JP2022036294A5 - - Google Patents

Download PDF

Info

Publication number
JP2022036294A5
JP2022036294A5 JP2022004810A JP2022004810A JP2022036294A5 JP 2022036294 A5 JP2022036294 A5 JP 2022036294A5 JP 2022004810 A JP2022004810 A JP 2022004810A JP 2022004810 A JP2022004810 A JP 2022004810A JP 2022036294 A5 JP2022036294 A5 JP 2022036294A5
Authority
JP
Japan
Prior art keywords
cement
soil
impermeable wall
ground
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022004810A
Other languages
Japanese (ja)
Other versions
JP2022036294A (en
JP7390744B2 (en
Filing date
Publication date
Priority claimed from JP2019168572A external-priority patent/JP7169666B2/en
Application filed filed Critical
Priority to JP2022004810A priority Critical patent/JP7390744B2/en
Publication of JP2022036294A publication Critical patent/JP2022036294A/en
Publication of JP2022036294A5 publication Critical patent/JP2022036294A5/ja
Application granted granted Critical
Publication of JP7390744B2 publication Critical patent/JP7390744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、原位置撹拌工法による地中遮水壁に関する。 TECHNICAL FIELD The present invention relates to an underground impermeable wall using an in-situ mixing method.

地下水位の調整、汚染水及び汚染土壌の封じ込め、並びに、堤体や調整池の漏水防止等を目的として、地中に連続遮水壁を築造する方法がある。 There is a method of constructing a continuous impermeable wall in the ground for the purpose of adjusting the groundwater level, containing contaminated water and contaminated soil, and preventing water leakage from the embankment body and regulating pond.

特に、地震による液状化対策として、地下水位低下工法が採用されている。地下水位低下工法では、地中に液状化対策をする区域の周辺において地中に連続遮水壁を築造し、その後、井戸等を利用して連続遮水壁に囲まれた地中の地下水位を低下させる。 In particular, as a countermeasure against liquefaction caused by earthquakes, the groundwater level lowering construction method is adopted. In the groundwater level lowering method, a continuous impermeable wall is built in the ground around the area where liquefaction countermeasures are to be taken, and then the underground water level surrounded by the continuous impermeable wall is lowered using a well, etc. lower the

このような、地中に連続遮水壁を築造する方法として、特許文献1に示すようなセメント系固化材を用いたスラリーやセメント・ベントナイトスラリーを地中に注入して撹拌混合して連続遮水壁を地中に築造する方法がある。さらに特許文献2に示すような、セメント系固化材を使用せず、ベントナイトによる地中遮水壁を築造する方法がある。 As a method for constructing a continuous impermeable wall in the ground, a slurry using a cement-based solidifying material or a cement-bentonite slurry as shown in Patent Document 1 is poured into the ground and stirred and mixed to continuously impermeable walls. There is a method of building a wall of water in the ground. Furthermore, there is a method of constructing an underground impermeable wall with bentonite without using a cement-based solidifying material, as shown in Patent Document 2.

特開2015-172319号公報JP 2015-172319 A 特開2006-291703号公報Japanese Patent Application Laid-Open No. 2006-291703

特許文献1のセメント系固化材を用いたスラリーやセメント・ベントナイトスラリーによる地中遮水壁は、曲げや引張に対して弱く、柔軟性が極めて低い。また、セメント系固化材及びセメント・ベントナイトの必要量の調整が難しく、地中遮水壁の品質が安定しないという問題もある。また、スラリーを地中で練り混ぜるために大量の水が必要となるという問題もある。 The underground impermeable wall made of the slurry using the cement-based solidifying material or the cement-bentonite slurry of Patent Document 1 is weak against bending and tension, and has extremely low flexibility. Another problem is that it is difficult to adjust the required amount of cement-based solidifying material and cement-bentonite, and the quality of the underground impermeable wall is not stable. Another problem is that a large amount of water is required to knead the slurry underground.

特許文献2のベントナイトによる地中遮水壁は、粘度発現や水膨潤性が乏しく十分な遮水性能が得られない場合があるという問題がある。また、ベントナイトの必要量の調整が難しく、地中遮水壁の品質が安定しないという問題もある。また、排土が大量に生じるという問題がある。 The underground impermeable wall made of bentonite in Patent Document 2 has a problem that it has poor viscosity development and water swelling properties, and sufficient impermeable performance may not be obtained. Another problem is that it is difficult to adjust the necessary amount of bentonite, and the quality of the underground impermeable wall is unstable. Moreover, there is a problem that a large amount of soil is generated.

そこで、上記点より本発明は、十分な遮水性能と変形追随性とを両立する地中遮水壁、及び、地中遮水壁の品質が安定し、かつ、築造おいて環境負荷を抑制できる地中遮水壁築造方法を提供することを目的とする。 Therefore, from the above points, the present invention provides an underground impermeable wall that achieves both sufficient impervious performance and deformation followability, and that the quality of the underground impermeable wall is stable and the environmental load is suppressed during construction. It is an object of the present invention to provide a method for constructing an underground impermeable wall.

