JP2022037696A - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP2022037696A
JP2022037696A JP2020141955A JP2020141955A JP2022037696A JP 2022037696 A JP2022037696 A JP 2022037696A JP 2020141955 A JP2020141955 A JP 2020141955A JP 2020141955 A JP2020141955 A JP 2020141955A JP 2022037696 A JP2022037696 A JP 2022037696A
Authority
JP
Japan
Prior art keywords
partition wall
color
microlens
height
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020141955A
Other languages
English (en)
Inventor
智美 澤野
Tomomi Sawano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2020141955A priority Critical patent/JP2022037696A/ja
Publication of JP2022037696A publication Critical patent/JP2022037696A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

Figure 2022037696000001
【課題】低背化し、かつ感度特性が良好な固体撮像素子を提供する。
【解決手段】本実施形態に係る固体撮像素子10は、複数の光電変換素子16が2次元的に配置された半導体基板15と、各光電変換素子16と対向可能な位置で半導体基板15上に形成された、カラーフィルタとマイクロレンズとが一体となったカラーマイクロレンズ12と、複数のカラーマイクロレンズ12の間に配置された複数の隔壁13と、を備えることで複数の画素が2次元的に配置された固体撮像素子であって、隔壁13は、透明な材料で形成されていることを特徴とする。
【選択図】図2

Description

本発明は、固体撮像素子に関する。
近年では、ビデオカメラ、デジタルカメラ、カメラ付き携帯電話に搭載される撮像装置の高解像度化が進められている。撮像装置に組み込まれるCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)センサー等の固体撮像素子の画素微細化に伴い、1画素あたりに入射する光量の減少による感度特性の低下が問題となっている。
固体撮像素子には、感度低下を抑えるために、受光素子の入射側に、画素(光電変換素子)に一対一に対応させてマイクロレンズを形成する方式が広く用いられる。マイクロレンズを形成することで、入射光を効率よく光電変換素子に集光することができ、感度特性を向上させることができる。
固体撮像素子の各画素には、入射する光の経路に特定の波長の光を透過させるカラーフィルタを形成することで、対象物の色情報を得ることを可能とする。一般に、1画素に対応して特定の色のカラーフィルタを形成し、規則的に多数配列することにより、色分解した画像情報を得ることができる。カラーフィルタの色としては、赤(R)、緑(G)、青(B)の3色からなる3原色系、あるいは、シアン(C)、マゼンタ(M)、イエロー(Y)からなる補色系が一般的であり、特に3原色系が多く使われている。
また、固体撮像素子に用いられる技術として、マイクロレンズとカラーフィルタとが一体化したカラーマイクロレンズの構成が開示されている(特許文献1参照)。特許文献1に開示されている構成は、カラーマイクロレンズ間に隔壁が設けられており、その隔壁を設けることで、斜入射光に起因した混色を抑制する効果が得られるとされている。
国際公開第2019/220861号
特許文献1に記載の構成は、カラーマイクロレンズ間に配置された隔壁に金属材料を用いており、画素に入射した光が、金属の隔壁部分にて吸収されてしまい、感度特性の低下が生じるおそれがある。
本発明は、上述した課題に鑑みてなされたものであって、低背化し、かつ感度特性が良好な固体撮像素子を提供する。
