JP2023027449A - Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material - Google Patents

Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material Download PDF

Info

Publication number
JP2023027449A
JP2023027449A JP2021132543A JP2021132543A JP2023027449A JP 2023027449 A JP2023027449 A JP 2023027449A JP 2021132543 A JP2021132543 A JP 2021132543A JP 2021132543 A JP2021132543 A JP 2021132543A JP 2023027449 A JP2023027449 A JP 2023027449A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
fibers
sound absorbing
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021132543A
Other languages
Japanese (ja)
Inventor
誠 中原
Makoto Nakahara
平 大森
Taira Omori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021132543A priority Critical patent/JP2023027449A/en
Publication of JP2023027449A publication Critical patent/JP2023027449A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

To provide a nonwoven fabric for a sound absorption material, the sound absorption material, and a method for manufacturing the nonwoven fabric for the sound absorption material that, in particular, excel in sound absorption performance in a low frequency range and in productivity.SOLUTION: There is provided a nonwoven fabric for a sound absorption material having a laminated structure composed of a nonwoven fabric A and a nonwoven fabric B, wherein the nonwoven fabric A contains fibers A with a mode of a single fiber diameter of 0.05 to 0.80 μm and fibers B with a mode of a single fiber diameter of 5.00 to 30.00 μm, and a number ratio of the fibers A to the fibers B in the nonwoven fabric A (the number of the fibers A to the number of the fibers B) is 94.0:6.0 to 99.5:0.5, and a difference between the mode of the single fiber diameter of the fibers A and that of the fibers B in the nonwoven fabric A (the mode of the single fiber diameter of the fibers B minus the mode of the single fiber diameter of the fibers A) is 4.00 to 28.00 μm, and the nonwoven fabric B contains 80 mass % or more of fibers C with a mode of a single fiber diameter of 5.00 to 30.00 μm for the whole nonwoven fabric B.SELECTED DRAWING: None

Description

本発明は、吸音材用不織布および吸音材ならびに吸音材用不織布の製造方法に関する。 TECHNICAL FIELD The present invention relates to a nonwoven fabric for a sound absorbing material, a sound absorbing material, and a method for producing the nonwoven fabric for a sound absorbing material.

近年、自動車や電気製品などにおいて静粛性が製品の商品価値の一つとしてこれまで以上に重要視されてきている。一般に騒音対策には対策部品となる吸音材の質量および厚みを増すことが有効とされるが、自動車室内や居室内の空間を広く保つことや自動車では低燃費化の観点から、吸音材の軽量化・コンパクト化が要求されている。さらに、自動車分野ではエンジン廻りなどに適用できる耐熱性が要求されている。 2. Description of the Related Art In recent years, quietness has become more important than ever as one of the commercial values of products in automobiles, electric appliances, and the like. Generally speaking, it is effective to increase the mass and thickness of sound absorbing materials, which are part of noise countermeasures. There is a demand for compactness and compactness. Furthermore, in the field of automobiles, there is a demand for heat resistance that can be applied around engines and the like.

特許文献1には、多孔質型吸音材とナノファイバー不織布を積層した吸音材が提案されている。また、特許文献1には、上記のナノファイバー不織布は、その構成繊維の平均繊維径が1μm未満であることが開示さている。 Patent Document 1 proposes a sound absorbing material in which a porous sound absorbing material and a nanofiber nonwoven fabric are laminated. Further, Patent Document 1 discloses that the nanofiber nonwoven fabric has an average fiber diameter of less than 1 μm.

また、特許文献2には、単繊維直径が10~1000nmの短繊維をスプレー方式で繊維構造体に噴霧した吸音構造体の製造方法が提案されている。 Further, Patent Document 2 proposes a method for manufacturing a sound absorbing structure in which short fibers having a single fiber diameter of 10 to 1000 nm are sprayed onto a fiber structure by a spray method.

また、特許文献3には、単繊維直径が1~5000nmの繊維を有する表皮層と、基材層を有する積層不織布が提案されている。 Further, Patent Document 3 proposes a laminated nonwoven fabric having a skin layer having fibers with a single fiber diameter of 1 to 5000 nm and a base layer.

特開2017-82346号公報JP 2017-82346 A 特開2010―102236号公報JP 2010-102236 A 国際公開第2016/143857号公報International Publication No. 2016/143857

本発明者らの知見によると、特許文献1に開示された吸音材、特許文献2に開示された吸音構造体、および特許文献3に開示された積層不織布は、いずれも極細繊維を含有するため、いずれの吸音性能も比較的、優れたものとなる傾向がみられる。 According to the findings of the present inventors, the sound absorbing material disclosed in Patent Document 1, the sound absorbing structure disclosed in Patent Document 2, and the laminated nonwoven fabric disclosed in Patent Document 3 all contain ultrafine fibers. , the sound absorption performance tends to be relatively excellent.

しかし、特許文献1は、マルチフィラメントにレーザーを照射し、その振動により生成された単層構造のナノファイバー不織布を基材不織布上に積層する構成であり、生産性に劣るとの課題がある。また、特許文献1に記載の吸音材の吸音性能を優れたものとするためには、基材不織布上に積層するナノファイバー不織布の目付を上げることが必要となり、生産性に劣ったものとなる。すなわち、特許文献1に記載の吸音材は、吸音性能と生産性との両立が困難であるとの課題がある。 However, Patent Document 1 has a configuration in which a multifilament is irradiated with a laser and a nanofiber nonwoven fabric having a single-layer structure generated by the vibration is laminated on a base nonwoven fabric, and there is a problem of poor productivity. In addition, in order to improve the sound absorbing performance of the sound absorbing material described in Patent Document 1, it is necessary to increase the basis weight of the nanofiber nonwoven fabric laminated on the base nonwoven fabric, resulting in poor productivity. . That is, the sound absorbing material described in Patent Document 1 has a problem that it is difficult to achieve both sound absorbing performance and productivity.

また、特許文献2は、極細繊維の分散体をスプレー方式で繊維構造体上に噴霧する構成であり、上記同様に生産性に劣る。また、特許文献2に記載の吸音構造体の吸音性能を優れたものとするためには、繊維構造体上に多量の極細繊維の分散体を噴霧することが必要となり、すなわち、高い目付の極細繊維の層を繊維構造体上に形成する必要があり、生産性に劣ったものとなる。すなわち、特許文献2に記載の吸音構造体にも、吸音性能と生産性との両立が困難であるとの課題がある。 Further, Patent Document 2 has a configuration in which a dispersion of ultrafine fibers is sprayed onto a fiber structure by a spray method, and is inferior in productivity as described above. In addition, in order to make the sound absorption performance of the sound absorbing structure described in Patent Document 2 excellent, it is necessary to spray a large amount of a dispersion of ultrafine fibers on the fiber structure. A fiber layer needs to be formed on the fiber structure, resulting in poor productivity. That is, the sound absorbing structure described in Patent Document 2 also has a problem that it is difficult to achieve both sound absorbing performance and productivity.

このような生産性と吸音性能との両立が困難であるとの課題に対して、特許文献3は、ナノファイバー層とこれよりも太い繊維の層を有する表皮層が開示されているが、上記のナノファイバー層がナノファイバーのみからなる緻密な層であるため、音の表面反射が発生し、吸音性能に劣ったものとなるとの課題がある。よって、特許文献3に記載の積層不織布にも、吸音性能と生産性との両立が困難であるとの課題がある。 In response to the problem that it is difficult to achieve both productivity and sound absorption performance, Patent Document 3 discloses a skin layer having a nanofiber layer and a thicker fiber layer. Since the nanofiber layer of is a dense layer consisting only of nanofibers, surface reflection of sound occurs, resulting in poor sound absorption performance. Therefore, the laminated nonwoven fabric described in Patent Document 3 also has the problem that it is difficult to achieve both sound absorption performance and productivity.

そこで、本発明は、上記の事情に鑑み、吸音性能(特に低周波領域の吸音性能)に優れ、かつ生産性にも優れた吸音材に用いることができる吸音材用不織布、および上記の吸音材用不織布を用いた吸音材、ならびに吸音材用不織布の製造方法を提供することを課題とする。 Therefore, in view of the above circumstances, the present invention provides a nonwoven fabric for sound absorbing material that can be used as a sound absorbing material having excellent sound absorbing performance (especially sound absorbing performance in the low frequency range) and excellent productivity, and the above sound absorbing material. An object of the present invention is to provide a sound absorbing material using a nonwoven fabric for sound absorption and a method for manufacturing the nonwoven fabric for sound absorbing material.

上記課題を解決するため、本発明は以下の構成を有する。すなわち、
(1)不織布Aと不織布Bとの積層構造を有し、前記不織布Aが、単繊維直径の最頻値が0.05~0.80μmの繊維Aと、単繊維直径の最頻値が5.00~30.00μmの繊維Bとを含有し、前記不織布Aにおける前記繊維Aと前記繊維Bの本数比(繊維Aの本数:繊維Bの本数)が、94.0:6.0~99.5:0.5であり、前記不織布Aにおける前記繊維Aと前記繊維Bの単繊維直径の最頻値の差(繊維Bの単繊維直径の最頻値-繊維Aの単繊維直径の最頻値)が、4.00~28.00μmであり、前記不織布Bが、単繊維直径の最頻値が5.00~30.00μmの繊維Cを不織布B全体に対して80質量%以上含有する、吸音材用不織布であり、
(2)前記繊維Aの単繊維直径のCv値が20%以下であり、前記繊維Bの単繊維直径のCv値が15%以下である、(1)に記載の吸音材用不織布であることが好ましく、
(3)前記不織布Aと前記不織布Bの目付の比(不織布Aの目付/不織布Bの目付)が、0.5~1.7であり、前記不織布Bの目付が、70~200g/mである、(1)または(2)に記載の吸音材用不織布であることが好ましく、
(4)密度が、0.07~0.40g/cmである、(1)~(3)のいずれかに記載の吸音材用不織布であることが好ましく、
(5)前記繊維Bおよび前記繊維Cの引張強度が、3cN/dtex以上であり、前記繊維Bおよび前記繊維Cの初期引張抵抗度が30cN/dtex以上である、(1)~(4)のいずれかに記載の吸音材用不織布であることが好ましく、
(6)前記繊維Aおよび前記繊維Bおよび前記繊維Cが、ともにポリエステル系短繊維である、(1)~(5)のいずれかに記載の吸音材用不織布であることが好ましい。
In order to solve the above problems, the present invention has the following configurations. i.e.
(1) It has a laminated structure of a nonwoven fabric A and a nonwoven fabric B, and the nonwoven fabric A includes a fiber A having a single fiber diameter mode of 0.05 to 0.80 μm and a single fiber diameter mode of 5. .00 to 30.00 μm of the fiber B, and the number ratio of the fiber A and the fiber B in the nonwoven fabric A (number of fiber A: number of fiber B) is 94.0: 6.0 to 99 .5: 0.5, and the difference in the mode of the single fiber diameter of the fiber A and the fiber B in the nonwoven fabric A (the mode of the single fiber diameter of fiber B - the maximum of the single fiber diameter of fiber A) frequency) is 4.00 to 28.00 μm, and the nonwoven fabric B contains 80% by mass or more of the fibers C having a single fiber diameter mode of 5.00 to 30.00 μm with respect to the entire nonwoven fabric B. It is a nonwoven fabric for sound absorbing material,
(2) The nonwoven fabric for sound absorbing material according to (1), wherein the fiber A has a single fiber diameter Cv value of 20% or less and the fiber B has a single fiber diameter Cv value of 15% or less. is preferred,
(3) The fabric weight ratio of the nonwoven fabric A and the nonwoven fabric B (the fabric weight of the nonwoven fabric A/the fabric weight of the nonwoven fabric B) is 0.5 to 1.7, and the fabric weight of the nonwoven fabric B is 70 to 200 g/m 2 . It is preferable that the nonwoven fabric for sound absorbing material according to (1) or (2) is
(4) It is preferable that the nonwoven fabric for sound absorbing material according to any one of (1) to (3) has a density of 0.07 to 0.40 g/cm 3 ,
(5) of (1) to (4), wherein the tensile strength of the fibers B and the fibers C is 3 cN/dtex or more, and the initial tensile resistance of the fibers B and the fibers C is 30 cN/dtex or more; It is preferable that the nonwoven fabric for sound absorbing material according to any one of
(6) The nonwoven fabric for sound absorbing material according to any one of (1) to (5), wherein the fibers A, the fibers B, and the fibers C are polyester short fibers.

また、(7)(1)~(6)のいずれかに記載の吸音材用不織布と、繊維系多孔質体、発泡体、または空気層からなる層状物とを、有し、前記層状物は、前記吸音材用不織布の一方の面に積層されており、前記層状物の厚さが、5~50mmである、吸音材である。 (7) The nonwoven fabric for a sound absorbing material according to any one of (1) to (6), and a layered material comprising a fibrous porous material, a foam, or an air layer, wherein the layered material is and a sound absorbing material laminated on one surface of the nonwoven fabric for sound absorbing material, wherein the layered material has a thickness of 5 to 50 mm.

また、(8)以下の(a)~(h)の工程を有する、(1)~(6)のいずれかに記載の吸音材用不織布の製造方法である。
(a)複合紡糸口金を用いて、2種以上の樹脂からなる海島複合繊維を紡糸する工程
(b)前記海島複合繊維に、捲縮、カット加工を行い、海島複合短繊維を得る工程
(c)前記海島複合短繊維と単繊維直径の最頻値が5.00~30.00μmの短繊維形状の繊維Bに開繊処理を施し、前記海島複合短繊維および前記繊維Bの混繊ウェブを得る工程
(d)単繊維直径の最頻値が5.00~30.00μmの短繊維形状の繊維Cに開繊処理を施し、前記繊維Cのウェブを得る工程
(e)前記混繊ウェブと、前記繊維Cのウェブを積層し、積層ウェブを得る工程
(f)前記積層ウェブにニードルパンチ法、またはウォータージェットパンチ法で交絡加工を行い、積層不織布を得る工程
(g)前記積層不織布をアルカリ水溶液により、前記海島複合短繊維の海成分を脱海し、単繊維直径の最頻値が0.05~0.80μmの繊維Aを発現させる工程
(h)前記(g)の工程後の積層不織布を乾燥する工程。
(8) The method for producing a nonwoven fabric for sound absorbing material according to any one of (1) to (6), which includes the following steps (a) to (h).
(a) a step of spinning a sea-island composite fiber comprising two or more resins using a composite spinneret; (b) a step of crimping and cutting the sea-island composite fiber to obtain a sea-island composite staple fiber; ) The sea-island composite staple fibers and the staple fibers B having a mode of single fiber diameter of 5.00 to 30.00 μm are subjected to a fiber opening treatment to form a mixed fiber web of the sea-island composite staple fibers and the fibers B. Step (d) of obtaining a web of the fibers C by subjecting short fiber-shaped fibers C having a mode of single fiber diameter of 5.00 to 30.00 μm to obtain a web of the fibers C (e) the mixed fiber web and (f) subjecting the laminated web to entangling by a needle punching method or a water jet punching method to obtain a laminated nonwoven fabric; (g) applying the laminated nonwoven fabric to an alkaline Step (h) of removing the sea component from the sea-island composite short fibers with an aqueous solution to develop fibers A having a single fiber diameter mode of 0.05 to 0.80 μm; lamination after the step of (g); A process of drying the nonwoven fabric.

