JP2022036294A - Underground impervious water wall and underground impervious water wall construction method - Google Patents

Underground impervious water wall and underground impervious water wall construction method Download PDF

Info

Publication number
JP2022036294A
JP2022036294A JP2022004810A JP2022004810A JP2022036294A JP 2022036294 A JP2022036294 A JP 2022036294A JP 2022004810 A JP2022004810 A JP 2022004810A JP 2022004810 A JP2022004810 A JP 2022004810A JP 2022036294 A JP2022036294 A JP 2022036294A
Authority
JP
Japan
Prior art keywords
cement
underground
impermeable wall
ground
water wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022004810A
Other languages
Japanese (ja)
Other versions
JP7390744B2 (en
JP2022036294A5 (en
Inventor
洋 松本
Hiroshi Matsumoto
和明 角田
Kazuaki Tsunoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Engineer Co Ltd
Original Assignee
Sun Engineer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Engineer Co Ltd filed Critical Sun Engineer Co Ltd
Priority to JP2022004810A priority Critical patent/JP7390744B2/en
Publication of JP2022036294A publication Critical patent/JP2022036294A/en
Publication of JP2022036294A5 publication Critical patent/JP2022036294A5/ja
Application granted granted Critical
Publication of JP7390744B2 publication Critical patent/JP7390744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground impervious water wall realizing both of enough impervious performance and deformation followability, and an underground impervious water wall construction method allowing quality stability of the underground impervious water wall to be kept and environmental load to be suppressed under construction.
SOLUTION: An underground impervious water wall of the present invention is an underground impervious water wall constructed in the ground through solidification of soil cement produced by mixing and stirring cement milk with solidification material including hydrogen carbonate. An area of a region in which there is C-S-H gel in a cross section of the soil cement after the solidification is 15% or more of the total area of the cross section.
SELECTED DRAWING: Figure 5
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、地中遮水壁、及び、地中遮水壁築造方法に関する。 The present invention relates to an underground impermeable wall and a method for constructing an underground impermeable wall.

地下水位の調整、汚染水及び汚染土壌の封じ込め、並びに、堤体や調整池の漏水防止等を目的として、地中に連続遮水壁を築造する方法がある。 There is a method of constructing a continuous impermeable wall in the ground for the purpose of adjusting the groundwater level, containing contaminated water and contaminated soil, and preventing water leakage from the embankment and the regulating pond.

特に、地震による液状化対策として、地下水位低下工法が採用されている。地下水位低下工法では、地中に液状化対策をする区域の周辺において地中に連続遮水壁を築造し、その後、井戸等を利用して連続遮水壁に囲まれた地中の地下水位を低下させる。 In particular, the groundwater level lowering method has been adopted as a measure against liquefaction caused by earthquakes. In the groundwater level lowering method, a continuous impermeable wall is constructed in the ground around the area where liquefaction measures are taken in the ground, and then the groundwater level in the ground surrounded by the continuous impermeable wall using a well or the like. To reduce.

このような、地中に連続遮水壁を築造する方法として、特許文献1に示すようなセメント系固化材を用いたスラリーやセメント・ベントナイトスラリーを地中に注入して撹拌混合して連続遮水壁を地中に築造する方法がある。さらに特許文献2に示すような、セメント系固化材を使用せず、ベントナイトによる地中遮水壁を築造する方法がある。 As a method for constructing such a continuous impermeable wall in the ground, a slurry using a cement-based solidifying material or a cement / bentonite slurry as shown in Patent Document 1 is injected into the ground and stirred and mixed to continuously shield the slurry. There is a way to build a water wall underground. Further, as shown in Patent Document 2, there is a method of constructing an underground impermeable wall by bentonite without using a cement-based solidifying material.

特開2015-172319号公報JP-A-2015-172319 特開2006-291703号公報Japanese Unexamined Patent Publication No. 2006-291703

特許文献1のセメント系固化材を用いたスラリーやセメント・ベントナイトスラリーによる地中遮水壁は、曲げや引張に対して弱く、柔軟性が極めて低い。また、セメント系固化材及びセメント・ベントナイトの必要量の調整が難しく、地中遮水壁の品質が安定しないという問題もある。また、スラリーを地中で練り混ぜるために大量の水が必要となるという問題もある。 The underground impermeable wall made of the slurry using the cement-based solidifying material of Patent Document 1 or the cement / bentonite slurry is vulnerable to bending and tension, and has extremely low flexibility. In addition, it is difficult to adjust the required amount of cement-based solidifying material and cement / bentonite, and there is also a problem that the quality of the underground impermeable wall is not stable. There is also the problem that a large amount of water is required to knead the slurry in the ground.

特許文献2のベントナイトによる地中遮水壁は、粘度発現や水膨潤性が乏しく十分な遮水性能が得られない場合があるという問題がある。また、ベントナイトの必要量の調整が難しく、地中遮水壁の品質が安定しないという問題もある。また、排土が大量に生じるという問題がある。 The underground impermeable wall made of bentonite of Patent Document 2 has a problem that the viscosity development and the water swelling property are poor and sufficient impermeable performance may not be obtained. There is also a problem that it is difficult to adjust the required amount of bentonite and the quality of the underground impermeable wall is not stable. In addition, there is a problem that a large amount of soil is discharged.

そこで、上記点より本発明は、十分な遮水性能と変形追随性とを両立する地中遮水壁、及び、地中遮水壁の品質が安定し、かつ、築造おいて環境負荷を抑制できる地中遮水壁築造方法を提供することを目的とする。 Therefore, from the above points, the present invention stabilizes the quality of the underground impermeable wall and the underground impermeable wall that achieve both sufficient impermeable performance and deformation followability, and suppresses the environmental load by construction. The purpose is to provide a method for constructing an underground impermeable wall that can be constructed.

