JP2022039373A - Manufacturing method of light-emitting device - Google Patents

Manufacturing method of light-emitting device Download PDF

Info

Publication number
JP2022039373A
JP2022039373A JP2020144360A JP2020144360A JP2022039373A JP 2022039373 A JP2022039373 A JP 2022039373A JP 2020144360 A JP2020144360 A JP 2020144360A JP 2020144360 A JP2020144360 A JP 2020144360A JP 2022039373 A JP2022039373 A JP 2022039373A
Authority
JP
Japan
Prior art keywords
adhesive
light emitting
emitting device
manufacturing
nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020144360A
Other languages
Japanese (ja)
Inventor
俊文 井村
Toshifumi Imura
知敬 丸山
Tomotaka Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2020144360A priority Critical patent/JP2022039373A/en
Publication of JP2022039373A publication Critical patent/JP2022039373A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a manufacturing method of a light-emitting device, which has an excellent operability of an adhesive agent coating, and in which a deviation of an insulation member arranged on an adhesive agent hardly occurs.SOLUTION: A manufacturing method of a light-emitting device, contains: a preparation step S1 of preparing an insulation base having a first surface and an adhesive agent; a coating step S2 of coating the adhesive agent onto the first surface; an arrangement step S3 of arranging the insulation member to the adhesive agent coated; and an adhesive step S4 of adhering the base and the insulation member by hardening the adhesive agent. In the preparation step S1, the adhesive agent contains a first nano particle, and at least one of first nano particle is aggregated. A viscosity of the adhesive agent, measured by a rheometer at 25°C is 6.0 Pa*s or more and 30.0 Pa*s or less at a shear rate of 1 s-1, and is 2.5 Pas or more and 7.0 Pa*s or less at a shear rate of 100 s-1. The difference of the viscosity at the shear rate of 1 s-1 and the viscosity of the shear rate of 100 s-1 is 2.0 Pa*s or more.SELECTED DRAWING: Figure 3

Description

本開示は、発光装置の製造方法に関するものである。 The present disclosure relates to a method for manufacturing a light emitting device.

絶縁基板の表面上に配設されたLEDチップと、蛍光体を含有する透明な蛍光体板と、LEDチップの上面と蛍光体板の下面とを接着固定する透明な接着部材と、LEDチップおよび蛍光体板を囲む光反射性の微粒子を含有する反射層とを備える発光装置の製造方法が開示されている(特許文献1参照)。 An LED chip arranged on the surface of the insulating substrate, a transparent phosphor plate containing a phosphor, a transparent adhesive member for adhering and fixing the upper surface of the LED chip and the lower surface of the phosphor plate, the LED chip, and the LED chip. A method for manufacturing a light emitting device including a reflective layer containing light-reflecting fine particles surrounding a phosphor plate is disclosed (see Patent Document 1).

特開2015-079805号公報JP-A-2015-079805A

本開示に係る一実施形態は、接着剤塗布の作業性に優れ、接着剤に配置した絶縁性部材のズレが生じにくい発光装置の製造方法を提供することを課題とする。 An object of the present embodiment is to provide a method for manufacturing a light emitting device, which is excellent in workability of adhesive application and is less likely to cause displacement of the insulating member arranged in the adhesive.

本開示の一実施形態に係る発光装置の製造方法は、第1面を有する絶縁性の基台と接着剤を準備する準備工程と、前記第1面に前記接着剤を塗布する塗布工程と、塗布された前記接着剤に絶縁性部材を配置する配置工程と、前記接着剤を硬化して前記基台と前記絶縁性部材を接着する接着工程と、を含み、前記準備工程において、前記接着剤は第1ナノ粒子を含有し、前記第1ナノ粒子の少なくとも一部は凝集しており、レオメーターにて25℃で測定した前記接着剤の粘度は、せん断速度1s-1のとき6.0Pa・s以上30.0Pa・s以下であり、かつ、せん断速度100s-1のとき2.5Pa・s以上7.0Pa・s以下であり、せん断速度1s-1のときの粘度とせん断速度100s-1のときの粘度の差が2.0Pa・s以上である。 The method for manufacturing a light emitting device according to an embodiment of the present disclosure includes a preparation step of preparing an insulating base having a first surface and an adhesive, and a coating step of applying the adhesive to the first surface. In the preparatory step, the adhesive comprises an arranging step of arranging an insulating member on the applied adhesive and an adhesive step of curing the adhesive to bond the base and the insulating member. Contains the first nanoparticles, at least a part of the first nanoparticles is agglomerated, and the viscosity of the adhesive measured at 25 ° C. with a leometer is 6.0 Pa at a shear rate of 1s -1 . -S or more and 30.0 Pa · s or less, and 2.5 Pa · s or more and 7.0 Pa · s or less when the shear rate is 100 s -1 , and the viscosity and shear rate 100 s- when the shear rate is 1 s -1 . The difference in viscosity when 1 is 2.0 Pa · s or more.

本開示の一実施形態に係る発光装置の製造方法によれば、接着剤塗布の作業性に優れ、接着剤に配置した絶縁性部材のズレが生じにくい発光装置を製造できる。 According to the method for manufacturing a light emitting device according to an embodiment of the present disclosure, it is possible to manufacture a light emitting device which is excellent in workability of adhesive application and is less likely to cause displacement of the insulating member arranged in the adhesive.

第1実施形態に係る発光装置の製造方法で製造された発光装置の構成を模式的に示す平面図である。It is a top view which shows typically the structure of the light emitting device manufactured by the manufacturing method of the light emitting device which concerns on 1st Embodiment. 図1の発光装置のIIA-IIA線における長手方向の断面図である。It is sectional drawing of the light emitting device of FIG. 1 in the longitudinal direction in line IIA-IIA. 図1の発光装置のIIB方向から見た短手方向の側面図である。It is a side view of the light emitting device of FIG. 1 in the lateral direction seen from the IIB direction. 第1実施形態に係る発光装置の製造方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the manufacturing method of the light emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法の準備工程において、準備された基台及び接着剤を模式的に示す半導体発光装置の短手方向の断面図である。It is sectional drawing in the short side of the semiconductor light emitting device which schematically shows the prepared base and the adhesive in the preparation process of the manufacturing method of the light emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法の塗布工程において、基台の第1面に接着剤が塗布された半導体発光素子を模式的に示す半導体発光素子の短手方向の断面図である。It is sectional drawing in the short side of the semiconductor light emitting device which schematically shows the semiconductor light emitting element which the adhesive was applied to the 1st surface of the base in the coating process of the manufacturing method of the light emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法の配置工程において、接着剤に絶縁性部材を配置する状態を模式的に示す半導体発光素子の短手方向の断面図である。It is sectional drawing in the short side of the semiconductor light emitting element which shows typically the state which the insulating member is arranged in the adhesive in the arrangement process of the manufacturing method of the light emitting device which concerns on 1st Embodiment. 第1実施形態に係る発光装置の製造方法の接着工程において、接着剤で覆われると共に絶縁性部材と接着した基台を模式的に示す半導体発光素子の短手方向の断面図である。It is sectional drawing in the short side of the semiconductor light emitting element which schematically shows the base which was covered with an adhesive and adhered with an insulating member in the bonding process of the manufacturing method of the light emitting device which concerns on 1st Embodiment. 基台を絶縁性部材側から見た状態を模式的に示す平面図である。It is a top view which shows the state which the base is seen from the side of an insulating member schematically. 第1実施形態に係る発光装置の製造方法の個片化工程において、個片化された発光装置を模式的に示す発光装置の短手方向の断面図である。It is sectional drawing in the short side of the light emitting device which schematically shows the individualized light emitting device in the individualization step of the manufacturing method of the light emitting device which concerns on 1st Embodiment. 第2実施形態に係る発光装置の製造方法で製造された発光装置の構成を模式的に示す長手方向の断面図である。It is sectional drawing in the longitudinal direction which shows typically the structure of the light emitting device manufactured by the manufacturing method of the light emitting device which concerns on 2nd Embodiment. 接着剤の粘度を測定する手順を示す説明図である。It is explanatory drawing which shows the procedure of measuring the viscosity of an adhesive. 発光装置の評価において、絶縁性部材のズレを表す指標を示す説明図である。It is explanatory drawing which shows the index which shows the deviation of the insulating member in the evaluation of a light emitting device.

実施形態に係る発光装置及び発光装置の製造方法を、以下に図面を参照しながら説明する。但し、以下に示す形態は、本実施形態の技術思想を具現化するための発光装置を例示するものであって、以下に限定するものではない。また、実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさ、位置関係等は、説明を明確にするため誇張していることがある。また、以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており詳細説明を適宜省略する。 A light emitting device and a method for manufacturing the light emitting device according to the embodiment will be described below with reference to the drawings. However, the embodiments shown below exemplify a light emitting device for embodying the technical idea of the present embodiment, and are not limited to the following. Further, the dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments are not intended to limit the scope of the present invention to the specific description, and are merely explanatory examples. It's just that. The size, positional relationship, etc. of the members shown in each drawing may be exaggerated for the sake of clarity. Further, in the following description, members having the same name and reference numerals are shown to have the same or the same quality, and detailed description thereof will be omitted as appropriate.

[第1実施形態]
<発光装置>
第1実施形態に係る発光装置の製造方法で製造された発光装置について説明する。
図1は、第1実施形態に係る発光装置の製造方法で製造された発光装置の構成を模式的に示す平面図である。図2Aは、図1の発光装置のIIA-IIA線における長手方向の断面図である。図2Bは、図1の発光装置のIIB方向から見た短手方向の側面図である。
[First Embodiment]
<Light emitting device>
A light emitting device manufactured by the method for manufacturing a light emitting device according to the first embodiment will be described.
FIG. 1 is a plan view schematically showing the configuration of a light emitting device manufactured by the method for manufacturing a light emitting device according to the first embodiment. FIG. 2A is a sectional view taken along the line IIA-IIA of the light emitting device of FIG. 1 in the longitudinal direction. FIG. 2B is a side view of the light emitting device of FIG. 1 in the lateral direction as seen from the IIB direction.

