JP6163173B2 - Construction method of underground impermeable walls - Google Patents

Construction method of underground impermeable walls Download PDF

Info

Publication number
JP6163173B2
JP6163173B2 JP2015055316A JP2015055316A JP6163173B2 JP 6163173 B2 JP6163173 B2 JP 6163173B2 JP 2015055316 A JP2015055316 A JP 2015055316A JP 2015055316 A JP2015055316 A JP 2015055316A JP 6163173 B2 JP6163173 B2 JP 6163173B2
Authority
JP
Japan
Prior art keywords
water
clay
impermeable wall
underground
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015055316A
Other languages
Japanese (ja)
Other versions
JP2016176198A (en
Inventor
治郎 山本
治郎 山本
大輔 上野
大輔 上野
眞矢 松下
眞矢 松下
康子 成瀬
康子 成瀬
Original Assignee
成幸利根株式会社
松下鉱産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成幸利根株式会社, 松下鉱産株式会社 filed Critical 成幸利根株式会社
Priority to JP2015055316A priority Critical patent/JP6163173B2/en
Publication of JP2016176198A publication Critical patent/JP2016176198A/en
Application granted granted Critical
Publication of JP6163173B2 publication Critical patent/JP6163173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、地中遮水壁の構築方法、特に粘土系地中遮水壁の構築方法に関する。 The present invention is constructed how the underground impervious wall, in particular about the building how the clay underground impervious wall.

従来、汚染土壌の封じ込め、堤体の漏水防止、調整池の遮水等の対策として、セメント系固化材を用いたスラリーやセメント・ベントナイトスラリーなどを地中に注入し地盤土砂と混合させて連続遮水壁を地中に構築する方法があった(例えば、特許文献1参照)。また、セメント系固化材を使用せずにベントナイト等の粉末粘土を地中に送り込み混合させて粘土遮水壁を構築するものがあった(例えば、特許文献2及び3参照)。   Conventionally, slurry containing cement-based solidification material or cement / bentonite slurry, etc. are injected into the ground and mixed with the ground soil and sand as countermeasures such as containment of contaminated soil, prevention of water leakage from the dam body, and water shielding of the regulating pond. There has been a method of constructing a water-impervious wall in the ground (for example, see Patent Document 1). In addition, there has been a construction in which a clay impermeable wall is constructed by feeding and mixing powdered clay such as bentonite into the ground without using a cement-based solidifying material (for example, see Patent Documents 2 and 3).

特開2009−68331号公報JP 2009-68331 A 特開2006−291703号公報JP 2006-291703 A 特開2003−129466号公報JP 2003-129466 A

セメント系固化材を用いた遮水壁では、曲げや引っ張りに対して弱く、柔軟性が極めて低いもので、耐久性、耐震性に問題がある。すなわち、地盤追従性や自己修復性に乏しく、高い遮水性を長期維持することは難しい。
また、セメント系固化材を用いない遮水壁については、ベントナイト等の、水膨潤性及び増粘性を有する粘土を用いる場合、構築過程での取り扱いの難しさがある。例えば、ナトリウム型ベントナイトは、泥水として用いる場合、その水膨潤による粘性増加を回避するために相当程度の希釈が必要となる。そのため、十分な遮水性と耐久性のある遮水壁とするためのベントナイト必要量の調整が難しい。特に、必要量のナトリウム型ベントナイトを地中に送り込むためには、大量の泥水を用いなければならないため、廃土量が多くなり産業廃棄物として処分しなければならない。また、粉末では、遮水壁の構築において地盤土砂との均質な混合性に問題がある。加えて、粉末を送り込む場合、ベントナイト等の粘土粉塵の発生の可能性がある。
一方、カルシウム型のベントナイトを用いる場合、泥水とした場合の粘性が高まらず高濃度での扱いが可能である。しかし、粘度発現や水膨潤性に乏しいため、十分な遮水性が得られない。
近年、土壌汚染に対する厳しい対策基準や耐震性の観点から、従来よりも高い遮水効果が長期間安定的に持続する地中遮水壁が強く望まれる。
A water-impervious wall using a cement-based solidified material is weak against bending and pulling, has extremely low flexibility, and has problems in durability and earthquake resistance. That is, it is difficult to maintain a high water-blocking property for a long period of time due to poor ground following ability and self-repairability.
Moreover, about the water-impervious wall which does not use a cement-type solidification material, when using clay which has water swelling property and viscosity, such as bentonite, there exists a difficulty of handling in a construction process. For example, when sodium-type bentonite is used as muddy water, a considerable degree of dilution is required to avoid an increase in viscosity due to water swelling. Therefore, it is difficult to adjust the required amount of bentonite for making a water-impervious wall having sufficient water-imperviousness and durability. In particular, in order to send a necessary amount of sodium-type bentonite into the ground, a large amount of muddy water must be used, so the amount of waste soil increases and it must be disposed of as industrial waste. Moreover, in the case of powder, there is a problem in homogenous mixing with the ground soil and sand in the construction of the impermeable wall. In addition, when powder is fed, clay dust such as bentonite may be generated.
On the other hand, when calcium-type bentonite is used, the viscosity of muddy water does not increase and it can be handled at a high concentration. However, sufficient water barrier properties cannot be obtained due to poor viscosity expression and water swellability.
In recent years, from the viewpoint of strict countermeasure standards against soil contamination and seismic resistance, an underground impermeable wall is strongly desired that has a higher impermeable effect than the conventional one and stably for a long period of time.