請求項1の地中遮水壁は、炭酸水素塩を含む固化材入りのセメントミルクと地盤土砂とを混合撹拌したソイルセメントを固化させて地中に築造される地中遮水壁であって、固化後のソイルセメントのあらゆる断面における値の平均として、C-S-Hゲルが存在する領域の面積が、断面全体の面積の15%以上である。 The underground impermeable wall according to claim 1 is an underground impermeable wall constructed in the ground by solidifying soil cement obtained by mixing and stirring cement milk containing a solidifying material containing hydrogen carbonate and ground earth and sand. As an average of the values in all cross sections of the solidified soil cement, the area of the region where the CSH gel is present is 15% or more of the area of the entire cross section.

請求項1の地中遮水壁によれば、固化後のソイルセメントのあらゆる断面における値の平均として、C-S-Hゲルが存在する領域の面積が、断面全体の面積の15%以上となっていることで、地中遮水壁に存在するC-S-Hゲルにより地中遮水壁の遮水係数を事実上不透水レベルとすることができ、十分な遮水性能を実現できる。また、固化後のソイルセメントの断面においてにおいて、C-S-Hゲルが存在する領域の面積が、断面全体の面積の15%以上となっていることで、地中遮水壁に存在するC-S-Hゲルにより破壊ひずみが2%以上となり、遮水壁の柔軟性が得られ、十分な変形追随性能及び自己修復性能を実現できる。 According to the underground impermeable wall of claim 1, the area of the region where the CSH gel is present is 15% or more of the area of the entire cross section as an average of the values in all the cross sections of the solidified soil cement. As a result, the CSH gel existing in the underground impermeable wall can make the impermeable coefficient of the underground impermeable wall virtually impermeable, and sufficient impermeable performance can be realized. .. Further, in the cross section of the solidified soil cement, the area of the region where the CSH gel exists is 15% or more of the area of the entire cross section, so that the C present in the underground impermeable wall -The SH gel makes the fracture strain 2% or more, the flexibility of the impermeable wall is obtained, and sufficient deformation follow-up performance and self-repairing performance can be realized.

請求項2の地中遮水壁築造方法は、地中で炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させて、請求項1に記載の遮水壁を築造する。 The method for constructing an underground impermeable wall according to claim 1 is to construct the impermeable wall according to claim 1 by mixing and stirring cement milk containing a solidifying material containing hydrogen carbonate and ground earth and sand in the ground. ..

請求項2の地中遮水壁築造方法によれば、必要量の調整が容易な炭酸水素塩を使用する。そのため、品質が安定した地中遮水壁を築造することができる。また、地中でセメントミルク及び炭酸水素塩を含む固化材と地盤土砂とを混合撹拌するので、排土の量を抑制して、地中に遮水壁を築造することができる。 According to the method for constructing an underground impermeable wall according to claim 2, a hydrogen carbonate whose required amount can be easily adjusted is used. Therefore, it is possible to construct an underground impermeable wall with stable quality. Further, since the solidifying material containing cement milk and bicarbonate and the ground soil are mixed and agitated in the ground, the amount of soil discharged can be suppressed and an impermeable wall can be constructed in the ground.

請求項3の地中遮水壁築造方法は、請求項2の地中遮水壁築造方法において、炭酸水素塩は重曹である。 The method for constructing an underground impermeable wall according to claim 3 is the method for constructing an underground impermeable wall according to claim 2, wherein the hydrogen carbonate is baking soda.

請求項3の地中遮水壁築造方法は、請求項2の地中遮水壁築造方法と同様に作用する上に、重曹は地中に注入しても、人を含む動植物に害を及ぼす恐れがないことが明らかな物質であるため、築造の安全性を向上させることができる。 The method for constructing an underground impermeable wall according to claim 3 operates in the same manner as the method for constructing an underground impermeable wall according to claim 2, and even if the baking soda is injected into the ground, it causes harm to animals and plants including humans. Since it is a substance that is clearly not afraid, it is possible to improve the safety of construction.

請求項4の地中遮水壁築造方法は、請求項2又は3の地中遮水壁築造方法において、地中で地盤土砂を泥水掘削した後に、炭酸水素塩を含む固化材入りセメントミルクを注入しながら、地中で地盤土砂と混合撹拌して固化させる。 The method for constructing an underground impermeable wall according to claim 4 is the method for constructing an underground impermeable wall according to claim 2 or 3, after excavating the ground earth and sand in the ground with muddy water, and then using cement milk containing a solidifying material containing hydrogen carbonate. While injecting, mix and stir with the ground earth and sand in the ground to solidify.

請求項7の地中遮水壁築造方法は、請求項5又は6の地中遮水壁築造方法と同様に作用する上に、地中で地盤土砂を泥水掘削した後に、炭酸水素塩を含む固化材入りセメントミルクを注入しながら、地中で地盤土砂と混合撹拌して固化させることで、排土の量を抑制しつつ、地盤土砂と固化材との混合を効率良くおこなうことができる。 The method for constructing an underground impermeable wall according to claim 7 operates in the same manner as the method for constructing an underground impermeable wall according to claim 5 or 6, and also contains hydrogen carbonate after excavating the ground soil in the ground with muddy water. By injecting cement milk containing a solidifying material and mixing and stirring it with the ground soil in the ground to solidify it, it is possible to efficiently mix the ground soil and the solidifying material while suppressing the amount of soil discharged.

請求項1の地中遮水壁は、十分な遮水性能と変形追随性及び自己修復性とを両立することができる。また、請求項2から4の地中遮水壁築造方法は、地中遮水壁の品質が安定し、かつ、築造おいて環境負荷を抑制できる。 The underground impermeable wall according to claim 1 can achieve both sufficient impermeable performance, deformation followability, and self-repairing property. Further, in the method of constructing the underground impermeable wall according to claims 2 to 4, the quality of the underground impermeable wall is stable, and the environmental load can be suppressed by constructing the underground impermeable wall.