図1、図2A及び図2Bに示すように、発光装置1は、第1面13を有する絶縁性の基台11と、第1面13に塗布された第1ナノ粒子を含有する接着剤40と、接着剤40を介して基台11に接着された絶縁性部材30と、を備えている。そして、基台11は、半導体発光素子10の絶縁性の基板である。また、半導体発光素子は、絶縁性の基板(基台11)に半導体12が積層されている。さらに、第1面13は、絶縁性の基板(基台11)の表面である。また、発光装置1は、絶縁性部材30が透光性部材であることが好ましい。さらに、発光装置1は、半導体発光素子10を実装する支持部材20を備えることが好ましい。 As shown in FIGS. 1, 2A and 2B, the light emitting device 1 has an insulating base 11 having a first surface 13 and an adhesive 40 containing first nanoparticles coated on the first surface 13. And an insulating member 30 bonded to the base 11 via an adhesive 40. The base 11 is an insulating substrate for the semiconductor light emitting device 10. Further, in the semiconductor light emitting device, the semiconductor 12 is laminated on an insulating substrate (base 11). Further, the first surface 13 is the surface of the insulating substrate (base 11). Further, in the light emitting device 1, it is preferable that the insulating member 30 is a translucent member. Further, the light emitting device 1 preferably includes a support member 20 for mounting the semiconductor light emitting element 10.

発光装置1は、図面では、接着剤40を介して2つの基台11(2つの半導体発光素子10のそれぞれの絶縁性の基板)に2つの絶縁性部材30(透光性部材)が接着された構成を記載したが、1つの基台11(1つの半導体発光素子10の絶縁性の基板)に1つの絶縁性部材30(透光性部材)が接着された構成、3つ以上の基台11(3つ以上の半導体発光素子10の絶縁性の基板)それぞれに3つ以上の絶縁性部材30(透光性部材)が接着された構成であってもよい。また、発光装置1は、基台11(半導体発光素子の絶縁性の基板)の光取出し面となる第1面13を上面側に配置する上面発光型発光装置、あるいは、第1面13を側面側に配置する側面発光型発光装置のいずれであってもよい。以下では、上面発光型発光装置を例にとって、各構成を説明する。 In the drawing, in the light emitting device 1, two insulating members 30 (translucent members) are bonded to two bases 11 (each insulating substrate of two semiconductor light emitting elements 10) via an adhesive 40. However, one base 11 (an insulating substrate of one semiconductor light emitting device 10) is bonded to one insulating member 30 (translucent member), and three or more bases are described. A configuration in which three or more insulating members 30 (translucent members) are bonded to each of 11 (insulating substrates of three or more semiconductor light emitting devices 10) may be used. Further, the light emitting device 1 is a top surface emitting light emitting device in which the first surface 13 which is the light extraction surface of the base 11 (insulating substrate of the semiconductor light emitting element) is arranged on the upper surface side, or the first surface 13 is a side surface. It may be any of the side light emitting type light emitting devices arranged on the side. In the following, each configuration will be described by taking a top light emitting device as an example.

(基台)
基台11は、半導体発光素子10の絶縁性の基板であり、その平面視形状は特に限定されないが、長方形状であることが好ましい。半導体発光素子10は、電圧を印加することで自ら発光する素子であり、基台11に積層された半導体12からなる。半導体12は、基台11の光取出し面と反対側の面に極性の異なる一対の電極16,16を有する。
(Base)
The base 11 is an insulating substrate of the semiconductor light emitting device 10, and its plan view shape is not particularly limited, but it is preferably rectangular. The semiconductor light emitting device 10 is an element that emits light by itself when a voltage is applied, and is composed of a semiconductor 12 laminated on a base 11. The semiconductor 12 has a pair of electrodes 16 and 16 having different polarities on the surface of the base 11 opposite to the light extraction surface.

半導体12は、公知のものを利用でき、例えば、発光ダイオードやレーザーダイオードを用いるのが好ましい。また、半導体12は、任意の波長のものを選択することができる。例えば、青色、緑色の半導体12としては、窒化物系半導体(InAlGa1-X-YN、0≦X、0≦Y、X+Y≦1)、GaPを用いたものを用いることができる。さらに、赤色の半導体12としては、窒化物系半導体の他にもGaAlAs、AlInGaPなどを用いることができる。 As the semiconductor 12, known semiconductors can be used, and for example, a light emitting diode or a laser diode is preferably used. Further, the semiconductor 12 can be selected of any wavelength. For example, as the blue and green semiconductor 12, a nitride-based semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) and GaP can be used. can. Further, as the red semiconductor 12, GaAlAs, AlInGaP and the like can be used in addition to the nitride semiconductor.

極性の異なる一対の電極16,16は、p側電極とn側電極とすることができ、これらの数は特に限定されない。すなわち、p側電極とn側電極とは少なくとも1つずつあればよく、p側電極とn側電極とが同数でなくてもよい。一対の電極16,16は、金、銀、錫、白金、ロジウム、チタン、アルミニウム、タングステン、パラジウム、ニッケル又はこれらの合金等で構成することができる。基台11は、サファイア、窒化ガリウム、窒化アルミニウム、シリコン、炭化珪素、ガリウム砒素、ガリウム燐、インジウム燐、硫化亜鉛、酸化亜鉛、セレン化亜鉛、ダイヤモンド等で構成することができる。 The pair of electrodes 16 and 16 having different polarities can be a p-side electrode and an n-side electrode, and the number of these electrodes is not particularly limited. That is, at least one p-side electrode and one n-side electrode may be used, and the number of p-side electrodes and n-side electrodes does not have to be the same. The pair of electrodes 16 and 16 can be made of gold, silver, tin, platinum, rhodium, titanium, aluminum, tungsten, palladium, nickel, alloys thereof, or the like. The base 11 can be made of sapphire, gallium nitride, aluminum nitride, silicon, silicon carbide, gallium arsenic, gallium phosphorus, indium phosphorus, zinc sulfide, zinc oxide, zinc selenium, diamond and the like.

(支持部材)
支持部材20は、少なくとも1つ以上の半導体発光素子10を実装し、半導体発光素子10と外部とを電気的に接続する。支持部材20は、平板状の基材21及び基材21の表面及び/又は内部(貫通孔)に配置された配線22を備えて構成されている。また、基材21の内部(貫通孔)は配線22の他、導電性または絶縁性の部材で充填された充填部材23を備えていてもよい。支持部材20は、配線22と半導体発光素子10の電極16,16とを導電性接着部材50を介して接続することによって、半導体12と電気的に接続する。なお、支持部材20の配線22は、半導体発光素子10の電極16,16の構成、大きさに応じて形状、大きさ等の構造が設定される。
図1、図2A及び図2Bに示すように、配線22は、平面視において長方形状である半導体発光素子10の短手方向に沿って直線状に形成され、電極16,16と接続する2つの電極接続部と、平面視において絶縁性部材30の周縁に沿うように枠状に形成され、電極接続部と接続する2つの枠状部と、平面視において支持部材20の長辺に沿って直線状に形成され、2つの電極接続部及び枠状部を連結する連結部と、からなることが好ましい。また、配線22において、2つの電極接続部及び枠部は左右対称に形成されていることが好ましい。
(Support member)
At least one or more semiconductor light emitting elements 10 are mounted on the support member 20, and the semiconductor light emitting element 10 and the outside are electrically connected to each other. The support member 20 includes a flat plate-shaped base material 21 and wiring 22 arranged on the surface and / or inside (through hole) of the base material 21. Further, the inside (through hole) of the base material 21 may include a filling member 23 filled with a conductive or insulating member in addition to the wiring 22. The support member 20 is electrically connected to the semiconductor 12 by connecting the wiring 22 and the electrodes 16 and 16 of the semiconductor light emitting element 10 via the conductive adhesive member 50. The wiring 22 of the support member 20 is set with a structure such as a shape and a size according to the configuration and size of the electrodes 16 and 16 of the semiconductor light emitting element 10.
As shown in FIGS. 1, 2A and 2B, the wiring 22 is formed linearly along the lateral direction of the semiconductor light emitting element 10 which is rectangular in a plan view, and is connected to the electrodes 16 and 16. The electrode connection portion, two frame-shaped portions formed in a frame shape along the peripheral edge of the insulating member 30 in a plan view and connected to the electrode connection portion, and a straight line along the long side of the support member 20 in a plan view. It is preferably formed in a shape and is preferably composed of a connecting portion for connecting two electrode connecting portions and a frame-shaped portion. Further, in the wiring 22, it is preferable that the two electrode connecting portions and the frame portion are formed symmetrically.

支持部材20の基材21は、絶縁性材料を用いることが好ましく、かつ、半導体発光素子10から出射される光や外光などを透過しにくい材料を用いることが好ましく、ある程度の強度を有する材料を用いることが好ましい。具体的には、基材21は、アルミナ、窒化アルミニウム、ムライト等のセラミックス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、BTレジン(ビスマレイミド トリアジン レジン)、ポリフタルアミド等の樹脂で構成することができる。 For the base material 21 of the support member 20, it is preferable to use an insulating material, and it is preferable to use a material that does not easily transmit light emitted from the semiconductor light emitting device 10 or external light, and the material has a certain degree of strength. It is preferable to use. Specifically, the base material 21 can be composed of ceramics such as alumina, aluminum nitride and mullite, phenol resin, epoxy resin, polyimide resin, BT resin (bismaleimide triazine resin), and resin such as polyphthalamide. ..