課題を解決するために、本発明の一態様は、複数の光電変換素子が2次元的に配置された半導体基板と、上記各光電変換素子と対向可能な位置で上記半導体基板上に形成された、カラーフィルタとマイクロレンズとが一体となったカラーマイクロレンズと、複数の上記カラーマイクロレンズの間に配置された複数の隔壁と、を備えることで複数の画素が2次元的に配置された固体撮像素子であって、上記隔壁は、透明な材料で形成されていることを特徴とする。
本発明の態様によれば、低背化し、かつ感度特性が良好な固体撮像素子の提供が可能となる。
本発明の実施形態に係る固体撮像素子の部分概略を示す上面図である。 図1の点線I-IIに沿った固体撮像素子の構造を概略的に示す断面図である。 比較例1における固体撮像素子の構造を概略的に示す断面図である。 比較例2における固体撮像素子の構造を概略的に示す断面図である。 本発明の実施例におけるシミュレーションに使用した固体撮像素子の構造を示す上面図(a)、及びそのシミュレーションに使用した固体撮像素子の構造を示す断面図(b)である。 垂直入射における感度特性を示す図である。 斜入射における感度特性を示す図である。 本発明の実施例におけるカラーマイクロレンズの高さに対する隔壁の高さの比率(高さ比率R)とSNR10との関係を示す図である。 本発明の実施例における隔壁の幅とSNR10との関係を示す図である。
以下、本発明の実施形態に係る固体撮像素子について、図面を参照しながら説明する。
ここで、各図に示す構成は模式的なものであり、厚さと平面寸法との関係、各層の厚さの比率等は現実のものとは異なる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造等が下記のものに限定されるものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
本実施形態の固体撮像素子では、図1に示すように、緑色画素11Gの数と赤色画素11Rの数と青色画素11Bの数の比率が2:1:1となるベイヤー配列にしたがって、4画素を1単位とした配列が周期的に並んでいる。赤色画素11Rは、赤色波長光の強度を検出する画素であり、緑色画素11Gは、緑色波長光の強度を検出する画素であり、青色画素11Bは、青色波長光の強度を検出する画素である。
平面視において、各カラーマイクロレンズ12は、各画素の領域に一致する。
図2は、図1の点線I-IIに沿った固体撮像素子10の構造を概略的に示す断面図である。
図2に示すように、固体撮像素子10において、半導体基板15の内部には、入射した光を電荷へと変換する作用を持つ複数の光電変換素子16が設けられている。光電変換素子16は、図1に示す画素11毎に設けられ、複数の光電変換素子16が2次元的に配置される。
半導体基板15は、例えば、シリコンで構成される。光電変換素子16は、例えば、リンなどの元素を半導体基板15に添加することで形成される。
半導体基板15の上には、平坦化層14が形成される。平坦化層14は、例えば、シリコン酸化膜などから形成される。また、入射光の反射を低減するために、平坦化層14と半導体基板15との界面には、反射防止膜を、金属酸化物で形成してもよい。
平坦化層14の上には、カラーフィルタとマイクロレンズとが一体化したカラーマイクロレンズ12が複数形成される。赤色画素11Rには、カラーマイクロレンズ12Rが、緑色画素11Gには、カラーマイクロレンズ12Gが、青色画素11Bには、カラーマイクロレンズ12Bがそれぞれ対応して形成されている。
カラーマイクロレンズ12は、例えば、緑色、青色、赤色に対応する波長を選択的に透過する顔料や染料を含んだ感光性を有する有機材料により構成される。カラーマイクロレンズ12は、例えば、その屈折率が1.5以上2.0以下の範囲内であり、その消衰係数が0以上0.4以下の範囲内である。また、カラーマイクロレンズ12は、例えば、その光透過率が可視光領域全体において80%以上100%以下の範囲内である。
カラーマイクロレンズ12は、レンズ母型をマスクとして用いたドライエッチングによりレンズ母型の形状をカラーマイクロレンズ12に形状転写することにより形成される。また、入射光の反射を低減するために、カラーマイクロレンズ12の上部(上面)には、反射防止膜を、例えば、シリコン酸化膜などで形成してもよい。
つまり、本実施形態において、上記「カラーマイクロレンズ12」とは、着色された樹脂で形成されたマイクロレンズを意味する。より具体的には、カラーマイクロレンズ12は、着色された樹脂で形成されたマイクロレンズであって、図2に示すように、平坦化層14の上に形成されたカラーフィルタ平坦部12aと、カラーフィルタ平坦部12aの上に形成されたカラーフィルタレンズ部12bとを備えたマイクロレンズである。カラーフィルタレンズ部12bは、カラーフィルタ平坦部12aとは反対側の表面がレンズ形状(例えば、略半球状のレンズ形状)となっている。