本発明は、上記の問題点に鑑み、より優れた遮水性を備え、地盤追従性と自己修復性とによる耐震性を有する地中遮水壁の構築方法及び地中遮水壁の提供を課題とする。また、本発明は、地中遮水壁の構築時に排泥発生量が少ない、安全性及び経済性に優れた地中遮水壁の構築方法及び地中遮水壁を提供する。   In view of the above problems, the present invention has an object to provide a method for constructing an underground impermeable wall having better water-impervious properties and having seismic resistance due to ground followability and self-repairing properties, and an underground impermeable wall And The present invention also provides an underground impermeable wall construction method and an underground impermeable wall that are less likely to generate mud when constructing an underground impermeable wall and that are excellent in safety and economy.

本発明の上記課題は下記の手段により解決された。
(1)層間に多価陽イオンを有する層状珪酸塩鉱物を主成分とする粘土の泥水(A)を地中の地盤土砂の所定深さに注入し該地盤土砂と混合して遮水壁の前駆体を形成する工程と、前記多価陽イオンを1価の陽イオンに交換するためのイオン交換剤の液(B)を注入し前記遮水壁の前駆体と混合して地中遮水壁を構築する工程とを有する地中遮水壁の構築方法。
(2)前記多価陽イオンがカルシウムイオンである前記(1)記載の地中遮水壁の構築方法。
(3)前記1価の陽イオンがナトリウムイオンである前記(1)又は(2)に記載の地中遮水壁の構築方法。
(4)前記泥水(A)における粘土の濃度が50%以上である前記(1)〜(3)のいずれか1項に記載の地中遮水壁の構築方法。
(5)前記地盤土砂に対する前記泥水(A)の注入率が10%以上50%以下である前記(1)〜(4)のいずれか1項に記載の地中遮水壁の構築方法。
(6)前記地盤土砂と前記泥水(A)との混合物に対し、前記イオン交換剤の液(B)の注入率が5%以上25%以下である前記(1)〜(5)のいずれか1項に記載の地中遮水壁の構築方法。
(7)前記地中遮水壁1mに対し、前記イオン交換剤の液(B)の注入で得られた、層間に1価の陽イオンを有する層状珪酸塩鉱物を主成分とする粘土の含有量が50kg/m以上である前記(1)〜(6)のいずれか1項に記載の地中遮水壁の構築方法。
(8)イオン交換により得られた、層間に1価の陽イオンを有する層状珪酸塩鉱物を主成分とする粘土、及び地盤土砂の混合物を含み、透水係数が1×10−9m/秒未満である地中遮水壁。
(9)前記1価の陽イオンがナトリウムイオンである前記(8)記載の地中遮水壁。
(10)前記地中遮水壁1mに対し、前記層間に1価の陽イオンを有する層状珪酸塩鉱物を主成分とする粘土の含有量が50kg/m以上である前記(8)又は(9)記載の地中遮水壁。
(11)ベーンせん断力が0.5kN/m以上50kN/m以下である前記(8)〜(10)のいずれか1項に記載の地中遮水壁。
The above-described problems of the present invention have been solved by the following means.
(1) A clay mud (A) mainly composed of a layered silicate mineral having a polyvalent cation between layers is injected to a predetermined depth of the ground soil and mixed with the ground soil and sand . A step of forming a precursor, and an ion exchanger liquid (B) for exchanging the polyvalent cation with a monovalent cation are injected and mixed with the precursor of the water-impervious wall to prevent underground water shielding A method for constructing an underground impermeable wall having a step of constructing a wall.
(2) The construction method of the underground impermeable wall according to (1), wherein the polyvalent cation is calcium ion.
(3) The construction method of the underground impermeable wall according to (1) or (2), wherein the monovalent cation is a sodium ion.
(4) The construction method of the underground impermeable wall according to any one of (1) to (3), wherein the clay concentration in the muddy water (A) is 50% or more.
(5) The construction method of the underground impermeable wall according to any one of (1) to (4), wherein an injection rate of the muddy water (A) with respect to the ground soil is 10% to 50%.
(6) Any of (1) to (5) above, wherein an injection rate of the liquid (B) of the ion exchange agent is 5% or more and 25% or less with respect to the mixture of the ground soil and the mud (A). The construction method of the underground water-impervious wall according to Item 1.
(7) A clay composed mainly of a lamellar silicate mineral having a monovalent cation between layers, obtained by injection of the liquid (B) of the ion exchanger into the underground impermeable wall 1m 3 The construction method of an underground impermeable wall according to any one of (1) to (6), wherein the content is 50 kg / m 3 or more.
(8) Contains a mixture of a clay mainly composed of a layered silicate mineral having a monovalent cation between the layers, obtained by ion exchange, and a soil permeability, and has a hydraulic conductivity of less than 1 × 10 −9 m / sec. An underground impermeable wall.
(9) The underground impermeable wall according to (8), wherein the monovalent cation is a sodium ion.
(10) to said underground impervious wall 1 m 3, the content of clay mainly composed of layered silicate mineral having a monovalent cation in the interlayer is 50 kg / m 3 or more the (8) or (9) The underground impermeable wall as described.
(11) The underground impermeable wall according to any one of (8) to (10), wherein the vane shearing force is 0.5 kN / m 2 or more and 50 kN / m 2 or less.