本発明によれば、所定の繊維径を有する極細繊維を使用することにより、吸音性能(特に、低周波領域の吸音性能)、および生産性に優れた吸音材用不織布を提供することができる。 According to the present invention, by using ultrafine fibers having a predetermined fiber diameter, it is possible to provide a nonwoven fabric for sound absorbing material with excellent sound absorption performance (especially sound absorption performance in the low frequency range) and productivity.

以下、本発明の実施の形態を詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail.

本発明の吸音材用不織布は、不織布Aと不織布Bとの積層構造を有する。そして、不織布Aが、単繊維直径の最頻値が0.05~0.80μmの繊維Aと、単繊維直径の最頻値が5~30μmの繊維Bとを含有する。 The nonwoven fabric for sound absorbing material of the present invention has a laminated structure of the nonwoven fabric A and the nonwoven fabric B. The nonwoven fabric A contains fibers A having a single fiber diameter mode of 0.05 to 0.80 μm and fibers B having a single fiber diameter mode of 5 to 30 μm.

不織布Aが、単繊維直径の最頻値が0.05~0.80μmの繊維Aを含有することにより、不織布Aが、微細な孔を多数有する多孔質部を形成することができる。これにより、音が繊維の間の空隙(すなわち、多孔質部)を通過する際に空隙の周辺の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。また、不織布Aが、単繊維直径の最頻値が5.00~30.00μmの繊維Bを含有することにより、繊維Aを含む不織布Aが緻密になることを抑制し、適度な空隙を有することにより、音の表面反射を抑制し、空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。 The nonwoven fabric A contains fibers A having a mode of single fiber diameter of 0.05 to 0.80 μm, so that the nonwoven fabric A can form a porous portion having a large number of fine pores. As a result, when sound passes through the voids (that is, the porous part) between the fibers, it can be efficiently converted into heat by air friction with the fibers around the voids, and when used as a sound absorbing material. excellent sound absorption can be obtained. In addition, since the nonwoven fabric A contains fibers B having a mode value of the single fiber diameter of 5.00 to 30.00 μm, the nonwoven fabric A containing the fibers A is suppressed from becoming dense and has appropriate voids. As a result, surface reflection of sound can be suppressed, sound can be efficiently converted into heat by air friction, and excellent sound absorption can be obtained when used as a sound absorbing material.

繊維Aの単繊維直径の最頻値を0.05μm以上とすることで、不織布Aの表面における音の表面反射を低減することができ、不織布Aに含まれる繊維Aと音の空気摩擦による吸音性を高めることができる。一方、繊維Aの単繊維直径の最頻値を0.80μm以下とすることで、吸音材用不織布の膜振動効果により、特に低周波の吸音性を高めることができる。前記の点で、繊維Aの単繊維直径の最頻値は、0.15~0.70μmであることが好ましく、0.20~0.65μmであることがさらに好ましい。 By setting the mode of the single fiber diameter of the fiber A to 0.05 μm or more, the surface reflection of sound on the surface of the nonwoven fabric A can be reduced, and the sound is absorbed by the air friction between the fiber A contained in the nonwoven fabric A and the sound. can enhance sexuality. On the other hand, by setting the mode value of the single fiber diameter of the fiber A to 0.80 μm or less, it is possible to enhance the sound absorption, particularly at low frequencies, due to the film vibration effect of the nonwoven fabric for sound absorbing material. In view of the above, the mode of the single fiber diameter of Fiber A is preferably 0.15 to 0.70 μm, more preferably 0.20 to 0.65 μm.

また、繊維Bの単繊維直径の最頻値を5.00μm以上とすることで、繊維Aを含む不織布Aが緻密になることを抑制し、適度な空隙を有することにより、音の表面反射を抑制し、空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。一方、繊維Bの単繊維直径の最頻値を30.00μm以下とすることで、空隙が過大になることを抑制し、微細な空隙における空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。前記の点で、繊維Bの単繊維直径の最頻値は、6.00~27.00μmであることが好ましく、7.00~23.00μmであることがさらに好ましい。 In addition, by setting the mode of the single fiber diameter of the fiber B to 5.00 μm or more, the nonwoven fabric A containing the fiber A is suppressed from becoming dense, and by having an appropriate void, the surface reflection of sound is reduced. sound can be efficiently converted into heat by air friction, and excellent sound absorption can be obtained when used as a sound absorbing material. On the other hand, by setting the mode of the single fiber diameter of the fiber B to 30.00 μm or less, it is possible to suppress the gap from becoming excessively large, and to efficiently convert sound into heat by air friction in the fine gap. , excellent sound absorption can be obtained when used as a sound absorbing material. In view of the above, the mode of the single fiber diameter of the fiber B is preferably 6.00 to 27.00 μm, more preferably 7.00 to 23.00 μm.

本発明の不織布Aは、不織布Aにおける繊維Aと繊維Bの本数比(繊維Aの本数:繊維Bの本数)が、94.0:6.0~99.5:0.5であり、かつ、不織布Aにおける繊維Aと繊維Bの単繊維直径の最頻値の差(繊維Bの単繊維直径の最頻値-繊維Aの単繊維直径の最頻値)が、4.00~28.00μmである。上記の構成とすることで、不織布Aが、微細な孔を多数有する多孔質部を形成することができ、かつ、適度な空隙を有することにより、音の表面反射を抑制しつつ、音が通過する際の繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。 In the nonwoven fabric A of the present invention, the number ratio of the fibers A and the fibers B in the nonwoven fabric A (number of fibers A:number of fibers B) is 94.0:6.0 to 99.5:0.5, and , the difference in the mode of the single fiber diameters of the fibers A and B in the nonwoven fabric A (the mode of the single fiber diameter of the fiber B - the mode of the single fiber diameter of the fiber A) is 4.00 to 28. 00 μm. With the above configuration, the nonwoven fabric A can form a porous portion having a large number of fine pores, and by having an appropriate amount of voids, sound can be transmitted while suppressing surface reflection of sound. Sound can be efficiently converted into heat by air friction with the fibers when the material is used, and excellent sound absorption can be obtained when used as a sound absorbing material.

繊維Aと繊維Bの合計の本数を100としたときの繊維Aの本数の比を、94.0以上とすることで、繊維Bの本数に対し繊維Aの本数が多くなるため、不織布Aの内部に微細な孔を多数有する多孔質部を形成することができ、音が通過する際の繊維との空気摩擦によって音を熱に効率よく変換することができ、優れた吸音性を得ることができる。一方、繊維Aと繊維Bの合計の本数を100としたときの繊維Aの本数の比を99.5以下とすることで、繊維Aの本数に対し繊維Bの本数が多くなるため、音の表面反射を抑制し、空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。 By setting the ratio of the number of fibers A to 94.0 or more when the total number of fibers A and B is 100, the number of fibers A increases with respect to the number of fibers B. It is possible to form a porous part with many fine holes inside, and it is possible to efficiently convert sound into heat by air friction with fibers when sound passes through, resulting in excellent sound absorption. can. On the other hand, when the total number of fibers A and B is 100, by setting the ratio of the number of fibers A to 99.5 or less, the number of fibers B increases with respect to the number of fibers A, so that the sound is reduced. It suppresses surface reflection, can efficiently convert sound into heat by air friction, and can provide excellent sound absorption when used as a sound absorbing material.

繊維Aと繊維Bの合計の本数を100としたときの繊維Bの本数の比を、0.5以上とすることで、繊維Aの本数に対し繊維Bの本数が多くなるため、不織布Aの内部に適度な空隙を有することができ、音の表面反射を抑制し、空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。一方、繊維Aと繊維Bの合計の本数を100としたときの繊維Bの本数の比を6.0以下とすることで、繊維Bの本数に対し繊維Aの本数が多くなるため、空隙が過大になることを抑制し、微細な空隙による空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。前記の点で、不織布Aにおける繊維Aと繊維Bの本数比(繊維Aの本数:繊維Bの本数)は、97.0:3.0~99.5~0.5であることが好ましく、98.5:1.5~99.5~0.5であることがさらに好ましい。 By setting the ratio of the number of fibers B to 0.5 or more when the total number of fibers A and B is 100, the number of fibers B increases with respect to the number of fibers A. It can have moderate voids inside, suppress surface reflection of sound, can efficiently convert sound into heat by air friction, and can obtain excellent sound absorption when used as a sound absorbing material. . On the other hand, by setting the ratio of the number of fibers B to 6.0 or less when the total number of fibers A and B is 100, the number of fibers A increases with respect to the number of fibers B, so that voids are formed. It is possible to suppress an excessive increase in size, efficiently convert sound into heat by air friction caused by fine voids, and obtain excellent sound absorption when used as a sound absorbing material. In view of the above, the number ratio of fibers A and fibers B in nonwoven fabric A (number of fibers A: number of fibers B) is preferably 97.0:3.0 to 99.5 to 0.5, More preferably 98.5:1.5-99.5-0.5.

不織布Aにおける繊維Aと繊維Bの単繊維直径の最頻値の差(繊維Bの単繊維直径の最頻値-繊維Aの単繊維直径の最頻値)を、4.00μm以上とすることにより、不織布Aの内部に、空気摩擦を高めるための微細な空隙と、音の表面反射を抑制するための空隙が共存する形となり、不織布Aの内部に進入した音を空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。一方、不織布Aにおける繊維Aと繊維Bの単繊維直径の最頻値の差(繊維Bの単繊維直径の最頻値-繊維Aの単繊維直径の最頻値)を、28.00μm以下とすることにより、空隙が過大になることを抑制し、微細な空隙における空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。前記の点で繊維Aと繊維Bの単繊維直径の最頻値の差(繊維Bの単繊維直径の最頻値-繊維Aの単繊維直径の最頻値)は、6.00~25.00μmであることが好ましく、7.00~22.00μmであることがさらに好ましい。なお、本発明でいう単繊維直径の最頻値とは、単繊維直径の分布における最大値である。 The difference in the mode of the single fiber diameters of the fibers A and B in the nonwoven fabric A (the mode of the single fiber diameter of the fiber B - the mode of the single fiber diameter of the fiber A) should be 4.00 μm or more. As a result, fine voids for increasing air friction and voids for suppressing surface reflection of sound coexist inside nonwoven fabric A, and the sound entering inside nonwoven fabric A is heated by air friction. can be efficiently converted to, and excellent sound absorption can be obtained when used as a sound absorbing material. On the other hand, the difference in the mode of the single fiber diameters of the fibers A and B in the nonwoven fabric A (the mode of the single fiber diameter of the fiber B - the mode of the single fiber diameter of the fiber A) is 28.00 μm or less. By doing so, it is possible to suppress the gaps from becoming excessively large, and to efficiently convert sound into heat by air friction in the fine gaps, and to obtain excellent sound absorption when used as a sound absorbing material. In the above point, the difference in the mode of the single fiber diameters of the fiber A and the fiber B (the mode of the single fiber diameter of the fiber B - the mode of the single fiber diameter of the fiber A) is 6.00-25. 00 μm, more preferably 7.00 to 22.00 μm. The mode of the single fiber diameter referred to in the present invention is the maximum value in the distribution of the single fiber diameter.

上記の構成の不織布Aを備える本発明の吸音材用不織布は不織布Aの目付が小さくても吸音性能(特に低周波領域の吸音性能)に優れるため、本発明の吸音材用不織布は生産性にも優れたものとなる。よって、本発明の吸音材用不織布では、優れた吸音性能と優れた生産性の両立が可能となる。 The nonwoven fabric for sound absorbing material of the present invention comprising the nonwoven fabric A having the above structure has excellent sound absorbing performance (especially sound absorbing performance in the low frequency range) even if the basis weight of the nonwoven fabric A is small. will also be excellent. Therefore, with the nonwoven fabric for sound absorbing material of the present invention, it is possible to achieve both excellent sound absorbing performance and excellent productivity.