図2に示すように、カラーフィルタ平坦部12aの厚さ(膜厚)である平坦部高さAは、例えば、平坦化層14と接する面から、カラーフィルタレンズ部12bの最底部と接する面までの高さとして定義する。カラーフィルタレンズ部12bの厚さ(膜厚)であるレンズ部高さBは、例えば、厚さ方向において、カラーフィルタ平坦部12aと接する最底部の面からカラーフィルタレンズ部12bのレンズ形状の頂部までの高さとして定義する。なお、上記「カラーフィルタレンズ部12bの最底部」とは、各カラーマイクロレンズ12においてレンズが形成されている領域のうち、最も隔壁13側に位置する点を意味する。
本実施形態において、平坦部高さAとレンズ部高さBとの和に対する、レンズ部高さBの比率(B/(A+B))は、0.5以上1未満の範囲内であれば好ましく、0.6以上0.9以下の範囲内であればより好ましく、0.7以上0.8以下の範囲内であればさらに好ましい。
上記比率が、0.5よりも低い場合には、カラーフィルタレンズ部12bによる十分な集光がなされないために受光感度が低下することがある。その結果、画素のS/N比が劣化し、結果的に画質特性の劣化を引き起こすことがある。
また、平坦部高さAとレンズ部高さBとの和は、500nm以上800nm以下の範囲内が好ましく、700nm以上800nm以下の範囲内がより好ましい。平坦部高さAとレンズ部高さBとの和が上記数値範囲内であれば、カラーフィルタとしても機能が十分に発揮される。具体的には、平坦部高さAとレンズ部高さBの和が500nmより低い場合、各カラーフィルタの選択波長域外の波長を有する入射光の透過率が増加することで、各カラーフィルタの波長選択性が悪化し、画素のS/N比が劣化することがある。また、各カラーフィルタは選択波長域の波長の光を僅かに吸収する性質を持つため、平坦部高さAとレンズ部高さBの和が800nmより高い場合、各カラーフィルタの選択波長域の波長を有する入射光に対する各カラーフィルタの透過率の低下を引き起こし、各画素の光電変換素子へと到達する光量が減少することがある。その結果、画素の受光感度が低下し、画素のS/N比が劣化することがある。
また、各画素の水平方向におけるカラーマイクロレンズ12の幅WLは、0.6μm以上2.0μm以下の範囲内であることが好ましく、0.6μm以上1.0μm以下の範囲内であることがより好ましく、0.6μm以上0.8μm以下の範囲内であることがさらに好ましい。その理由は、各画素の水平方向におけるカラーマイクロレンズ12の幅WLを0.6μmよりも狭くすることは現状の工程能力(作成技術)では困難だからである。また、各画素の水平方向におけるカラーマイクロレンズ12の幅WLが2.0μmよりも広くなると、低背化による感度特性向上の寄与が小さくなってしまうおそれがあるからである。
本実施形態に係る固体撮像素子10は、図2に示すように、カラーマイクロレンズ12が隔壁13の表面上を覆っていない形態がもっとも好ましいが、本発明はこれに限定されるものではない。例えば、隔壁13の表面の一部は、カラーマイクロレンズ12によって覆われていてもよい。具体的には、隔壁13の表面において50%未満の面積であれば、隔壁13の表面はカラーマイクロレンズ12によって覆われていてもよい。上記数値範囲内であれば、カラーマイクロレンズ12の端部に入射した光についても光電変換素子16に導くことが可能となる。
複数の隔壁13は、半導体基板15上に形成され、任意の2つの隣接するカラーマイクロレンズ12の間に配置される。例えば、緑色カラーマイクロレンズ12Gと赤色カラーマイクロレンズ12Rとの間に隔壁13は配置される。隔壁13は、光電変換素子16の各々に対応する各画素を定義する。実施形態では、隔壁13の底部は平坦化層14の上面に接するように形成される。
本実施形態における隔壁13は、隣り合う画素の間での斜入射光に起因した混色を抑制するためものである。
隔壁13は、透明な材料で形成されていればよく、透明な無機化合物材料で形成されていてもよい。隔壁13は、例えば、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)等により構成されてもよい。なお、隔壁13を構成する材料は、上述した材料に限定されるものではなく、隔壁13は、透明な無機化合物を有する他の好適な材料等で構成されていてもよい。