なお、本明細書において、「層間に多価陽イオンを有する層状珪酸塩鉱物を主成分とする粘土」を「多価陽イオン型粘土」という。また、該「多価陽イオン型粘土」を初期原料としてイオン交換により得られた「層間に1価の陽イオンを有する層状珪酸塩鉱物を主成分とする粘土」を「1価の陽イオン交換粘土」という。
その具体例として、層間にアルカリ土類金属イオンを有する粘土及びベントナイトをそれぞれ「アルカリ土類金属型粘土」、「アルカリ土類金属型ベントナイト」といい、層間の大半がカルシウムイオンを有する粘土及びベントナイトをそれぞれ「カルシウム型粘土」、「カルシウム型ベントナイト」という。また、これら「アルカリ土類金属型粘土」、「アルカリ土類金属型ベントナイト」を初期原料としてイオン交換により得られた、層間にアルカリ金属イオンを有する粘土及びベントナイトをそれぞれ「アルカリ金属交換粘土」、「アルカリ金属交換ベントナイト」といい、前記「カルシウム型粘土」、「カルシウム型ベントナイト」を初期原料としてイオン交換により得られた、層間にナトリウムイオンを有する粘土及びベントナイトをそれぞれ「ナトリウム交換粘土」、「ナトリウム交換ベントナイト」という。また、本明細書において、「ナトリウム型ベントナイト」、「1価の陽イオン型粘土」は、前記イオン交換で得られたものとは異なるもので、天然のものを意味する。
In the present specification, “a clay mainly composed of a layered silicate mineral having a polyvalent cation between layers” is referred to as a “multivalent cation type clay”. In addition, “monovalent cation exchange” obtained by ion exchange using the “polyvalent cation clay” as an initial raw material is made of “a clay mainly composed of a layered silicate mineral having a monovalent cation between layers”. It is called “clay”.
As a specific example, clay and bentonite having an alkaline earth metal ion between layers are referred to as “alkaline earth metal type clay” and “alkaline earth metal type bentonite”, respectively. Are called “calcium-type clay” and “calcium-type bentonite”, respectively. In addition, these “alkaline earth metal type clay” and “alkaline earth metal type bentonite” were obtained by ion exchange using an initial raw material, respectively, and clay and bentonite having an alkali metal ion between the layers were referred to as “alkali metal exchange clay”, It is called `` alkali metal exchange bentonite '', and the above-mentioned `` calcium type clay '' and `` calcium type bentonite '' are obtained by ion exchange as an initial raw material, and clay and bentonite having sodium ions between layers are referred to as `` sodium exchange clay '', `` It is called “sodium exchange bentonite”. In the present specification, “sodium bentonite” and “monovalent cation type clay” are different from those obtained by the ion exchange and mean natural ones.