重曹を混入していないセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真である。It is a stereomicrograph of a fracture surface of a soil cement test piece made of cement milk not mixed with baking soda. 重曹を混入したセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真である。It is a stereomicroscopic observation photograph of a fracture surface of a test piece of soil cement made of cement milk mixed with baking soda. 重曹を混入していないセメントミルクからなるソイルセメントの試験体の走査型電子顕微鏡の二次電子像である。It is a secondary electron image of a scanning electron microscope of a test piece of soil cement made of cement milk not mixed with baking soda. 重曹を混入したセメントミルクからなるソイルセメントの試験体の走査型電子顕微鏡の二次電子像である。It is a secondary electron image of a scanning electron microscope of a test piece of soil cement made of cement milk mixed with baking soda. 本発明の一実施形態の地中遮水壁の斜視図である。It is a perspective view of the underground impermeable wall of one Embodiment of this invention. 図5の地中遮水壁を構成する柱状体の施工を示す断面図である。It is sectional drawing which shows the construction of the columnar body which constitutes the underground impermeable wall of FIG.

1.1 固化したソイルセメントの供試体の実験
本発明の地中遮水壁が十分な遮水性能と変形追随性及び自己修復性とを両立していることを確認する目的の試験を実施した。
1.1 Experiment of solidified soil cement specimen A test was conducted for the purpose of confirming that the underground impermeable wall of the present invention has both sufficient impermeable performance, deformation followability and self-repairing property. ..

1.2 供試体の材料
供試体は、後述する表1中の検討例1~4に示すように、地盤土砂の「標準砂」に、炭酸水素塩である重曹と粘土とセメントと水の配合条件を変えて、それぞれ混合して作製した。比較のための供試体として、後述する表1中の比較例1~2に示すように、「標準砂」に粘土とセメントと水を混合して作製した。
「標準砂」は山口県豊浦エリアでも限定された場所でしか産出されない純粋な天然のシリカサンドである。天然砂の特質は、粉砕された人工のものに比べ、自然界に存在する形状をなしているので、粒に丸みがあり、その特質のため、実験や測定で発生する誤差を小さくし、安定した結果をえることができる硅砂である。
さらに、後述する表2中の検討例6~10に示すように、地盤土砂として、実際に地震後の液状化が発生した「熊本市区内現場土(以下、熊本砂)」に、炭酸水素塩である重曹と粘土とセメントと水の配合条件を変えて、それぞれ混合して作製した。比較のための供試体として、後述する表2中の比較例3に示すように、「標準砂」に粘土とセメントと水を混合して作製した。
「熊本砂」は、熊本市の液状化した原位置で採取した。熊本砂は、含水比が高く約40%で土の飽和度が100%を越えていたため、含水比20%に調整して使用した。
1.2 Materials of the specimen As shown in Examination Examples 1 to 4 in Table 1 to be described later, the specimen is a mixture of bicarbonate, baking soda, clay, cement and water in the "standard sand" of the ground soil. They were prepared by mixing them under different conditions. As a specimen for comparison, as shown in Comparative Examples 1 and 2 in Table 1 described later, it was prepared by mixing clay, cement and water with "standard sand".
"Standard sand" is a pure natural silica sand that is produced only in limited places even in the Toyoura area of Yamaguchi prefecture. Compared to crushed artificial sand, the nature of natural sand has a shape that exists in nature, so the grains are rounded, and due to that nature, errors that occur in experiments and measurements are reduced and stable. It is a silica sand that can produce results.
Furthermore, as shown in Examination Examples 6 to 10 in Table 2 to be described later, hydrogen carbonate is added to the “Kumamoto City Ward Site Soil (hereinafter referred to as Kumamoto Sand”) where liquefaction actually occurred after the earthquake as the ground soil. It was prepared by mixing the salts of baking soda, clay, cement, and water under different compounding conditions. As a specimen for comparison, as shown in Comparative Example 3 in Table 2 described later, it was prepared by mixing clay, cement and water with "standard sand".
"Kumamoto sand" was collected at the liquefied in-situ in Kumamoto city. Kumamoto sand had a high water content of about 40% and the soil saturation exceeded 100%, so the water content was adjusted to 20% before use.

1.3 供試体の作製
(1) 用量3000mlのビーカーに水道水300gを投入し、ディスパーに設置する。
(2) ミキサーを700rpmで回転させ、各検討例の配合条件に合わせた量のセメントを投入し3分間攪拌する。
(3) 検討例の供試体では、上記(2)に、各検討例の配合条件に合わせた量の炭酸水素塩である重曹および粘土を投入し5分間攪拌後、固化剤を作製する。比較例の供試体では、上記(2)に、各比較例の配合条件に合わせた量の粘土のみを投入し、5分間攪拌後、固化剤を作製する。
(4) 標準砂又は熊本砂700gに対し、上記(3)の各検討例及び各比較例の固化剤を投入する。
(5) モルタルミキサーにて5分間攪拌し、固化材入りセメントミルクと地盤土砂とを混合撹拌した固化前のソイルセメントを作製する。
(6) 上記(5)の固化材入りセメントミルクと地盤土砂とを混合撹拌したソイルセメントを変水位透水試験用モールドに充填し、各検討例及び各比較例の透水試験用の供試体を作製する。
(7) 上記(5)のセメントミルク及び炭酸水素塩を含む固化材と地盤土砂とを混合撹拌したソイルセメントを一軸圧縮試験用モールドへ投入し、20度±0.5度の恒温槽にて所定期間養生して、各検討例及び各比較例の一軸圧縮試験用の供試体を作製する。
1.3 Preparation of specimen (1) Put 300 g of tap water in a beaker with a dose of 3000 ml and install it in the disper.
(2) Rotate the mixer at 700 rpm, add an amount of cement that matches the compounding conditions of each study example, and stir for 3 minutes.
(3) In the specimen of the study example, baking soda and clay, which are hydrogen carbonates in an amount suitable for the compounding conditions of each study example, are added to (2) above, and the mixture is stirred for 5 minutes to prepare a solidifying agent. In the specimen of the comparative example, only the amount of clay corresponding to the compounding conditions of each comparative example is added to (2) above, and after stirring for 5 minutes, a solidifying agent is prepared.
(4) Add the solidifying agent of each of the study examples and comparative examples of (3) above to 700 g of standard sand or Kumamoto sand.
(5) Stir with a mortar mixer for 5 minutes to prepare soil cement before solidification by mixing and stirring cement milk containing a solidifying material and ground earth and sand.
(6) Soil cement obtained by mixing and stirring the cement milk containing the solidifying material of (5) above and the ground earth and sand is filled in a hydraulic conductivity test mold to prepare specimens for hydraulic conductivity of each study example and each comparative example. do.
(7) Soil cement obtained by mixing and stirring the solidifying material containing cement milk and bicarbonate of (5) above and the ground earth and sand is put into a uniaxial compression test mold and placed in a constant temperature bath at 20 ° C ± 0.5 ° C for a predetermined period. After curing, specimens for uniaxial compression test of each study example and each comparative example are prepared.