配線22は、銅、鉄、ニッケル、タングステン、クロム、アルミニウム、銀、金、チタン、パラジウム、ロジウム又はこれらの合金等で構成することができる。また、配線22の表層には、導電性接着部材50の濡れ性及び/又は光反射性等の観点から、銀、白金、アルミニウム、ロジウム、金又はこれらの合金等の層が設けられていてもよい。 The wiring 22 can be made of copper, iron, nickel, tungsten, chromium, aluminum, silver, gold, titanium, palladium, rhodium, alloys thereof and the like. Further, even if the surface layer of the wiring 22 is provided with a layer of silver, platinum, aluminum, rhodium, gold, or an alloy thereof, from the viewpoint of wettability and / or light reflectivity of the conductive adhesive member 50. good.

導電性接着部材50は、金、銀、銅等のバンプ、銀、金、銅、プラチナ、アルミニウム、パラジウム等の金属粉末と樹脂バインダを含む金属ペースト、錫-ビスマス系、錫-銅系、錫-銀系、金-錫系等の半田、低融点金属等のろう材のうちのいずれか1つを用いることができる。 The conductive adhesive member 50 is a bump of gold, silver, copper or the like, a metal paste containing metal powder such as silver, gold, copper, platinum, aluminum or palladium and a resin binder, tin-bismuth-based, tin-copper-based, tin. -Any one of silver-based, gold-tin-based solder, and low melting point metal and other brazing materials can be used.

(絶縁性部材)
絶縁性部材30は、半導体発光素子10の基台11の第1面13に接着剤40を介して設けられる。絶縁性部材30は、基台11と接着していればよいが、基台11の第1面13を全て包含するように、基台11の第1面13よりも大きく形成されていることが好ましい。つまり、絶縁性部材30の下面周縁は、平面視において基台11の第1面13周縁よりも外側に位置することが好ましい。絶縁性部材30の下面が基台11の第1面13よりも大きな面積で形成されることにより、半導体発光素子10から出射される光をロスなく絶縁性部材30に入射することができる。
(Insulating member)
The insulating member 30 is provided on the first surface 13 of the base 11 of the semiconductor light emitting element 10 via an adhesive 40. The insulating member 30 may be adhered to the base 11, but it may be formed larger than the first surface 13 of the base 11 so as to include all the first surface 13 of the base 11. preferable. That is, it is preferable that the lower peripheral edge of the insulating member 30 is located outside the peripheral edge of the first surface 13 of the base 11 in a plan view. Since the lower surface of the insulating member 30 is formed in an area larger than that of the first surface 13 of the base 11, the light emitted from the semiconductor light emitting device 10 can be incident on the insulating member 30 without loss.

絶縁性部材30は、無機物に蛍光体粒子が付着された第1透光性部材、蛍光体粒子を固めた第2透光性部材、又は、樹脂に蛍光体粒子が含有された第3透光性部材であることが好ましい。
第1透光性部材において蛍光体粒子が付着する無機物としては、ガラス、サファイア等が挙げられる。また、第3透光性部材において蛍光体粒子が含有される樹脂としては、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、TPX(ポリメチルペンテン)樹脂、ポリノルボルネン樹脂、又はこれらの変性樹脂若しくはハイブリッド樹脂が挙げられる。なかでも耐熱性、電気絶縁性に優れ、柔軟性のあるシリコーン樹脂を含むことが好ましい。樹脂に含有される蛍光体粒子の濃度は、例えば、50質量%以上200質量%以下程度である。
The insulating member 30 is a first translucent member in which fluorescent particles are attached to an inorganic substance, a second translucent member in which fluorescent particles are solidified, or a third translucent member in which fluorescent particles are contained in a resin. It is preferably a sex member.
Examples of the inorganic substance to which the phosphor particles adhere in the first translucent member include glass and sapphire. The resin containing the phosphor particles in the third translucent member includes a silicone resin, an epoxy resin, a phenol resin, a polycarbonate resin, an acrylic resin, a TPX (polymethylpentene) resin, a polynorbornene resin, or a resin thereof. Examples thereof include modified resins and hybrid resins. Above all, it is preferable to contain a flexible silicone resin having excellent heat resistance and electrical insulation. The concentration of the phosphor particles contained in the resin is, for example, about 50% by mass or more and 200% by mass or less.

蛍光体粒子としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体(YAG:Ce)、セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体(LAG:Ce)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体(CaO-Al-SiO:Eu)、ユウロピウムで賦活されたシリケート系蛍光体((Sr,Ba)SiO:Eu)、βサイアロン蛍光体、CASN系蛍光体(CaAlSiN:Eu)、SCASN系蛍光体((Sr,Ca)AlSiN:Eu)等の窒化物系蛍光体、KSF系蛍光体(KSiF:Mn)、硫化物系蛍光体、量子ドット蛍光体が挙げられる。 The fluorophore particles include yttrium-aluminum-garnet-based phosphor (YAG: Ce) activated with cerium, lutetium-aluminum-garnet-based phosphor (LAG: Ce) activated with cerium, europium and / or chromium. Activated nitrogen-containing calcium aluminosilicate-based fluorescent material (CaO-Al 2 O 3 -SiO 2 : Eu), europium-activated silicate-based fluorescent material ((Sr, Ba) 2 SiO 4 : Eu), β-sialon fluorescence Body, nitride-based fluorophore such as CASN-based phosphor (CaAlSiN 3 : Eu), SCASN - based phosphor ((Sr, Ca) AlSiN 3 : Eu), KSF-based phosphor (K2 SiF 6 : Mn), sulfurization Examples include physical phosphors and quantum dot phosphors.

絶縁性部材30は、第1透光性部材、第2透光性部材及び第3透光性部材の1種を単層で、又は第1透光性部材、第2透光性部材及び第3透光性部材のうち2種以上を積層して構成してもよい。また、第1透光性部材、第2透光性部材及び第3透光性部材に含有される蛍光体粒子の劣化を抑制するために、これらの上面に、ガラスやサファイア等の無機物、又は樹脂からなる保護層を設けることもできる。 The insulating member 30 is a single layer of one of the first translucent member, the second translucent member and the third translucent member, or the first translucent member, the second translucent member and the first. Two or more of the three translucent members may be laminated and configured. Further, in order to suppress deterioration of the phosphor particles contained in the first translucent member, the second translucent member and the third translucent member, an inorganic substance such as glass or sapphire or an inorganic substance such as glass or sapphire is placed on the upper surface thereof. A protective layer made of resin can also be provided.

(接着剤)
接着剤40は、基台11と絶縁性部材30との間にあって基台11の第1面13から側面までを覆い、基台11と絶縁性部材30とを接着する。接着剤40は、第1ナノ粒子を含有し、好ましくは第1ナノ粒子を含有する樹脂からなる。
図2Bに示すように、第1ナノ粒子を含有する接着剤40は、側面視において、基台11の側面を覆う接着剤40の下辺41が、基台11の隣接する側面同士の角部から、側面の中央に向かって凸状に湾曲していることが好ましい。また、図2Aに示すように、第1ナノ粒子を含有する接着剤40は、断面視において、基台11の側面を覆う接着剤40の外面42が、絶縁性部材30から基台11の側面側に凹状に湾曲していることが好ましい。
(glue)
The adhesive 40 is between the base 11 and the insulating member 30 and covers from the first surface 13 to the side surface of the base 11, and adheres the base 11 and the insulating member 30. The adhesive 40 contains the first nanoparticles and is preferably made of a resin containing the first nanoparticles.
As shown in FIG. 2B, in the adhesive 40 containing the first nanoparticles, the lower side 41 of the adhesive 40 covering the side surface of the base 11 is viewed from the corners of the adjacent side surfaces of the base 11. , It is preferable that the surface is convexly curved toward the center of the side surface. Further, as shown in FIG. 2A, in the adhesive 40 containing the first nanoparticles, in a cross-sectional view, the outer surface 42 of the adhesive 40 covering the side surface of the base 11 is from the insulating member 30 to the side surface of the base 11. It is preferable that it is curved in a concave shape on the side.

発光装置1の接着剤40において、第1ナノ粒子の含有量が0.1質量%以上20質量%以下であることが好ましい。第1ナノ粒子の含有量が0.1質量%以上20質量%以下であると、第1ナノ粒子の光散乱作用により、発光装置1での光束が向上する。また、第1ナノ粒子の量が多いために生じる接着剤40の白濁が抑制される。なお、発光装置1の接着剤40の第1ナノ粒子の濃度は、後述する準備工程における硬化前の接着剤40の第1ナノ粒子の濃度よりも高くなっている。これは、接着剤40を硬化する過程において、硬化前の接着剤40に含まれる成分が揮発することが要因として挙げられる。 In the adhesive 40 of the light emitting device 1, the content of the first nanoparticles is preferably 0.1% by mass or more and 20% by mass or less. When the content of the first nanoparticles is 0.1% by mass or more and 20% by mass or less, the light scattering action of the first nanoparticles improves the luminous flux in the light emitting device 1. In addition, the white turbidity of the adhesive 40 caused by the large amount of the first nanoparticles is suppressed. The concentration of the first nanoparticles of the adhesive 40 of the light emitting device 1 is higher than the concentration of the first nanoparticles of the adhesive 40 before curing in the preparation step described later. This is because the components contained in the adhesive 40 before curing volatilize in the process of curing the adhesive 40.

第1ナノ粒子を含有する樹脂としては、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、シリコーン変性エポキシ樹脂又は有機シリコーン樹脂を用いることができる。ここで、具体的な有機シリコーン樹脂としては、ジメチルシリコーン樹脂、フェニルシリコーン樹脂等が挙げられる。 As the resin containing the first nanoparticles, a silicone resin, an epoxy resin, a phenol resin, a polycarbonate resin, an acrylic resin, a silicone-modified epoxy resin, or an organic silicone resin can be used. Here, specific examples of the organic silicone resin include dimethyl silicone resin and phenyl silicone resin.