本発明の吸音材用不織布は、不織布Bを有し、不織布Bが、単繊維直径の最頻値が5.00~30.00μmの繊維Cを不織布B全体に対して80質量%以上含有する。不織布Bは、吸音材用不織布の質量を増加させ、低周波の吸音性を向上する役割と、吸音材用不織布を製造する工程において、不織布の寸法変化を抑制し、所望の微細空隙を有する吸音材用不織布を得るために、不織布Aに積層される。不織布Bを有することにより、吸音材用不織布の質量を増加させ、膜振動吸音効果における共鳴周波数を低周波に移行することができ、低周波の吸音性能を高めることができる。また、不織布Bが単繊維直径の最頻値が5.00~30.00μmの繊維Cを不織布B全体に対して80質量%以上含有することにより、吸音材用不織布の製造工程、特に脱海工程での工程張力による不織布の変形を抑制し、不織布Aの均一な微細空隙を崩壊させることなく、吸音性能に優れた吸音材用不織布を効率的に得ることができ、生産性を高めることができる。繊維Cの単繊維直径の最頻値を5.00μm以上とすることで、不織布の変形を抑制することができ、吸音性能を高めることができる。一方、繊維Cの単繊維直径の最頻値を30.00μm以下とすることで、後述するニードルパンチや、水流による交絡工程において、不織布の交絡を高め、不織布の変形を抑制でき、吸音性能を高めることができる。前記の点で、繊維Bの単繊維直径の最頻値は、6.00~27.00μmであることが好ましく、7.00~23.00μmであることがさらに好ましい。 The nonwoven fabric for sound absorbing material of the present invention has a nonwoven fabric B, and the nonwoven fabric B contains 80% by mass or more of the fibers C having a single fiber diameter mode of 5.00 to 30.00 μm with respect to the entire nonwoven fabric B. . The nonwoven fabric B has the role of increasing the mass of the nonwoven fabric for sound absorbing material and improving the sound absorption of low frequencies, suppressing the dimensional change of the nonwoven fabric in the process of manufacturing the nonwoven fabric for sound absorbing material, and having the desired fine voids. Nonwoven fabric A is laminated to obtain a nonwoven fabric for lumber. By including the nonwoven fabric B, the mass of the nonwoven fabric for sound absorbing material can be increased, the resonance frequency in the membrane vibration sound absorbing effect can be shifted to low frequencies, and the low frequency sound absorption performance can be enhanced. In addition, since the nonwoven fabric B contains 80% by mass or more of the fibers C having a mode of single fiber diameter of 5.00 to 30.00 μm with respect to the whole nonwoven fabric B, The deformation of the nonwoven fabric due to the process tension in the process can be suppressed, and the nonwoven fabric for sound absorbing material with excellent sound absorption performance can be efficiently obtained without collapsing the uniform fine voids of the nonwoven fabric A, and the productivity can be improved. can. By setting the mode of the single fiber diameter of the fiber C to 5.00 μm or more, the deformation of the nonwoven fabric can be suppressed and the sound absorbing performance can be enhanced. On the other hand, by setting the mode of the single fiber diameter of the fiber C to 30.00 μm or less, it is possible to increase the entanglement of the nonwoven fabric and suppress the deformation of the nonwoven fabric in the needle punching or the entangling process using water flow, which will be described later, and improve the sound absorption performance. can be enhanced. In view of the above, the mode of the single fiber diameter of the fiber B is preferably 6.00 to 27.00 μm, more preferably 7.00 to 23.00 μm.

また、繊維Cは、単繊維直径の最頻値が5.00~30.00μmである限りにおいては、繊維Bとは異なる繊維であってもよいが、吸音材用不織布の生産性がより優れたものとなるとの理由から、繊維Cは繊維Bと同じ繊維であることが好ましい。 Further, the fiber C may be a fiber different from the fiber B as long as the mode of the single fiber diameter is 5.00 to 30.00 μm, but the productivity of the nonwoven fabric for sound absorbing material is more excellent. It is preferable that the fiber C is the same fiber as the fiber B because it is the same fiber.

本発明の繊維Aの単繊維直径のCv値は20%以下であり、繊維Bの単繊維直径のCv値は15%以下であることが好ましい。各繊維の単繊維直径のCv値、すなわち単繊維直径のバラツキを小さくすることで、不織布Aの内部において、繊維Aと繊維Bの繊維間で微細かつ均一な空隙が形成され、不織布Aの内部に進入した音を空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。前記の点で、繊維Aの単繊維直径のCv値は15%以下であることが好ましく、10%以下であることがさらに好ましい。繊維Bの単繊維直径のCv値は10%以下であることが好ましく、8%以下であることが更に好ましい。なお、本発明の単繊維直径のCv値は、走査型電子顕微鏡(SEM)により各繊維の単繊維直径を測定し、下記の式により算出する。
単繊維直径のCv値(%)=(単繊維直径の標準偏差/単繊維直径の平均値)×100(%)
本発明の不織布Aと不織布Bの目付の比(不織布Aの目付/不織布Bの目付)は、0.5~1.7であり、不織布Bの目付は、70~200g/mであることが好ましい。不織布Aと不織布Bの目付の比を0.5以上とすることで、不織布Aが有する微細な空隙により、繊維との空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性を得ることができる。一方、不織布Aと不織布Bの目付の比を1.7以下とすることにより、吸音材用不織布の製造工程、特に脱海工程での工程張力による不織布の変形を抑制し、不織布Aの均一な微細空隙を崩壊させることなく、吸音性能に優れた吸音材用不織布を効率的に得ることができ、生産性を高めることができる。前記の点で、不織布Aと不織布Bの目付の比は、0.6~1.5であることが好ましく、0.65~1.3であることがさらに好ましい。また、不織布Bの目付を、70g/m以上とすることで、吸音材用不織布の質量を増加させ、膜振動吸音効果における共鳴周波数を低周波に移行することができ、低周波の吸音性能を高めると共に、吸音材用不織布の製造工程、特に脱海工程での工程張力による不織布の変形を抑制し、不織布Aの均一な微細空隙を崩壊させることなく、吸音性能に優れた吸音材用不織布を効率的に得ることができ、生産性を高めることができるため好ましい。一方、不織布Bの目付を、200g/m以下とすることで、後述するニードルパンチや、水流による交絡工程において、不織布の交絡を高め、不織布の変形を抑制でき、吸音性能を高めることができる。前記の点で、不織布Bの目付は、75~180g/mであることが好ましく、80~160g/mであることがさらに好ましい。
The Cv value of the single fiber diameter of the fiber A of the present invention is preferably 20% or less, and the Cv value of the single fiber diameter of the fiber B is preferably 15% or less. By reducing the Cv value of the single fiber diameter of each fiber, that is, the variation in the single fiber diameter, fine and uniform voids are formed between the fibers A and B in the interior of the nonwoven fabric A. It can efficiently convert sound into heat by air friction, and when used as a sound absorbing material, excellent sound absorption can be obtained. In view of the above, the Cv value of the single fiber diameter of the fiber A is preferably 15% or less, more preferably 10% or less. The Cv value of the single fiber diameter of the fiber B is preferably 10% or less, more preferably 8% or less. The Cv value of single fiber diameter in the present invention is calculated by the following formula after measuring the single fiber diameter of each fiber with a scanning electron microscope (SEM).
Cv value of single fiber diameter (%) = (standard deviation of single fiber diameter / average value of single fiber diameter) x 100 (%)
The basis weight ratio of nonwoven fabric A and nonwoven fabric B (nonwoven fabric A/nonwoven fabric B) is 0.5 to 1.7, and the basis weight of nonwoven fabric B is 70 to 200 g/m 2 . is preferred. By setting the basis weight ratio of nonwoven fabric A and nonwoven fabric B to 0.5 or more, sound can be efficiently converted into heat by air friction with fibers due to fine voids in nonwoven fabric A, and it can be used as a sound absorbing material. Excellent sound absorption can be obtained when On the other hand, by setting the weight ratio between the nonwoven fabric A and the nonwoven fabric B to 1.7 or less, deformation of the nonwoven fabric due to process tension in the manufacturing process of the nonwoven fabric for sound absorbing material, especially in the sea removal process, is suppressed, and the nonwoven fabric A is uniform. It is possible to efficiently obtain a nonwoven fabric for a sound absorbing material with excellent sound absorbing performance without collapsing the fine voids, thereby increasing the productivity. In view of the above, the ratio of basis weight between nonwoven fabric A and nonwoven fabric B is preferably 0.6 to 1.5, more preferably 0.65 to 1.3. In addition, by setting the basis weight of the nonwoven fabric B to 70 g/m 2 or more, the mass of the nonwoven fabric for sound absorbing material can be increased, the resonance frequency in the membrane vibration sound absorbing effect can be shifted to a low frequency, and the low frequency sound absorption performance while suppressing deformation of the nonwoven fabric due to process tension in the manufacturing process of the nonwoven fabric for sound absorbing material, especially in the sea removal process, without collapsing the uniform fine voids of the nonwoven fabric A, and having excellent sound absorbing performance. can be obtained efficiently and productivity can be improved. On the other hand, by setting the basis weight of the nonwoven fabric B to 200 g/m 2 or less, it is possible to increase the entanglement of the nonwoven fabric, suppress the deformation of the nonwoven fabric, and improve the sound absorption performance in the needle punching or the entangling process using water flow, which will be described later. . In view of the above, the nonwoven fabric B preferably has a basis weight of 75 to 180 g/m 2 , more preferably 80 to 160 g/m 2 .

本発明の吸音材用不織布の密度は、0.07~0.40g/cmであることが好ましい。密度を0.07g/cm以上とすることで、吸音材用不織布が緻密な構造となり、繊維Aや繊維Bによる微細な空隙が形成され、空気摩擦による音の熱への変換を、より効率的なものとすることができ、結果として、吸音材用不織布を吸音材として用いた際の吸音性能がより優れたものとなる。さらに、一方で密度を0.40g/cm以下とすることで、適度な空隙を有することにより、音の表面反射を抑制し、吸音材用不織布の内部に進入した音を空気摩擦によって音を熱に効率よく変換することができ、吸音材として使用した際に優れた吸音性能をより優れたものとできる。前記の点から、密度は0.09~0.35g/cmであることが好ましく、0.10~0.32g/cmであることがさらに好ましい。 The density of the nonwoven fabric for sound absorbing material of the present invention is preferably 0.07 to 0.40 g/cm 3 . By setting the density to 0.07 g/cm 3 or more, the nonwoven fabric for sound absorbing material has a dense structure, fine voids are formed by the fibers A and B, and sound is more efficiently converted into heat by air friction. As a result, when the nonwoven fabric for sound absorbing material is used as a sound absorbing material, the sound absorbing performance becomes more excellent. Furthermore, on the other hand, by setting the density to 0.40 g/cm 3 or less, the surface reflection of sound is suppressed by having moderate voids, and the sound that enters the interior of the nonwoven fabric for sound absorbing material is reduced by air friction. It can be efficiently converted into heat, and when used as a sound absorbing material, it can improve its excellent sound absorbing performance. From the above points, the density is preferably 0.09 to 0.35 g/cm 3 , more preferably 0.10 to 0.32 g/cm 3 .

本発明の繊維Bおよび繊維Cの引張強度は、3cN/dtex以上であり、繊維Bおよび繊維Cの初期引張抵抗度が30cN/dtex以上であることが好ましい。繊維Bおよび繊維Cの引張強度、および初期引張抵抗度を前記の範囲とすることにより、吸音材用不織布の製造工程、特に脱海工程での不織布の変形を抑制し、不織布Aの均一な微細空隙を崩壊させることなく、吸音性能に優れた吸音材用不織布を効率的に得ることができ、さらに生産性を高めることができるため好ましい。前記の点で、繊維Bおよび繊維Cの引張強度は、3.3cN/dtex以上であり、繊維Bおよび繊維Cの初期引張抵抗度が34cN/dtex以上であることがさらに好ましい。繊維Bおよび繊維Cの引張強度、および初期引張抵抗度の上限については特に限定されないが、不織布の交絡を高め、不織布の変形を抑制する点で、引張強度は10cN/dtex以下とすることが好ましく、繊維Bの初期引張抵抗度は80cN/dtex以下とすることが好ましい。 The tensile strength of the fibers B and C of the present invention is preferably 3 cN/dtex or more, and the initial tensile resistance of the fibers B and C is preferably 30 cN/dtex or more. By setting the tensile strength and the initial tensile resistance of the fibers B and C within the ranges described above, deformation of the nonwoven fabric during the manufacturing process of the nonwoven fabric for sound absorbing material, particularly in the sea removal process, is suppressed, and the nonwoven fabric A is uniformly fine. It is preferable because it is possible to efficiently obtain a nonwoven fabric for a sound absorbing material having excellent sound absorbing performance without collapsing the voids, and furthermore, it is possible to increase the productivity. In view of the above, it is more preferable that the fibers B and C have a tensile strength of 3.3 cN/dtex or more, and that the fibers B and C have an initial tensile resistance of 34 cN/dtex or more. The upper limits of the tensile strength and the initial tensile resistance of the fibers B and C are not particularly limited, but the tensile strength is preferably 10 cN/dtex or less in order to increase the entanglement of the nonwoven fabric and suppress the deformation of the nonwoven fabric. , the initial tensile resistance of the fiber B is preferably 80 cN/dtex or less.

本発明の繊維Aおよび繊維Bおよび繊維Cを構成する素材については、ポリエステル系樹脂、ポリアミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等の熱可塑性樹脂を使用することができる。これらの中でも、耐熱性に優れる、すなわち、自動車などのエンジンルームに使用する際の吸音材用不織布の高温環境下における変形や変色が少なくできる点で、繊維Aおよび繊維Bがともにポリエステル系樹脂からなる繊維(ポリエステル系繊維)であることが好ましく、後述するカード工程などにより、効率よく繊維を分散させる点で、ポリエステル系樹脂からなる短繊維(ポリエステル系短繊維)であることが好ましい。中でも特に耐熱性に優れる、ポリエチレンテレフタレート樹脂からなる短繊維(ポリエチレンテレフタレート短繊維)であることが、耐熱性や生産性の点で好ましい。 Thermoplastic resins such as polyester-based resins, polyamide-based resins, acrylic-based resins, and polyolefin-based resins can be used for the materials that constitute the fibers A, fibers B, and fibers C of the present invention. Among these, both fiber A and fiber B are made of polyester resin in that they have excellent heat resistance, that is, they can reduce deformation and discoloration in high-temperature environments of nonwoven fabrics for sound absorbing materials when used in engine rooms of automobiles. It is preferable that the fibers (polyester fibers) are made of polyester resin, and short fibers (polyester short fibers) made of a polyester resin are preferable in terms of efficiently dispersing the fibers by the carding process described later. Among them, short fibers made of polyethylene terephthalate resin (polyethylene terephthalate short fibers), which are particularly excellent in heat resistance, are preferred in terms of heat resistance and productivity.

次に、本発明の吸音材用不織布を製造するための好ましい製造方法について説明する。本発明の吸音材用不織布の好ましい製造方法は、以下の工程を有する。 Next, a preferred manufacturing method for manufacturing the nonwoven fabric for sound absorbing material of the present invention will be described. A preferred method for producing the nonwoven fabric for sound absorbing material of the present invention includes the following steps.

(繊維Aの前駆体となる複合繊維の製造)
(a)複合紡糸口金を用いて、2種以上の樹脂からなる海島複合繊維を紡糸する工程。
(b)海島複合繊維に、捲縮、カット加工を行い、海島複合短繊維を得る工程。
(Production of conjugate fiber as precursor of fiber A)
(a) A step of spinning a sea-island composite fiber comprising two or more resins using a composite spinneret.
(b) A step of crimping and cutting sea-island composite fibers to obtain sea-island composite staple fibers.