本発明の地中遮水壁の構築方法によれば、施工時の排泥の発生を抑え、より優れた遮水性を備え、地盤追従性と、亀裂などの発生に伴う自己修復性とによる耐震性を有する地中遮水壁を安全で経済的に構築することができる。また、本発明の地中遮水壁は、より優れた遮水性を備え、地盤追従性と自己修復性とによる耐震性を有するものとなる。   According to the construction method of the underground water-impervious wall of the present invention, the generation of mud during construction is suppressed, it has better water-imperviousness, and is seismic resistant due to the ground following ability and the self-repairing property accompanying the occurrence of cracks, etc. It is possible to safely and economically construct underground underground water barriers. Moreover, the underground water-impervious wall according to the present invention has more excellent water-impervious properties and has earthquake resistance due to ground followability and self-repairability.

ナトリウム型ベントナイト及びカルシウム型ベントナイトそれぞれの蒸留水での粘度発現を示したグラフである。It is the graph which showed the viscosity expression in distilled water of each of a sodium type bentonite and a calcium type bentonite. 実施例で示した表5の結果について、地中遮水壁1m中のナトリウム交換ベントナイト含有量と透水係数との関係を示したグラフである。The results in Table 5 shown in the examples, is a graph showing the relationship between the sodium exchanged bentonite content in the ground impervious wall 1 m 3 and permeability.

本発明の地中遮水壁の構築方法では、多価陽イオン型粘土の泥水(A)を地中に、所定深さに注入(一次注入)し、地盤土砂(原位置土)と混合し均質にする。こうして遮水壁の前躯体を形成する。次いで、遮水性を付与するため前記多価陽イオン型粘土の多価陽イオンを1価の陽イオンに交換するイオン交換剤液(B)を注入(二次注入)し前記遮水壁の前躯体と混合して、粘土系の地中遮水壁を構築する。なお、一次注入及び二次注入後の混合は、例えば地中における攪拌などによって行うことができる。
この工程においては、後述のとおり、多価陽イオン型粘土を用いることで高濃度の泥水(A)を送り込むことができる。すなわち、粘土の大量注入が可能となり、地盤土砂との均質混合の精度が向上する。また、地中遮水壁として完成したときには、高水膨潤性の1価の陽イオン交換粘土に置換されており、地中遮水壁としての高い遮水性、可塑性を長期に持続することができる。
In the construction method of the underground impermeable wall according to the present invention, the polycation cation clay mud (A) is injected into the ground to a predetermined depth (primary injection) and mixed with the ground soil (original soil). Make it homogeneous. In this way, the front body of the impermeable wall is formed. Next, in order to provide water shielding, an ion exchange agent liquid (B) for exchanging the polyvalent cation of the polyvalent cation type clay with a monovalent cation is injected (secondary injection), and in front of the water shielding wall. Mix with the frame to construct a clay-based underground impermeable wall. In addition, the mixing after the primary injection and the secondary injection can be performed by, for example, stirring in the ground.
In this step, as described later, a highly concentrated mud water (A) can be fed by using a polyvalent cation type clay. That is, a large amount of clay can be injected, and the accuracy of homogeneous mixing with the ground soil and sand is improved. Moreover, when it is completed as an underground impermeable wall, it is replaced with a highly water-swelling monovalent cation exchange clay, which can maintain high water impermeability and plasticity as an underground impermeable wall for a long time. .

前記「多価陽イオン型」は、粘土が有する層状珪酸塩鉱物の層間に取り込まれた陽イオンの電荷により決められる粘土の種類を意味する。この層間の陽イオンの電荷によって、粘土の水分散性、水膨潤性が異なり、それに伴って粘性が異なる。多価陽イオン型粘土は、1価の陽イオン型粘土に比べて、水膨潤性が低く、粘度発現も低い。この多価陽イオン型粘土を用いれば、高濃度の流動性のある粘土泥水(A)を調製することができる。   The “multivalent cation type” means a kind of clay determined by the charge of a cation taken in between layers of the layered silicate mineral of the clay. Depending on the charge of the cation between the layers, the water dispersibility and water swellability of the clay differ, and the viscosity varies accordingly. The polyvalent cation type clay has lower water swellability and lower viscosity expression than the monovalent cation type clay. If this polyvalent cation type clay is used, a clay mud (A) having a high concentration of fluidity can be prepared.