1.4 透水試験(変水位法 JIS A1218/JGS 0311)
透水試験は、比較的に透水性が低い粘性土・シルト質土に用いられる変水位法 JIS A1218/JGS 0311の試験方法を用いて透水係数を測定した。地中遮水壁において、十分な遮水性能を実現できる透水係数の目標値は、10-7cm/sec以下とした。
1.4 Permeability test (variable water level method JIS A1218 / JGS 0311)
In the permeability test, the permeability coefficient was measured using the test method of JIS A 1218 / JGS 0311, which is a variable water level method used for cohesive soil and silty soil with relatively low permeability. The target value of the hydraulic conductivity that can achieve sufficient impermeable performance in the underground impermeable wall is set to 10 -7 cm / sec or less.

1.5 一軸圧縮試験 (JIS A1216/JGS 0511)
一軸圧縮試験は、粘性土の供試体の一軸圧縮強度及び破壊ひずみを求めるものである。試験は、複数の配合パターンで混合された供試体を材齢7日の養生期間を設けて一軸圧縮強度機を用いておこなった。地下水位低下工法による偏土圧に対する安全性を確保するため、地中遮水壁における十分な強度の目標値は、100kN/m2以上とした。また、地中遮水壁において、変形追随性及び自己修復性を実現するため、破壊ひずみの目標値は、2%以上とした。
1.5 Uniaxial compression test (JIS A1216 / JGS 0511)
The uniaxial compression test is to determine the uniaxial compressive strength and fracture strain of a cohesive soil specimen. The test was carried out using a uniaxial compressive strength machine with a curing period of 7 days for specimens mixed with a plurality of compounding patterns. In order to ensure safety against unbalanced earth pressure due to the groundwater level lowering method, the target value of sufficient strength in the underground impermeable wall was set to 100 kN / m 2 or more. In addition, the target value of fracture strain was set to 2% or more in order to realize deformation followability and self-repairing property in the underground impermeable wall.

2.1 固化前のソイルセメントの供試体の実験
また、本発明の地中遮水壁の築造施工時に、セメントミルク及び炭酸水素塩を含む固化材と地盤土砂とを混合撹拌したものが十分な流動性があることを確認する目的の実験も実施した。この実験について、以下に説明する。
2.1 Experiment of soil cement specimen before solidification In addition, when constructing the underground impermeable wall of the present invention, it is sufficient to mix and stir the solidifying material containing cement milk and bicarbonate and the ground earth and sand. An experiment was also conducted to confirm the fluidity. This experiment will be described below.

2.2 供試体の材料
供試体は、地中遮水壁が十分な遮水性能と変形追随性及び自己修復性とを両立していることを確認する目的の試験と同様に、標準砂の検討例1~5、標準砂の比較例1~3、熊本砂の検討例6~11である。
2.2 Materials of the specimen The specimen is made of standard sand, as in the test for the purpose of confirming that the underground impermeable wall has both sufficient impermeable performance, deformation followability and self-repairing property. Examples 1 to 5, Comparative Examples 1 to 3 of standard sand, and Examples 6 to 11 of Kumamoto sand.

2.3 供試体の作製
(1) 用量3000mlのビーカーに水道水300gを投入し、ディスパーに設置する。
(2) ミキサーを700rpmで回転させ、各検討例の配合条件に合わせた量のセメントを投入し3分間攪拌する。
(3) 検討例の供試体では、上記(2)に、各検討例の配合条件に合わせた量の炭酸水素塩である重曹および粘土を投入し5分間攪拌後、固化剤を作製する。比較例の供試体では、上記(2)に、各比較例の配合条件に合わせた量の粘土のみを投入し、5分間攪拌後、固化剤を作製する。
(4) 標準砂又は熊本砂700gに対し、上記(3)の各検討例及び各比較例の固化剤を投入する。
(5) モルタルミキサーにて5分間攪拌し、固化材入りセメントミルクと地盤土砂とを混合撹拌した固化前のソイルセメントのフロー試験用の供試体を作製する。
2.3 Preparation of specimen (1) Put 300 g of tap water in a beaker with a dose of 3000 ml and install it in the disper.
(2) Rotate the mixer at 700 rpm, add an amount of cement that matches the compounding conditions of each study example, and stir for 3 minutes.
(3) In the specimen of the study example, baking soda and clay, which are hydrogen carbonates in an amount suitable for the compounding conditions of each study example, are added to (2) above, and the mixture is stirred for 5 minutes to prepare a solidifying agent. In the specimen of the comparative example, only the amount of clay corresponding to the compounding conditions of each comparative example is added to (2) above, and after stirring for 5 minutes, a solidifying agent is prepared.
(4) Add the solidifying agent of each of the study examples and comparative examples of (3) above to 700 g of standard sand or Kumamoto sand.
(5) Stir with a mortar mixer for 5 minutes, and mix and stir the cement milk containing the solidifying material and the ground earth and sand to prepare a specimen for the flow test of the soil cement before solidification.