請求項1の原位置撹拌工法による地中遮水壁は、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌したソイルセメントを固化させて地中に築造される原位置撹拌工法による地中遮水壁であって、ソイルセメントにおいて、炭酸水素塩によるC-S-Hゲルの生成が促進されることよって、固化後の前記ソイルセメントは、遮水性を示す透水係数が10-7cm/s以下、かつ、材齢7日の強度が一軸圧縮試験で100kN/m 以上である。 The underground impermeable wall by the in-situ mixing method of claim 1 is constructed in the ground by solidifying soil cement obtained by mixing and stirring cement milk containing a solidifying agent containing hydrogen carbonate and ground earth and sand. In the soil cement, the hydrogen carbonate promotes the formation of a C—S—H gel, so that the soil cement after solidification has a permeability coefficient of 10 − 7 cm/s or less, and a strength of 100 kN/m 2 or more in a uniaxial compression test at a material age of 7 days .

請求項1の地中遮水壁によれば、遮水性を示す透水係数が10-7cm/s以下となっていることによって、地中遮水壁は、事実上不透水レベルとなり、十分な遮水性能を実現できることに加えて、材齢7日の強度が一軸圧縮試験で100kN/m 以上となっていることによって地中遮水壁は、十分な強度を実現できる。 According to the underground impermeable wall of claim 1, since the hydraulic conductivity indicating impermeability is 10 −7 cm/s or less, the underground impermeable wall practically reaches the impermeable level and has a sufficient level of impermeability. In addition to being able to achieve impermeable performance, the underground impermeable wall can achieve sufficient strength because the strength at 7 days of age is 100 kN/m 2 or more in a uniaxial compression test.

炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌したソイルセメントを固化させて地中に築造される地中遮水壁であって、固化させたソイルセメントのC-S-Hゲルの端部は、微細な針が多数飛び出している形状となっており、炭酸水素塩を含まない固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させたソイルセメントと比較して、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂を混合撹拌し固化させたソイルセメントのC-S-Hゲルの端部の微細な針が太くなっている。 An underground impermeable wall constructed by solidifying soil cement obtained by mixing and stirring cement milk containing a solidifying agent containing hydrogen carbonate and ground earth and sand, wherein the CSH of the solidified soil cement The edge of the gel has a shape in which many fine needles protrude. Fine needles at the ends of the C—S—H gel of soil cement, which is solidified by mixing and stirring cement milk containing a solidifying agent containing a hydrogen salt and ground soil, are thickened.

C-S-Hゲルの端部の形状は、C-S-Hゲルの結合の強さに影響を及ぼす。炭酸水素塩を含まない固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させたソイルセメントでは、C-S-Hゲルの端部の微細な針が比較的細いため、C-S-Hゲルが互いに複雑に絡み合って、高い結合力が生じる。これに対して、請求項1の地中遮水壁によれば、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させたソイルセメントでは、炭酸水素塩を含まない固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させたソイルセメントと比べて、C-S-Hゲルの端部の微細な針が比較的太いため、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させたソイルセメントのC-S-Hゲルが比較的低い結合力となる。よって、炭酸水素塩を含まない固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させたソイルセメントと比較して、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させたソイルセメントは、地中遮水壁の柔軟性が高まり、変形追随性能を向上させることができる。 The edge shape of the CSH gel affects the bond strength of the CSH gel. In soil cement, which is obtained by mixing and stirring cement milk containing a solidifying agent that does not contain hydrogen carbonate and ground soil and sand, the fine needles at the end of the CSH gel are relatively thin, so CSH The gels are intricately entangled with each other, resulting in high bonding strength. On the other hand, according to the underground impermeable wall of claim 1, soil cement obtained by mixing and stirring cement milk containing a solidifying agent containing hydrogen carbonate and ground soil and sand to solidify does not contain hydrogen carbonate. Compared to soil cement, which is made by mixing and stirring cement milk containing materials and ground soil and sand, the fine needles at the end of CSH gel are relatively thick, so cement milk containing a solidifying material containing bicarbonate is used. C—S—H gel of soil cement, which is obtained by mixing and stirring ground soil and sand and solidifying, has a relatively low binding force. Therefore, compared with soil cement that is solidified by mixing and stirring cement milk containing a solidifying agent that does not contain hydrogen carbonate and ground soil, cement milk containing a solidifying agent that contains hydrogen carbonate and ground soil are mixed and stirred and solidified. The soil cement that has been softened can increase the flexibility of the underground impermeable wall and improve the deformation follow-up performance.

請求項2の原位置撹拌工法による地中遮水壁は、請求項1の原位置撹拌工法による地中遮水壁において、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌した固化前のソイルセメントは、さらに、流動性を示すフロー値が15cm以上である。 The underground impermeable wall by the in- situ mixing method of claim 2 is obtained by mixing and agitating cement milk containing a solidifying agent containing bicarbonate and ground soil in the underground impermeable wall by the in-situ mixing method of claim 1. The soil cement before hardening further has a flow value of 15 cm or more, which indicates fluidity.

請求項2の地中遮水壁によれば、請求項の地中遮水壁と同様の作用に加えて、さらに炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌した固化前のソイルセメントは、流動性を示すフロー値が15cm以上となっていることによって、地中遮水壁の築造施工時に、固化前のソイルセメントの不要な拡散を抑制しつつ、所定の位置に固化前のソイルセメントを充填することができる。 According to the underground impermeable wall of claim 2, in addition to the same action as the underground impermeable wall of claim 1 , the cement milk containing the solidifying agent containing hydrogen carbonate and the ground earth and sand are mixed and agitated to solidify. The previous soil cement has a flow value of 15 cm or more, which indicates fluidity. It can be filled with soil cement before hardening.

請求項1から原位置撹拌工法による地中遮水壁は、十分な遮水性能と十分な強度とを両立することができる。 The underground impermeable wall by the in-situ mixing method of claims 1 and 2 can achieve both sufficient impervious performance and sufficient strength .