多価陽イオンとしては、特に制限なく、例えば2価イオンとしてはアルカリ土類金属のイオンなどが挙げられる。具体的には、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)など2価以上の陽イオンが挙げられる。特に、イオン交換の速度の観点から、アルカリ土類金属のイオンが好ましく、カルシウムイオンが好ましい。すなわち、二次注入される泥水(A)の多価陽イオン型粘土としては、アルカリ土類金属型粘土が好ましく、カルシウム型粘土がより好ましく、とりわけカルシウム型ベントナイトを用いることが特に好ましい。 The polyvalent cation is not particularly limited, and examples of the divalent ion include alkaline earth metal ions. Specific examples include divalent or higher cation such as calcium ion (Ca 2+ ) and magnesium ion (Mg 2+ ). In particular, from the viewpoint of ion exchange rate, alkaline earth metal ions are preferred, and calcium ions are preferred. That is, as the polyvalent cation type clay of the mud water (A) to be secondarily injected, alkaline earth metal type clay is preferable, calcium type clay is more preferable, and calcium type bentonite is particularly preferable.

1価の陽イオンとしては、特に制限なく、例えばアルカリ金属のイオンなどが挙げられる。具体的には、ナトリウムイオン(Na)、リチウムイオン(Li)等が挙げられる。その中でも、費用対効果及び安全性の観点から、アルカリ金属のイオンが好ましく、ナトリウムイオン(Na)が好ましい。すなわち、二次注入で得られる地中遮水壁が含有する粘土は、アルカリ金属交換粘土が好ましく、ナトリウム交換粘土がより好ましく、とりわけナトリウム交換ベントナイトであることが特に好ましい。また、本発明における地中遮水壁において、ナトリウムイオン(Na)のみを含有するものに限らず、ナトリウムイオン(Na)と他の1価の陽イオンとを含有するものであってもよい。 The monovalent cation is not particularly limited, and examples thereof include alkali metal ions. Specifically, sodium ion (Na + ), lithium ion (Li + ), etc. are mentioned. Among them, alkali metal ions are preferable and sodium ions (Na + ) are preferable from the viewpoint of cost effectiveness and safety. That is, the clay contained in the underground impermeable wall obtained by secondary injection is preferably an alkali metal exchange clay, more preferably a sodium exchange clay, and particularly preferably a sodium exchange bentonite. Moreover, the underground impermeable wall in the present invention is not limited to containing only sodium ions (Na + ), and may contain sodium ions (Na + ) and other monovalent cations. Good.

本発明において、一次注入される多価陽イオン型粘土とは、次の4つの基準のうち、少なくとも1つを満たすものを意味する。そのため、層間に多価陽イオンとともに1価の陽イオンが含まれていても、下記の性質を有する限り多価陽イオン型粘土と定義される。
(i)メチレンブルー吸着量が100mmol/100g以上であること。
このメチレンブルー吸着量は、旧日本ベントナイト工業会標準試験方法(JBAS)「ベントナイト(粉末)のメチレンブルー吸着量測定方法」に準拠して測定される数値である。
(ii)陽イオン交換容量が70meq/100g以上であること。
この陽イオン交換容量は、旧日本ベントナイト工業会標準試験方法(JBAS)「ベントナイト(粉末)の陽イオン交換容量測定方法」に準拠して測定される数値である。
(iii)主成分鉱物である層状珪酸塩鉱物の層間陽イオンの、多価イオン量の占める割合が全体イオン量の60%以上であること。
これは、日本鋳物協会・東海支部・無機砂型研究部会試験方法「生型用ベントナイト(粉末)の浸出カチオン試験方法」に準拠して、浸出イオン測定値から導いて算出される数値である。
(iv)膨潤力試験において10ml/2g以下であること。
これは、旧日本ベントナイト工業会標準試験方法(JBAS)「ベントナイト(粉末)の膨潤試験方法」に準拠して測定される数値である。
In the present invention, the primary injected polyvalent cation type clay means a material satisfying at least one of the following four criteria. Therefore, even if a monovalent cation is contained together with a polyvalent cation between layers, it is defined as a polyvalent cation type clay as long as it has the following properties.
(I) Methylene blue adsorption amount is 100 mmol / 100 g or more.
This methylene blue adsorption amount is a numerical value measured according to the former Japan Bentonite Industry Association Standard Test Method (JBAS) “Measurement Method of Methylene Blue Adsorption Amount of Bentonite (Powder)”.
(Ii) The cation exchange capacity is 70 meq / 100 g or more.
This cation exchange capacity is a numerical value measured according to the former Japan Bentonite Industry Association Standard Test Method (JBAS) “Method for Measuring Cation Exchange Capacity of Bentonite (Powder)”.
(Iii) The ratio of the amount of polyvalent ions in the interlayer cation of the layered silicate mineral that is the main component mineral is 60% or more of the total amount of ions.
This is a numerical value derived from the measured value of leached ions in accordance with the test method “Testing method for leaching cations of bentonite (powder) for green mold” by the Japan Foundry Association, Tokai Branch, Inorganic Sand Research Group.
(Iv) It should be 10 ml / 2g or less in the swelling power test.
This is a numerical value measured according to the former Japan Bentonite Industry Association Standard Test Method (JBAS) “Bentonite (Powder) Swelling Test Method”.