2.4 フロー試験(JIS A313)
フロー試験は、複数の配合パターンで混合されたソイルセメントの供試体の固化前の流動性を確認した。地中遮水壁の築造施工時に、固化前のソイルセメントの不要な拡散を抑制しつつ、所定の位置に固化前のソイルセメントを充填することができるように、フロー値の目標値は、15cm以上とした。
2.4 Flow test (JIS A313)
The flow test confirmed the fluidity of soil cement specimens mixed in multiple compounding patterns before solidification. The target value of the flow value is 15 cm so that the soil cement before solidification can be filled in a predetermined position while suppressing the unnecessary diffusion of the soil cement before solidification during the construction of the underground impermeable wall. That's all.

3.試験結果
標準砂での各検討例及び各比較例の配合条件、透水試験、一軸圧縮試験及びフロー試験の結果を以下の表1に示す。
3. 3. Test results Table 1 below shows the results of the compounding conditions, water permeability test, uniaxial compression test and flow test of each study example and each comparative example using standard sand.

Figure 2022036294000002
Figure 2022036294000002

標準砂の各検討例及び比較例の中で、標準砂の検討例4と検討例5が、透水係数の目標値10-7cm/sec以下、強度の目標値100kN/m2以上、破壊ひずみの目標値2%以上、及び、フロー値の目標値15cm以上をすべて満たす。 Among the study examples and comparative examples of standard sand, study example 4 and study example 5 of standard sand have a target value of water permeability coefficient of 10 -7 cm / sec or less, a target value of strength of 100 kN / m 2 or more, and fracture strain. The target value of 2% or more and the target value of 15 cm or more of the flow value are all satisfied.

したがって、地盤土砂の「標準砂」、炭酸水素塩である重曹、粘土、セメント、及び水を適切な配合条件とすることによって、地中遮水壁は、十分な遮水性能と変形追随性及び自己修復性とを両立することができる Therefore, by using the "standard sand" of the ground earth and sand, baking soda, which is a hydrogen carbonate, clay, cement, and water as appropriate compounding conditions, the underground impermeable wall can have sufficient impermeable performance and deformation followability. Can be compatible with self-healing

比較例1と比較例2は、セメントの量を多くしたことによって、破壊ひずみの目標値を満たすことができなくなっている。 In Comparative Example 1 and Comparative Example 2, the target value of the fracture strain cannot be satisfied due to the increase in the amount of cement.

標準砂の検討例4と検討例5は、比較例1と比較例2と比べて、少ないセメントの量で、透水係数、強度、破壊ひずみ及びフロー値の目標値を満たすことができる。したがって、地盤土砂の「標準砂」、炭酸水素塩である重曹、粘土、セメント、及び水を適切な配合条件とすることによって、地中遮水壁は、セメントの使用量を抑制することで、経済性が向上し、環境負荷を抑制することができる。 In Study Example 4 and Study Example 5 of standard sand, the target values of hydraulic conductivity, strength, fracture strain and flow value can be satisfied with a smaller amount of cement as compared with Comparative Example 1 and Comparative Example 2. Therefore, by setting appropriate compounding conditions for "standard sand" of ground soil, baking soda, which is a hydrogen carbonate, clay, cement, and water, the underground impermeable wall can suppress the amount of cement used. Economic efficiency can be improved and the environmental load can be suppressed.

熊本砂での各検討例及び各比較例の配合条件、透水試験、一軸圧縮試験及びフロー試験の結果を以下の表2に示す。 Table 2 below shows the compounding conditions, water permeability test, uniaxial compression test, and flow test of each study example and comparative example in Kumamoto sand.

Figure 2022036294000003
Figure 2022036294000003

熊本砂の検討例9と検討例10が、透水係数の目標値10-7cm/sec以下、強度の目標値100kN/m2以上、破壊ひずみの目標値2%以上、及び、フロー値の目標値15cm以上をすべて満たす。なお熊本砂の比較例3及び検討例6~8は、供試体が自立することなく、当然強度の目標値を満たしていない。 In Kumamoto sand study example 9 and study example 10, the target value of water permeability coefficient is 10 -7 cm / sec or less, the target value of strength is 100 kN / m 2 or more, the target value of fracture strain is 2% or more, and the target of flow value. Satisfy all values above 15 cm. In Comparative Example 3 and Examination Examples 6 to 8 of Kumamoto sand, the specimens did not stand on their own and naturally did not meet the target value of strength.

したがって、地盤土砂の「熊本砂」、炭酸水素塩である重曹、粘土、セメント、及び水を適切な配合条件とすることによって、地中遮水壁は、十分な遮水性能と変形追随性及び自己修復性とを両立することができる。 Therefore, by using "Kumamoto sand", which is the ground earth and sand, baking soda, which is a hydrogen carbonate, clay, cement, and water as appropriate compounding conditions, the underground impermeable wall can have sufficient impermeable performance and deformation followability. It is possible to achieve both self-healing properties.

セメントミルクに炭酸水素塩である重曹を混入することでC-S-Hゲルの生成が促進されるメカニズムについて、以下に説明する。 The mechanism by which the formation of CSH gel is promoted by mixing baking soda, which is a hydrogen carbonate, in cement milk will be described below.

セメント組成物である3CaO・SiO2と水との化学反応は以下の通りである。 The chemical reaction between 3CaO · SiO 2 which is a cement composition and water is as follows.