隔壁13は、例えば、その屈折率が1.4以上1.9以下の範囲内であり、その消衰係数が0以上0.01以下の範囲内である。また、隔壁13は、例えば、その光透過率が可視光領域全体において80%以上100%以下の範囲内である。なお、隔壁13が窒化シリコン(SiN)で形成されている場合には、その屈折率は1.9となる。
本実施形態において、隔壁13の屈折率は、隔壁13の表面側と、隔壁13の裏面側(平坦化層14側)とで同じであってもよいし、隔壁13の裏面側から隔壁13の表面側に向かって徐々に小さくなっていてもよい。隔壁13の屈折率を、隔壁13の裏面側から隔壁13の表面側に向かって徐々に小さくすることで、斜入射角度が比較的浅い入射光(例えば、入射角度が15°~30°程度)に対して、感度特性をより向上させることができる。
あるいは、隔壁13の屈折率は、隔壁13の裏面側から隔壁13の表面側に向かって大きくなっていてもよい。隔壁13の屈折率は、隔壁13の裏面側から隔壁13の表面側に向かって徐々に大きくすることで、斜入射角度が比較的深い入射光(例えば、入射角度が35°~45°程度)に対して、感度特性をより向上させることができる。
上述のように、隔壁13の屈折率に勾配を付与する場合には、隔壁13を下記の方法を用いて形成してもよい。
隔壁13の材料として使用可能な、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)等は、一般にスパッタリング法を用いて形成することができる。このスパッタリング法は、その形成条件、具体的には酸素濃度を連続的に調整することが可能である。そこで、隔壁13の上記材料を形成する際の酸素濃度を連続的に調整する(増加あるいは減少させる)ことで、隔壁13の屈折率を連続的に変化させることができる。
隔壁13は、例えば、図2に示すように、その厚さ方向における断面形状が矩形である。隔壁13の幅WWは、例えば、隔壁13の高さHWよりも小さな値となっている。
本実施形態では、隔壁13の高さHWは、カラーマイクロレンズ12の高さHL(即ち、平坦部高さAとレンズ部高さBとの和)に対する隔壁13の高さHWの比率で、0.6以上1.1以下の範囲内であれば好ましく、0.8以上1.0以下の範囲内であればより好ましい。上記比率が0.6より小さい場合は、隔壁13が低いことで、本来の隔壁の役割を発揮することができず、斜入射光成分が、隣接画素へ移動して混色を引き起こし、感度特性が低下してしまうことがある。また、上記比率が1.1より大きい場合は、隔壁13が高いために、固体撮像素子10の低背化の観点から問題がある。
隔壁13の高さHWは、カラーフィルタ平坦部12aの平坦部高さAに対する隔壁13の高さHWの比率で、0.8以上1.1以下の範囲内であれば好ましく、0.9以上1.0以下の範囲内であればより好ましい。上記比率が0.8より小さい場合は、隔壁13が低いことで、本来の隔壁の役割を発揮することができず、斜入射光成分が、隣接画素へ移動して混色を引き起こし、感度特性が低下してしまうことがある。また、上記比率が1.1より大きい場合は、隔壁13が高いために、固体撮像素子10の低背化の観点から問題がある。
本実施形態では、隔壁13の幅WWは、0.05μm以上0.15μm以下の範囲内であれば好ましく、0.2μm以上0.10μm以下の範囲内であればより好ましい。その理由は、隔壁13の幅WWが0.05μmより小さい場合は、その隔壁幅の形成は、現状の工程能力(作成技術)では難しいためである。つまり、隔壁13のWW幅が0.05μmより小さい場合は、隔壁13の形成が困難となる。また、隔壁13の幅WWを0.15μmより大きくすると画素に対し隔壁13が占める領域が増えるので、光が直接隔壁13に入射してしまい、カラーマイクロレンズ12に入射する光量が減ってしまうため、感度特性が低下してしまうことがある。
隔壁13の幅WWは、カラーマイクロレンズ12の幅WLに対する隔壁13の幅WWの比率で、0.1以上0.3以下の範囲内であれば好ましく、0.1以上0.2以下の範囲内であればより好ましい。上記比率が0.1より小さい場合は、隔壁13が薄いことで、本来の隔壁の役割を発揮することができず、斜入射光成分が、隣接画素へ移動して混色を引き起こし、感度特性が低下してしまうことがある。また、上記比率が0.3より大きい場合は、隔壁13が厚いために、画素に対し隔壁13が占める領域が増えるので、光が直接隔壁13に入射してしまい、カラーマイクロレンズ12に入射する光量が減ってしまうため、感度特性が低下してしまうことがある。