次に、一次注入及び二次注入の各工程について詳述する。
一次注入においては、粘性の低い多価陽イオン型粘土が低膨潤、低粘度発現であるため、高濃度の泥水(A)として注入することが可能となる。例えば、水100質量部に対して多価イオンであるカルシウム型ベントナイト65質量部程度までの泥水の調製も可能である。
具体例としては、図1に示すグラフが挙げられる。図1では、多価陽イオン型粘土であるカルシウム型ベントナイト(「クニボンド」(商標登録)、クニミネ工業(株)社製)の泥水と1価の陽イオン型粘土であるナトリウム型ベントナイト(「クニゲル」(商標登録)V1、クニミネ工業(株)社製)の泥水について、室温での濃度と見掛粘度(cp)との関係を示している。ナトリウム型ベントナイトで回転粘度計により測定される見掛粘度45cp程度(B型粘度計(東機産業(株)社製)で測定したB型粘度で800mPa・sに相当)の泥水とするには濃度は10%程度にしかならないのに対し、カルシウム型ベントナイトで同程度の見掛粘度の泥水とするには濃度を55%以上とすることができる。このように、多価陽イオン型粘土を用いた泥水では、1価の陽イオン型粘土を用いた泥水に比べて、はるかに低粘度で高濃度のものとすることができる。つまり、地中の地盤土砂と一緒に攪拌しやすい粘土を高濃度にして大量に送り込むことができる。
また、高濃度の泥水(A)を注入できるので、ナトリウム型ベントナイトのように大量の希釈液とする必要が無く、構築時の排泥を抑えることができ、安全性及び経済性に優れる。
Next, each step of primary injection and secondary injection will be described in detail.
In the primary injection, since the low-viscosity polyvalent cation clay has low swelling and low viscosity, it can be injected as a high concentration mud (A). For example, muddy water can be prepared up to about 65 parts by mass of calcium bentonite, which is a polyvalent ion, per 100 parts by mass of water.
A specific example is the graph shown in FIG. In FIG. 1, calcium-type bentonite (“Kunibond” (registered trademark), manufactured by Kunimine Kogyo Co., Ltd.), which is a polyvalent cation-type clay, and sodium-type bentonite (“Kunigel”, which is a monovalent cation-type clay, are used. (Registered trademark V1; manufactured by Kunimine Kogyo Co., Ltd.) shows the relationship between the concentration at room temperature and the apparent viscosity (cp). To make muddy water with an apparent viscosity of about 45 cp (measured with a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.) as measured by a rotary viscometer) with sodium-type bentonite. While the concentration is only about 10%, the concentration can be set to 55% or more in order to obtain a muddy water having the same apparent viscosity with calcium-type bentonite. As described above, the muddy water using the polyvalent cation type clay can have a much lower viscosity and higher concentration than the muddy water using the monovalent cation type clay. In other words, it is possible to send a large amount of clay that is easy to stir together with the underground soil and earth in the ground to a high concentration.
Moreover, since high concentration mud water (A) can be inject | poured, it is not necessary to set it as a large amount of dilution liquid like sodium-type bentonite, the waste mud at the time of construction can be suppressed, and it is excellent in safety and economy.