Figure 2022036294000004
Figure 2022036294000004

化学式1中の2CaO・SiO2・1.17H2Oは、C-S-Hゲルの水和物である。 2CaO · SiO 2 · 1.17H 2 O in Chemical Formula 1 is a hydrate of CSH gel.

また、セメントミルクに重曹が混入されると、重曹と水による加水分解反応が起こる。 In addition, when baking soda is mixed with cement milk, a hydrolysis reaction occurs between the baking soda and water.

Figure 2022036294000005
Figure 2022036294000005

化学式2の加水分解反応によって生じたナトリウムイオンによって、化学式1での2CaO・SiO2・1.17H2OのC-S-Hゲルの生成が促進されるようになっている。 The sodium ion generated by the hydrolysis reaction of Chemical Formula 2 promotes the formation of 2CaO · SiO 2.1.17H 2O C—SH gel in Chemical Formula 1.

重曹を混入していないセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真を図1に示す。重曹を混入したセメントミルクからなるソイルセメントの試験体の破断面の実体顕微鏡観察写真を図2に示す。 FIG. 1 shows a stereomicroscopic photograph of a fracture surface of a soil cement test piece made of cement milk not mixed with baking soda. FIG. 2 shows a stereomicroscopic photograph of a fracture surface of a soil cement test piece made of cement milk mixed with baking soda.

各破断面には白色が濃い粒状の点が多数見られる。この白色が濃い粒状の点がC-S-Hゲルである。各破断面におけるC-S-Hゲルの領域の面積と破断面全体の面積との比率は、重曹を混入していないセメントミルクからなるソイルセメントの試験体では約10%であり、重曹を混入したセメントミルクからなるソイルセメントの試験体では約15%である。 A large number of dark white granular dots can be seen on each fracture surface. This dark white granular point is the CSH gel. The ratio of the area of the area of the CSH gel in each fracture surface to the area of the entire fracture surface is about 10% in the test piece of soil cement made of cement milk not mixed with baking soda, and is mixed with baking soda. It is about 15% in the test piece of soil cement consisting of cement milk.

C-S-Hゲルは、多孔質であり、吸水して膨張するようになっている。限界まで吸水し膨張したC-S-Hゲルは、水を通さない。そのため、地中遮水壁におけるC-S-Hゲルの量が多くなればなるほど、遮水性能を向上させることができる。 The CSH gel is porous and absorbs water to expand. The CSH gel that has absorbed water to the limit and expanded is impermeable to water. Therefore, the larger the amount of CSH gel in the underground impermeable wall, the better the impermeable performance can be.

また、C-S-Hゲルが吸水して膨張することによって、地中遮水壁内部の空隙が充填され、地中遮水壁の自己修復性能が得られる。 Further, when the CSH gel absorbs water and expands, the voids inside the underground impermeable wall are filled, and the self-repairing performance of the underground impermeable wall can be obtained.

重曹を混入していないセメントミルクからなるソイルセメントの試験体において、破断面、目視にて観察し、白色生成物であるC-S-Hゲルが確認できた箇所から観察用試料を採取した。採取した試料を観察面が上になるように試料台に固定し、導電性を持たせるため、イオンスパッタリング装置にて表面に金を蒸着した後、走査型電子顕微鏡を使用して、図3に示すC-S-Hゲルの端部構造を観察できる二次電子像を得た。 In a soil cement test piece made of cement milk not mixed with baking soda, the fracture surface was visually observed, and an observation sample was taken from the place where the CSH gel, which is a white product, could be confirmed. The collected sample is fixed to the sample table so that the observation surface faces up, and in order to have conductivity, gold is vapor-deposited on the surface with an ion sputtering device, and then a scanning electron microscope is used to show FIG. A secondary electron image was obtained in which the end structure of the shown CSH gel could be observed.

重曹を混入したセメントミルクからなるソイルセメントの試験体においても、同様に、図4に示すC-S-Hゲルの端部構造を観察できる二次電子像を得た。 Similarly, in the test piece of soil cement made of cement milk mixed with baking soda, a secondary electron image was obtained in which the end structure of the CSH gel shown in FIG. 4 could be observed.

図3では、重曹を混入していないセメントミルクからなるソイルセメントのC-S-Hゲルの端部が、微細な針が多数飛び出している形状となっている。これに対し、図4では、図3と比較して、重曹を混入したセメントミルクからなるソイルセメントのC-S-Hゲルの端部の微細な針が太くなっている。 In FIG. 3, the end of the CSH gel of soil cement made of cement milk not mixed with baking soda has a shape in which a large number of fine needles are projected. On the other hand, in FIG. 4, the fine needles at the ends of the CSH gel of the soil cement made of cement milk mixed with baking soda are thicker than those in FIG.

以下、本発明の地中遮水壁1の築造について説明する。 Hereinafter, the construction of the underground impermeable wall 1 of the present invention will be described.

本発明の地中遮水壁1は、図5に示すように、地中に遮水性能を有する複数の柱状体10が連なった構成となっている。複数の柱状体10は、ラップ配置となっている。 As shown in FIG. 5, the underground impermeable wall 1 of the present invention has a structure in which a plurality of columnar bodies 10 having an impermeable performance are connected in the ground. The plurality of columnar bodies 10 are arranged in a lap.

柱状体10の施工について、図6を用いて説明する。本発明の地中遮水壁の築造施工で使用する施工機は、昇降及び回転可能に支持されたロッド2と、該ロッドの下に設けられロッド2と一体となって回転する攪拌ヘッド3とを有する。 The construction of the columnar body 10 will be described with reference to FIG. The construction machine used in the construction of the underground impermeable wall of the present invention includes a rod 2 that is supported up and down and rotatably, and a stirring head 3 that is provided under the rod and rotates integrally with the rod 2. Has.