なお、本実施形態では、隔壁13の厚さ方向における断面形状が矩形である場合について説明したが、本発明はこれに限定されるものではない。隔壁13の厚さ方向における断面形状は、例えば、台形状であってもよい。隔壁13の厚さ方向における断面形状が台形状である場合には、隔壁13の裏面(平坦化層14と接する面)の幅は、隔壁13の表面の幅よりも広くてもよいし、狭くてもよい。隔壁13の厚さ方向における断面形状を台形状にすることで、特定の斜入射光成分に対する感度特性が向上させることができる。
また、隔壁13の厚さ方向における断面形状は、隔壁13の中央部の幅が隔壁13の裏面及び表面の各幅よりも広い形状であってもよいし、狭い形状であってもよい。隔壁13の断面形状を上記形状にすることで、特定の斜入射光成分に対する感度特性が向上させることができる。
次に、本発明の実施形態に係る固体撮像素子の構造により、固体撮像素子が低背化し、かつ感度特性の向上が実現できる理由を述べる。
図3に示す比較例1は、カラーフィルタ17とマイクロレンズ18とが独立した構造を有する固体撮像素子である。すなわち、図3に示す比較例1の固体撮像素子では、カラーフィルタ17とマイクロレンズ18との間には界面が存在している。カラーフィルタ17とマイクロレンズ18との高さの和は、本実施形態のカラーマイクロレンズ12の高さに比べ、1.7倍近く高くなる。マイクロレンズ18のトップ(頂点)から光電変換素子16(図示せず)までの距離が長いと、画素へ入射した光の一部は隣接画素へ移動してしまい、感度特性が低下してしまう。
なお、図3では、カラーフィルタ17として、緑色カラーフィルタ17Gと赤色カラーフィルタ17Rとを例示し、青色カラーフィルタ17Bについては記載を省略した。また、図3では、光電変換素子16についても記載を省略した。
これに対し、本実施形態では、分光機能を有するカラーフィルタと、集光機能を有するマイクロレンズとを一体化したカラーマイクロレンズ構造を採用することで、比較例1の固体撮像素子に比べて、固体撮像素子の低背化が可能となる。また、固体撮像素子の低背化により斜入射光の隣接画素への混色が抑制でき、画素へ入射した光を効率よく光電変換素子16へ導くことが可能となり、感度特性が向上する。
また、比較例1の固体撮像素子では、隔壁19は、隔壁19の下部が金属材料を用いて形成されている。そのため、画素へ入射した光の一部が金属隔壁19で吸収されてしまい、入射光を効率よく光電変換素子16へ導くことができず、感度特性が低下してしまう。
これに対し、本実施形態では、隔壁13に、透明な無機化合物を用いており、隔壁13自体の光吸収は極めて少ないので、入射光を効率よく光電変換素子16へ導くことが可能となり、感度特性が向上する。
図4に示す比較例2は、低背化したカラーマイクロレンズ構造であるが、カラーマイクロレンズ12間に隔壁13を配置しないタイプの固体撮像素子である。カラーマイクロレンズ12間に隔壁13を配置しないと、画素へ入射した斜入射光成分の一部は隣接画素へ移動してしまい、混色を引き起こしてしまう。
なお、図4では、光電変換素子16について記載を省略している。
これに対し、本実施形態では、カラーマイクロレンズ12間に隔壁13を配置することで、画素へ入射した斜入射光成分の一部が隣接画素へ移動することで生ずる、隣接画素への混色が抑制でき、感度特性が向上する。
つまり、本実施形態において隔壁13は、透明な無機化合物を用いて形成されていることから、入射光の一部を吸収せずに反射することが可能となるため、入射光を効率よく光電変換素子16へ導くことができ、感度特性が向上すると考えられる。
また、本実施形態では、透明な無機化合物を用いて隔壁13を形成し、且つカラーマイクロレンズ12を用いることでマイクロレンズ自体を低背化しているため、画素へ入射した斜入射光成分の一部が、仮に隔壁13を透過した場合であっても、隣接画素への混色量を低減すること可能となるため、感度特性が向上すると考えられる。
[実施例]
次に、本発明の固体撮像素子の実施例を、シミュレーション結果を用いて説明する。
シミュレーションは、電磁場解析手法の一種である時間領域差分法(FDTD法)を用いて実施した。以下に、シミュレーションの条件を示す。
シミュレーションに使用した固体撮像素子10の構造を図5に示す。