(積層不織布の製造)
(c)海島複合短繊維と、単繊維直径の最頻値が5.00~30.00μmである短繊維形状の繊維B(以下、短繊維Bという)に、開繊処理を施し、海島複合短繊維および短繊維Bの混繊ウェブを得る工程。
(d)単繊維直径の最頻値が5.00~30.00μmである短繊維Cに開繊処理を施し、短繊維Cのウェブを得る工程。
(e)海島複合短繊維および短繊維Bの混繊ウェブと、短繊維Cのウェブを積層し、積層ウェブを得る工程。
(f)積層ウェブにニードルパンチ法、またはウォータージェットパンチ法で交絡加工を行い、積層不織布を得る工程。
(Manufacture of laminated nonwoven fabric)
(c) Sea-island composite short fibers and short fiber-shaped fibers B having a mode of single fiber diameter of 5.00 to 30.00 μm (hereinafter referred to as short fibers B) are subjected to a fiber opening treatment to obtain a sea-island composite. A step of obtaining a mixed fiber web of short fibers and short fibers B;
(d) A step of subjecting short fibers C having a mode of single fiber diameter of 5.00 to 30.00 μm to an opening treatment to obtain a web of short fibers C;
(e) A step of laminating a mixed fiber web of sea-island composite staple fibers and staple fibers B and a web of staple fibers C to obtain a laminated web.
(f) A step of entangling the laminated web by a needle punching method or a water jet punching method to obtain a laminated nonwoven fabric.

(吸音材用不織布の製造)
(g)積層不織布をアルカリ水溶液により、海島複合繊維の海成分を脱海し、繊維Aを発現させる工程。
(h)脱海処理後の積層不織布を乾燥する工程。
(Manufacturing nonwoven fabric for sound absorbing material)
(g) A step of removing the sea component of the sea-island composite fiber from the laminated nonwoven fabric with an alkaline aqueous solution to develop the fiber A;
(h) A step of drying the laminated nonwoven fabric after the sea removal treatment.

以下、これら(a)~(h)の工程の詳細について説明する。 Details of these steps (a) to (h) will be described below.


(繊維Aの前駆体となる複合繊維の製造)
まず、(a)複合紡糸口金を用いて、2種以上の樹脂からなる海島複合繊維を紡糸する工程について説明する。複合繊維を紡糸する工程では、島成分を構成する樹脂と海成分を構成する樹脂を別々に溶融、計量し、分配孔を穿設した分配プレートを使用した紡糸パックに、海成分と島成分の溶融樹脂を流入し、吐出孔から複合ポリマー流を吐出して溶融紡糸を行い、延伸して海島複合繊維を得ることができる。

(Production of conjugate fiber as precursor of fiber A)
First, (a) the step of spinning a sea-island composite fiber composed of two or more resins using a composite spinneret will be described. In the process of spinning a composite fiber, the resin that constitutes the island component and the resin that constitutes the sea component are separately melted and weighed, and the sea component and the island component are put into a spinning pack using a distribution plate with distribution holes. A sea-island composite fiber can be obtained by injecting a molten resin and discharging a composite polymer flow from a discharge hole for melt spinning and drawing.

次に、(b)海島複合繊維に、捲縮、カット加工を行い、海島複合短繊維を得る工程については、海島複合繊維を加熱させ、クリンパに導入し機械捲縮を付与後、回転式のカッターにより所定の長さにカットし、海島複合短繊維を得ることができる。 Next, in the step (b) of crimping and cutting the sea-island composite fibers to obtain sea-island composite staple fibers, the sea-island composite fibers are heated, introduced into a crimper to be mechanically crimped, and then rotated. The sea-island composite staple fiber can be obtained by cutting it into a predetermined length with a cutter.

(積層不織布の製造)
次に、(c)海島複合短繊維と短繊維Bに開繊処理を施し、海島複合短繊維および短繊維Bの混繊ウェブを得る工程について説明する。まず、上記の工程に含まれる、海島複合短繊維と短繊維Bを開繊させる工程(オープナー工程)ついて説明する。オープナー工程は、吸音材用不織布における繊維Aの含有量と繊維Bの含有量が所望のものとなるように海島複合短繊維および短繊維B(以下、各短繊維ともいう)を計量した後、エアー等を用いて各短繊維を十分に開繊させ混繊する。
(Manufacture of laminated nonwoven fabric)
Next, the step (c) of subjecting the sea-island composite staple fibers and the staple fibers B to an opening treatment to obtain a mixed fiber web of the sea-island composite staple fibers and the staple fibers B will be described. First, the step of opening the sea-island composite staple fibers and the staple fibers B (opener step) included in the above steps will be described. In the opener step, the sea-island composite short fibers and the short fibers B (hereinafter also referred to as short fibers) are weighed so that the content of the fibers A and the content of the fibers B in the nonwoven fabric for sound absorbing material are as desired. Using air or the like, each short fiber is sufficiently opened and mixed.

次に、海島複合短繊維と短繊維Bとが混繊したものをウェブ状にする工程(カード工程)について説明する。カード工程は、オープナー工程で得た混繊された各短繊維を針布ローラーで引き揃えて混繊ウェブを得る。 Next, a process (carding process) of forming a web from a mixture of the sea-island composite staple fibers and the staple fibers B will be described. In the carding process, the mixed short fibers obtained in the opener process are pulled together by a carding roller to obtain a mixed fiber web.

他方、(d)短繊維Cに開繊処理を施し、短繊維Cのウェブを得る工程は、上記のオープナーを用いて短繊維Cを開繊し、カード工程により短繊維Cを引き揃え、短繊維Cからなるウェブを得ることができる。 On the other hand, (d) the step of subjecting the short fibers C to opening treatment to obtain a web of the short fibers C comprises opening the short fibers C using the opener described above, arranging the short fibers C by a carding step, and A web of fibers C can be obtained.

(e)海島複合短繊維および短繊維Bの混繊ウェブと、短繊維Cのウェブを積層し、積層ウェブを得る工程は、上記のウェブをコンベア上で積層することで、積層ウェブを得ることができる。 (e) The step of laminating a mixed fiber web of sea-island composite staple fibers and staple fibers B and a web of staple fibers C to obtain a laminated web is to obtain a laminated web by laminating the above webs on a conveyor. can be done.

次に、(f)積層ウェブにニードルパンチ法、またはウォータージェットパンチ法で交絡加工を行い、積層不織布を得る工程について説明する。なお、ウォータージェットパンチ法とは、水流交絡法である。交絡工程において、各短繊維同士の交絡は、ニードルパンチ法、またはウォータージェットパンチ法(水流交絡法)で機械的交絡を実施することが後述する脱海工程において、工程張力による積層不織布の変形を抑制できる点で好ましい。 Next, (f) the step of entangling the laminated web by a needle punching method or a water jet punching method to obtain a laminated nonwoven fabric will be described. The water jet punch method is a hydroentanglement method. In the entangling step, the entangling of the short fibers may be mechanically entangled by a needle punch method or a water jet punch method (hydroentangling method). This is preferable in that it can be suppressed.

ニードルパンチ法で各短繊維を交絡させる場合は、その針密度を200本/cm以上とし、交絡処理させることが好ましい。さらに好ましくは、250本/cm以上、特に好ましくは、300本/cm以上の針密度で交絡させることが好ましい。上記の針密度とすることで、各短繊維を十分に交絡することができ、後述する脱海工程において、工程張力による積層不織布の変形を抑制し、不織布Aの均一な微細空隙を崩壊させることなく、吸音性能に優れた吸音材用不織布を効率的に得ることができ、生産性を高めることができる。 When the staple fibers are entangled by a needle punch method, it is preferable to perform the entanglement treatment with a needle density of 200/cm 2 or more. More preferably, the needles are entangled at a needle density of 250 needles/cm 2 or more, particularly preferably 300 needles/cm 2 or more. By setting the above needle density, each short fiber can be sufficiently entangled, and in the sea removal process described later, deformation of the laminated nonwoven fabric due to process tension is suppressed, and the uniform fine voids of the nonwoven fabric A are collapsed. Therefore, it is possible to efficiently obtain a nonwoven fabric for sound absorbing material having excellent sound absorbing performance, and to increase productivity.

ウォータージェットパンチ法で各短繊維を交絡させる場合は、ウォータージェットパンチノズルの圧力を12.0MPa以上の圧力で、3回以上ウォーターノズルを通過させることが好ましい。このような条件とすることで、上記同様に、各短繊維を十分に交絡することができ、後述する脱海工程において、工程張力による積層不織布の変形を抑制し、不織布Aの均一な微細空隙を崩壊させることなく、吸音性能に優れた吸音材用不織布を効率的に得ることができ、生産性を高めることができる。 When the short fibers are entangled by the water jet punch method, it is preferable to pass the fibers through the water jet punch nozzle at a pressure of 12.0 MPa or more three times or more. Under these conditions, the short fibers can be sufficiently entangled in the same manner as described above, and deformation of the laminated nonwoven fabric due to process tension is suppressed in the sea removal process described later, and the nonwoven fabric A has uniform fine voids. It is possible to efficiently obtain a nonwoven fabric for a sound absorbing material having excellent sound absorbing performance without collapsing, and to increase productivity.

(吸音材用不織布の製造)
次に、(g)積層不織布をアルカリ水溶液により、海島複合繊維の海成分を脱海し、繊維Aを発現させる工程について説明する。積層不織布を、水酸化ナトリウムなどを添加したアルカリ水溶液を用いて、80~100℃の温度で処理し、海島複合繊維の海成分を脱海し、島成分となる繊維Aを発現させる。
(Manufacturing nonwoven fabric for sound absorbing material)
Next, (g) the step of removing the sea component of the sea-island composite fiber from the laminated nonwoven fabric with an alkaline aqueous solution to develop the fiber A will be described. The laminated nonwoven fabric is treated with an alkaline aqueous solution containing sodium hydroxide or the like at a temperature of 80 to 100° C. to remove the sea component of the sea-island composite fiber and develop the fiber A as the island component.

(h)脱海処理後の積層不織布を乾燥する工程では、脱海処理を行った積層不織布を水洗し、ピンテンターなどの乾燥機で乾燥し、吸音材用不織布を得ることができる。 (h) In the step of drying the sea-removed laminated nonwoven fabric, the sea-removed laminated nonwoven fabric is washed with water and dried with a dryer such as a pin tenter to obtain a sound absorbing nonwoven fabric.

前記の脱海工程、および乾燥する工程では、積層不織布を搬送する際の工程張力で、不織布Aに含まれる繊維Aの均一な微細空隙が崩壊し、吸音性能を低下させることがあるが、本明細書に記載の繊維Bおよび繊維Cを使用することや、不織布Bの目付を調整すること、本明細書に記載の交絡処理を行うことで、積層不織布の変形を抑制し、不織布Aの均一な微細空隙を崩壊させることなく、吸音性能に優れた吸音材用不織布を効率的に得ることができ、生産性を高めることができる。 In the above-mentioned sea removal step and drying step, the uniform fine voids of the fibers A contained in the nonwoven fabric A may collapse due to the process tension when the laminated nonwoven fabric is conveyed, and the sound absorption performance may be reduced. By using the fiber B and the fiber C described in the specification, adjusting the basis weight of the nonwoven fabric B, and performing the entangling treatment described in this specification, deformation of the laminated nonwoven fabric is suppressed, and the nonwoven fabric A is uniform. It is possible to efficiently obtain a nonwoven fabric for a sound absorbing material having excellent sound absorbing performance without collapsing fine voids, thereby increasing productivity.

次に、吸音材について説明する。本発明の吸音材用不織布を備える吸音材は、本発明の吸音材用不織布と、繊維系多孔質体層、発泡体層、または空気層からなる層状物とを、有しており、上記の層状物は、上記の吸音材用不織布の一方の面に積層されている。このような吸音材においては、吸音材用不織布の音が入射する側の面の反対側の面に、上記の層状物が位置するようにして吸音材を用いることで、吸音材の吸音性能が優れたものとなる。 Next, the sound absorbing material will be explained. A sound absorbing material comprising the nonwoven fabric for sound absorbing material of the present invention includes the nonwoven fabric for sound absorbing material of the present invention and a layered material comprising a fiber-based porous layer, a foam layer, or an air layer, and The layered material is laminated on one surface of the nonwoven fabric for sound absorbing material. In such a sound absorbing material, the sound absorbing performance of the sound absorbing material is improved by using the sound absorbing material such that the layered material is positioned on the surface opposite to the sound incident side of the sound absorbing nonwoven fabric. will be excellent.

また、上記の層状物の厚さは、5~50mmであることが好ましい。そして、上記の層状物は、繊維系多孔質体、発泡体または空気層であることが好ましい。すなわち、本発明の吸音材用不織布は、音が入射する側の面の反対側の面に、厚さが5~50mmの熱塑性樹脂繊維を用いた繊維系多孔質体または無機繊維を用いた繊維系多孔質体からなる基材や、発泡ウレタンなどの発泡体からなる基材等を貼り合わせて使用することで、これらの複合製品(吸音材)の吸音性能は極めて優れたものとなる。また、本発明の吸音材用不織布の音が入射する側の面の反対側の面に厚さ5~50mmの空気層を設けることで、吸音材用積層不織布と空気層との複合製品(吸音材)の吸音性能が極めて優れたものとなる。さらに上記のような構成とすることで、繊維系多孔質体、発泡体、または空気層に含まれる空気と、吸音材用不織布が共鳴し、吸音材用不織布の膜振動効果により、特に低周波の吸音性が向上する。なお、層状物の厚さは、層状物の側面の厚さ方向の長さを金属定規を用いて測定することができる。 Moreover, the thickness of the layered material is preferably 5 to 50 mm. The layered material is preferably a fibrous porous material, a foam, or an air layer. That is, the nonwoven fabric for sound absorbing material of the present invention has a fiber-based porous body using thermoplastic resin fibers having a thickness of 5 to 50 mm or fibers using inorganic fibers on the surface opposite to the surface on which the sound is incident. The sound absorbing performance of these composite products (sound absorbing materials) is extremely excellent by using a base material made of a porous material or a base material made of a foam such as urethane foam. In addition, by providing an air layer having a thickness of 5 to 50 mm on the surface opposite to the sound incident side of the nonwoven fabric for sound absorbing material of the present invention, a composite product (sound absorbing material) of the laminated nonwoven fabric for sound absorbing material and the air layer The sound absorption performance of the material) is extremely excellent. Furthermore, with the configuration as described above, the air contained in the fiber-based porous material, the foam, or the air layer resonates with the nonwoven fabric for the sound absorbing material. sound absorption is improved. The thickness of the layered material can be measured by using a metal ruler to measure the length of the side surface of the layered material in the thickness direction.