図6の(a)に示すように、ロッド2の回転軸を柱状体の杭芯位置にセットする。次いで、図6の(b)から(c)に示すように、泥水を撹拌ヘッド3から注入しながらロッド2を回転降下させることによって、撹拌ヘッド3が所定の深度に達するまで、地盤土砂と泥水を撹拌する。次いで、図6の(d)から(e)に示すように、ロッド2を回転上昇させることによって、撹拌ヘッド3がさらに地盤土砂と泥水を撹拌する。 As shown in FIG. 6A, the rotation axis of the rod 2 is set at the pile core position of the columnar body. Then, as shown in FIGS. 6 (b) to 6 (c), the rod 2 is rotated and lowered while injecting muddy water from the stirring head 3, so that the ground sediment and muddy water are reached until the stirring head 3 reaches a predetermined depth. To stir. Next, as shown in FIGS. 6 (d) to 6 (e), the stirring head 3 further stirs the ground soil and muddy water by rotating and raising the rod 2.

次いで、図6の(f)から(g)に示すように、炭酸水素塩を含む固化材入りセメントミルクを撹拌ヘッド3から注入しながらロッド2を回転降下させることによって、撹拌ヘッド3が所定の深度に達するまで、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂と泥水を撹拌する。次いで、図6の(h)から(i)に示すように、ロッド2を回転上昇させることによって、撹拌ヘッド3がさらに地盤土砂と泥水を撹拌する。 Next, as shown in FIGS. 6 (f) to 6 (g), the stirring head 3 is predetermined by rotating and lowering the rod 2 while injecting cement milk containing a solidifying material containing a hydrogen carbonate from the stirring head 3. Stir the cement milk with bicarbonate containing bicarbonate and the ground sediment and muddy water until the depth is reached. Next, as shown in FIGS. 6 (h) to 6 (i), the stirring head 3 further stirs the ground soil and muddy water by rotating and raising the rod 2.

図6の(j)に示すように、炭酸水素塩を含む固化材入りセメントミルクと地盤土砂と泥水を撹拌された領域が固化すると、地中遮水壁1を構成する柱状体10が造成される。 As shown in FIG. 6 (j), when the region where the cement milk containing the solidifying material containing hydrogen carbonate, the ground earth and sand, and the muddy water are agitated is solidified, the columnar body 10 constituting the underground impermeable wall 1 is formed. To.

所定の複数の杭芯位置において、図6(a)から(e)の泥水注入の撹拌作業を行った後、図6(e)から(i)のセメントミルク注入の撹拌作業を行って固化すると、複数の柱状体10が壁状に連なり、地中遮水壁1が築造される。このような地中に遮水性能を有する複数の柱状体10が連なった構成となった地中遮水壁を、液状化対策する区域の周辺の地中に築造することで、地下水位低下の影響をなくすことができる。 After the muddy water injection agitation work of FIGS. 6 (a) to 6 (e) is performed at the predetermined plurality of pile core positions, the cement milk injection agitation work of FIGS. 6 (e) to 6 (i) is performed to solidify. , A plurality of columnar bodies 10 are connected in a wall shape, and an underground impermeable wall 1 is constructed. By constructing an underground impermeable wall in which a plurality of columnar bodies 10 having impermeable performance are connected in the ground in the ground around the area for liquefaction countermeasures, the groundwater level can be lowered. The effect can be eliminated.

なお、本発明の実施では、比較的小型の掘削重機で地中遮水壁を築造することができるので、騒音・振動を抑制するとともに、狭い道路や住宅密集地での地中遮水壁の築造することができる。 In the implementation of the present invention, since the underground impermeable wall can be constructed with a relatively small excavation heavy machine, noise and vibration can be suppressed, and the underground impermeable wall in a narrow road or a densely populated residential area can be constructed. Can be built.

また、図6では、一本の柱状体を造成する場合について説明したが、これに限定されることはない。例えば、複数本の柱状体を同時に造成してもよい。また、トレンチャータイプの重機で柱状体を造成してもよい。 Further, in FIG. 6, the case of creating a single columnar body has been described, but the present invention is not limited to this. For example, a plurality of columnar bodies may be created at the same time. Further, a columnar body may be created by a trencher type heavy machine.

1 地中遮水壁
2 ロッド
3 撹拌ヘッド
10 柱状体
1 Underground impermeable wall 2 Rod 3 Stirring head 10 Columnar body

Claims (2)

炭酸水素塩を含む固化材入りのセメントミルクと地盤土砂とを混合撹拌したソイルセメントを固化させて地中に築造される地中遮水壁であって、
固化後のソイルセメントのあらゆる断面における値の平均として、C-S-Hゲルが存在する領域の面積が、断面全体の面積の15%以上であることを特徴とする地中遮水壁。
It is an underground impermeable wall built in the ground by solidifying soil cement that is a mixture of cement milk containing a solidifying material containing bicarbonate and ground earth and sand and stirring.
An underground impermeable wall characterized in that the area of the region where the CSH gel is present is 15% or more of the area of the entire cross section as an average of the values in all the cross sections of the solidified soil cement.
地中で炭酸水素塩を含む固化材入りセメントミルクと地盤土砂とを混合撹拌し固化させて、請求項1に記載の遮水壁を築造することを特徴とする地中遮水壁築造方法。 The method for constructing an underground impermeable wall according to claim 1, wherein cement milk containing a solidifying material containing a hydrogen carbonate and ground earth and sand are mixed and stirred in the ground to be solidified.
JP2022004810A 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method Active JP7390744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022004810A JP7390744B2 (en) 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168572A JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method
JP2022004810A JP7390744B2 (en) 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019168572A Division JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method

Publications (3)

Publication Number Publication Date
JP2022036294A true JP2022036294A (en) 2022-03-04
JP2022036294A5 JP2022036294A5 (en) 2022-09-29
JP7390744B2 JP7390744B2 (en) 2023-12-04

