequency sound absorption coefficient of the obtained nonwoven fabric for sound-absorbing material was relatively high, and the high-frequency sound absorption coefficient was high.

(実施例9)
短繊維Aとして繊度0.58dtex、繊維長3.8cm、強度3.5cN/dtex、伸度23%、捲縮数13.1山/25mm、捲縮度15.5%で通過係数が37のアクリル短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用した以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Example 9)
As a staple fiber A, the fineness is 0.58 dtex, the fiber length is 3.8 cm, the strength is 3.5 cN / dtex, the elongation is 23%, the number of crimps is 13.1 peaks / 25 mm, the crimp degree is 15.5%, and the passage coefficient is 37. Treatment was performed under the same steps and conditions as in Example 1 except that 50% by mass of the acrylic short fibers and 50% by mass of the split type composite staple fibers of Example 1 were used as the split type composite staple fibers, and the short fibers B were contained. A non-woven fiber for a sound absorbing material having an amount of 5% by mass, a grain of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fiber density of 0.143 g / cm 3 was obtained.

実施例9の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も91%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Example 9 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 91%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は高かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were high.

(比較例1)
短繊維Aとして実施例1の短繊維Aを用い、分割型複合短繊維として実施例1の分割型複合短繊維を用い、含有量をそれぞれ20質量%、80質量%に変更したこと以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が8質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Comparative Example 1)
Except for the fact that the short fiber A of Example 1 was used as the short fiber A and the split type composite short fiber of Example 1 was used as the split type composite short fiber, and the contents were changed to 20% by mass and 80% by mass, respectively. Treated under the same steps and conditions as in Example 1, a non-woven fabric for sound absorbing material having a staple fiber B content of 8% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was prepared. Obtained.

比較例1の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも比較的少なく、カード工程通過性も85%と比較的良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が比較的少なく、品位も比較的良好であった。 The non-woven fabric for sound absorbing material of Comparative Example 1 had relatively little cotton drop due to thread breakage in the card process and wrapping around the needle cloth, and the card process passability was relatively good at 85%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was relatively small, and the quality was also relatively good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は低かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were low.

(比較例2)
短繊維Aとして実施例1の短繊維Aを用い、分割型複合短繊維として実施例1の分割型複合短繊維を用い、含有量をそれぞれ90質量%、10質量%に変更したこと以外は、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が1質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Comparative Example 2)
Except for the fact that the short fiber A of Example 1 was used as the short fiber A and the split type composite short fiber of Example 1 was used as the split type composite short fiber, and the contents were changed to 90% by mass and 10% by mass, respectively. Treated under the same steps and conditions as in Example 1, a non-woven fabric for sound absorbing material having a staple fiber B content of 1% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was prepared. Obtained.

比較例2の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も68%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 The non-woven fabric for sound absorbing material of Comparative Example 2 had a lot of cotton falling and wrapping around the needle cloth due to thread breakage in the card process, and the card process passability was as poor as 68%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は低かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were low.

(比較例3)
短繊維Aとして実施例1の短繊維Aを50質量%、短繊維Bの発生が可能な短繊維として、繊度2.05dtex、繊維長5.1cm、分割後の短繊維Bの繊度が0.008dtexとなるポリプロピレン(PP)と、ポリブチレンテレフタレート(PBT)の分割型複合短繊維(PP:PBT質量比=2:98)を50質量%使用し、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が1質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Comparative Example 3)
As the short fiber A, the short fiber A of Example 1 is 50% by mass, and as the short fiber capable of generating the short fiber B, the fineness is 2.05 dtex, the fiber length is 5.1 cm, and the fineness of the short fiber B after division is 0. 50% by mass of a split type composite short fiber (PP: PBT mass ratio = 2: 98) of polypropylene (PP) to be 008 dtex and polybutylene terephthalate (PBT) was used and treated under the same steps and conditions as in Example 1. A sound absorbing non-woven material having a short fiber B content of 1% by mass, a grain of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was obtained.

比較例3の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も94%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Comparative Example 3 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 94%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用不織布の低周波吸音率は低く、高周波吸音率は比較的高かった。 The low-frequency sound absorption coefficient of the obtained nonwoven fabric for sound-absorbing material was low, and the high-frequency sound absorption coefficient was relatively high.