重曹を混入していないセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真である。1 is a stereomicroscopic photograph of a fracture surface of a test piece of soil cement made of cement milk not mixed with sodium bicarbonate. 重曹を混入したセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真である。1 is a photograph of a fractured surface of a soil cement test piece made of cement milk mixed with sodium bicarbonate and observed with a stereoscopic microscope. 重曹を混入していないセメントミルクからなるソイルセメントの試験体の走査型電子顕微鏡の二次電子像である。2 is a scanning electron microscope secondary electron image of a specimen of soil cement made of cement milk without sodium bicarbonate. 重曹を混入したセメントミルクからなるソイルセメントの試験体の走査型電子顕微鏡の二次電子像である。2 is a scanning electron microscope secondary electron image of a specimen of soil cement made of cement milk mixed with baking soda. 本発明の一実施形態の地中遮水壁の斜視図である。1 is a perspective view of an underground impermeable wall according to one embodiment of the present invention; FIG. 図5の地中遮水壁を構成する柱状体の施工を示す断面図である。FIG. 6 is a cross-sectional view showing construction of a columnar body that constitutes the underground impermeable wall of FIG. 5 ;

1.1 固化したソイルセメントの供試体の実験
本発明の地中遮水壁が十分な遮水性能と変形追随性とを両立していることを確認する目的の試験を実施した。
1.1 Experiments on Solidified Soil Cement Specimens A test was conducted to confirm that the underground impermeable wall of the present invention has both sufficient impervious performance and deformation followability .

1.2 供試体の材料
供試体は、後述する表1中の検討例1~4に示すように、地盤土砂の「標準砂」に、炭酸水素塩である重曹と粘土とセメントと水の配合条件を変えて、それぞれ混合して作製した。比較のための供試体として、後述する表1中の比較例1~2に示すように、「標準砂」に粘土とセメントと水を混合して作製した。
「標準砂」は山口県豊浦エリアでも限定された場所でしか産出されない純粋な天然のシリカサンドである。天然砂の特質は、粉砕された人工のものに比べ、自然界に存在する形状をなしているので、粒に丸みがあり、その特質のため、実験や測定で発生する誤差を小さくし、安定した結果をえることができる硅砂である。
さらに、後述する表2中の検討例5~9に示すように、地盤土砂として、実際に地震後の液状化が発生した「熊本市区内現場土(以下、熊本砂)」に、炭酸水素塩である重曹と粘土とセメントと水の配合条件を変えて、それぞれ混合して作製した。比較のための供試体として、後述する表2中の比較例3に示すように、「熊本砂」に粘土とセメントと水を混合して作製した。
「熊本砂」は、熊本市の液状化した原位置で採取した。熊本砂は、含水比が高く約40%で土の飽和度が100%を越えていたため、含水比20%に調整して使用した。
1.2 Specimen material As shown in Examination Examples 1 to 4 in Table 1 below, the specimen is a mixture of bicarbonate of sodium bicarbonate, clay, cement, and water in "standard sand" of ground soil. They were prepared by mixing under different conditions. As comparative specimens, as shown in Comparative Examples 1 and 2 in Table 1, which will be described later, clay, cement and water were mixed with "standard sand".
"Standard sand" is a pure natural silica sand produced only in limited areas in the Toyoura area of Yamaguchi Prefecture. Compared to pulverized artificial sand, natural sand has a shape that exists in nature, so the grains are round. It is silica sand that can get results.
Furthermore, as shown in Examination Examples 5 to 9 in Table 2, which will be described later, hydrogen carbonate Baking soda, which is a salt, clay, cement, and water were mixed under different mixing conditions. As a test piece for comparison, as shown in Comparative Example 3 in Table 2, which will be described later, clay, cement and water were mixed with " Kumamoto sand ".
"Kumamoto sand" was collected at the liquefied in situ location in Kumamoto City. Kumamoto sand has a high water content of about 40% and the saturation of the soil exceeded 100%, so it was adjusted to a water content of 20% and used.

1.3 供試体の作製
(1) 用量3000mlのビーカーに水道水300gを投入し、ディスパーに設置する。
(2) ミキサーを700rpmで回転させ、各検討例の配合条件に合わせた量のセメントを投入し3分間攪拌する。
(3) 検討例の供試体では、上記(2)に、各検討例の配合条件に合わせた量の炭酸水素塩である重曹および粘土を投入し5分間攪拌後、固化剤を作製する。比較例の供試体では、上記(2)に、各比較例の配合条件に合わせた量の粘土のみを投入し、5分間攪拌後、固化剤を作製する。
(4) 標準砂又は熊本砂700gに対し、上記(3)の各検討例及び各比較例の固化剤を投入する。
(5) モルタルミキサーにて5分間攪拌し、固化材入りセメントミルクと地盤土砂とを混合撹拌した固化前のソイルセメントを作製する。
(6) 上記(5)の固化材入りセメントミルクと地盤土砂とを混合撹拌したソイルセメントを変水位透水試験用モールドに充填し、各検討例及び各比較例の透水試験用の供試体を作製する。
(7) 上記(5)のセメントミルク及び炭酸水素塩を含む固化材と地盤土砂とを混合撹拌したソイルセメントを一軸圧縮試験用モールドへ投入し、20度±0.5度の恒温槽にて所定期間養生して、各検討例及び各比較例の一軸圧縮試験用の供試体を作製する。
1.3 Preparation of test piece (1) Put 300g of tap water into a 3000ml beaker and set it in a disper.
(2) Rotate the mixer at 700 rpm, add cement in an amount that matches the blending conditions of each study example, and stir for 3 minutes.
(3) For the specimens of the study examples, sodium bicarbonate, which is a hydrogen carbonate, and clay are added to the above (2) in amounts that match the mixing conditions of each study example, and after stirring for 5 minutes, a solidifying agent is prepared. For the specimens of the comparative examples, only clay in an amount matching the blending conditions of each comparative example was added to the above (2), and after stirring for 5 minutes, a solidifying agent was prepared.
(4) To 700 g of standard sand or Kumamoto sand, add the solidifying agent of each study example and each comparative example in (3) above.
(5) Stir with a mortar mixer for 5 minutes to prepare soil cement before solidification by mixing and stirring cement milk containing a solidifying agent and ground soil.
(6) The soil cement obtained by mixing and stirring the cement milk containing the solidifying agent in (5) above and the ground soil is filled into a variable water level permeability test mold to prepare a specimen for the permeability test of each study example and each comparative example. do.
(7) The soil cement obtained by mixing and stirring the solidifying material containing cement milk and bicarbonate in (5) above and ground soil is put into a mold for uniaxial compression test and placed in a constant temperature bath at 20°C ± 0.5°C for a predetermined period. After curing, specimens for the uniaxial compression test of each study example and each comparative example are produced.