(各部材の屈折率)
発光装置1は、基台11の第1屈折率、接着剤40の第2屈折率、絶縁性部材30の第3屈折率が、以下の関係であることが好ましい。
(第1屈折率)>(第2屈折率)>(第3屈折率)
また、第1屈折率が1.65より大きく1.80より小さいことが好ましく、第2屈折率は1.52以上1.65以下が好ましく、第3屈折率は1.40より大きく1.52より小さいことが好ましい。ここで、第1屈折率、第2屈折率及び第3屈折率は、NaランプD線からの波長(589nm)の光に対する屈折率を意味する。このような屈折率を発光装置1が有することで、基台11と接着剤40との境界面、及び、接着剤40と絶縁性部材30との境界面での全反射が少なくなるため、発光装置1での光束が増加し、光取出し性が向上できる。
(Refractive index of each member)
In the light emitting device 1, it is preferable that the first refractive index of the base 11, the second refractive index of the adhesive 40, and the third refractive index of the insulating member 30 have the following relationships.
(1st refractive index)> (2nd refractive index)> (3rd refractive index)
Further, the first refractive index is preferably larger than 1.65 and smaller than 1.80, the second refractive index is preferably 1.52 or more and 1.65 or less, and the third refractive index is larger than 1.40 and 1.52. It is preferably smaller. Here, the first refractive index, the second refractive index, and the third refractive index mean the refractive index with respect to the light having the wavelength (589 nm) from the Na lamp D line. When the light emitting device 1 has such a refractive index, total reflection at the interface between the base 11 and the adhesive 40 and the interface between the adhesive 40 and the insulating member 30 is reduced, so that light is emitted. The luminous flux in the device 1 is increased, and the light extraction property can be improved.

<発光装置の製造方法>
第1実施形態に係る発光装置の製造方法について説明する。
図3は、第1実施形態に係る発光装置の製造方法の流れを示すフローチャートである。図4Aは、第1実施形態に係る発光装置の製造方法の準備工程において、準備された基台及び接着剤を模式的に示す半導体発光素子の短手方向の断面図である。図4Bは、第1実施形態に係る発光装置の製造方法の塗布工程において、基台の第1面に接着剤が塗布された半導体発光素子を模式的に示す半導体発光素子の短手方向の断面図である。図4Cは、第1実施形態に係る発光装置の製造方法の配置工程において、接着剤に絶縁性部材を配置する状態を模式的に示す半導体発光素子の短手方向の断面図である。図4Dは、第1実施形態に係る発光装置の製造方法の接着工程において、接着剤で覆われると共に絶縁性部材と接着した基台を模式的に示す半導体発光素子の短手方向の断面図である。図4Eは、基台を絶縁性部材側から見た状態を模式的に示す平面図である。図4Fは、第1実施形態に係る発光装置の製造方法の個片化工程において、個片化された発光装置を模式的に示す発光装置の短手方向の断面図である。
<Manufacturing method of light emitting device>
A method of manufacturing the light emitting device according to the first embodiment will be described.
FIG. 3 is a flowchart showing the flow of the manufacturing method of the light emitting device according to the first embodiment. FIG. 4A is a cross-sectional view of a semiconductor light emitting device schematically showing a prepared base and an adhesive in the preparation step of the method for manufacturing a light emitting device according to the first embodiment in the short direction. FIG. 4B is a cross section in the lateral direction of the semiconductor light emitting device schematically showing the semiconductor light emitting device to which the adhesive is coated on the first surface of the base in the coating step of the method for manufacturing the light emitting device according to the first embodiment. It is a figure. FIG. 4C is a sectional view in the lateral direction of the semiconductor light emitting device schematically showing a state in which the insulating member is arranged in the adhesive in the arrangement step of the method for manufacturing the light emitting device according to the first embodiment. FIG. 4D is a cross-sectional view of a semiconductor light emitting device schematically showing a base covered with an adhesive and bonded to an insulating member in the bonding step of the method for manufacturing a light emitting device according to the first embodiment. be. FIG. 4E is a plan view schematically showing a state in which the base is viewed from the insulating member side. FIG. 4F is a sectional view in the short direction of the light emitting device schematically showing the individualized light emitting device in the individualization step of the method for manufacturing the light emitting device according to the first embodiment.

図3に示すように、第1実施形態に係る発光装置の製造方法は、第1面13を有する絶縁性の基台11と接着剤40を準備する準備工程S1と、第1面13に接着剤40を塗布する塗布工程S2と、塗布された接着剤40に絶縁性部材30を配置する配置工程S3と、接着剤を硬化して基台と絶縁性部材を接着する接着工程S4と、を含む。また、発光装置の製造方法は、接着工程S4の終了後に被覆工程S5と個片化工程S6を含んでもよい。なお、発光装置の構成については、図1、図2A及び図2Bを参照する。以下、各工程について説明する。 As shown in FIG. 3, the method for manufacturing a light emitting device according to the first embodiment is a preparation step S1 for preparing an insulating base 11 having a first surface 13 and an adhesive 40, and adhering to the first surface 13. A coating step S2 for applying the agent 40, an arrangement step S3 for arranging the insulating member 30 on the applied adhesive 40, and an adhesive step S4 for curing the adhesive to bond the base and the insulating member. include. Further, the method for manufacturing the light emitting device may include a coating step S5 and an individualization step S6 after the completion of the bonding step S4. For the configuration of the light emitting device, refer to FIGS. 1, 2A and 2B. Hereinafter, each step will be described.

(準備工程)
図4Aに示すように、準備工程S1は、光取出し面となる第1面13を有する絶縁性の基台11と接着剤40を準備する工程である。ここで、基台11は、第1面13を有する絶縁性の基板であり、基台11に半導体12が積層している。
(Preparation process)
As shown in FIG. 4A, the preparation step S1 is a step of preparing an insulating base 11 having a first surface 13 as a light extraction surface and an adhesive 40. Here, the base 11 is an insulating substrate having a first surface 13, and the semiconductor 12 is laminated on the base 11.

準備工程S1では、基台11の第1面13と対向する面側に一対の電極16,16を有する複数の半導体12を、基材21の表面と内部とに配線22を有する支持部材20に電気的に接続する工程である。半導体12と支持部材20との接続は、公知の方法で行い、例えば、半田等の導電性接着部材50を介して電極16,16と配線22とを電気的に接続する。 In the preparation step S1, a plurality of semiconductors 12 having a pair of electrodes 16 and 16 on the surface side facing the first surface 13 of the base 11 are attached to a support member 20 having wirings 22 on the surface and inside of the base material 21. This is the process of electrically connecting. The semiconductor 12 and the support member 20 are connected by a known method, and the electrodes 16 and 16 and the wiring 22 are electrically connected via, for example, a conductive adhesive member 50 such as solder.

接着剤40を準備する工程では、樹脂皿101内に接着剤40を準備する。接着剤40は、第1ナノ粒子を含有し、第1ナノ粒子の少なくとも一部は凝集しており、以下の粘度特性を有する。粘度特性は、レオメーター(図6参照)にて25℃で測定した接着剤40の粘度が、せん断速度1s-1のとき6.0Pa・s以上30.0Pa・s以下であり、かつ、せん断速度100s-1のとき2.5Pa・s以上7.0Pa・s以下であり、せん断速度1s-1のときの粘度とせん断速度100s-1のときの粘度の差が2.0Pa・s以上である。本明細書において、せん断速度1s-1を低せん断速度、せん断速度100s-1を高せん断速度と称することがある。また、せん断速度1s-1のときの粘度とせん断速度100s-1のときの粘度の差は、2.0Pa・s以上27.5Pa・s以下であることが好ましい。 In the step of preparing the adhesive 40, the adhesive 40 is prepared in the resin dish 101. The adhesive 40 contains the first nanoparticles, at least a part of the first nanoparticles is aggregated, and has the following viscosity characteristics. The viscosity characteristics are such that the viscosity of the adhesive 40 measured at 25 ° C. with a leometer (see FIG. 6) is 6.0 Pa · s or more and 30.0 Pa · s or less at a shear rate of 1s -1 , and shearing. When the speed is 100s -1 , it is 2.5 Pa · s or more and 7.0 Pa · s or less, and the difference between the viscosity when the shear rate is 1s -1 and the viscosity when the shear rate is 100s -1 is 2.0 Pa · s or more. be. In the present specification, the shear rate 1s -1 may be referred to as a low shear rate, and the shear rate 100s -1 may be referred to as a high shear rate. Further, the difference between the viscosity when the shear rate is 1s -1 and the viscosity when the shear rate is 100s -1 is preferably 2.0 Pa · s or more and 27.5 Pa · s or less.

接着剤40の低せん断速度の粘度が特定されることによって、配置工程S3のように接着剤40にかかる応力が小さい工程において、接着剤40に配置した絶縁性部材30のズレが生じない。また、接着剤40の高せん断速度の粘度が特定されることによって、塗布工程S2及び接着工程S4のように接着剤40にかかる応力が大きい工程において、接着剤40の塗布作業性、いわゆるスタンピング性が優れる。また、低せん断速度の粘度及び高せん断速度が上記範囲であることにより、接着剤40によって形成されるフィレットが正常なものとなる。さらに、接着剤40のチクソ性を調整することによって、絶縁性部材30のズレ、接着剤40のスタンピング性、及び、接着剤40のフィレット形成性がさらに向上する。なお、本明細書におけるチクソ性とは、低せん断速度での粘度と高せん断速度での粘度の比のことである。 By specifying the viscosity of the adhesive 40 at a low shear rate, the insulating member 30 arranged on the adhesive 40 does not shift in the step where the stress applied to the adhesive 40 is small as in the arrangement step S3. Further, by specifying the viscosity of the adhesive 40 at a high shear rate, the coating workability of the adhesive 40, that is, the so-called stamping property, is obtained in a step such as the coating step S2 and the bonding step S4 in which the stress applied to the adhesive 40 is large. Is excellent. Further, when the viscosity at the low shear rate and the high shear rate are within the above ranges, the fillet formed by the adhesive 40 becomes normal. Further, by adjusting the ticking property of the adhesive 40, the deviation of the insulating member 30, the stamping property of the adhesive 40, and the fillet forming property of the adhesive 40 are further improved. The chicosis in the present specification is the ratio of the viscosity at a low shear rate to the viscosity at a high shear rate.