(比較例4)
短繊維Aとして繊度0.34dtex、繊維長3.8cm、強度5.4cN/dtex、伸度23%、捲縮数13.4山/25mm、捲縮度15.3%で通過係数が36のポリエチレンテレフタレート(PET)短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用し、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Comparative Example 4)
As a staple fiber A, the fineness is 0.34 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 23%, the number of crimps is 13.4 threads / 25 mm, the crimp degree is 15.3%, and the passage coefficient is 36. 50% by mass of polyethylene terephthalate (PET) short fibers and 50% by mass of the split type composite short fibers of Example 1 were used as the split type composite short fibers, and the short fibers B were treated under the same steps and conditions as in Example 1. A non-woven fabric for a sound absorbing material having a content of 5% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was obtained.

比較例4の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も74%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 The non-woven fabric for sound absorbing material of Comparative Example 4 had a lot of cotton falling and wrapping around the needle cloth due to thread breakage in the card process, and the card process passability was as poor as 74%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は低かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were low.

(比較例5)
短繊維Aとして繊度0.97dtex、繊維長3.8cm、強度5.4cN/dtex、伸度24%、捲縮数13.3山/25mm、捲縮度15.4%で通過係数が97のポリエチレンテレフタレート(PET)短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用し、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Comparative Example 5)
As a staple fiber A, the fineness is 0.97 dtex, the fiber length is 3.8 cm, the strength is 5.4 cN / dtex, the elongation is 24%, the number of crimps is 13.3 peaks / 25 mm, the crimp degree is 15.4%, and the passage coefficient is 97. 50% by mass of polyethylene terephthalate (PET) short fibers and 50% by mass of the split type composite short fibers of Example 1 were used as the split type composite short fibers, and the short fibers B were treated under the same steps and conditions as in Example 1. A non-woven fabric for a sound absorbing material having a content of 5% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was obtained.

比較例5の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きも無く、カード工程通過性も95%と良好であった。また、各短繊維の分散は良好であり、繊維塊の発生が少なく、品位も良好であった。 The non-woven fabric for sound absorbing material of Comparative Example 5 had no cotton drop due to thread breakage in the card process or wrapping around the needle cloth, and had a good card process passability of 95%. In addition, the dispersion of each staple fiber was good, the generation of fiber lumps was small, and the quality was also good.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は低かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were low.

(比較例6)
短繊維Aとして繊度0.55dtex、繊維長3.8cm、強度1.5cN/dtex、伸度17%、捲縮数13.5山/25mm、捲縮度15.2%で通過係数が13のポリエチレンテレフタレート(PET)短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用し、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Comparative Example 6)
As a staple fiber A, the fineness is 0.55 dtex, the fiber length is 3.8 cm, the strength is 1.5 cN / dtex, the elongation is 17%, the number of crimps is 13.5 threads / 25 mm, the crimp degree is 15.2%, and the passage coefficient is 13. 50% by mass of polyethylene terephthalate (PET) short fibers and 50% by mass of the split type composite short fibers of Example 1 were used as the split type composite short fibers, and the short fibers B were treated under the same steps and conditions as in Example 1. A non-woven fabric for a sound absorbing material having a content of 5% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was obtained.

比較例6の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も67%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 The non-woven fabric for sound absorbing material of Comparative Example 6 had a lot of cotton falling and wrapping around the needle cloth due to thread breakage in the card process, and the card process passability was as poor as 67%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は低かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were low.

(比較例7)
短繊維Aとして繊度0.56dtex、繊維長3.8cm、強度4.8cN/dtex、伸度21%、捲縮数4.0山/25mm、捲縮度4.5%で通過係数が14のポリエチレンテレフタレート(PET)短繊維を50質量%、分割型複合短繊維として実施例1の分割型複合短繊維を50質量%使用し、実施例1と同一の工程、条件で処理し、短繊維Bの含有量が5質量%、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Comparative Example 7)
As a staple fiber A, the fineness is 0.56 dtex, the fiber length is 3.8 cm, the strength is 4.8 cN / dtex, the elongation is 21%, the number of crimps is 4.0 threads / 25 mm, the crimp degree is 4.5%, and the passage coefficient is 14. 50% by mass of polyethylene terephthalate (PET) short fibers and 50% by mass of the split type composite short fibers of Example 1 were used as the split type composite short fibers, and the short fibers B were treated under the same steps and conditions as in Example 1. A non-woven fabric for a sound absorbing material having a content of 5% by mass, a texture of 200 g / m 2 , a thickness of 1.4 mm, and a non-woven fabric density of 0.143 g / cm 3 was obtained.