固体撮像素子10の上面図である図5(a)において、赤色画素11R、緑色画素11G、青色画素11B、それぞれの幅はX軸方向とY軸方向ともに0.9μmとした。また、図5(a)の点線I-IIに沿った固体撮像素子10の断面図である図5(b)において、赤色のカラーマイクロレンズ12Rは、赤色波長光を透過し、X軸方向の長さ及びY軸方向の長さを0.9μmとした。緑色のカラーマイクロレンズ12Gは、緑色波長光を透過し、X軸方向の長さ及びY軸方向の長さを0.9μmとした。青色のカラーマイクロレンズ12B(図示せず)は、青色波長光を透過し、X軸方向の長さ及びY軸方向の長さを0.9μmとした。平坦化層14は、Z軸方向の高さを0.1μm、屈折率を1.6、消衰係数を0とした。半導体基板15は、X方向の長さ及びY方向の長さを1.8μm、Z軸方向の高さを3μmとした。入射光は平行光とし、電場の振動方向はX軸方向とした。
カラーマイクロレンズ12Rの屈折率及び消衰係数は、色材としてC.I.ピグメントレッド117、C.I.ピグメントレッド48:1、C.I.ピグメントイエローを用い、さらにシクロヘキサノン、あるいはPGMEAなどの有機溶剤、ポリマーワニス、モノマー、及び開始剤を含む感光性材料を、シリコン基板上に0.6μmの厚さで塗布し、さらに露光及び加熱処理を施した後、分光エリプソメーターを用いて測定した値をそれぞれ用いた。具体的には、カラーマイクロレンズ12R(赤色レジスト)は、波長600nmにおける屈折率1.87、及び波長600nmにおける消衰係数0.01(0.008)をそれぞれ用いた。
カラーマイクロレンズ12Gの屈折率及び消衰係数は、色材としてC.I.ピグメントイエロー139、C.I.ピグメントグリーン36、C.I.ピグメントブルー15:6を用い、さらにシクロヘキサノン、あるいはPGMEAなどの有機溶剤、ポリマーワニス、モノマー、及び開始剤を含む感光性材料を、シリコン基板上に0.6μmの厚さで塗布し、さらに露光及び加熱処理を施した後、分光エリプソメーターを用いて測定した値をそれぞれ用いた。具体的には、カラーマイクロレンズ12G(緑色レジスト)は、波長520nmにおける屈折率1.74、及び波長520nmにおける消衰係数0.01をそれぞれ用いた。
カラーマイクロレンズ12Bの屈折率及び消衰係数は、色材としてC.I.ピグメントブルー15:6、C.I.ピグメントバイオレット23を用い、さらにシクロヘキサノン、あるいはPGMEAなどの有機溶剤、ポリマーワニス、モノマー、及び開始剤を含む感光性材料を、シリコン基板上に0.6μmの厚さで塗布し、さらに露光及び加熱処理を施した後、分光エリプソメーターを用いて測定した値をそれぞれ用いた。具体的には、カラーマイクロレンズ12B(青色レジスト)は、波長450nmにおける屈折率1.65、及び波長450nmにおける消衰係数0.01をそれぞれ用いた。
各色のカラーマイクロレンズ12R、12G、12Bの高さは、いずれも同一の高さとした。
隔壁13は、透明な無機化合物である酸化シリコンの屈折率及び消衰係数をそれぞれ用いた。具体的には、隔壁13は、屈折率1.46、及び消衰係数0をそれぞれ用いた。
隔壁13の高さは、0μmから1μmの範囲、隔壁13の幅は、0μmから0.3μmの範囲でシミュレーションを実施した。
入射光は平行光とし、電場の振動方向はX軸方向とした。入射光の波長は、単一波長とし、1水準あたり400nmから700nmまで10nm刻みで31条件を実施した。
上記の条件でシミュレーションを実施し、各画素における半導体基板15の表面から深さ3μmまでにおいて吸収される光強度を計算した。感度(受光感度)として、1画素に入射する光パワーの強度に対する、各画素における半導体基板15の表面から深さ3μmまでにおいて吸収される光パワーの強度の割合として算出した。こうして算出した感度(受光感度)は、高い数値であることが好ましい。
画質の性能指標として、SNR10を用いた。これは、携帯電話カメラ向けの固体撮像素子における色補正処理等を行った後の画質の指標として用いられるものである。
本実施例では、F値を1.8とした場合において、各画素の感度を量子効率とみなし、各水準のシミュレーション結果から計算した分光感度特性からSNR10を算出した。SNR10値は照度(lux)の単位を有し、低い数値であることが好ましい。また、SNR10と同時に色差(ΔE)も算出し、この両者が共に低い数値であることが好ましい。ここで、上記「色差(ΔE)」とは、ターゲットとする画質の色彩値(L表色系色空間における色彩値)と、算出された色彩値との差を意味する。
図6に、垂直入射(入射角度0°)における実施例、比較例1、比較例2の感度特性を示す。ここで、上記「垂直入射(入射角度0°)」とは、半導体基板15の表面に対する垂直方向をいう。