1.4 透水試験(変水位法 JIS A1218/JGS 0311)
透水試験は、比較的に透水性が低い粘性土・シルト質土に用いられる変水位法 JIS A1218/JGS 0311の試験方法を用いて透水係数を測定した。地中遮水壁において、十分な遮水性能を実現できる透水係数の目標値は、10-7cm/sec以下とした。
1.4 Permeability test (fluctuation water level method JIS A1218/JGS 0311)
In the permeability test, the permeability coefficient was measured using the test method of JIS A1218/JGS 0311, which is a changing water level method used for clayey soil and silty soil with relatively low permeability. For underground impermeable walls, the target value of hydraulic conductivity that can achieve sufficient impermeable performance is 10 -7 cm/sec or less.

1.5 一軸圧縮試験 (JIS A1216/JGS 0511)
一軸圧縮試験は、粘性土の供試体の一軸圧縮強度及び破壊ひずみを求めるものである。試験は、複数の配合パターンで混合された供試体を材齢7日の養生期間を設けて一軸圧縮強度機を用いておこなった。地下水位低下工法による偏土圧に対する安全性を確保するため、地中遮水壁における十分な強度の目標値は、100kN/m2以上とした。また、地中遮水壁において、変形追随性を実現するため、破壊ひずみの目標値は、2%以上とした。
1.5 Uniaxial compression test (JIS A1216/JGS 0511)
The unconfined compression test is to determine the unconfined compression strength and breaking strain of the cohesive soil specimen. The test was conducted using a uniaxial compressive strength machine after setting a curing period of 7 days for a test piece mixed with a plurality of compounding patterns. In order to ensure safety against uneven earth pressure due to the groundwater level lowering method, the target value for the sufficient strength of the underground impermeable wall was set at 100kN/m 2 or more. In addition, the target value of the breaking strain was set to 2% or more in order to realize deformation followability in the underground impermeable wall.

2.1 固化前のソイルセメントの供試体の実験
また、本発明の地中遮水壁の築造施工時に、セメントミルク及び炭酸水素塩を含む固化材と地盤土砂とを混合撹拌したものが十分な流動性があることを確認する目的の実験も実施した。この実験について、以下に説明する。
2.1 Experiment of soil cement specimen before solidification In addition, when constructing the underground impermeable wall of the present invention, the solidification material containing cement milk and hydrogen carbonate and the ground soil and sand were mixed and agitated sufficiently. An experiment was also conducted to confirm that there is fluidity. This experiment is described below.

2.2 供試体の材料
供試体は、地中遮水壁が十分な遮水性能と変形追随性とを両立していることを確認する目的の試験と同様に、標準砂の検討例1~、標準砂の比較例1、2、熊本砂の検討例5~9、及び、熊本砂の比較例3である。
2.2 Materials of the test specimens The test specimens were the same as the test for the purpose of confirming that the underground impermeable wall has both sufficient impervious performance and deformation followability. 4 , Comparative Examples 1 and 2 of standard sand, Investigative Examples 5 to 9 of Kumamoto sand, and Comparative Example 3 of Kumamoto sand.

2.3 供試体の作製
(1) 用量3000mlのビーカーに水道水300gを投入し、ディスパーに設置する。
(2) ミキサーを700rpmで回転させ、各検討例の配合条件に合わせた量のセメントを投入し3分間攪拌する。
(3) 検討例の供試体では、上記(2)に、各検討例の配合条件に合わせた量の炭酸水素塩である重曹および粘土を投入し5分間攪拌後、固化剤を作製する。比較例の供試体では、上記(2)に、各比較例の配合条件に合わせた量の粘土のみを投入し、5分間攪拌後、固化剤を作製する。
(4) 標準砂又は熊本砂700gに対し、上記(3)の各検討例及び各比較例の固化剤を投入する。
(5) モルタルミキサーにて5分間攪拌し、固化材入りセメントミルクと地盤土砂とを混合撹拌した固化前のソイルセメントのフロー試験用の供試体を作製する。
2.3 Preparation of test piece (1) Put 300g of tap water into a 3000ml beaker and set it in a disper.
(2) Rotate the mixer at 700 rpm, add cement in an amount that matches the blending conditions of each study example, and stir for 3 minutes.
(3) For the specimens of the study examples, sodium bicarbonate, which is a hydrogen carbonate, and clay are added to the above (2) in amounts that match the mixing conditions of each study example, and after stirring for 5 minutes, a solidifying agent is prepared. For the specimens of the comparative examples, only clay in an amount matching the blending conditions of each comparative example was added to the above (2), and after stirring for 5 minutes, a solidifying agent was prepared.
(4) To 700 g of standard sand or Kumamoto sand, add the solidifying agent of each study example and each comparative example in (3) above.
(5) Stir with a mortar mixer for 5 minutes to mix and stir the cement milk containing the solidifying agent and ground soil to prepare a sample for a flow test of the soil cement before solidification.