比較例7の吸音材用不織布は、カード工程での糸切れによる落綿や針布への巻き付きが多く、カード工程通過性も69%と劣るものであった。また、繊維の分散性が低く、繊維塊の発生が多くなり、品位に劣るものであった。 The non-woven fabric for sound absorbing material of Comparative Example 7 had many cotton drops and wrapping around the needle cloth due to thread breakage in the card process, and the card process passability was as poor as 69%. In addition, the dispersibility of the fibers was low, the generation of fiber lumps increased, and the quality was inferior.

得られた吸音材用不織布の低周波吸音率、および高周波吸音率は低かった。 The low-frequency sound absorption coefficient and the high-frequency sound absorption coefficient of the obtained nonwoven fabric for sound absorbing material were low.

実施例および比較例の吸音材用不織布の構成と特性を表1~表4にまとめた。 The configurations and characteristics of the nonwoven fabrics for sound absorbing materials of Examples and Comparative Examples are summarized in Tables 1 to 4.

Figure 2022028195000001
Figure 2022028195000001

Figure 2022028195000002
Figure 2022028195000002

Figure 2022028195000003
Figure 2022028195000003

Figure 2022028195000004
Figure 2022028195000004

本発明の吸音材用不織布は、低周波領域と高周波域の吸音性能に優れ、生産性に優れるとともに、品位にも優れるため、特に自動車などの吸音材として好適に用いられる。 The nonwoven fabric for a sound absorbing material of the present invention is excellent in sound absorbing performance in a low frequency region and a high frequency region, is excellent in productivity, and is also excellent in quality, so that it is particularly preferably used as a sound absorbing material for automobiles and the like.

Claims (7)