接着剤40は、第1ナノ粒子を含有する。第1ナノ粒子は、接着剤40の粘度特性を均一にするため、接着剤40中に分散されていることが好ましい。また、第1ナノ粒子の粒径は、1次粒径で3nm以上200nm以下であることが好ましい。なお、分散された第1ナノ粒子の少なくとも一部は、凝集している。その際、第1ナノ粒子の凝集後の2次粒径は、数10nm以上数500nm以下となる。また、第1及び第2ナノ粒子の粒径は、平均粒径(例えばD50)により定義することができる。粒径は、レーザ回折・散乱法、画像解析法(走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM))、動的光散乱法、X線小角散乱法などにより測定することができる。 The adhesive 40 contains the first nanoparticles. The first nanoparticles are preferably dispersed in the adhesive 40 in order to make the viscosity characteristics of the adhesive 40 uniform. The particle size of the first nanoparticles is preferably 3 nm or more and 200 nm or less as the primary particle size. At least a part of the dispersed first nanoparticles is aggregated. At that time, the secondary particle size of the first nanoparticles after aggregation is several tens of nm or more and several 500 nm or less. Further, the particle size of the first and second nanoparticles can be defined by the average particle size (for example, D50). The particle size can be measured by a laser diffraction / scattering method, an image analysis method (scanning electron microscope (SEM), transmission electron microscope (TEM)), dynamic light scattering method, X-ray small angle scattering method, or the like.

第1ナノ粒子の添加量は、接着剤40の粘度特性を所定範囲内とするために、接着剤40に対して0.1phr(樹脂100gに対して0.1g添加する)以上5phr以下であることが好ましい。接着剤40において、第1ナノ粒子は、粘度特性が調整しやすいため、シリカが好ましい。
また、接着剤40は、第1ナノ粒子に加えて、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化アルミニウム又はセルロースからなる少なくとも一種の第2ナノ粒子が含有されていてもよい。接着剤40は、第1ナノ粒子を含有、又は、第1ナノ粒子及び第2ナノ粒子を含有することによって、接着工程S4での接着剤40の樹脂垂れが抑制され基台11と絶縁性部材30との接着強度が向上すると共に、不要な光散乱が抑制され光取出し性が向上するという効果を奏することができる。
The amount of the first nanoparticles added is 0.1 phr (adds 0.1 g to 100 g of the resin) or more and 5 phr or less with respect to the adhesive 40 in order to keep the viscosity characteristics of the adhesive 40 within a predetermined range. Is preferable. In the adhesive 40, silica is preferable as the first nanoparticles because the viscosity characteristics can be easily adjusted.
Further, the adhesive 40 may contain at least one kind of second nanoparticles made of zirconium oxide, titanium oxide, zinc oxide, aluminum oxide or cellulose in addition to the first nanoparticles. The adhesive 40 contains the first nanoparticles, or by containing the first nanoparticles and the second nanoparticles, the resin dripping of the adhesive 40 in the bonding step S4 is suppressed, and the base 11 and the insulating member are contained. It is possible to obtain the effect that the adhesive strength with 30 is improved, unnecessary light scattering is suppressed, and the light extraction property is improved.

接着剤40は、溶剤を含有することが好ましい。接着剤40は、第1ナノ粒子を添加することで粘度が上がり、主として低せん断速度ときの粘度が上がるため、配置工程S3において、接着剤40に配置した絶縁性部材30のズレを抑制することができる。一方、接着剤40への第1ナノ粒子の添加により高せん断速度のときの粘度も低せん断速度のときの粘度と同時に上昇してしまうため、接着剤40の塗布作業性(スタンピング性)に影響が出る懸念があるが、溶剤を含有させることにより高せん断速度のときの粘度上昇を抑えることができる。 The adhesive 40 preferably contains a solvent. The viscosity of the adhesive 40 increases by adding the first nanoparticles, and the viscosity mainly at a low shear rate increases. Therefore, in the arrangement step S3, the displacement of the insulating member 30 arranged in the adhesive 40 is suppressed. Can be done. On the other hand, the addition of the first nanoparticles to the adhesive 40 increases the viscosity at high shear rate at the same time as the viscosity at low shear rate, which affects the coating workability (stamping property) of the adhesive 40. However, by containing a solvent, it is possible to suppress an increase in viscosity at a high shear rate.

溶剤は、沸点が200℃以上300℃以下であることが好ましい。また、溶剤は、無機溶剤、有機溶剤のいずれでもよいが、作業性を考慮して有機溶剤が好ましい。さらに、有機溶剤は、作業性を考慮して高沸点有機溶剤が好ましい。溶剤は、樹脂に溶解可能なものであれば特に制限されないが、具体的には、ブチルカルビトールアセテート、トリプロピレングリコールモノブチルエーテル又は炭化水素系溶剤の少なくとも一種が挙げられる。溶剤の添加量は、接着剤40の粘度特性を所定範囲内とするために、接着剤40に対して0phr以上5.0phr以下が好ましく、0.1phr以上4.0phr以下とすることがより好ましい。また、接着剤40は、さらに樹脂を含有することが好ましい。樹脂としては、前記した有機シリコーン樹脂等が用いられる。 The solvent preferably has a boiling point of 200 ° C. or higher and 300 ° C. or lower. The solvent may be either an inorganic solvent or an organic solvent, but an organic solvent is preferable in consideration of workability. Further, the organic solvent is preferably a high boiling point organic solvent in consideration of workability. The solvent is not particularly limited as long as it can be dissolved in a resin, and specific examples thereof include at least one of butyl carbitol acetate, tripropylene glycol monobutyl ether and a hydrocarbon solvent. The amount of the solvent added is preferably 0 phr or more and 5.0 phr or less, and more preferably 0.1 phr or more and 4.0 phr or less with respect to the adhesive 40 in order to keep the viscosity characteristics of the adhesive 40 within a predetermined range. .. Further, the adhesive 40 preferably further contains a resin. As the resin, the above-mentioned organic silicone resin or the like is used.

準備工程S1における接着剤40の粘度調整は、あらかじめ実験計画法を用いて算出したプロファイルから、必要な粘度特性に対して、必要な樹脂量、第1ナノ粒子及び溶剤の添加量を算出して行う。 To adjust the viscosity of the adhesive 40 in the preparation step S1, calculate the required amount of resin, the amount of first nanoparticles and the amount of solvent added to the required viscosity characteristics from the profile calculated in advance using the design of experiments. conduct.

(塗布工程)
図4Bに示すように、塗布工程S2は、基台11の第1面13に接着剤40を塗布する工程である。そして、接着剤40の第1面13への塗布方法は、公知の方法で行い、例えば、ダイボンダーのスタンプピン102で行う。
(Applying process)
As shown in FIG. 4B, the coating step S2 is a step of applying the adhesive 40 to the first surface 13 of the base 11. The method of applying the adhesive 40 to the first surface 13 is a known method, for example, using a stamp pin 102 of a die bonder.

(配置工程)
図4Cに示すように、配置工程S3は、塗布された接着剤40に絶縁性部材30を配置する。絶縁性部材30の配置方法は、公知の方法で行い、例えば、ダイボンダーのコレット103で絶縁性部材30を接着剤40側に降下させて、接着剤40を押圧する。なお、複数の絶縁性部材30の各々を接着剤40側に降下させて、複数の接着剤40の各々を押圧してもよいし、1つの絶縁性部材30を接着剤40側に降下させて、複数の接着剤40の各々を押圧してもよい。
(Placement process)
As shown in FIG. 4C, in the arrangement step S3, the insulating member 30 is arranged on the applied adhesive 40. The method of arranging the insulating member 30 is a known method. For example, the insulating member 30 is lowered to the adhesive 40 side by a collet 103 of a die bonder, and the adhesive 40 is pressed. In addition, each of the plurality of insulating members 30 may be lowered to the adhesive 40 side to press each of the plurality of adhesives 40, or one insulating member 30 may be lowered to the adhesive 40 side. , Each of the plurality of adhesives 40 may be pressed.

(接着工程)
図4D、図4Eに示すように、接着工程S4は、接着剤40を硬化して基台11と絶縁性部材30とを接着する工程である。
接着工程S4では、接着剤40を硬化することによって、半導体発光素子10(基台11)の側面にフィレットが形成される。また、フィレットの形状は、接着剤40の粘度特性を所定範囲内に制御することによって形成される。また、接着剤40によって形成されるフィレットの形状の制御は、例えば、スタンプピン102での塗布であれば、スキージの開度を調節して塗布される接着剤量を調節する必要がある。接着剤40の硬化については、加熱乾燥、自然乾燥等の従来公知の方法で行う。
(Adhesion process)
As shown in FIGS. 4D and 4E, the bonding step S4 is a step of curing the adhesive 40 to bond the base 11 and the insulating member 30.
In the bonding step S4, a fillet is formed on the side surface of the semiconductor light emitting device 10 (base 11) by curing the adhesive 40. Further, the shape of the fillet is formed by controlling the viscosity characteristic of the adhesive 40 within a predetermined range. Further, in order to control the shape of the fillet formed by the adhesive 40, for example, in the case of application with the stamp pin 102, it is necessary to adjust the opening degree of the squeegee to adjust the amount of the adhesive to be applied. The adhesive 40 is cured by a conventionally known method such as heat drying and natural drying.