一次注入に用いる泥水(A)の調製は、通常とり得る種々の方法により行うことができる。なお、図1に示す具体例では、規定量の水道水に規定量のベントナイトを投入し、DESPA(700rpm)(商品名 浅田鉄工(株)社製)を用いて泥水を調製している。見掛粘度は、前記泥水をハミルトンビーチミキサー(12,000rpm)で15分間攪拌後に測定している。ここでいう見掛粘度は、室温で、Fann Viscometer Model 35SA(商品名、Fann Instrument社製)を用いて測定している。   The mud water (A) used for the primary injection can be prepared by various methods that can be usually taken. In the specific example shown in FIG. 1, a prescribed amount of bentonite is introduced into a prescribed amount of tap water, and muddy water is prepared using DESPA (700 rpm) (trade name, manufactured by Asada Tekko Co., Ltd.). The apparent viscosity is measured after stirring the mud with a Hamilton Beach mixer (12,000 rpm) for 15 minutes. The apparent viscosity here is measured at room temperature using a Fann Viscometer Model 35SA (trade name, manufactured by Fann Instrument).

一次注入に用いる泥水(A)の濃度は、流動性と注入量の関係の観点から、50%以上が好ましく、55%以上が更に好ましい。濃度が低すぎると注入必要量が多くなってしまい、粘土と地中土砂との均質混合を難しくする。該濃度の上限は、泥水として作液でき流動性を有する範囲であれば特に制限はない。排土・排泥量の抑制の観点から、60%以下とすることが実際的である。
この場合の見掛粘度としては、室温で、60cp以下が好ましく、55cp以下がより好ましく、50cp以下が更に好ましい。高すぎると機械及び装置による土砂との混合が難しくなる。下限は泥水として取り扱いできる範囲であれば特に制限はない。前記見掛粘度は、注入する粘土の必要量、一次注入した後の均質混合性、使用機材の観点から適宜決められる。
The concentration of the muddy water (A) used for the primary injection is preferably 50% or more, and more preferably 55% or more, from the viewpoint of the relationship between the fluidity and the injection amount. If the concentration is too low, the required amount of injection will increase, making it difficult to mix the clay and underground soil. The upper limit of the concentration is not particularly limited as long as it can be produced as muddy water and has fluidity. From the viewpoint of controlling the amount of discharged soil and mud, it is practical to set it to 60% or less.
The apparent viscosity in this case is preferably 60 cp or less, more preferably 55 cp or less, and still more preferably 50 cp or less at room temperature. If it is too high, mixing with earth and sand by machines and devices becomes difficult. The lower limit is not particularly limited as long as it can be handled as muddy water. The apparent viscosity is appropriately determined from the viewpoint of the required amount of clay to be injected, homogeneous mixing property after primary injection, and equipment used.

前記泥水(A)の、注入対象の地盤土砂に対する注入率は、外割で、10%以上50%以下が好ましく、20%以上50%以下がより好ましく、20%以上30%以下が更に好ましい。注入率が低すぎるとベントナイトの必要量不足、均質混合性の低下となり、高すぎると排土・排泥量が極端に多くなる。なお、ここでいう泥水(A)の注入率は、地盤土砂の土量1mに対する注入容量(m)を示す。 The injection rate of the muddy water (A) with respect to the ground soil to be injected is preferably 10% to 50%, more preferably 20% to 50%, and still more preferably 20% to 30%. If the injection rate is too low, the required amount of bentonite will be insufficient and the homogeneity will deteriorate, and if it is too high, the amount of soil and mud will be extremely large. Incidentally, the injection rate of the mud (A) here indicates injection capacity (m 3) with respect to the soil volume 1 m 3 of soil sediment.

さらに、一次注入後の粘土と地盤土砂との混合土1mに対する、注入粘土の含有量は、50kg/m以上が好ましく、60kg/m以上がより好ましく、65kg/m以上が更に好ましい。含有量が少なすぎると十分な遮水性や可塑性が得られないとなる。またその上限は特に無く、求める遮水性や地盤土砂の特徴にあわせて適宜決められる。 Furthermore, the content of the injected clay is preferably 50 kg / m 3 or more, more preferably 60 kg / m 3 or more, and even more preferably 65 kg / m 3 or more with respect to 1 m 3 of the mixed soil of clay and ground soil after primary injection. . If the content is too small, sufficient water shielding and plasticity cannot be obtained. Moreover, there is no upper limit in particular, and it is suitably determined according to the required water-impervious properties and characteristics of the ground soil.