図7に、斜入射(入射角度20°)における実施例、比較例1、比較例2の感度特性を示す。ここで、上記「斜入射(入射角度20°)」とは、半導体基板15の表面に対する垂直方向から20°傾斜した方向をいう。
図6、7の結果から、比較例1、2に比べ、実施例では、赤(R)、緑(G)、青(B)の各色について、感度特性がそれぞれ向上することがわかる。特に斜入射において(図7参照)、比較例1に比べ、実施例では大幅に感度特性が向上することがわかる。
以上の結果から、カラーマイクロレンズ構造(カラーマイクロレンズ12)と、透明な材料、特に、無機化合物で形成された隔壁13とを組み合わせて配置することで、低背化し、かつ感度特性が良好な固体撮像素子10を提供することができることを確認した。
図8に、カラーマイクロレンズ12の高さに対する隔壁13の高さの比率(隔壁13の高さ/カラーマイクロレンズ12の高さ)Rと、固体撮像素子10の性能指標であるSNR10及び色差(ΔE)との関係を示す。
図9に、隔壁13の幅と、SNR10及び色差(ΔE)との関係を示す。
図8の結果から、隔壁13の高さについて、SNR10の数値が低く、かつ色差も小さい領域(即ち、ΔEの数値が小さい領域)は、カラーマイクロレンズ12の高さに対する隔壁13の高さの比率Rで、0.6以上1.1以下の範囲内であり、この領域において感度特性が良好となることがわかる。
図9の結果から、隔壁13の幅は、SNR10の数値が小さく、且つ色差(ΔE)の数値も小さい領域は、0.05μm以上0.15μm以下の範囲内であり、この領域において感度特性が良好となることがわかる。
10 固体撮像素子
11 画素
11B 青色画素
11G 緑色画素
11R 赤色画素
12 カラーマイクロレンズ
12B 青色カラーマイクロレンズ
12G 緑色カラーマイクロレンズ
12R 赤色カラーマイクロレンズ
12a カラーフィルタ平坦部
12b カラーフィルタレンズ部
13 隔壁
14 平坦化層
15 半導体基板
16 光電変換素子
17 カラーフィルタ
17B 青色カラーフィルタ
17G 緑色カラーフィルタ
17R 赤色カラーフィルタ
18 マイクロレンズ
19 隔壁(金属部を含む隔壁、金属隔壁)
A 平坦部高さ
B レンズ部高さ
WL カラーマイクロレンズの幅
WW 隔壁の幅
HL カラーマイクロレンズの高さ
HW 隔壁の高さ

Claims (4)

  1. 複数の光電変換素子が2次元的に配置された半導体基板と、
    上記各光電変換素子と対向可能な位置で上記半導体基板上に形成された、カラーフィルタとマイクロレンズとが一体となったカラーマイクロレンズと、
    複数の上記カラーマイクロレンズの間に配置された複数の隔壁と、を備えることで複数の画素が2次元的に配置された固体撮像素子であって、
    上記隔壁は、透明な材料で形成されていることを特徴とする固体撮像素子。
  2. 上記カラーマイクロレンズの高さに対する上記隔壁の高さの比率(隔壁の高さ/カラーマイクロレンズの高さ)は、0.6以上1.1以下の範囲内であることを特徴とする請求項1に記載の固体撮像素子。
  3. 上記隔壁の幅は、0.05μm以上0.15μm以下の範囲内であることを特徴とする請求項1または請求項2に記載の固体撮像素子。
  4. 上記隔壁は、透明な無機化合物材料で形成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の固体撮像素子。
JP2020141955A 2020-08-25 2020-08-25 固体撮像素子 Pending JP2022037696A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020141955A JP2022037696A (ja) 2020-08-25 2020-08-25 固体撮像素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020141955A JP2022037696A (ja) 2020-08-25 2020-08-25 固体撮像素子

Publications (1)

Publication Number Publication Date
JP2022037696A true JP2022037696A (ja) 2022-03-09

Family