2.4 フロー試験(JIS A313)
フロー試験は、複数の配合パターンで混合されたソイルセメントの供試体の固化前の流動性を確認した。地中遮水壁の築造施工時に、固化前のソイルセメントの不要な拡散を抑制しつつ、所定の位置に固化前のソイルセメントを充填することができるように、フロー値の目標値は、15cm以上とした。
2.4 Flow test (JIS A313)
Flow tests confirmed the fluidity of soil cement specimens mixed in multiple formulation patterns before setting. The target value of the flow value is 15 cm so that the soil cement before solidification can be filled in the specified position while suppressing unnecessary diffusion of the soil cement before solidification when constructing the underground impermeable wall. That's all.

3.試験結果
標準砂での各検討例及び各比較例の配合条件、透水試験、一軸圧縮試験及びフロー試験の結果を以下の表1に示す。
3. Test Results Table 1 below shows the blending conditions, water permeability test, uniaxial compression test, and flow test results for each study example and each comparative example using standard sand.

Figure 2022036294000001
Figure 2022036294000001

標準砂の各検討例及び比較例の中で、標準砂の検討例と検討例が、透水係数の目標値10-7cm/sec以下、強度の目標値100kN/m2以上、破壊ひずみの目標値2%以上、及び、フロー値の目標値15cm以上をすべて満たす。 Among the standard sand study examples and comparative examples, study examples 3 and 4 of standard sand have a hydraulic conductivity target value of 10 -7 cm/sec or less, a strength target value of 100 kN/m 2 or more, and a fracture strain of 100 kN/m 2 or more. The target value of 2% or more and the target value of flow value of 15 cm or more are all met.

したがって、地盤土砂の「標準砂」、炭酸水素塩である重曹、粘土、セメント、及び水を適切な配合条件とすることによって、地中遮水壁は、十分な遮水性能と変形追随性とを両立することができる。 Therefore, an underground impermeable wall with sufficient impermeable performance and deformation conformability can be obtained by properly blending the "standard sand" of ground soil, bicarbonate of sodium bicarbonate, clay, cement, and water. can be compatible.

比較例1と比較例2は、セメントの量を多くしたことによって、破壊ひずみの目標値を満たすことができなくなっている。 Comparative Examples 1 and 2 cannot satisfy the target value of the breaking strain due to the increased amount of cement.

標準砂の検討例と検討例は、比較例1と比較例2と比べて、少ないセメントの量で、透水係数、強度、破壊ひずみ及びフロー値の目標値を満たすことができる。したがって、地盤土砂の「標準砂」、炭酸水素塩である重曹、粘土、セメント、及び水を適切な配合条件とすることによって、地中遮水壁は、セメントの使用量を抑制することで、経済性が向上し、環境負荷を抑制することができる。 Compared to Comparative Examples 1 and 2, Investigation Examples 3 and 4 , which are standard sands, can satisfy the target values for hydraulic conductivity, strength, breaking strain, and flow value with a smaller amount of cement. Therefore, by setting appropriate blending conditions for the "standard sand" of ground soil, bicarbonate of sodium bicarbonate, clay, cement, and water, the underground impermeable wall can reduce the amount of cement used. Economic efficiency is improved, and environmental load can be suppressed.

熊本砂での各検討例及び各比較例の配合条件、透水試験、一軸圧縮試験及びフロー試験の結果を以下の表2に示す。 Table 2 below shows the blending conditions, water permeability test, uniaxial compression test and flow test results for each study example and each comparative example using Kumamoto sand.

Figure 2022036294000002
Figure 2022036294000002

熊本砂の検討例と検討例が、透水係数の目標値10-7cm/sec以下、強度の目標値100kN/m2以上、破壊ひずみの目標値2%以上、及び、フロー値の目標値15cm以上をすべて満たす。なお熊本砂の比較例3及び検討例5~7は、供試体が自立することなく、当然強度の目標値を満たしていない。 Investigation example 8 and investigation example 9 of Kumamoto sand have a hydraulic conductivity target value of 10 -7 cm/sec or less, a strength target value of 100 kN/m 2 or more, a fracture strain target value of 2% or more, and a flow value target. Satisfies all values of 15 cm or more. In Comparative Example 3 and Investigative Examples 5 to 7 of Kumamoto sand, the specimens did not stand on their own, and naturally did not meet the target value of strength.

したがって、地盤土砂の「熊本砂」、炭酸水素塩である重曹、粘土、セメント、及び水を適切な配合条件とすることによって、地中遮水壁は、十分な遮水性能と変形追随性とを両立することができる。 Therefore, the ground soil “Kumamoto sand”, bicarbonate of sodium bicarbonate, clay, cement, and water are properly blended to create an underground impermeable wall with sufficient impervious performance and deformation conformability. can be compatible.