Family

ID=74878017

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019168572A Active JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method
JP2021036085A Active JP7266311B2 (en) 2019-09-17 2021-03-08 Underground Impermeable Wall by In-Situ Stirring Method and Construction Method of Underground Impermeable Wall by In-Situ Stirring
JP2022004810A Active JP7390744B2 (en) 2019-09-17 2022-01-17 Underground impermeable wall using in-situ stirring method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2019168572A Active JP7169666B2 (en) 2019-09-17 2019-09-17 Underground impermeable wall and underground impermeable wall construction method
JP2021036085A Active JP7266311B2 (en) 2019-09-17 2021-03-08 Underground Impermeable Wall by In-Situ Stirring Method and Construction Method of Underground Impermeable Wall by In-Situ Stirring

Country Status (1)

Country Link
JP (3) JP7169666B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169209A (en) * 1998-12-02 2000-06-20 Konoike Constr Ltd Fluidization of soil cement and superplasticizer for soil cement
JP2007217255A (en) * 2006-02-20 2007-08-30 Terunaito:Kk Method of preparing soil cement slurry
JP2007262789A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Construction method for underground wall
JP2010150914A (en) * 2008-11-28 2010-07-08 Waseda Univ Method of forming soil cement column and soil cement continuous wall
JP2013019216A (en) * 2011-07-13 2013-01-31 Asahi Kasei Construction Materials Co Ltd Impermeable wall mixed with fiber rubber and construction method of the same
JP5504414B1 (en) * 2013-09-18 2014-05-28 強化土株式会社 Repair method for concrete structures
JP2015098699A (en) * 2013-11-19 2015-05-28 徳倉建設株式会社 Delay curing type fluidized soil and filling method of underground cavity
JP2015172319A (en) * 2014-03-12 2015-10-01 株式会社鴻池組 Underground impervious wall construction material
KR20180037442A (en) * 2016-10-04 2018-04-12 이엑스티 주식회사 Point Foundation Structure Construction Method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633058A (en) * 1992-07-13 1994-02-08 Asahi Chem Ind Co Ltd Quick limy ground improving agent comprising calcium silicate hydrate
JP2813878B2 (en) * 1996-09-27 1998-10-22 株式会社テクノサンライズ Soil pollution treatment method
JP4616419B1 (en) * 2010-06-14 2011-01-19 明雄 宮本 Penetrant penetration device
JP6649774B2 (en) * 2016-01-13 2020-02-19 デンカ株式会社 Weed control material and method of using it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169209A (en) * 1998-12-02 2000-06-20 Konoike Constr Ltd Fluidization of soil cement and superplasticizer for soil cement
JP2007217255A (en) * 2006-02-20 2007-08-30 Terunaito:Kk Method of preparing soil cement slurry
JP2007262789A (en) * 2006-03-29 2007-10-11 Kurita Water Ind Ltd Construction method for underground wall
JP2010150914A (en) * 2008-11-28 2010-07-08 Waseda Univ Method of forming soil cement column and soil cement continuous wall
JP2013019216A (en) * 2011-07-13 2013-01-31 Asahi Kasei Construction Materials Co Ltd Impermeable wall mixed with fiber rubber and construction method of the same
JP5504414B1 (en) * 2013-09-18 2014-05-28 強化土株式会社 Repair method for concrete structures
JP2015098699A (en) * 2013-11-19 2015-05-28 徳倉建設株式会社 Delay curing type fluidized soil and filling method of underground cavity
JP2015172319A (en) * 2014-03-12 2015-10-01 株式会社鴻池組 Underground impervious wall construction material
KR20180037442A (en) * 2016-10-04 2018-04-12 이엑스티 주식회사 Point Foundation Structure Construction Method

Also Published As

Publication number Publication date
JP2021102912A (en) 2021-07-15
JP7390744B2 (en) 2023-12-04
JP7266311B2 (en) 2023-04-28
JP2021046685A (en) 2021-03-25
JP7169666B2 (en) 2022-11-11

Similar Documents

Publication Publication Date Title
CN107827422A (en) High waterproof simultaneous grouting slurry for seabed shield tunnel
JP6322452B2 (en) Backfill material
JP2022036294A (en) Underground impervious water wall and underground impervious water wall construction method
JP4976073B2 (en) Repair method for underground filler and earth structure
KR20140098416A (en) Solidified soil forming method for improving ground using
WO2019138538A1 (en) Method for improving ground
JP2882259B2 (en) Hydraulic material and self-hardening stabilizer
JP2022036294A5 (en)
JP6776391B2 (en) Ground improvement materials, cement milk, and ground improvement methods
JPH0571730B2 (en)
JP5751939B2 (en) Self-disintegrating concrete and method for producing the same
JP2021127446A (en) Ground improvement method
JPH0849242A (en) Underground structure and its work executing method
JPS609171B2 (en) How to build a continuous water-stop wall
JP7265691B2 (en) Soil improvement method
KR102363204B1 (en) Soft Soil Improvement Method to prevent pollution by floating soil
Kumar et al. Improvement of shear strength of loose sandy soils by grouting
JP2001354960A (en) Method for utilizing construction surplus soil
JP5620341B2 (en) Manufacturing method of water shielding material
DE10213396B4 (en) Mortar and method for the compaction-free filling of trenches, channels and cavities in earthworks, road construction and foundation engineering
Safi Improvement of selected coastal soils of Bangladesh using cement
JPH07100822A (en) Manufacture of hydraulic material
JP2013019216A (en) Impermeable wall mixed with fiber rubber and construction method of the same
JP2000053961A (en) Improvement of ground
JP2001207439A (en) Soil impoving method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231114

R150 Certificate of patent or registration of utility model

Ref document number: 7390744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150