本実施例で用いた測定法を後述する。 The measurement method used in this example will be described later.

(測定方法)
(1)繊維Aの単繊維直径の最頻値
吸音材用不織布の各層を分離し、その断面を走査型電子顕微鏡(SEM)(日立ハイテク社製S-3500N型)で観察し、無作為に撮影部位を選定し、倍率10,000倍の断面写真を撮影した。この写真内で単繊維直径が1μm未満の繊維を無作為に選定し、これらの繊維の単繊維直径を測定した。そして、断面写真の撮影から単繊維直径の測定までの作業を、繊維Aの合計本数が100本となるまで繰り返し、繊維Aの単繊維直径を測定した。なお、繊維の断面形状が異形断面形状の場合は、断面写真から繊維の断面積を測定し、前記の断面積から真円直径に換算することで、繊維Aの単繊維直径とした。上記にて得られた合計本数が100本の単繊維直径のデータを用い、分布度数の最大値を求め、繊維Aの単繊維直径の最頻値とした。なお、分布区間は0.01μmとした。
(Measuring method)
(1) Mode of single fiber diameter of fiber A Separate each layer of nonwoven fabric for sound absorbing material, observe the cross section with a scanning electron microscope (SEM) (S-3500N type manufactured by Hitachi High-Tech), and randomly A site to be photographed was selected and a cross-sectional photograph was taken at a magnification of 10,000. Fibers with a single fiber diameter of less than 1 μm were randomly selected in this photograph and the single fiber diameter of these fibers was measured. Then, the work from taking a cross-sectional photograph to measuring the single fiber diameter was repeated until the total number of fibers A reached 100, and the single fiber diameter of the fiber A was measured. In addition, when the cross-sectional shape of the fiber is an irregular cross-sectional shape, the cross-sectional area of the fiber is measured from the cross-sectional photograph, and the single fiber diameter of the fiber A is obtained by converting the cross-sectional area into the diameter of a perfect circle. Using the above-obtained single fiber diameter data with a total of 100 fibers, the maximum value of the distribution frequency was determined and taken as the mode value of the single fiber diameter of fiber A. Note that the distribution interval was 0.01 μm.

(2)繊維Bおよび繊維Cの単繊維直径の最頻値
断面写真の倍率を1,000倍としたこと以外は、上記(1)の繊維Aの単繊維直径の測定方法に記載の方法と同様にして、走査型電子顕微鏡(SEM)(日立ハイテク社製SU8010型)で断面写真を撮影した。この写真内で単繊維直径が1μm以上の繊維を無作為に選定し、これらの繊維の単繊維直径を測定した。そして、断面写真の撮影から単繊維直径の測定までの作業を、繊維Bまたは繊維Cの合計本数が100本となるまで繰り返し、繊維Bまたは繊維Cの単繊維直径を測定した。なお、繊維の断面形状が異形断面形状の場合は、断面写真から繊維の断面積を測定し、前記の断面積から真円直径に換算することで、繊維Bまたは繊維Cの単繊維直径とした。上記にて得られた合計本数が100本の単繊維直径のデータを用い、分布度数の最大値を求め、繊維Bまたは繊維Cの単繊維直径の最頻値とした。なお、分布区間は1μmとした。
(2) Mode of single fiber diameters of fiber B and fiber C The method described in (1) Method for measuring single fiber diameter of fiber A above, except that the magnification of the cross-sectional photograph was 1,000 times. Similarly, a cross-sectional photograph was taken with a scanning electron microscope (SEM) (SU8010 model manufactured by Hitachi High-Tech). Fibers having a single fiber diameter of 1 μm or more were randomly selected in this photograph, and the single fiber diameters of these fibers were measured. Then, the operation from taking a cross-sectional photograph to measuring the single fiber diameter was repeated until the total number of fibers B or C reached 100, and the single fiber diameter of fiber B or fiber C was measured. When the cross-sectional shape of the fiber is an irregular cross-sectional shape, the cross-sectional area of the fiber is measured from the cross-sectional photograph, and the single fiber diameter of the fiber B or the fiber C is obtained by converting the cross-sectional area into the diameter of a perfect circle. . Using the data on the single fiber diameter of 100 total fibers obtained above, the maximum value of the distribution frequency was obtained and taken as the mode value of the single fiber diameter of the fiber B or the fiber C. Note that the distribution interval was set to 1 μm.

(3)繊維A、および繊維Bの単繊維直径のCv値
上記、(1)、(2)で測定した合計本数が100本の単繊維直径のデータを用い、その標準偏差と平均値を用いて、下式により繊維A、および繊維Bの単繊維直径のCv値を算出した。
繊維Aの単繊維直径のCv値(%)=(繊維Aの単繊維直径の標準偏差/繊維Aの単繊維直径の平均値)×100
繊維Bの単繊維直径のCv値(%)=(繊維Bの単繊維直径の標準偏差/繊維Bの単繊維直径の平均値)×100 。
(3) Cv value of single fiber diameter of fiber A and fiber B Use the data of the single fiber diameter of 100 total number measured in (1) and (2) above, and use the standard deviation and average value. Then, the Cv value of the single fiber diameter of fiber A and fiber B was calculated by the following formula.
Cv value (%) of single fiber diameter of fiber A = (standard deviation of single fiber diameter of fiber A / average value of single fiber diameter of fiber A) × 100
Cv value (%) of single fiber diameter of fiber B=(standard deviation of single fiber diameter of fiber B/average value of single fiber diameter of fiber B)×100.

(4)繊維Aと繊維Bの本数比
吸音材用不織布の各層を分離し、その断面を走査型電子顕微鏡(SEM)(日立ハイテク社製S-3500N型)で観察し、無作為に撮影部位を選定し、倍率2,000倍の断面写真を撮影した。この断面写真内に存在する全ての繊維について、繊維Aに該当する繊維の本数と、繊維Bに該当する繊維の本数を数えた。上記の断面写真の撮影から本数を数えるまでの作業を10回行い、繊維Aと繊維Bの本数を求めた。そして、各繊維の本数を繊維Aと繊維Bの合計本数に対する百分率で示し、本数比とした。
(4) Number ratio of fiber A and fiber B Separate each layer of the nonwoven fabric for sound absorbing material, observe the cross section with a scanning electron microscope (SEM) (S-3500N model manufactured by Hitachi High-Tech), and randomly photograph parts was selected, and a cross-sectional photograph was taken at a magnification of 2,000. The number of fibers corresponding to fiber A and the number of fibers corresponding to fiber B were counted for all fibers present in this cross-sectional photograph. The number of fibers A and B was obtained by repeating the operation from taking the cross-sectional photograph to counting the number of fibers 10 times. Then, the number of each fiber was expressed as a percentage of the total number of fibers A and B, which was taken as a number ratio.

(5)繊維Aと繊維Bの単繊維直径の最頻値の差
上記、(1)、(2)で測定した繊維Aの単繊維直径の最頻値と繊維Bの単繊維直径の最頻値を用い、下記式により、繊維Aと繊維Bの最頻値の差を求めた。
繊維Aと繊維Bの単繊維直径の最頻値の差(μm) = 繊維Bの単繊維直径の最頻値(μm)-繊維Aの単繊維直径の最頻値(μm)
(6)吸音材用不織布を構成する各繊維の素材と含有量
不織布Aと不織布Bを分離させ、それぞれの不織布について、JIS L 1030-1:2006「繊維製品の混用率試験方法-第1部:繊維識別」、およびJIS L 1030-2:2005「繊維製品の混用率試験方法-第2部:繊維混用率」に基づいて、正量混用率(標準状態における各繊維の質量比)を測定し、これを吸音材用不織布を構成する繊維の含有量(質量%)とした。これにより、吸音材用不織布(不織布A、および不織布B)を構成する繊維素材と、その繊維素材別の含有量(質量%)を特定した。
(5) Difference between the mode values of the single fiber diameters of fiber A and fiber B Using the values, the difference between the modes of Fiber A and Fiber B was obtained by the following formula.
Difference in the mode of single fiber diameters of fiber A and fiber B (μm) = Mode of single fiber diameter of fiber B (μm) - Mode of single fiber diameter of fiber A (μm)
(6) Material and content of each fiber constituting nonwoven fabric for sound absorbing material Separate nonwoven fabric A and nonwoven fabric B, and for each nonwoven fabric, JIS L 1030-1: 2006 "Test method for mixing rate of textile products - Part 1 : Fiber identification", and JIS L 1030-2: 2005 "Testing method for mixing ratio of textile products-Part 2: Fiber mixing ratio", the correct mixing ratio (mass ratio of each fiber in the standard state) is measured. This was taken as the content (% by mass) of the fibers constituting the nonwoven fabric for sound absorbing material. As a result, the fiber materials constituting the sound absorbing nonwoven fabrics (nonwoven fabric A and nonwoven fabric B) and the content (% by mass) of each fiber material were specified.

(7)不織布Bにおける繊維Cの含有量
上記(6)のJIS L 1030-2:2005「繊維製品の混用率試験方法-第2部:繊維混用率」の6.溶解法における、不織布Bの残留不織布について、走査型電子顕微鏡(SEM)(日立ハイテク社製SU8010型)で観察し、無作為に30箇所の観察範囲を抽出し、断面写真を撮影した。この写真内で単繊維直径が1μm以上の全ての繊維について単繊維直径を測定し、繊維Cに該当する繊維の抽出を行った。そして、繊維Cに該当する繊維と、それ以外の繊維(繊維径が1μm未満の繊維)の断面積を測定し、それぞれの繊維の合計断面積と、繊維の比重から下式により不織布Bにおける繊維Cの含有量(質量%)を算出した。
不織布Bにおける繊維Cの含有量(質量%)=(繊維Cの合計断面積(μm)×繊維の比重)/((繊維Cの合計断面積(μm)×繊維の比重)+(それ以外の繊維の断面積(μm)×繊維の比重))×100
また、不織布Bの繊維素材が複数である場合は、上記の繊維Cの含有量の測定を、溶解法における残留不織布を用いて、各繊維素材について実施し、不織布Bにおける繊維Cの含有量(質量%)を算出した。
(7) Content of fiber C in nonwoven fabric B 6. of JIS L 1030-2:2005 "Testing method for mixing ratio of textile products-Part 2: Fiber mixing ratio" in (6) above. The remaining nonwoven fabric of nonwoven fabric B in the dissolution method was observed with a scanning electron microscope (SEM) (SU8010 type manufactured by Hitachi High-Tech), 30 observation areas were randomly selected, and cross-sectional photographs were taken. The single fiber diameter was measured for all fibers having a single fiber diameter of 1 μm or more in this photograph, and fibers corresponding to fiber C were extracted. Then, the cross-sectional areas of the fibers corresponding to the fiber C and the other fibers (fibers with a fiber diameter of less than 1 μm) are measured, and from the total cross-sectional area of each fiber and the specific gravity of the fiber, the fiber in the nonwoven fabric B is calculated by the following formula. The content of C (% by mass) was calculated.
Content of fiber C in nonwoven fabric B (% by mass) = (total cross-sectional area of fiber C (μm 2 ) × specific gravity of fiber) / ((total cross-sectional area of fiber C (μm 2 ) × specific gravity of fiber) + (that Cross-sectional area of fibers other than (μm 2 ) × specific gravity of fibers)) × 100
In addition, when the nonwoven fabric B has a plurality of fiber materials, the content of the fiber C is measured for each fiber material using the residual nonwoven fabric in the dissolution method, and the content of the fiber C in the nonwoven fabric B ( % by mass) was calculated.

(8)吸音材用不織布の目付
JIS L 1913:1998 6.2に基づいて測定した。吸音材用不織布の試料から300mm×300mmの試験片を、鋼製定規とかみそり刃とを用いて3枚採取した。標準状態における試験片の質量を測定して、単位面積当たりの質量である目付を次の式によって求め、平均値を算出した。なお、不織布A、不織布Bのそれぞれの目付については、不織布Aと不織布Bを分離し、同様にして目付を測定した。
ms=m/S
ms:単位面積当たりの質量(g/m
m:吸音材用不織布の試験片の平均質量(g)
S:吸音材用不織布の試験片の面積(m
(9)吸音材用不織布の厚さ
JIS L1913:1998 6.1.2 A法に基づいて測定した。吸音材用不織布の試料から50mm×50mmの試験片を5枚採取した。厚さ測定器(TECLOCK社製定圧厚さ測定器、型式PG11J)を用いて標準状態で試験片に0.36kPaの圧力を10秒間かけて厚さを測定した。測定は各試験片(5枚)について行い、平均値を算出した。
(8) Fabric weight of nonwoven fabric for sound absorbing material Measured based on JIS L 1913:1998 6.2. Three test pieces of 300 mm×300 mm were taken from a sample of the nonwoven fabric for sound absorbing material using a steel ruler and a razor blade. The mass of the test piece in the standard state was measured, the basis weight, which is the mass per unit area, was determined by the following formula, and the average value was calculated. The basis weights of the nonwoven fabric A and the nonwoven fabric B were measured in the same manner after the nonwoven fabric A and the nonwoven fabric B were separated.
ms=m/s
ms: Mass per unit area (g/m 2 )
m: Average mass (g) of test piece of nonwoven fabric for sound absorbing material
S: Area of test piece of nonwoven fabric for sound absorbing material (m 2 )
(9) Thickness of nonwoven fabric for sound absorbing material Measured based on JIS L1913:1998 6.1.2 A method. Five test pieces of 50 mm×50 mm were taken from a sample of the nonwoven fabric for sound absorbing material. Using a thickness gauge (a constant pressure thickness gauge manufactured by TECLOCK, model PG11J), the thickness was measured by applying a pressure of 0.36 kPa to the test piece for 10 seconds under standard conditions. The measurement was performed for each test piece (five pieces), and the average value was calculated.