図2Bに示すように、フィレット形状としては、側面視において、半導体発光素子10(基台11)の側面を覆う接着剤40の下辺41は、半導体発光素子10の下辺に達しないように形成されると共に、半導体発光素子10の側面同士の角部から側面の中央に向かって凸状に湾曲している形状であることが好ましい。また、フィレット形状は、断面視において、側面を覆う接着剤40の外面42が、絶縁性部材30から半導体発光素子10の側面側に凹状に湾曲している形状であることが好ましい。このようなフィレット形状によって、半導体発光素子10(基台11)と絶縁性部材30との接着強度が向上する。 As shown in FIG. 2B, the fillet shape is such that the lower side 41 of the adhesive 40 covering the side surface of the semiconductor light emitting device 10 (base 11) does not reach the lower side of the semiconductor light emitting device 10 in the side view. In addition, it is preferable that the semiconductor light emitting device 10 has a shape that is convexly curved from the corners of the side surfaces toward the center of the side surfaces. Further, the fillet shape is preferably a shape in which the outer surface 42 of the adhesive 40 covering the side surface is concavely curved from the insulating member 30 to the side surface side of the semiconductor light emitting element 10. Due to such a fillet shape, the adhesive strength between the semiconductor light emitting device 10 (base 11) and the insulating member 30 is improved.

(被覆工程)
被覆工程S5は、接着工程S4の後に、半導体発光素子10、接着剤40及び絶縁性部材30を覆う被覆部材60を形成する工程である。被覆工程S6は、トランスファ成形、射出成形、圧縮成形、ポッティング等により液状状態の被覆部材60を、半導体発光素子10、接着剤40及び絶縁性部材30を覆うように充填する。絶縁性部材30の上面が被覆部材60で覆われた場合は、被覆部材60を除去する。これにより、絶縁性部材30を被覆部材60から露出させる。被覆部材60を除去する方法としては、公知の方法を用いることができる。例えば、研削、ブラストが挙げられる。その後、被覆部材60を加熱乾燥、自然乾燥等により硬化させる。
(Coating process)
The coating step S5 is a step of forming the coating member 60 that covers the semiconductor light emitting element 10, the adhesive 40, and the insulating member 30 after the bonding step S4. In the coating step S6, the coating member 60 in a liquid state is filled by transfer molding, injection molding, compression molding, potting or the like so as to cover the semiconductor light emitting element 10, the adhesive 40, and the insulating member 30. When the upper surface of the insulating member 30 is covered with the covering member 60, the covering member 60 is removed. This exposes the insulating member 30 from the covering member 60. As a method for removing the covering member 60, a known method can be used. For example, grinding and blasting can be mentioned. After that, the covering member 60 is cured by heat drying, natural drying, or the like.

被覆部材60は、反射性物質を含有する光反射性の部材であることが好ましい。被覆部材60は、上方への光取出し効率の観点から、半導体発光素子10の発光ピーク波長における光反射率が、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりいっそう好ましい。さらに、被覆部材60は、白色であることが好ましい。よって、被覆部材60は、母材樹脂中に反射性物質として白色顔料を含有してなることが好ましい。被覆部材60の母材樹脂は、例えばシリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、又はこれらの変性樹脂が挙げられる。白色顔料は、酸化チタン、酸化亜鉛、酸化マグネシウム等を用いることができる。 The covering member 60 is preferably a light-reflecting member containing a reflective substance. From the viewpoint of upward light extraction efficiency, the covering member 60 preferably has a light reflectance at the emission peak wavelength of the semiconductor light emitting device 10 of 70% or more, more preferably 80% or more, and more preferably 90%. The above is even more preferable. Further, the covering member 60 is preferably white. Therefore, it is preferable that the covering member 60 contains a white pigment as a reflective substance in the base resin. Examples of the base material resin of the covering member 60 include silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, and modified resins thereof. As the white pigment, titanium oxide, zinc oxide, magnesium oxide and the like can be used.

(個片化工程)
個片化工程S6は、レーザ照射あるいはブレード等の工具により半導体発光素子10及び絶縁性部材30の間の切断線CL(図4E、図4F参照)に沿って、支持部材20及び被覆部材60を切断して、発光装置1を作製する工程である。なお、配置工程S3において複数の半導体発光素子10に対して1つの絶縁性部材30を配置する場合には、個片化工程S6は、絶縁性部材30、被覆部材60及び支持部材20を切断して発光装置1を作製する工程である。
(Individualization process)
In the individualization step S6, the support member 20 and the covering member 60 are formed along the cutting line CL (see FIGS. 4E and 4F) between the semiconductor light emitting element 10 and the insulating member 30 by laser irradiation or a tool such as a blade. This is a step of cutting to produce a light emitting device 1. When one insulating member 30 is arranged for a plurality of semiconductor light emitting elements 10 in the arrangement step S3, the individualizing step S6 cuts the insulating member 30, the covering member 60, and the support member 20. This is a step of manufacturing the light emitting device 1.

[第2実施形態]
第2実施形態に係る発光装置の製造方法で製造された発光装置について説明する。
図5は、第2実施形態に係る発光装置の製造方法で製造された発光装置の構成を示す断面図である。
[Second Embodiment]
The light emitting device manufactured by the method for manufacturing the light emitting device according to the second embodiment will be described.
FIG. 5 is a cross-sectional view showing a configuration of a light emitting device manufactured by the method for manufacturing a light emitting device according to a second embodiment.

<発光装置>
図5に示すように、発光装置1Bは、基台11がセラミックス基板71であり、絶縁性部材30が半導体発光素子の絶縁性の基板であること以外は、第1実施形態に係る発光装置の製造方法で製造された発光装置1と同様の構成である。
また、発光装置1Bは、接着剤40を介して基台11に接着された絶縁性部材30の周囲に配置された枠状樹脂73と、枠状樹脂73の枠内に配置された絶縁性部材30を枠内に封止する封止樹脂74と、を備えることが好ましい。
<Light emitting device>
As shown in FIG. 5, the light emitting device 1B is the light emitting device according to the first embodiment, except that the base 11 is a ceramic substrate 71 and the insulating member 30 is an insulating substrate of a semiconductor light emitting device. It has the same configuration as the light emitting device 1 manufactured by the manufacturing method.
Further, the light emitting device 1B has a frame-shaped resin 73 arranged around the insulating member 30 bonded to the base 11 via the adhesive 40 and an insulating member arranged in the frame of the frame-shaped resin 73. It is preferable to include a sealing resin 74 that seals 30 in the frame.

基台11は、セラミックス基板71と、その周囲に固着されたガラスエポキシ樹脂等の樹脂からなる樹脂基板72と、からなる。また、基台11においては、セラミックス基板71の上面には接着剤40を介して絶縁性部材30(半導体発光素子の絶縁性の基板)が配置され、樹脂基板72の上面には配線22が配置される。 The base 11 is composed of a ceramic substrate 71 and a resin substrate 72 made of a resin such as a glass epoxy resin fixed around the ceramic substrate 71. Further, in the base 11, the insulating member 30 (insulating substrate of the semiconductor light emitting element) is arranged on the upper surface of the ceramic substrate 71 via the adhesive 40, and the wiring 22 is arranged on the upper surface of the resin substrate 72. Will be done.

第2実施形態における半導体発光素子は、絶縁性部材30(絶縁性の基板)に半導体12が積層されており(図2A、図2B参照)、絶縁性部材30側が接着剤40を介して基台11に接着されている。また、半導体発光素子は、半導体12の絶縁性部材30(絶縁性の基板)とは反対側の面に電極16,16(図2A、図2B参照)を有し、その電極16,16は銀線等からなるワイヤ75で配線22に電気的に接続されている。 In the semiconductor light emitting device of the second embodiment, the semiconductor 12 is laminated on the insulating member 30 (insulating substrate) (see FIGS. 2A and 2B), and the insulating member 30 side is a base via the adhesive 40. It is adhered to 11. Further, the semiconductor light emitting device has electrodes 16 and 16 (see FIGS. 2A and 2B) on the surface of the semiconductor 12 opposite to the insulating member 30 (insulating substrate), and the electrodes 16 and 16 are silver. It is electrically connected to the wiring 22 by a wire 75 made of a wire or the like.

枠状樹脂73は、エポキシ樹脂、シリコーン樹脂等からなり、配線22を覆うように配置される。また、封止樹脂74は、エポキシ樹脂、シリコーン樹脂等からなり、蛍光体粒子を含有することが好ましい。 The frame-shaped resin 73 is made of an epoxy resin, a silicone resin, or the like, and is arranged so as to cover the wiring 22. Further, the sealing resin 74 is made of an epoxy resin, a silicone resin, or the like, and preferably contains phosphor particles.

<発光装置の製造方法>
第2実施形態に係る発光装置の製造方法は、被覆工程S5を含み、個片化工程S6を行わないこと以外は、第1実施形態に係る発光装置の製造方法と同様である。
(被覆工程)
被覆工程S5では、半導体発光素子の電極16,16と、基台11(樹脂基板72)に設けられた配線22とをワイヤ75で電気的に接続し、配線22を覆うように枠状樹脂73を形成し、枠状樹脂73の枠内に配置された半導体発光素子を封止するように封止樹脂74を形成する。
<Manufacturing method of light emitting device>
The method for manufacturing the light emitting device according to the second embodiment is the same as the method for manufacturing the light emitting device according to the first embodiment, except that the coating step S5 is included and the individualization step S6 is not performed.
(Coating process)
In the coating step S5, the electrodes 16 and 16 of the semiconductor light emitting device and the wiring 22 provided on the base 11 (resin substrate 72) are electrically connected by the wire 75, and the frame-shaped resin 73 covers the wiring 22. Is formed, and the sealing resin 74 is formed so as to seal the semiconductor light emitting element arranged in the frame of the frame-shaped resin 73.