繊度が0.4~0.9dtexの短繊維Aを30~80質量%含有し、
繊度が0.0005~0.3dtexの短繊維Bを2質量%以上含有し、
前記短繊維Aの下記の式(1)に示す通過係数は15~260の範囲内である、吸音材用不織布。
通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
Contains 30-80% by mass of short fibers A having a fineness of 0.4 to 0.9 dtex.
Contains 2% by mass or more of staple fibers B having a fineness of 0.0005 to 0.3 dtex.
A non-woven fabric for a sound absorbing material, wherein the passing coefficient of the staple fiber A shown in the following formula (1) is in the range of 15 to 260.
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
目付が、150g/m以上500g/m以下であり、
厚さが、0.6mm以上4.0mm以下である、請求項1に記載の吸音材用不織布。
The basis weight is 150 g / m 2 or more and 500 g / m 2 or less.
The nonwoven fabric for a sound absorbing material according to claim 1, which has a thickness of 0.6 mm or more and 4.0 mm or less.
密度が、0.07g/cm以上0.40g/cm以下である、請求項1または2に記載の吸音材用不織布。 The nonwoven fabric for a sound absorbing material according to claim 1 or 2, wherein the density is 0.07 g / cm 3 or more and 0.40 g / cm 3 or less. 前記短繊維Aが、ポリエステル系短繊維である、請求項1~3のいずれか一つに記載の吸音材用不織布。 The nonwoven fabric for a sound absorbing material according to any one of claims 1 to 3, wherein the staple fiber A is a polyester-based staple fiber. 前記短繊維Aの引張強度が5cN/dtex以上であり、
前記短繊維Aの引張伸度が20~35%である、請求項1~4のいずれか一つに記載の吸音材用不織布。
The tensile strength of the staple fiber A is 5 cN / dtex or more, and the staple fiber A has a tensile strength of 5 cN / dtex or more.
The nonwoven fabric for a sound absorbing material according to any one of claims 1 to 4, wherein the staple fiber A has a tensile elongation of 20 to 35%.
請求項1~5のいずれかに記載の吸音材用不織布と、
繊維系多孔質体層、発泡体層、または空気層からなる層状物とを、有し、
前記層状物は、前記吸音材用不織布の一方の面に積層されており、
前記層状物の厚さが、5~50mmである、吸音材。
The nonwoven fabric for sound absorbing material according to any one of claims 1 to 5.
It has a layered material composed of a fibrous porous body layer, a foam layer, or an air layer, and has.
The layered material is laminated on one surface of the non-woven fabric for sound absorbing material.
A sound absorbing material having a layered material having a thickness of 5 to 50 mm.
短繊維Aと、分割型複合繊維に開繊処理を施し、前記短繊維Aおよび前記分割型複合繊維の混繊ウェブを得る工程と、
前記混繊ウェブがウォータージェットパンチノズルを3回以上通過し、前記分割型複合繊維から短繊維Bが分割される工程とを有し、
前記短繊維Aの繊度が0.4~0.9dtexであり、
前記短繊維Aの下記の式(1)に示す通過係数は15~260の範囲内であり、
前記短繊維Bの繊度が0.0005~0.3dtexであり、
前記混繊ウェブの全体に対し、前記短繊維Aの含有量が30~80質量%であり、
前記混繊ウェブの全体に対し、前記分割型複合繊維の含有量が20~70質量%である、吸音材用不織布の製造方法。
通過係数=(繊度×強度×√伸度×√捲縮数×√捲縮度)/(繊維長) (1)
<繊度(dtex)、強度(cN/dtex)、伸度(%)、捲縮数(山/25mm)、捲縮度(%)、繊維長(cm)>
A step of subjecting the staple fiber A and the split type composite fiber to a fiber opening treatment to obtain a mixed fiber web of the staple fiber A and the split type composite fiber.
The mixed fiber web has a step of passing through the water jet punch nozzle three times or more, and the short fiber B is divided from the split type composite fiber.
The staple fiber A has a fineness of 0.4 to 0.9 dtex, and has a fineness of 0.4 to 0.9 dtex.
The passage coefficient of the staple fiber A shown in the following formula (1) is in the range of 15 to 260.
The fineness of the staple fiber B is 0.0005 to 0.3 dtex, and the staple fiber B has a fineness of 0.0005 to 0.3 dtex.
The content of the staple fiber A is 30 to 80% by mass with respect to the entire mixed fiber web.
A method for producing a nonwoven fabric for a sound absorbing material, wherein the content of the split type composite fiber is 20 to 70% by mass with respect to the entire mixed fiber web.
Passing coefficient = (fineness x strength x √ elongation x √ number of crimps x √ crimp degree) / (fiber length) (1)
<Fineness (dtex), strength (cN / dtex), elongation (%), number of crimps (mountain / 25 mm), crimp degree (%), fiber length (cm)>
JP2020131462A 2020-08-03 2020-08-03 Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric Pending JP2022028195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020131462A JP2022028195A (en) 2020-08-03 2020-08-03 Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020131462A JP2022028195A (en) 2020-08-03 2020-08-03 Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2022028195A true JP2022028195A (en) 2022-02-16

Family

ID=80267323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020131462A Pending JP2022028195A (en) 2020-08-03 2020-08-03 Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2022028195A (en)

Similar Documents

Publication Publication Date Title
KR102494455B1 (en) laminated nonwoven fabric
JP7468505B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
Sawhney et al. Advent of greige cotton non-wovens made using a hydro-entanglement process
JP6950525B2 (en) Laminate
JP7468229B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
TWI697595B (en) Fiber assembly, liquid-absorbent sheet using the same, and method of manufacturing fiber assembly
JP7468255B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
JP2022028195A (en) Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric
US20210213378A1 (en) High burst strength wet-laid nonwoven filtration media and process for producing same
EP4253037A1 (en) Non-woven-fabric layered body for sound-absorbing material, and sound-absorbing material
JP2020020856A (en) Laminated nonwoven fabric for sound absorber
JP2023027449A (en) Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material
Tabor The Role of Staple Fiber Length on the Performance of Carded Nonwovens.
JP2019131903A (en) Laminated nonwoven fabric
JP2004354844A (en) Acoustic material constituent member and acoustic material