(10)吸音材用不織布の密度
上記(8)の吸音材用不織布の目付と、上記(9)の吸音材用不織布の厚さから、次の式によって求めた。
吸音材用不織布の密度(g/cm)=吸音材用不織布の目付(g/m)/吸音材用不織布の厚さ(mm)/1000
(11)不織布A、および不織布Bの目付
吸音材用不織布から不織布A、不織布Bを分離し、上記(8)の吸音材用不織布の目付と同一の方法で、不織布A、および不織布Bの目付を求めた。
(10) Density of nonwoven fabric for sound absorbing material Density of nonwoven fabric for sound absorbing material was obtained from the basis weight of the nonwoven fabric for sound absorbing material in (8) above and the thickness of the nonwoven fabric for sound absorbing material in above (9) by the following formula.
Density of nonwoven fabric for sound absorbing material (g/cm 3 )=basis weight of nonwoven fabric for sound absorbing material (g/m 2 )/thickness of nonwoven fabric for sound absorbing material (mm)/1000
(11) Nonwoven fabric A and nonwoven fabric B Nonwoven fabric A and nonwoven fabric B are separated from the nonwoven fabric for sound absorbing material, and the basis weights of nonwoven fabric A and nonwoven fabric B are obtained in the same manner as the basis weight of the nonwoven fabric for sound absorbing material in (8) above. asked for

(12)不織布Aと不織布Bの目付の比
上記(11)で求めた不織布Aの目付と不織布Bの目付から、下式により求めた。
(12) Ratio of nonwoven fabric A to nonwoven fabric B Based on the basis weight of nonwoven fabric A and nonwoven fabric B determined in (11) above, the ratio was obtained by the following formula.


不織布Aと不織布Bの目付の比 = 不織布Aの目付(g/m)/不織布Bの目付(g/m
(13)繊維Bおよび繊維Cの引張強度
JIS L 1015(1999)8.7.1に基づき、空間距離20mm、短繊維を一本ずつ区分線に緩く張った状態で両端を接着剤で紙片にはり付けて固着し、区分ごとを1試料とする。試料を引張試験器のつかみに取り付け、上部つかみの近くで紙片を切断し、つかみ間隔20mm、引張速度20mm/分の速度で引っ張り、試料が切断したときの荷重(N)及び伸び(mm)を測定、次の式により引張強度(cN/dtex)を算出した。
Tb=SD/F0
Tb:引張強度(cN/dtex)
SD:破断時の荷重(cN)
F0:試料の正量繊度(dtex)
S={(E2-E1)/(L+E1)}×100
(14)繊維Bおよび繊維Cの初期引張抵抗度
JIS L 1015(1999)8.11に基づき、上記(13)の繊維Bおよび繊維Cの引張強度にて得られた荷重-伸長曲線から、荷重-伸長曲線の原点の近くで伸長変化に対する荷重変化の最大点A(接触角の最大点)を求め、次の式によって初期引張抵抗度(cN/dtex)を算出した。
Tri=P/((L’/L)×F0)
Tri:初期引張抵抗度(cN/dtex)
P:接触角の最大点Aにおける荷重(cN)
F0:試料の正量繊度(dtex)
L:試験長(mm)
L’:THの長さ(mm) (Hは垂線の足、Tは接線と横軸との交点)
(15)吸音材用不織布の垂直入射吸音率
JIS A 1405(1998)の垂直入射吸音測定法(管内法)に準じて測定した。吸音材用不織布の試料から直径92mmの円形の試験片を3枚採取した。試験装置としては、電子測器株式会社製の自動垂直入射吸音率測定器(型式10041A)を用いた。試験片を、測定用のインピーダンス管の一端に、試験片と金属反射板との間に20mmの厚さの空気層ができるようにスペーサーを設置し、試験片を取り付けた。周波数毎の吸音率は測定で得られた吸音係数を100倍した値を採用した。そして、得られた1000Hzの吸音率の平均値を低周波吸音率(%)とした。

Ratio of basis weight of nonwoven fabric A and nonwoven fabric B = basis weight of nonwoven fabric A (g/m 2 ) / basis weight of nonwoven fabric B (g/m 2 )
(13) Tensile strength of fiber B and fiber C Based on JIS L 1015 (1999) 8.7.1, each short fiber is loosely stretched along the division line with a spatial distance of 20 mm, and both ends are attached to a piece of paper with an adhesive. Stick and fix, and make each section one sample. Attach the sample to the grip of the tensile tester, cut the paper strip near the upper grip, pull it at a grip interval of 20 mm, a tensile speed of 20 mm / min, and measure the load (N) and elongation (mm) when the sample is cut. The tensile strength (cN/dtex) was calculated from the measurement and the following formula.
Tb=SD/F0
Tb: Tensile strength (cN/dtex)
SD: load at break (cN)
F0: sample fineness (dtex)
S={(E2−E1)/(L+E1)}×100
(14) Initial tensile resistance of fiber B and fiber C Based on JIS L 1015 (1999) 8.11, the load-elongation curve obtained from the tensile strength of fiber B and fiber C in (13) above, the load - The maximum point A of load change (maximum point of contact angle) with respect to the change in elongation was obtained near the origin of the elongation curve, and the initial tensile resistance (cN/dtex) was calculated by the following formula.
Tri=P/((L′/L)×F0)
Tri: initial tensile resistance (cN/dtex)
P: load (cN) at the maximum point A of the contact angle
F0: sample fineness (dtex)
L: test length (mm)
L': Length of TH (mm) (H is the foot of the perpendicular line, T is the intersection of the tangent line and the horizontal axis)
(15) Normal Incidence Sound Absorption Coefficient of Nonwoven Fabric for Sound Absorbing Material It was measured according to the normal incidence sound absorption measurement method (in-pipe method) of JIS A 1405 (1998). Three circular test pieces with a diameter of 92 mm were taken from a sample of the nonwoven fabric for sound absorbing material. As a testing device, an automatic perpendicular incidence sound absorption coefficient measuring instrument (model 10041A) manufactured by Denshi Sokki Co., Ltd. was used. The test piece was attached to one end of an impedance tube for measurement by setting a spacer so that an air layer with a thickness of 20 mm was formed between the test piece and the metal reflector. A value obtained by multiplying the measured sound absorption coefficient by 100 was adopted as the sound absorption coefficient for each frequency. The average value of the obtained sound absorption coefficients at 1000 Hz was defined as the low frequency sound absorption coefficient (%).

(実施例1)
(複合繊維)
島成分として、ポリエチレンテレフタレート(PET 溶融粘度:160Pa・s)と海成分として、5-ナトリウムスルホイソフタル酸8.0モル%共重合したPET(共重合PET 溶融粘度:95Pa・s)を290℃で別々に溶融後、計量し、既知の複合口金(例えば、国際公開12/173116号公報の図6(b)に開示された配列の複合口金)が組み込まれ、1つの吐出孔あたり島成分用として1000の分配孔を穿設した分配プレートを使用した紡糸パックに、海/島成分の複合比が40/60となるように流入し、吐出孔から複合ポリマー流を吐出して溶融紡糸を行い、未延伸繊維を得た。これを、延伸倍率4.0倍で延伸し、150dtex-15フィラメントの海島複合繊維を得た。上記の海島複合繊維を100℃に加熱し、クリンパに導入して機械捲縮を付与後、回転式のカッターにより51mmの長さにカットし、海島複合短繊維を得た。
(Example 1)
(Composite fiber)
Polyethylene terephthalate (PET, melt viscosity: 160 Pa s) as the island component and PET (copolymerized PET, melt viscosity: 95 Pa s) obtained by copolymerizing 8.0 mol% of 5-sodium sulfoisophthalic acid as the sea component were mixed at 290°C. After separately melting and weighing, a known composite spinneret (for example, a composite spinneret with the arrangement disclosed in FIG. 6(b) of WO 12/173116) is incorporated, and one discharge hole is used for the island component. A spinning pack using a distribution plate with 1,000 distribution holes perforated is flowed into a composite ratio of sea/island components of 40/60, and the composite polymer stream is discharged from the discharge holes for melt spinning, An undrawn fiber was obtained. This was drawn at a draw ratio of 4.0 times to obtain a sea-island composite fiber of 150 dtex-15 filaments. The above sea-island composite fibers were heated to 100° C., introduced into a crimper, mechanically crimped, and then cut to a length of 51 mm by a rotary cutter to obtain sea-island composite short fibers.

(積層不織布)
上記の海島複合短繊維を80質量%、繊維Bとして単繊維直径が18.50μm、繊維長51mm、強度3.5cN/dtex、初期引張抵抗度35cN/dtexのポリエチレンテレフタレート(PET)短繊維を20質量%使用し、各短繊維をオープナー工程に処した後、カード工程に処し、混繊ウェブを得た。
(Laminated nonwoven fabric)
80% by mass of the above sea-island composite short fibers, and 20 polyethylene terephthalate (PET) short fibers having a single fiber diameter of 18.50 μm, a fiber length of 51 mm, a strength of 3.5 cN/dtex, and an initial tensile resistance of 35 cN/dtex as fiber B. % by mass, each short fiber was subjected to an opener process and then to a carding process to obtain a mixed fiber web.

一方、上記の繊維Bを繊維Cとして100質量%使用し、短繊維をオープナー工程に処した後、カード工程に処し、繊維Cからなるウェブを得た。 On the other hand, 100% by mass of the fiber B was used as the fiber C, and the staple fiber was subjected to an opener process and then to a carding process to obtain a web composed of the fiber C.

上記の混繊ウェブと、繊維Cからなるウェブを積層し、積層ウェブとした後、ニードルパンチ工程で、針密度350本/cmの条件で交絡加工を行い、積層不織布を得た。 After laminating the mixed fiber web and the web made of the fiber C to form a laminated web, the laminated web was entangled in a needle punching process at a needle density of 350 needles/cm 2 to obtain a laminated nonwoven fabric.

(吸音材用不織布)
上記の積層不織布を、95℃の温度に加熱した水酸化ナトリウム0.5質量%の水溶液に30分間浸漬し、海成分を脱海し、熱風乾燥機にて温度130℃の条件で10分間乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.1:0.9の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above laminated nonwoven fabric is immersed in an aqueous solution of 0.5% by mass of sodium hydroxide heated to a temperature of 95°C for 30 minutes to remove the sea component, and dried in a hot air dryer at a temperature of 130°C for 10 minutes. Fiber A with a mode single fiber diameter of 0.41 μm and a Cv value of 5.9%, and Fiber B with a mode single fiber diameter of 18.50 μm and a Cv value of 5.5% Nonwoven fabric A with a fiber count ratio of 99.1:0.9, a difference in the mode of the single fiber diameter between fiber A and fiber B of 18.09 μm, a basis weight of 100 g / m 2 , and a basis weight of 100 g / made of fiber C A nonwoven fabric for sound absorbing material having a nonwoven fabric B of 2 m 2 , a basis weight of 200 g/m 2 , a thickness of 1.6 mm, a nonwoven fabric density of 0.125 g/cm 3 , and a basis weight ratio between the nonwoven fabric A and the nonwoven fabric B of 1.0 is obtained. rice field.

実施例1の吸音材用不織布の低周波吸音率は高かった。また、実施例1の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 1 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 1 was excellent.

(実施例2)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 2)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を60質量%、繊維Bの配合比を40質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1 except that the compounding ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 60% by mass and the compounding ratio of the fiber B was changed to 40% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ98.0:1.0の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 98.0:1.0, respectively, and the difference in the mode value of the single fiber diameter between Fiber A and Fiber B is 18 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm and a non-woven fabric density of 0.125 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例2の吸音材用不織布の低周波吸音率は比較的高かった。また、実施例2の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 2 was relatively high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 2 was excellent.

(実施例3)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 3)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を70質量%、繊維Bの配合比を30質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 70% by mass and the blending ratio of the fiber B was changed to 30% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ98.7:1.3の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included in a number ratio of 98.7:1.3, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 18 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm and a non-woven fabric density of 0.125 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例3の吸音材用不織布の低周波吸音率は高かった。また、実施例3の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 3 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 3 was excellent.

(実施例4)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 4)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を90質量%、繊維Bの配合比を10質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 90% by mass and the blending ratio of the fiber B was changed to 10% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.4:0.6の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included in a number ratio of 99.4:0.6, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 18 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm and a non-woven fabric density of 0.125 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例4の吸音材用不織布の低周波吸音率は高かった。また、実施例4の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 4 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 4 was excellent.

(実施例5)
(複合繊維)
未延伸繊維の延伸倍率を5.0倍に変更した以外は、実施例1と同一の工程、条件で処理し、海島複合短繊維を得た。
(Example 5)
(Composite fiber)
Sea-island composite short fibers were obtained by the same process and conditions as in Example 1, except that the draw ratio of the undrawn fibers was changed to 5.0 times.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を75質量%、繊維Bの配合比を25質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 75% by mass and the blending ratio of the fiber B was changed to 25% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.31μm、Cv値が5.8%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.0:1.0の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.19μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.5mm、不織布密度0.133g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dried. Fiber B with a mode of 18.50 μm and a Cv value of 5.5% is included in a number ratio of 99.0:1.0, respectively, and the difference in the mode of single fiber diameter between Fiber A and Fiber B is 18 .19 μm, a nonwoven fabric A with a basis weight of 100 g/m 2 and a nonwoven fabric B made of a fiber C with a basis weight of 100 g/m 2 , with a basis weight of 200 g/m 2 , a thickness of 1.5 mm, a nonwoven fabric density of 0.133 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例5の吸音材用不織布の低周波吸音率は高かった。また、実施例5の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 5 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 5 was excellent.

(実施例6)
(複合繊維)
未延伸繊維の延伸倍率を3.0倍に変更した以外は、実施例1と同一の工程、条件で処理し、海島複合短繊維を得た。
(Example 6)
(Composite fiber)
Sea-island composite short fibers were obtained by the same process and conditions as in Example 1, except that the draw ratio of the undrawn fibers was changed to 3.0 times.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を85質量%、繊維Bの配合比を15質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 85% by mass and the blending ratio of the fiber B was changed to 15% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.59μm、Cv値が5.7%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.2:0.8の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が17.91μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 99.2:0.8, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 17 A nonwoven fabric A with a basis weight of .91 μm and a basis weight of 100 g/m 2 and a nonwoven fabric B made of fibers C and with a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm, and a nonwoven fabric density of 0.125 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例6の吸音材用不織布の低周波吸音率は高かった。また、実施例6の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 6 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 6 was excellent.