本開示の実施例1~5及び比較例1~3においては、被覆工程及び個片化工程を行わず、接着工程までを行って、その効果を確認した。本実施例では、説明のために、実施例1~5に係る製造過程の発光装置及び比較例1~3の製造過程の発光装置と称することがある。
また、本明細書において製造過程の発光装置とは、以下のような状態を示す。支持部材の配線に基台(絶縁性の基板)を備える複数の半導体発光素子をフェイスダウンで半田接合した。半田接合された複数の半導体発光素子の基台の光取出し面に、予め粘度を調整した接着剤を塗布し、塗布された接着剤の上に複数の絶縁性部材(透光性部材)を配置した。絶縁性部材を半導体発光素子側に押圧した後、熱硬化により接着剤を硬化させて半導体発光素子と絶縁性部材とを接着した。
In Examples 1 to 5 and Comparative Examples 1 to 3 of the present disclosure, the effect was confirmed by performing the bonding step without performing the coating step and the individualizing step. In this example, for the sake of explanation, it may be referred to as a light emitting device in the manufacturing process according to Examples 1 to 5 and a light emitting device in the manufacturing process of Comparative Examples 1 to 3.
Further, in the present specification, the light emitting device in the manufacturing process indicates the following states. A plurality of semiconductor light emitting devices provided with a base (insulating substrate) were solder-bonded face-down to the wiring of the support member. An adhesive whose viscosity has been adjusted in advance is applied to the light extraction surface of the bases of multiple solder-bonded semiconductor light emitting elements, and a plurality of insulating members (translucent members) are placed on the applied adhesive. did. After pressing the insulating member toward the semiconductor light emitting device, the adhesive was cured by thermosetting to bond the semiconductor light emitting device and the insulating member.

実施例1~5に係る製造過程の発光装置及び比較例1~3の製造過程の発光装置の各構成要素の詳細は、以下のとおりである。
(支持部材)
BTレジン基材の表面と内部とに配線を有する支持部材を用いた。
(半導体発光素子)
サファイア基板に448~450nmに発光ピーク波長を有する窒化物系半導体を積層した矩形の青色LEDを用いた。
(絶縁性部材)
KSF系蛍光体、βサイアロンを含有するフェニルシリコーン樹脂を用いた。
(接着剤)
1次粒径が12nmのナノシリカ、高沸点炭化水素系溶剤を添加したフェニルシリコーン樹脂を用いた。ナノシリカ及び溶剤の添加量、接着剤の粘度を表1に示す。なお、コーンプレート112は平面視が直径40mmの円形で、接着剤40と接する面の円の中心から外周までの傾斜角度が2度のものを使用した。
The details of each component of the light emitting device in the manufacturing process according to Examples 1 to 5 and the light emitting device in the manufacturing process according to Comparative Examples 1 to 3 are as follows.
(Support member)
A support member having wiring on the surface and inside of the BT resin base material was used.
(Semiconductor light emitting device)
A rectangular blue LED in which a nitride semiconductor having an emission peak wavelength of 448 to 450 nm was laminated on a sapphire substrate was used.
(Insulating member)
A phenylsilicone resin containing a KSF-based phosphor and β-sialon was used.
(glue)
Nanosilica having a primary particle size of 12 nm and a phenylsilicone resin to which a high boiling hydrocarbon solvent was added were used. Table 1 shows the amount of nanosilica and solvent added and the viscosity of the adhesive. The cone plate 112 was a circle having a diameter of 40 mm in a plan view, and an inclination angle of 2 degrees from the center of the circle of the surface in contact with the adhesive 40 to the outer circumference was used.

(接着剤の粘度測定方法)
図6に示すように、レオメーター110(TA Instruments製 DHR-3)を用いて、以下の手順で接着剤40の粘度を測定した。その結果を表1に示す。
(1)25℃に温調したプレート111に接着剤40をのせる。
(2)コーンプレート112を温調したプレート111の上面から102μmの高さまで下して、接着剤40を挟み込む。
(3)コーンプレート112からはみ出た余分の接着剤40をかきとる。
(4)粘度測定するギャップ52μmまでコーンプレート112を下す。
(5)せん断速度1s-1でトルク(粘度)が安定した時間の粘度値を取得する。トルクの安定は、10s毎の測定を繰り返して、最新の3回のトルク値のバラつきが5%以内で安定したとみなす。最大120sまで測定するが、仮にトルクが40sで安定すれば、40sの粘度値を取得する。
(6)せん断速度100s-1でトルク(粘度)が安定した時間の粘度値を取得する。トルクの安定は、10s毎の測定を繰り返して、最新の3回のトルク値のバラつきが5%以内で安定したとみなす。最大120sまで測定するが、仮にトルクが40sで安定すれば、40sの粘度値を取得する。
(7)取得されたせん断速度1s-1の粘度値と、せん断速度100s-1の粘度値と、の差を算出する。
(Adhesive viscosity measurement method)
As shown in FIG. 6, the viscosity of the adhesive 40 was measured by the following procedure using a reometer 110 (DHR-3 manufactured by TA Instruments). The results are shown in Table 1.
(1) The adhesive 40 is placed on the plate 111 whose temperature has been adjusted to 25 ° C.
(2) The cone plate 112 is lowered to a height of 102 μm from the upper surface of the temperature-controlled plate 111, and the adhesive 40 is sandwiched.
(3) Scrape off the excess adhesive 40 protruding from the cone plate 112.
(4) Lower the cone plate 112 to a gap of 52 μm for measuring viscosity.
(5) Obtain the viscosity value for a time when the torque (viscosity) is stable at a shear rate of 1s -1 . For torque stability, the measurement is repeated every 10s, and it is considered that the latest three torque value variations are stable within 5%. It measures up to 120 s, but if the torque stabilizes at 40 s, the viscosity value of 40 s is acquired.
(6) Obtain the viscosity value for a time when the torque (viscosity) is stable at a shear rate of 100s -1 . For torque stability, the measurement is repeated every 10s, and it is considered that the latest three torque value variations are stable within 5%. It measures up to 120 s, but if the torque stabilizes at 40 s, the viscosity value of 40 s is acquired.
(7) The difference between the acquired viscosity value of the shear rate 1s -1 and the viscosity value of the shear rate 100s -1 is calculated.

<特性の評価>
実施例1~5及び比較例1~3について、それぞれ32個の絶縁性部材のズレ、フィレット出来栄えを以下の基準で評価し、その結果を表1に示す。なお、接着剤の塗布の際の作業性(スタンピング性)についても以下の基準で評価し、その結果を表1に示す。
<Evaluation of characteristics>
For Examples 1 to 5 and Comparative Examples 1 to 3, the deviation of the 32 insulating members and the fillet performance were evaluated according to the following criteria, and the results are shown in Table 1. The workability (stamping property) when applying the adhesive was also evaluated according to the following criteria, and the results are shown in Table 1.

(絶縁性部材30のズレ)
実施例1~5及び比較例1~3について、それぞれ32個の絶縁性部材の外観及び絶縁性部材のズレを、目視及びNicon製CNC(Computer Numerical Control)画像測定システムNEXIV(型番VMZ-R6555)にて測定し、評価した。
図7に示すように、外観については、平面視において、絶縁性部材30が傾いて隣接する絶縁性部材30に接触又は接触しそうになっているものを「×:不良」とし、そうでないものを「〇:良好」とした。
NEXIVでの測定については、長方形状の絶縁性部材30の長手方向の側面が隣り合うように並んだ32個の製造過程の発光装置について、両端に位置する製造過程の発光装置の中心を結ぶ直線を基準線Lとし、この基準線Lと32個の絶縁性部材30の短手方向の側面とがなす角度(θ)をそれぞれ測定し、測定ばらつきを示す標準偏差(σ)が0.5以上を「×:不良」、0.4以内を「〇:良好」とした。
(Deviation of insulating member 30)
For Examples 1 to 5 and Comparative Examples 1 to 3, the appearance of each of the 32 insulating members and the deviation of the insulating members are visually checked and the CNC (Computer Natural Control) image measurement system NEXIV (model number VMZ-R6555) manufactured by Nicoon is used. It was measured and evaluated at.
As shown in FIG. 7, regarding the appearance, in a plan view, those in which the insulating member 30 is tilted and is in contact with or is likely to come into contact with the adjacent insulating member 30 are regarded as "x: defective", and those which are not are regarded as "x: defective". "○: Good".
For the measurement by NEXIV, a straight line connecting the centers of the light emitting devices in the manufacturing process located at both ends of the 32 light emitting devices in the manufacturing process in which the longitudinal side surfaces of the rectangular insulating member 30 are arranged adjacent to each other. Is the reference line L, and the angle (θ) formed by the reference line L and the side surfaces of the 32 insulating members 30 in the lateral direction is measured, and the standard deviation (σ) indicating the measurement variation is 0.5 or more. Was "x: defective", and within 0.4 was "○: good".