セメントミルクに炭酸水素塩である重曹を混入することでC-S-Hゲルの生成が促進されるメカニズムについて、以下に説明する。 The mechanism by which C—S—H gel formation is promoted by mixing sodium bicarbonate, which is a bicarbonate, into cement milk will be described below.

セメント組成物である3CaO・SiO2と水との化学反応は以下の通りである。 The chemical reaction between the cement composition 3CaO SiO 2 and water is as follows.

Figure 2022036294000003
Figure 2022036294000003

化学式1中の2CaO・SiO2・1.17H2Oは、C-S-Hゲルの水和物である。 2CaO.SiO 2 .1.17H 2 O in chemical formula 1 is a hydrate of C—S—H gel.

また、セメントミルクに重曹が混入されると重曹と水による加水分解反応が起こる。 Also, when sodium bicarbonate is mixed with cement milk, a hydrolysis reaction between sodium bicarbonate and water occurs.

Figure 2022036294000004
Figure 2022036294000004

化学式2の加水分解反応によって生じたナトリウムイオンによって、化学式1での2CaO・SiO2・1.17H2OのC-S-Hゲルの生成が促進されるようになっている。 The sodium ions generated by the hydrolysis reaction of Chemical Formula 2 promote the formation of C—S—H gel of 2CaO.SiO 2 .1.17H 2 O of Chemical Formula 1.

重曹を混入していないセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真を図1に示す。重曹を混入したセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真を図2に示す。 FIG. 1 shows a stereomicroscopic photograph of a fracture surface of a soil cement test piece made of cement milk not mixed with sodium bicarbonate. FIG. 2 shows a stereomicroscopic photograph of a fracture surface of a soil cement test piece made of cement milk mixed with sodium bicarbonate.

各破断面には白色が濃い粒状の点が多数見られる。この白色が濃い粒状の点がC-S-Hゲルである。各破断面におけるC-S-Hゲルの領域の面積と破断面全体の面積との比率は、重曹を混入していないセメントミルクからなるソイルセメントの試験体では約10%であり、重曹を混入したセメントミルクからなるソイルセメントの試験体では約15%である。 A large number of granular dots with a deep white color can be seen on each fracture surface. The white, dense, granular dots are the CSH gel. The ratio of the area of the CSH gel region on each fractured surface to the area of the entire fractured surface was about 10% for the soil cement test specimen made of cement milk without sodium bicarbonate mixed with sodium bicarbonate. It is about 15% for soil cement test specimens made from hardened cement milk.

C-S-Hゲルは、多孔質であり、吸水して膨張するようになっている。限界まで吸水し膨張したC-S-Hゲルは、水を通さない。そのため、地中遮水壁におけるC-S-Hゲルの量が多くなればなるほど、遮水性能を向上させることができる。 The C—S—H gel is porous and adapted to absorb water and swell. A CSH gel that has absorbed water to its limit and swelled is impervious to water. Therefore, as the amount of C—S—H gel in the underground impermeable wall increases, the impermeable performance can be improved.

また、C-S-Hゲルが吸水して膨張することによって、地中遮水壁内部の空隙が充填され、地中遮水壁の自己修復性能が得られる。 In addition, when the CSH gel absorbs water and expands, the voids inside the underground impermeable wall are filled, and the self-healing performance of the underground impermeable wall is obtained.

重曹を混入していないセメントミルクからなるソイルセメントの試験体において、破断面、目視にて観察し、白色生成物であるC-S-Hゲルが確認できた箇所から観察用試料を採取した。採取した試料を観察面が上になるように試料台に固定し、導電性を持たせるため、イオンスパッタリング装置にて表面に金を蒸着した後、走査型電子顕微鏡を使用して、図3に示すC-S-Hゲルの端部構造を観察できる二次電子像を得た。 The broken surface of the soil cement test piece made of cement milk not mixed with sodium bicarbonate was visually observed, and a sample for observation was collected from a portion where CSH gel, which is a white product, was confirmed. The collected sample was fixed on a sample stage so that the observation surface faced up, and in order to make it conductive, gold was vapor-deposited on the surface using an ion sputtering device. A secondary electron image was obtained in which the edge structure of the C—S—H gel shown can be observed.

重曹を混入したセメントミルクからなるソイルセメントの試験体においても、同様に、図4に示すC-S-Hゲルの端部構造を観察できる二次電子像を得た。 Similarly, a secondary electron image was obtained in which the end structure of the C—S—H gel shown in FIG.

図3では、重曹を混入していないセメントミルクからなるソイルセメントのC-S-Hゲルの端部が、微細な針が多数飛び出している形状となっている。これに対し、図4では、図3と比較して、重曹を混入したセメントミルクからなるソイルセメントのC-S-Hゲルの端部の微細な針が太くなっている。 In FIG. 3, the ends of the soil cement C—S—H gel made of cement milk not mixed with baking soda have a shape in which a large number of fine needles protrude. On the other hand, in FIG. 4, as compared with FIG. 3, the fine needles at the ends of the C—S—H gel of the soil cement made of cement milk mixed with baking soda are thicker.

以下、本発明の地中遮水壁1の築造について説明する。 The construction of the underground impermeable wall 1 of the present invention will be described below.

本発明の地中遮水壁1は、図5に示すように、地中に遮水性能を有する複数の柱状体10が連なった構成となっている。複数の柱状体10は、ラップ配置となっている。 As shown in FIG. 5, the underground impermeable wall 1 of the present invention has a structure in which a plurality of columnar bodies 10 having impermeable performance are connected in the ground. The plurality of columnar bodies 10 are arranged in a wrap arrangement.