(実施例7)
(複合繊維)
未延伸繊維の延伸倍率を2.0倍に変更した以外は、実施例1と同一の工程、条件で処理し、海島複合短繊維を得た。
(Example 7)
(Composite fiber)
Sea-island composite short fibers were obtained by the same process and conditions as in Example 1, except that the draw ratio of the undrawn fibers was changed to 2.0 times.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を90質量%、繊維Bの配合比を10質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 90% by mass and the blending ratio of the fiber B was changed to 10% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.72μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.1:0.9の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が17.78μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above laminated nonwoven fabric was dried under the same process and conditions as in Example 1, and the fiber A with a mode of single fiber diameter of 0.72 μm and a Cv value of 5.9% Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 99.1:0.9, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 17 .78 μm, a nonwoven fabric A having a basis weight of 100 g/m 2 and a nonwoven fabric B made of fibers C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm, and a nonwoven fabric density of 0.125 g/cm 3 . A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例7の吸音材用不織布の低周波吸音率は比較的高かった。また、実施例7の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 7 was relatively high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 7 was excellent.

(実施例8)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 8)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブに用いる繊維Bを、単繊維直径が8.50μm、繊維長51mm、強度3.7cN/dtex、初期引張抵抗度36cN/dtexのポリエチレンテレフタレート(PET)短繊維に変更し、海島複合短繊維の配合比を90質量%、繊維Bの配合比を10質量%に変更し、繊維Cからなるウェブの繊維を上記の繊維Bに変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
The fiber B used for the mixed fiber web was changed to a polyethylene terephthalate (PET) short fiber having a single fiber diameter of 8.50 μm, a fiber length of 51 mm, a strength of 3.7 cN/dtex, and an initial tensile resistance of 36 cN/dtex. The steps and conditions were the same as in Example 1, except that the blending ratio of the fiber was changed to 90% by mass, the blending ratio of the fiber B to 10% by mass, and the fiber of the web made of the fiber C was changed to the above fiber B. processed to obtain a laminated nonwoven fabric.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が8.50μm、Cv値が5.6%の繊維Bをそれぞれ99.2:0.8の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が8.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 8.50 μm and a Cv value of 5.6% is included at a number ratio of 99.2:0.8, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 8 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm and a non-woven fabric density of 0.125 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例8の吸音材用不織布の低周波吸音率は高かった。また、実施例8の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 8 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 8 was excellent.

(実施例9)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 9)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブに用いる繊維Bを、単繊維直径が25.50μm、繊維長51mm、強度3.4cN/dtex、初期引張抵抗度33cN/dtexのポリエチレンテレフタレート(PET)短繊維に変更し、海島複合短繊維の配合比を70質量%、繊維Bの配合比を30質量%に変更し、繊維Cからなるウェブの繊維を上記の繊維Bに変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
The fiber B used for the mixed fiber web was changed to a polyethylene terephthalate (PET) short fiber having a single fiber diameter of 25.50 μm, a fiber length of 51 mm, a strength of 3.4 cN/dtex, and an initial tensile resistance of 33 cN/dtex. The steps and conditions were the same as in Example 1, except that the blending ratio of the fiber was changed to 70% by mass and the blending ratio of the fiber B to 30% by mass, and the fiber of the web made of the fiber C was changed to the above fiber B. processed to obtain a laminated nonwoven fabric.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が25.50μm、Cv値が5.5%の繊維Bをそれぞれ99.1:0.9の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が25.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.7mm、不織布密度0.118g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 25.50 μm and a Cv value of 5.5% is included at a number ratio of 99.1:0.9, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 25 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.7 mm, and a non-woven fabric density of 0.118 g/cm 3 . A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例9の吸音材用不織布の低周波吸音率は比較的高かった。また、実施例9の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 9 was relatively high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 9 was excellent.

(実施例10)
(複合繊維)
海/島成分の複合比を50/50に変更した以外は、実施例1と同一の工程、条件で処理し、海島複合短繊維を得た。
(Example 10)
(Composite fiber)
Sea-island composite short fibers were obtained by the same process and conditions as in Example 1, except that the composite ratio of the sea/island components was changed to 50/50.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を82質量%、繊維Bの配合比を18質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the compounding ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 82% by mass and the compounding ratio of the fiber B was changed to 18% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.40μm、Cv値が13.7%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.1:0.9の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.10μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dried. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 99.1:0.9, respectively, and the difference in the mode value of the single fiber diameter between Fiber A and Fiber B is 18 .10 μm, a nonwoven fabric A with a basis weight of 100 g/m 2 and a nonwoven fabric B made of a fiber C with a basis weight of 100 g/m 2 , with a basis weight of 200 g/m 2 , a thickness of 1.6 mm, a nonwoven fabric density of 0.125 g/cm 3 A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例10の吸音材用不織布の低周波吸音率は高かった。また、実施例10の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 10 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 10 was excellent.

(実施例11)
(複合繊維)
海/島成分の複合比を70/30に変更した以外は、実施例1と同一の工程、条件で処理し、海島複合短繊維を得た。
(Example 11)
(Composite fiber)
Sea-island composite short fibers were obtained by the same process and conditions as in Example 1, except that the composite ratio of the sea/island components was changed to 70/30.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を90質量%、繊維Bの配合比を10質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 90% by mass and the blending ratio of the fiber B was changed to 10% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.42μm、Cv値が21.6%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.0:1.0の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.08μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dried. Fiber B with a mode of 18.50 μm and a Cv value of 5.5% is included in a number ratio of 99.0:1.0, respectively, and the difference in the mode of single fiber diameter between Fiber A and Fiber B is 18 08 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fibers C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm, and a non-woven fabric density of 0.125 g/cm 3 . A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例11の吸音材用不織布の低周波吸音率は比較的高かった。また、実施例11の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 11 was relatively high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 11 was excellent.

(実施例12)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 12)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブに用いる繊維Bを、単繊維直径が18.50μm、繊維長51mm、強度2.6cN/dtex、初期引張抵抗度27cN/dtexのポリエチレンテレフタレート(PET)短繊維に変更し、繊維Cからなるウェブの繊維を上記の繊維Bに変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
The fiber B used for the mixed fiber web was changed to a polyethylene terephthalate (PET) short fiber having a single fiber diameter of 18.50 μm, a fiber length of 51 mm, a strength of 2.6 cN / dtex, and an initial tensile resistance of 27 cN / dtex. A laminated nonwoven fabric was obtained by performing the same process and under the same conditions as in Example 1, except that the fibers of the first web were changed to the above fibers B.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.6%の繊維Bをそれぞれ99.1:0.9の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.6% is included at a number ratio of 99.1:0.9, respectively, and the difference in the mode value of the single fiber diameter between Fiber A and Fiber B is 18 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm and a non-woven fabric density of 0.125 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

実施例12の吸音材用不織布の低周波吸音率は比較的高かった。また、実施例12の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 12 was relatively high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 12 was excellent.

(実施例13)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 13)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
吸音材用不織布の不織布Bの目付が80g/mとなるように繊維Cからなるウェブを作成した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the nonwoven fabric B of the sound absorbing nonwoven fabric had a basis weight of 80 g/m 2 .

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.1:0.9の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付80g/mの不織布Bを有し、目付180g/m、厚さ1.5mm、不織布密度0.120g/cm、不織布Aと不織布Bの目付の比が1.3の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 99.1:0.9, respectively, and the difference in the mode value of the single fiber diameter between Fiber A and Fiber B is 18 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fibers C and having a basis weight of 80 g/m 2 , having a basis weight of 180 g/m 2 , a thickness of 1.5 mm and a non-woven fabric density of 0.120 g/cm 3 . A sound-absorbing nonwoven fabric having a basis weight ratio of nonwoven fabric A to nonwoven fabric B of 1.3 was obtained.

実施例13の吸音材用不織布の低周波吸音率は高かった。また、実施例13の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 13 was high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 13 was excellent.

(実施例14)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Example 14)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
吸音材用不織布の不織布Bの目付が55g/mとなるように繊維Cからなるウェブを作成した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the nonwoven fabric B of the sound absorbing nonwoven fabric had a basis weight of 55 g/m 2 .

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.1:0.9の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付55g/mの不織布Bを有し、目付155g/m、厚さ1.5mm、不織布密度0.103g/cm、不織布Aと不織布Bの目付の比が1.8の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 99.1:0.9, respectively, and the difference in the mode value of the single fiber diameter between Fiber A and Fiber B is 18 09 μm and a basis weight of 100 g/m 2 , and a non-woven fabric B made of fiber C and having a basis weight of 55 g/m 2 , having a basis weight of 155 g/m 2 , a thickness of 1.5 mm, and a non-woven fabric density of 0.103 g/cm 3 . A sound-absorbing nonwoven fabric having a basis weight ratio of nonwoven fabric A to nonwoven fabric B of 1.8 was obtained.

実施例14の吸音材用不織布の低周波吸音率は比較的高かった。また、実施例14の吸音材用不織布の生産性は優れたものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Example 14 was relatively high. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Example 14 was excellent.

(比較例1)
(複合繊維)
未延伸繊維の延伸倍率を1.5倍に変更した以外は、実施例1と同一の工程、条件で処理し、海島複合短繊維を得た。
(Comparative example 1)
(Composite fiber)
Sea-island composite short fibers were obtained by the same process and conditions as in Example 1, except that the draw ratio of the undrawn fibers was changed to 1.5 times.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を93質量%、繊維Bの配合比を7質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 93% by mass and the blending ratio of the fiber B was changed to 7% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.92μm、Cv値が5.7%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.2:0.8の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が17.58μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dried, and the fiber A having a single fiber diameter mode of 0.92 μm and a Cv value of 5.7% and a single fiber diameter of Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 99.2:0.8, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 17 .58 μm, a nonwoven fabric A with a basis weight of 100 g/m 2 and a nonwoven fabric B made of a fiber C with a basis weight of 100 g/m 2 , with a basis weight of 200 g/m 2 , a thickness of 1.6 mm, and a nonwoven fabric density of 0.125 g/cm 3 . A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

比較例1の吸音材用不織布の低周波吸音率は低かった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Comparative Example 1 was low.

(比較例2)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Comparative example 2)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を95質量%、繊維Bの配合比を5質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 95% by mass and the blending ratio of the fiber B was changed to 5% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ99.8:0.2の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.6mm、不織布密度0.125g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included at a number ratio of 99.8:0.2, respectively, and the difference in the mode value of the single fiber diameter between Fiber A and Fiber B is 18 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.6 mm and a non-woven fabric density of 0.125 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

比較例2の吸音材用不織布の低周波吸音率は低かった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Comparative Example 2 was low.

(比較例3)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Comparative Example 3)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブの海島複合短繊維の配合比を40質量%、繊維Bの配合比を60質量%に変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
A laminated nonwoven fabric was obtained in the same process and under the same conditions as in Example 1, except that the blending ratio of the sea-island composite staple fibers in the mixed fiber web was changed to 40% by mass and the blending ratio of the fiber B was changed to 60% by mass.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が18.50μm、Cv値が5.5%の繊維Bをそれぞれ93.8:6.2の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が18.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.7mm、不織布密度0.118g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fiber B with a mode value of 18.50 μm and a Cv value of 5.5% is included in a number ratio of 93.8:6.2, respectively, and the difference in the mode value of the single fiber diameter between fiber A and fiber B is 18 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.7 mm, and a non-woven fabric density of 0.118 g/cm 3 . A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

比較例3の吸音材用不織布の低周波吸音率は低かった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Comparative Example 3 was low.

(比較例4)
(複合繊維)
実施例1の海島複合短繊維を用いた。
(Comparative Example 4)
(Composite fiber)
The sea-island composite short fibers of Example 1 were used.

(積層不織布)
混繊ウェブに用いる繊維Bを、単繊維直径が30.50μm、繊維長51mm、強度3.4cN/dtex、初期引張抵抗度34cN/dtexのポリエチレンテレフタレート(PET)短繊維に変更し、海島複合短繊維の配合比を70質量%、繊維Bの配合比を30質量%に変更し、繊維Cからなるウェブの繊維を上記の繊維Bに変更した以外は、実施例1と同一の工程、条件で処理し、積層不織布を得た。
(Laminated nonwoven fabric)
The fiber B used for the mixed fiber web was changed to a polyethylene terephthalate (PET) short fiber having a single fiber diameter of 30.50 μm, a fiber length of 51 mm, a strength of 3.4 cN/dtex, and an initial tensile resistance of 34 cN/dtex. The steps and conditions were the same as in Example 1, except that the blending ratio of the fiber was changed to 70% by mass and the blending ratio of the fiber B to 30% by mass, and the fiber of the web made of the fiber C was changed to the above fiber B. processed to obtain a laminated nonwoven fabric.

(吸音材用不織布)
上記の積層不織布を、実施例1と同一の工程、条件で脱海、乾燥し、単繊維直径の最頻値が0.41μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が30.50μm、Cv値が5.4%の繊維Bをそれぞれ99.2:0.8の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が30.09μm、目付100g/mの不織布Aと、繊維Cからなる目付100g/mの不織布Bを有し、目付200g/m、厚さ1.8mm、不織布密度0.111g/cm、不織布Aと不織布Bの目付の比が1.0の吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above-mentioned laminated nonwoven fabric was subjected to the same process and conditions as in Example 1 to remove the seawater and dry. Fibers B with a mode value of 30.50 μm and a Cv value of 5.4% are included at a number ratio of 99.2:0.8, respectively, and the difference in the mode value of the single fiber diameter between Fiber A and Fiber B is 30 09 μm and a basis weight of 100 g/m 2 and a non-woven fabric B made of fiber C and having a basis weight of 100 g/m 2 , having a basis weight of 200 g/m 2 , a thickness of 1.8 mm and a non-woven fabric density of 0.111 g/cm 3 , A sound-absorbing nonwoven fabric having a basis weight ratio of 1.0 between nonwoven fabric A and nonwoven fabric B was obtained.

比較例4の吸音材用不織布の低周波吸音率は低かった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Comparative Example 4 was low.

(比較例5)
(複合繊維)
未延伸繊維の延伸倍率を2.0倍に変更した以外は、実施例1と同一の工程、条件で処理し、海島複合繊維を得た。上記の海島複合繊維を100℃に加熱し、クリンパに導入して機械捲縮を付与後、回転式のカッターにより1mmの長さにカットし、海島複合短繊維を得た。
(Comparative Example 5)
(Composite fiber)
A sea-island composite fiber was obtained in the same process and under the same conditions as in Example 1, except that the draw ratio of the undrawn fiber was changed to 2.0 times. The above sea-island composite fibers were heated to 100° C., introduced into a crimper, mechanically crimped, and then cut to a length of 1 mm by a rotary cutter to obtain sea-island composite short fibers.