(フィレット出来栄え)
実施例1~5及び比較例1~3について、硬化後の接着剤のフィレットを観察し、評価した。樹脂垂れが観察されないもの、フィレットが絶縁性部材30から半導体発光素子の側面側に凹状に湾曲して形成されているものを「〇:良好」とし、樹脂垂れが観察されたもの、フィレットが半導体発光素子の側面に形成されていないものを「×:不良」とした。
(Fillet workmanship)
For Examples 1 to 5 and Comparative Examples 1 to 3, the fillets of the adhesive after curing were observed and evaluated. Those in which no resin dripping is observed, those in which the fillet is formed by being concavely curved from the insulating member 30 to the side surface side of the semiconductor light emitting device are regarded as "○: good", and those in which resin dripping is observed, the fillet is a semiconductor. Those not formed on the side surface of the light emitting element were regarded as "x: defective".

(スタンピング性)
実施例1~5及び比較例1~3において、接着剤の塗布の作業性について評価した。図4Bに示すように、スタンプピン102で樹脂皿101(図4A参照)から一定量の接着剤40を取る際の作業性が悪いものを「×:不良」、作業性がよいものを「〇:良好」とした。また、スタンプピン102で一定量の接着剤40を基台11に塗布する際の作業性が悪いものを「×:不良」、作業性がよいものを「〇:良好」とした。
(Stamping property)
In Examples 1 to 5 and Comparative Examples 1 to 3, the workability of applying the adhesive was evaluated. As shown in FIG. 4B, the one with poor workability when taking a certain amount of the adhesive 40 from the resin dish 101 (see FIG. 4A) with the stamp pin 102 is “×: defective”, and the one with good workability is “〇”. : Good ". Further, when a certain amount of the adhesive 40 was applied to the base 11 with the stamp pin 102, the one having poor workability was designated as "x: defective", and the one having good workability was designated as "◯: good".

Figure 2022039373000002
Figure 2022039373000002

表1に示すように、実施例1~5は、接着剤の粘度特性が所定範囲内であるため、絶縁性部材のズレ、スタンピング性及びフィレット出来栄えにおいて優れるものであった。これに対し、比較例1、2は、1S-1の粘度特性が下限値未満であるため、絶縁性部材のズレにおいて劣っていた。比較例3は、1S-1及び100S-1の粘度特性が上限値を超えるため、スタンピング性及びフィレット出来栄えにおいて劣っていた。 As shown in Table 1, in Examples 1 to 5, since the viscosity characteristics of the adhesive were within a predetermined range, they were excellent in the displacement of the insulating member, the stamping property, and the fillet finish. On the other hand, Comparative Examples 1 and 2 were inferior in the deviation of the insulating member because the viscosity characteristic of 1S -1 was less than the lower limit. Comparative Example 3 was inferior in stamping property and fillet performance because the viscosity characteristics of 1S -1 and 100S -1 exceeded the upper limit.

1 発光装置
1B 発光装置
10 半導体発光素子
11 基台
12 半導体
13 第1面
16 電極
20 支持部材
21 基材
22 配線
23 充填部材
30 絶縁性部材
40 接着剤
41 下辺
42 外面
50 導電性接着部材
60 被覆部材
71 セラミックス基板
72 樹脂基板
73 枠状樹脂
74 封止樹脂
75 ワイヤ
101 樹脂皿
102 スタンプピン
103 ゴレット
110 レオメーター
111 プレート
112 コーンプレート
S1 準備工程
S2 塗布工程
S3 配置工程
S4 接着工程
S5 被覆工程
S6 個片化工程
1 Light emitting device 1B Light emitting device 10 Semiconductor light emitting element 11 Base 12 Semiconductor 13 First surface 16 Electrode 20 Support member 21 Base material 22 Wiring 23 Filling member 30 Insulating member 40 Adhesive 41 Lower side 42 Outer surface 50 Conductive adhesive member 60 Member 71 Ceramic substrate 72 Resin substrate 73 Frame-shaped resin 74 Encapsulating resin 75 Wire 101 Resin dish 102 Stamp pin 103 Golet 110 Leometer 111 Plate 112 Cone plate S1 Preparation process S2 Coating process S3 Arrangement process S4 Adhesive process S5 Coating process S6 Clearing process

Claims (9)

第1面を有する絶縁性の基台と接着剤を準備する準備工程と、
前記第1面に前記接着剤を塗布する塗布工程と、
塗布された前記接着剤に絶縁性部材を配置する配置工程と、
前記接着剤を硬化して前記基台と前記絶縁性部材を接着する接着工程と、を含み、
前記準備工程において、前記接着剤は第1ナノ粒子を含有し、前記第1ナノ粒子の少なくとも一部は凝集しており、レオメーターにて25℃で測定した前記接着剤の粘度は、せん断速度1s-1のとき6.0Pa・s以上30.0Pa・s以下であり、かつ、せん断速度100s-1のとき2.5Pa・s以上7.0Pa・s以下であり、せん断速度1s-1のときの粘度とせん断速度100s-1のときの粘度の差が2.0Pa・s以上である発光装置の製造方法。
A preparatory step to prepare an insulating base with a first surface and an adhesive,
A coating step of applying the adhesive to the first surface and
An arrangement step of arranging an insulating member on the applied adhesive, and
It comprises a bonding step of curing the adhesive to bond the base and the insulating member.
In the preparation step, the adhesive contains the first nanoparticles, at least a part of the first nanoparticles is agglomerated, and the viscosity of the adhesive measured at 25 ° C. with a leometer is the shear rate. When 1s -1 , it is 6.0 Pa · s or more and 30.0 Pa · s or less, and when the shear rate is 100 s -1 , it is 2.5 Pa · s or more and 7.0 Pa · s or less, and the shear rate is 1s -1 . A method for manufacturing a light emitting device in which the difference between the viscosity at the time and the viscosity at a shear rate of 100 s -1 is 2.0 Pa · s or more.
前記準備工程における前記接着剤は、溶剤が含有されている請求項1に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the adhesive in the preparation step contains a solvent. 前記溶剤は、沸点が200℃以上300℃以下である請求項2に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 2, wherein the solvent has a boiling point of 200 ° C. or higher and 300 ° C. or lower. 前記溶剤は、ブチルカルビトールアセテート、トリプロピレングリコールモノブチルエーテル又は炭化水素系溶剤の少なくとも一種である請求項2又は請求項3に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 2 or 3, wherein the solvent is at least one of butyl carbitol acetate, tripropylene glycol monobutyl ether, and a hydrocarbon solvent. 前記第1ナノ粒子は、前記接着剤中に分散されている請求項1乃至4のいずれか一項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 4, wherein the first nanoparticles are dispersed in the adhesive. 前記第1ナノ粒子の粒径は、1次粒径で3nm以上200nm以下である請求項1乃至請求項5のいずれか一項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 5, wherein the first nanoparticles have a primary particle size of 3 nm or more and 200 nm or less. 前記第1ナノ粒子は、シリカである請求項1乃至請求項6のいずれか一項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 6, wherein the first nanoparticles are silica. 前記準備工程において、前記第1ナノ粒子の添加量は、前記接着剤に対して0.1phr以上5.0phr以下である請求項1乃至請求項7のいずれか一項に記載の発光装置の製造方法。 The manufacture of the light emitting device according to any one of claims 1 to 7, wherein in the preparation step, the amount of the first nanoparticles added is 0.1 phr or more and 5.0 phr or less with respect to the adhesive. Method. 前記準備工程において、前記接着剤は、前記第1ナノ粒子に加えて、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化アルミニウム又はセルロースからなる少なくとも一種の第2ナノ粒子が含有されている請求項1乃至請求項8のいずれか一項に記載の発光装置の製造方法。 In the preparation step, the adhesive contains at least one kind of second nanoparticles composed of zirconium oxide, titanium oxide, zinc oxide, aluminum oxide or cellulose in addition to the first nanoparticles. The method for manufacturing a light emitting device according to any one of claims 8.
JP2020144360A 2020-08-28 2020-08-28 Manufacturing method of light-emitting device Pending JP2022039373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020144360A JP2022039373A (en) 2020-08-28 2020-08-28 Manufacturing method of light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020144360A JP2022039373A (en) 2020-08-28 2020-08-28 Manufacturing method of light-emitting device

Publications (1)

Publication Number Publication Date
JP2022039373A true JP2022039373A (en) 2022-03-10

Family

ID=80499166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020144360A Pending JP2022039373A (en) 2020-08-28 2020-08-28 Manufacturing method of light-emitting device

Country Status (1)

Country Link
JP (1) JP2022039373A (en)

Similar Documents

Publication Publication Date Title
US11038089B2 (en) Light emitting device
JP4905009B2 (en) Method for manufacturing light emitting device
JP6587161B2 (en) Light emitting device
JP5083503B2 (en) Light emitting device and lighting device
JP5110744B2 (en) Light emitting device and manufacturing method thereof
US20160035952A1 (en) Light emitting device and method for manufacturing light emitting device
WO2012144030A1 (en) Light emitting device and method for manufacturing same
JP6387954B2 (en) Method for manufacturing light emitting device using wavelength conversion member
JP5307364B2 (en) Method for producing phosphor-containing glass and method for producing solid-state device
US20080284310A1 (en) Light emitting device, light source and method of making the device
US11114583B2 (en) Light emitting device encapsulated above electrodes
JP5454154B2 (en) Light emitting device and method for manufacturing light emitting device
JP2009059883A (en) Light emitting device
JP2014120722A (en) Light emitting device and manufacturing method of the same
JP2012069645A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2006269778A (en) Optical device
JP2008153553A (en) Light-emitting device and method of manufacturing same
JP2005223222A (en) Solid element package
TW201810719A (en) Light-emitting device and manufacturing method thereof
JP5200471B2 (en) Light emitting device and manufacturing method thereof
JP2006080312A (en) Light emitting device and its manufacturing method
US20150200336A1 (en) Wafer level contact pad standoffs with integrated reflector
US9755105B2 (en) Method for producing light emitting device
JP7208495B2 (en) Light source device
JP5287643B2 (en) Optical device manufacturing method and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416