柱状体10の施工について、図6を用いて説明する。本発明の地中遮水壁の築造施工で使用する施工機は、昇降及び回転可能に支持されたロッド2と、該ロッドの下に設けられロッド2と一体となって回転する攪拌ヘッド3とを有する。 Construction of the columnar body 10 will be described with reference to FIG. The construction machine used in the construction work of the underground impermeable wall of the present invention comprises a rod 2 supported so as to be vertically and rotatably supported, and a stirring head 3 provided below the rod and rotating integrally with the rod 2. have

図6の(a)に示すように、ロッド2の回転軸を柱状体の杭芯位置にセットする。次いで、図6の(b)から(c)に示すように、泥水を撹拌ヘッド3から注入しながらロッド2を回転降下させることによって、撹拌ヘッド3が所定の深度に達するまで、地盤土砂と泥水を撹拌する。次いで、図6の(d)から(e)に示すように、ロッド2を回転上昇させることによって、撹拌ヘッド3がさらに地盤土砂と泥水を撹拌する。 As shown in FIG. 6(a), the rotating shaft of the rod 2 is set at the pile core position of the columnar body. Next, as shown in (b) to (c) of FIG. 6, by rotating and lowering the rod 2 while injecting muddy water from the stirring head 3, the soil and muddy water are mixed until the stirring head 3 reaches a predetermined depth. agitate. Next, as shown in (d) to (e) of FIG. 6, by rotating and raising the rod 2, the agitating head 3 further agitates the soil and muddy water.

次いで、図6の(f)から(g)に示すように、炭酸水素塩を含む固化材入りセメントミルクを撹拌ヘッド3から注入しながらロッド2を回転降下させることによって、撹拌ヘッド3が所定の深度に達するまで、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂と泥水を撹拌する。次いで、図6の(h)から(i)に示すように、ロッド2を回転上昇させることによって、撹拌ヘッド3がさらに地盤土砂と泥水を撹拌する。 Next, as shown in (f) to (g) of FIG. 6, the rod 2 is rotated and lowered while injecting cement milk containing a solidifying agent containing hydrogencarbonate from the stirring head 3, so that the stirring head 3 reaches a predetermined level. Cement milk containing a solidifying agent containing bicarbonate, ground sand and mud water are agitated until the depth is reached. Next, as shown in (h) to (i) of FIG. 6, the stirring head 3 further stirs the soil and muddy water by rotating the rod 2 upward.

図6の(j)に示すように、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂と泥水を撹拌された領域が固化すると、地中遮水壁1を構成する柱状体10が造成される。 As shown in (j) of FIG. 6, when the cement milk containing the solidifying agent containing hydrogen carbonate, the ground soil, and the muddy water are stirred, the columnar bodies 10 constituting the underground impermeable wall 1 are formed. be.

所定の複数の杭芯位置において、図6(a)から(e)の泥水注入の撹拌作業を行った後、図6(e)から(i)のセメントミルク注入の撹拌作業を行って固化すると、複数の柱状体10が壁状に連なり、地中遮水壁1が築造される。このような地中に遮水性能を有する複数の柱状体10が連なった構成となった地中遮水壁を、液状化対策する区域の周辺の地中に築造することで、地下水位低下の影響をなくすことができる。 At a plurality of predetermined pile core positions, after performing the stirring work for injecting mud water in FIGS. 6A to 6E, the stirring work for injecting cement milk in FIGS. , a plurality of columnar bodies 10 are connected like a wall, and an underground impermeable wall 1 is constructed. By constructing an underground impermeable wall having a structure in which a plurality of columnar bodies 10 having impermeable performance in the ground are arranged in a row in the ground around the area where liquefaction countermeasures are to be taken, it is possible to reduce the groundwater level. influence can be eliminated.

なお、本発明の実施では、比較的小型の掘削重機で地中遮水壁を築造することができるので、騒音・振動を抑制するとともに、狭い道路や住宅密集地での地中遮水壁の築造することができる。 In the practice of the present invention, the underground impermeable wall can be constructed with a relatively small heavy excavator. can be constructed.

また、図6では、一本の柱状体を造成する場合について説明したが、これに限定されることはない。例えば、複数本の柱状体を同時に造成してもよい。また、トレンチャータイプの重機で柱状体を造成してもよい。 In addition, although FIG. 6 describes the case of forming one columnar body, the present invention is not limited to this. For example, a plurality of columnar bodies may be created at the same time. Alternatively, a trencher-type heavy machine may be used to construct the pillars.

1 地中遮水壁
2 ロッド
3 撹拌ヘッド
10 柱状体
1 Underground Water Impermeable Wall 2 Rod 3 Stirring Head 10 Columnar Body

Claims (2)

炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌したソイルセメントを固化させて地中に築造される原位置撹拌工法による地中遮水壁であって、
ソイルセメントにおいて、炭酸水素塩によるC-S-Hゲルの生成が促進されることよって、固化後の前記ソイルセメントは、遮水性を示す透水係数が10-7cm/s以下、かつ、材齢7日の強度が一軸圧縮試験で100kN/m 以上であることを特徴とする原位置撹拌工法による地中遮水壁。
An underground impermeable wall constructed by an in-situ mixing method, which is constructed in the ground by solidifying soil cement obtained by mixing and stirring cement milk containing a solidifying agent containing hydrogen carbonate and ground earth and sand,
In soil cement, the formation of C—S—H gel is promoted by hydrogen carbonate, so that the soil cement after solidification has a hydraulic conductivity indicating water impermeability of 10 −7 cm / s or less and a material age. An underground impermeable wall by the in-situ stirring method , characterized by having a strength of 100 kN/m 2 or more in a 7-day uniaxial compression test .
炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌した固化前のソイルセメントは、さらに、流動性を示すフロー値が15cm以上であることを特徴とする請求項1に記載の原位置撹拌工法による地中遮水壁。 2. The raw material according to claim 1, wherein the soil cement before solidification obtained by mixing and stirring the cement milk containing the solidifying agent containing hydrogen carbonate and the ground soil further has a flow value indicating fluidity of 15 cm or more. Underground impermeable wall by position stirring method .
JP2022004810A 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method Active JP7390744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022004810A JP7390744B2 (en) 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168572A JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method
JP2022004810A JP7390744B2 (en) 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019168572A Division JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method

Publications (3)

Publication Number Publication Date
JP2022036294A JP2022036294A (en) 2022-03-04
JP2022036294A5 true JP2022036294A5 (en) 2022-09-29
JP7390744B2 JP7390744B2 (en) 2023-12-04

Family

ID=74878017

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019168572A Active JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method
JP2021036085A Active JP7266311B2 (en) 2019-09-17 2021-03-08 Underground Impermeable Wall by In-Situ Stirring Method and Construction Method of Underground Impermeable Wall by In-Situ Stirring
JP2022004810A Active JP7390744B2 (en) 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019168572A Active JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method
JP2021036085A Active JP7266311B2 (en) 2019-09-17 2021-03-08 Underground Impermeable Wall by In-Situ Stirring Method and Construction Method of Underground Impermeable Wall by In-Situ Stirring

Country Status (1)

Country Link
JP (3) JP7169666B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633058A (en) * 1992-07-13 1994-02-08 Asahi Chem Ind Co Ltd Quick limy ground improving agent comprising calcium silicate hydrate
JP2813878B2 (en) * 1996-09-27 1998-10-22 株式会社テクノサンライズ Soil pollution treatment method
JP3554496B2 (en) 1998-12-02 2004-08-18 株式会社鴻池組 Method for fluidizing soil cement and superplasticizer for soil cement
JP2007217255A (en) 2006-02-20 2007-08-30 Terunaito:Kk Method of preparing soil cement slurry
JP4816193B2 (en) 2006-03-29 2011-11-16 栗田工業株式会社 Construction method of underground wall
JP5317938B2 (en) 2008-11-28 2013-10-16 学校法人早稲田大学 Construction method of soil cement pillar and soil cement continuous wall
JP4616419B1 (en) * 2010-06-14 2011-01-19 明雄 宮本 Penetrant penetration device
JP2013019216A (en) 2011-07-13 2013-01-31 Asahi Kasei Construction Materials Co Ltd Impermeable wall mixed with fiber rubber and construction method of the same
JP5504414B1 (en) 2013-09-18 2014-05-28 強化土株式会社 Repair method for concrete structures
JP6230883B2 (en) * 2013-11-19 2017-11-15 徳倉建設株式会社 Delay hardening type fluidized soil and filling method of underground cavities
JP5999718B2 (en) 2014-03-12 2016-09-28 株式会社鴻池組 Underground impermeable wall construction material
JP6649774B2 (en) 2016-01-13 2020-02-19 デンカ株式会社 Weed control material and method of using it
KR101874380B1 (en) * 2016-10-04 2018-08-02 이엑스티(주) Point Foundation Structure Construction Method

Similar Documents

Publication Publication Date Title
CN107827422A (en) High waterproof simultaneous grouting slurry for seabed shield tunnel
KR101380354B1 (en) Composition for improvement of soft ground and bio-grout method using the same
JP6163173B2 (en) Construction method of underground impermeable walls
Hashim et al. Properties of stabilized peat by soil-cement column method
JP5536530B2 (en) Swellable self-healing cement admixture and cement composition
JP7266311B2 (en) Underground Impermeable Wall by In-Situ Stirring Method and Construction Method of Underground Impermeable Wall by In-Situ Stirring
JP2022036294A5 (en)
JP4976073B2 (en) Repair method for underground filler and earth structure
KR100272950B1 (en) Method of forming water-resist wall of rubbish buried place
JPH09157646A (en) Production of solidifying materail-bentonite injecting solution and powder for producing the same injecting solution
JP7299869B2 (en) Ground improvement method
JPH07101765A (en) Hydraulic material
JPH0849242A (en) Underground structure and its work executing method
KR101011966B1 (en) Ground improving agent and method of soil and ground hardening
CN115450082B (en) Light solidifying and modifying construction method for soft soil
JP7265691B2 (en) Soil improvement method
JP5620341B2 (en) Manufacturing method of water shielding material
Yim et al. Study on the performance of shallow soil mixing with cement
JP2018168628A (en) Manufacturing method of granulated soil and method for granulating swelling portion using the same
DE10213396B4 (en) Mortar and method for the compaction-free filling of trenches, channels and cavities in earthworks, road construction and foundation engineering
JP2013019216A (en) Impermeable wall mixed with fiber rubber and construction method of the same
JP2022110558A (en) Construction method and testing method of underground water shielding wall
JP6270567B2 (en) Impermeable civil engineering materials
JP3737016B2 (en) Ground improvement method by mixing and stirring
JPH0673729A (en) Execution method of built-in pile consolidating section