(吸音材用不織布)
上記の海島複合短繊維を95℃の温度に加熱した水酸化ナトリウム0.5質量%の水溶液に30分間浸漬し、海成分を脱海し、繊維Aを得た。前記の繊維Aを80質量%、繊維Bとして単繊維直径が3.50μm、繊維長3mm、強度3.6cN/dtex、初期引張抵抗度37cN/dtexのポリエチレンテレフタレート(PET)短繊維を20質量%使用し、前記繊維Aと繊維Bをスラリー濃度が0.1質量%となるように水中に投入し、10分間攪拌し、スラリーを得た。得られたスラリーをスプレーノズルを用いて、目付が15g/mのポリエチレンテレフタレートスパンボンド不織布に5分間噴霧し、熱風乾燥機にて温度130℃の条件で10分間乾燥し、スパンボンド不織布を除去して、単繊維直径の最頻値が0.72μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が3.50μm、Cv値が5.6%の繊維Bをそれぞれ95.2:4.8の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が2.78μm、目付5g/mの不織布Aのみからなる、目付5g/m、厚さ0.1mm、不織布密度0.050g/cmの吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The above sea-island composite short fibers were immersed in an aqueous solution of 0.5% by mass of sodium hydroxide heated to a temperature of 95° C. for 30 minutes to remove the sea component, and fibers A were obtained. 80% by mass of the fiber A, and 20% by mass of polyethylene terephthalate (PET) short fiber having a single fiber diameter of 3.50 μm, a fiber length of 3 mm, a strength of 3.6 cN/dtex, and an initial tensile resistance of 37 cN/dtex as the fiber B. The fibers A and B were put into water so that the slurry concentration was 0.1% by mass, and stirred for 10 minutes to obtain a slurry. Using a spray nozzle, the resulting slurry was sprayed onto a polyethylene terephthalate spunbond nonwoven fabric having a basis weight of 15 g/m 2 for 5 minutes, and dried in a hot air dryer at a temperature of 130°C for 10 minutes to remove the spunbond nonwoven fabric. Then, fiber A with a mode of single fiber diameter of 0.72 μm and a Cv value of 5.9% and fiber B with a mode of single fiber diameter of 3.50 μm and a Cv value of 5.6% are obtained. Consists only of nonwoven fabric A with a fiber count ratio of 95.2: 4.8, a difference in the mode of the single fiber diameter of fiber A and fiber B of 2.78 μm, and a basis weight of 5 g / m 2 , basis weight 5 g / m 2. A nonwoven fabric for sound absorbing material having a thickness of 0.1 mm and a nonwoven fabric density of 0.050 g/cm 3 was obtained.

比較例5の吸音材用不織布の生産性は優れたものであったが、比較例5の吸音材用不織布の低周波吸音率は低かった。 The nonwoven fabric for sound absorbing material of Comparative Example 5 was excellent in productivity, but the low frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Comparative Example 5 was low.

(比較例6)
(複合繊維)
比較例5の海島複合短繊維を用いた。
(Comparative Example 6)
(Composite fiber)
The sea-island composite staple fiber of Comparative Example 5 was used.

(吸音材用不織布)
スラリーの噴霧時間を200分間とした以外は比較例5と同一の工程、条件で処理し、単繊維直径の最頻値が0.72μm、Cv値が5.9%の繊維Aと、単繊維直径の最頻値が3.50μm、Cv値が5.6%の繊維Bをそれぞれ95.2:4.8の本数比で含み、繊維Aと繊維Bの単繊維直径の最頻値の差が2.78μm、目付200g/mの不織布Aのみからなる、目付200g/m、厚さ1.4mm、不織布密度0.143g/cmの吸音材用不織布を得た。
(Nonwoven fabric for sound absorbing material)
The process and conditions were the same as in Comparative Example 5 except that the spraying time of the slurry was 200 minutes. Fibers B with a mode diameter of 3.50 μm and a Cv value of 5.6% are included in a number ratio of 95.2:4.8, respectively, and the difference in the mode of the single fiber diameter between Fiber A and Fiber B A sound-absorbing nonwoven fabric having a basis weight of 200 g/m 2 , a thickness of 1.4 mm, and a nonwoven fabric density of 0.143 g/cm 3 was obtained.

比較例6の吸音材用不織布の低周波吸音率は低かった。また、比較例5の吸音材用不織布の生産性は劣るものであった。 The low-frequency sound absorption coefficient of the nonwoven fabric for sound absorbing material of Comparative Example 6 was low. Moreover, the productivity of the nonwoven fabric for sound absorbing material of Comparative Example 5 was inferior.

実施例および比較例の吸音材用不織布の構成と特性を表1~表4にまとめた。 Tables 1 to 4 summarize the configurations and properties of the nonwoven fabrics for sound absorbing materials of Examples and Comparative Examples.

Figure 2023027449000001
Figure 2023027449000001

Figure 2023027449000002
Figure 2023027449000002

Figure 2023027449000003
Figure 2023027449000003

Figure 2023027449000004
Figure 2023027449000004

本発明の吸音材用不織布は、特に、低周波領域の吸音性能、および生産性に優れるため、特に自動車などの吸音材として好適に用いられる。
The nonwoven fabric for sound absorbing material of the present invention is particularly excellent in sound absorbing performance in a low frequency region and productivity, and is therefore suitable for use as a sound absorbing material for automobiles.

Claims (8)

不織布Aと不織布Bとの積層構造を有し、
前記不織布Aが、単繊維直径の最頻値が0.05~0.80μmの繊維Aと、単繊維直径の最頻値が5.00~30.00μmの繊維Bとを含有し、
前記不織布Aにおける前記繊維Aと前記繊維Bの本数比(繊維Aの本数:繊維Bの本数)が、94.0:6.0~99.5:0.5であり、
前記不織布Aにおける前記繊維Aと前記繊維Bの単繊維直径の最頻値の差(繊維Bの単繊維直径の最頻値-繊維Aの単繊維直径の最頻値)が、4.00~28.00μmであり、
前記不織布Bが、単繊維直径の最頻値が5.00~30.00μmの繊維Cを不織布B全体に対して80質量%以上含有する、吸音材用不織布。
Having a laminated structure of nonwoven fabric A and nonwoven fabric B,
The nonwoven fabric A contains fibers A with a mode of single fiber diameter of 0.05 to 0.80 μm and fibers B with a mode of single fiber diameter of 5.00 to 30.00 μm,
The number ratio of the fibers A and the fibers B in the nonwoven fabric A (number of fibers A:number of fibers B) is 94.0:6.0 to 99.5:0.5,
The difference in the mode of the single fiber diameter between the fiber A and the fiber B in the nonwoven fabric A (the mode of the single fiber diameter of the fiber B - the mode of the single fiber diameter of the fiber A) is 4.00 to 28.00 μm,
A nonwoven fabric for a sound absorbing material, wherein the nonwoven fabric B contains 80% by mass or more of fibers C having a mode of single fiber diameter of 5.00 to 30.00 μm with respect to the entire nonwoven fabric B.
前記繊維Aの単繊維直径のCv値が20%以下であり、前記繊維Bの単繊維直径のCv値が15%以下である、請求項1に記載の吸音材用不織布。 2. The nonwoven fabric for sound absorbing material according to claim 1, wherein the fiber A has a single fiber diameter Cv value of 20% or less, and the fiber B has a single fiber diameter Cv value of 15% or less. 前記不織布Aと前記不織布Bの目付の比(不織布Aの目付/不織布Bの目付)が、0.5~1.7であり、
前記不織布Bの目付が、70~200g/mである、請求項1または2に記載の吸音材用不織布。
The ratio of the basis weight of the nonwoven fabric A and the nonwoven fabric B (the basis weight of the nonwoven fabric A/the basis weight of the nonwoven fabric B) is 0.5 to 1.7,
3. The nonwoven fabric for sound absorbing material according to claim 1, wherein said nonwoven fabric B has a basis weight of 70 to 200 g/m 2 .
密度が、0.07~0.40g/cmである、請求項1~3のいずれかに記載の吸音材用不織布。 The nonwoven fabric for sound absorbing material according to any one of claims 1 to 3, having a density of 0.07 to 0.40 g/cm 3 . 前記繊維Bおよび前記繊維Cの引張強度が、3cN/dtex以上であり、
前記繊維Bおよび前記繊維Cの初期引張抵抗度が30cN/dtex以上である、請求項1~4のいずれかに記載の吸音材用不織布。
The tensile strength of the fiber B and the fiber C is 3 cN/dtex or more,
5. The nonwoven fabric for sound absorbing material according to claim 1, wherein said fibers B and said fibers C have an initial tensile resistance of 30 cN/dtex or more.
前記繊維Aおよび前記繊維Bおよび前記繊維Cが、ともにポリエステル系短繊維である、請求項1~5のいずれかに記載の吸音材用不織布。 The nonwoven fabric for sound absorbing material according to any one of claims 1 to 5, wherein said fibers A, said fibers B and said fibers C are all polyester short fibers. 請求項1~6のいずれかに記載の吸音材用不織布と、繊維系多孔質体、発泡体、または空気層からなる層状物とを、有し、
前記層状物は、前記吸音材用不織布の一方の面に積層されており、
前記層状物の厚さが、5~50mmである、吸音材。
A nonwoven fabric for a sound absorbing material according to any one of claims 1 to 6, and a layered material comprising a fiber-based porous material, a foam, or an air layer,
The layered material is laminated on one surface of the nonwoven fabric for sound absorbing material,
A sound absorbing material, wherein the layered material has a thickness of 5 to 50 mm.
以下の(a)~(h)の工程を有する、請求項1~6のいずれかに記載の吸音材用不織布の製造方法。
(a)複合紡糸口金を用いて、2種以上の樹脂からなる海島複合繊維を紡糸する工程
(b)前記海島複合繊維に、捲縮、カット加工を行い、海島複合短繊維を得る工程
(c)前記海島複合短繊維と単繊維直径の最頻値が5.00~30.00μmの短繊維形状の繊維Bに開繊処理を施し、前記海島複合短繊維および前記繊維Bの混繊ウェブを得る工程
(d)単繊維直径の最頻値が5.00~30.00μmの短繊維形状の繊維Cに開繊処理を施し、前記繊維Cのウェブを得る工程
(e)前記混繊ウェブと、前記繊維Cのウェブを積層し、積層ウェブを得る工程
(f)前記積層ウェブにニードルパンチ法、またはウォータージェットパンチ法で交絡加工を行い、積層不織布を得る工程
(g)前記積層不織布をアルカリ水溶液により、前記海島複合短繊維の海成分を脱海し、単繊維直径の最頻値が0.05~0.80μmの繊維Aを発現させる工程
(h)前記(g)の工程後の積層不織布を乾燥する工程。
7. The method for producing a nonwoven fabric for sound absorbing material according to any one of claims 1 to 6, comprising the following steps (a) to (h).
(a) a step of spinning a sea-island composite fiber comprising two or more resins using a composite spinneret; (b) a step of crimping and cutting the sea-island composite fiber to obtain a sea-island composite staple fiber; ) The sea-island composite staple fibers and the staple fibers B having a mode of single fiber diameter of 5.00 to 30.00 μm are subjected to a fiber opening treatment to form a mixed fiber web of the sea-island composite staple fibers and the fibers B. Step (d) of obtaining a web of the fibers C by subjecting short fiber-shaped fibers C having a mode of single fiber diameter of 5.00 to 30.00 μm to obtain a web of the fibers C (e) the mixed fiber web and (f) subjecting the laminated web to entangling by a needle punching method or a water jet punching method to obtain a laminated nonwoven fabric; (g) applying the laminated nonwoven fabric to an alkaline Step (h) of removing the sea component from the sea-island composite short fibers with an aqueous solution to develop fibers A having a single fiber diameter mode of 0.05 to 0.80 μm; lamination after the step of (g); A process of drying the nonwoven fabric.
JP2021132543A 2021-08-17 2021-08-17 Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material Pending JP2023027449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021132543A JP2023027449A (en) 2021-08-17 2021-08-17 Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021132543A JP2023027449A (en) 2021-08-17 2021-08-17 Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material

Publications (1)

Publication Number Publication Date
JP2023027449A true JP2023027449A (en) 2023-03-02

Family

ID=85330427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021132543A Pending JP2023027449A (en) 2021-08-17 2021-08-17 Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material

Country Status (1)

Country Link
JP (1) JP2023027449A (en)

Similar Documents

Publication Publication Date Title
JP6801643B2 (en) Laminated non-woven fabric
EP2167712B1 (en) Process for making fibrous structures
Sawhney et al. Advent of greige cotton non-wovens made using a hydro-entanglement process
JP7468505B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
JP2020504791A (en) Lyocell fiber, nonwoven fiber aggregate including the same, and mask pack sheet including the same
JP2013256739A (en) Nonwoven fabric for mask and mask
JP5885961B2 (en) Flat rayon fiber, method for producing the same, and fiber assembly using the same
JP5337599B2 (en) Battery separator, battery and split type composite fiber
EP3241936B1 (en) Fiber aggregate, liquid-absorbing sheet-shaped object including same, and process for producing fiber aggregate
JP7468229B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
JP2023027449A (en) Nonwoven fabric for sound absorption material, sound absorption material, and method of manufacturing nonwoven fabric for sound absorption material
JPH03279452A (en) High-strength nonwoven sheet
JP7468255B2 (en) Nonwoven fabric for sound absorption, sound absorbing material, and method for manufacturing nonwoven fabric for sound absorbing
WO2019230688A1 (en) Shaped cross-section fiber and method for manufacturing same and nonwoven fabric and noise absorbing and insulating material comprising shaped cross-section fiber
JP2022028195A (en) Nonwoven fabric for sound absorbing material, sound absorbing material, and manufacturing method of nonwoven fabric
CN112567087A (en) Nonwoven fabric fiber aggregate and mask sheet using same
WO2024135484A1 (en) Non-woven-fabric layered body for sound-absorbing material, and sound-absorbing material
JP4211496B2 (en) Sound absorbing material component and sound absorbing material
JP2009197355A (en) Dry nonwoven fabric
JPH0327195A (en) Bulky paper having water-dispersing and dissolving performance and preparation thereof