ID=80494716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141955A Pending JP2022037696A (ja) 2020-08-25 2020-08-25 固体撮像素子

Country Status (1)

Country Link
JP (1) JP2022037696A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243289A1 (ja) * 2022-06-15 2023-12-21 住友化学株式会社 レンズ素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243289A1 (ja) * 2022-06-15 2023-12-21 住友化学株式会社 レンズ素子

Similar Documents

Publication Publication Date Title
US7683302B2 (en) Solid-state imaging device having on-chip color filter layers and solid-state imaging device manufacturing method of the solid-state imaging device
US8779541B2 (en) Solid-state imaging device with pixels having white filter, microlens and planarizing film refractive indices in predetermined relationship
TWI416715B (zh) A solid-state imaging device, a manufacturing method of a solid-state imaging device, and an electronic device
Teranishi et al. Evolution of optical structure in image sensors
JP2009021379A (ja) 固体撮像装置およびそれを備えたカメラ、固体撮像装置の製造方法
TWI588981B (zh) 影像感測器
US9978789B2 (en) Image-sensing device
JP2004047682A (ja) 固体撮像装置
JP2006245101A (ja) カラーフィルタを有する撮像装置
CN108807443A (zh) 一种具有嵌入式彩色滤色片阵列的图像传感器
US8395699B2 (en) Solid-state imaging device, camera, electronic apparatus, and method for manufacturing solid-state imaging device
US8350349B2 (en) Solid-state imaging device, method of manufacturing thereof, and electronic apparatus
US20050045805A1 (en) Solid-state image sensor and a manufacturing method thereof
JP2022037696A (ja) 固体撮像素子
US7180112B2 (en) Solid-state imaging apparatus having an upwardly convex color filter layer and method of manufacturing the same
JP4998310B2 (ja) 固体撮像素子およびそれを用いた撮像装置
JP6638347B2 (ja) 固体撮像素子および電子機器
JP2011243749A (ja) 固体撮像装置及びその製造方法
KR100628233B1 (ko) 자동 배열된 마이크로렌즈를 갖는 이미지 센서 및 그 제조방법
JP2016225324A (ja) 固体撮像装置
CN108336103B (zh) 图像传感器及其形成方法
JP2004228398A (ja) 固体撮像素子及びその製造方法
WO2013046531A1 (ja) 固体撮像装置
JP2006196626A (ja) 固体撮像装置、及びその製造方法、並びにカメラ
JP7423908B2 (ja) 固体撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240520