このように、一次注入では高濃度の泥水(A)を用いるため、地中に注入する際に比較的少ない泥水(A)で、必要量の粘土を地中に送ることができる。しかも、該泥水(A)は、適度な粘性であり流動性が長時間維持されたものとなり、地盤土砂に注入しやすく、拡散・混合に際して負荷が掛からず効率よく構築できる。これにより、地盤土砂に対する多価陽イオン型粘土の含有割合を精度よく制御することができ、また、地盤土砂と多価陽イオン型粘土との均質な混合が可能となる。加えて、粘土の粉末による注入が無いので、発塵などがなく作業環境の改善が期待できる。   Thus, since the high concentration mud water (A) is used in the primary injection, a necessary amount of clay can be sent to the ground with a relatively small amount of mud water (A) when injected into the ground. Moreover, the muddy water (A) has an appropriate viscosity and has maintained fluidity for a long time, can be easily injected into the ground soil, and can be efficiently constructed without applying a load during diffusion and mixing. Thereby, the content ratio of the polyvalent cation type clay with respect to the ground soil can be controlled with high accuracy, and the ground soil and the polyvalent cation type clay can be homogeneously mixed. In addition, since there is no injection of clay powder, there is no dust generation and the working environment can be improved.

一次注入においては、前述した泥水(A)を、地中の遮水壁を構築したい所定深さに直接注入する。ここでいう「所定深さ」とは、遮水壁を構築する場所の範囲を意味しており、地表から一定深さにおける1地点、地表から一定深さまでの領域、及び地表から一定深さの地点からさらに一定深さまでの領域のいずれをも含む意味である。また、遮水壁前躯体及びその後に完成する遮水壁が前記所定深さで所定長さ、所定厚さとなるよう、地中における所定容積に対して一次注入を行うことができる。例えば、粒子の粗い砂質分の多い地層の範囲に合わせて行うことができる。その場合、地表の1箇所からの注入、複数個所からの注入のいずれの方法であってもよい。
このようにして上記の工程により、粘土を高濃度かつ均質した遮水壁前躯体形成することができる。
In the primary injection, the muddy water (A) described above is directly injected to a predetermined depth where it is desired to construct an underground impermeable wall. The “predetermined depth” here means the range of the location where the impermeable wall is constructed, one point at a certain depth from the ground surface, a region from the ground surface to a certain depth, and a certain depth from the ground surface. It is meant to include any region from a point to a certain depth. Moreover, primary injection can be performed with respect to the predetermined volume in the ground so that the water blocking wall precursor and the water blocking wall completed thereafter have a predetermined length and a predetermined thickness at the predetermined depth. For example, it can be performed in accordance with the range of the formation having a coarse grainy sandy content. In that case, any method of injection from one place on the ground surface and injection from a plurality of places may be used.
In this way, the above-described steps can form a water shielding wall precursor with a high concentration and homogeneity of clay.

なお、前記泥水(A)と地中の地盤土砂との混合は、上記の一次注入と同時、又は、その後に行うことができる。   In addition, mixing with the said muddy water (A) and underground ground earth and sand can be performed simultaneously with said primary injection | pouring, or after that.

次いで、二次注入では、多価陽イオン型粘土をイオン交換剤で1価陽イオン交換粘土に置換する。その際、粘土と地盤土砂との均質化は保持されたまま、粘土の性質を、高水膨潤性で可塑性を備えたものに変えることができる。すなわち、一次注入及び二次注入の工程を経ることで、1価陽イオン交換粘土と地盤土砂とが均質混合された、柔軟性と一体性を備えた可塑体の遮水壁が地中に構築される。   Next, in the secondary injection, the polyvalent cation type clay is replaced with a monovalent cation exchange clay with an ion exchange agent. At that time, the property of the clay can be changed to a highly water-swellable and plastic material while maintaining homogenization of the clay and the ground soil and sand. That is, through the steps of primary injection and secondary injection, a plastic impermeable wall with flexibility and integrity is built in the ground, in which monovalent cation exchange clay and ground soil and sand are homogeneously mixed. Is done.

上記のイオン交換剤は液(B)として二次注入される。この液としては、遮水壁前躯体中の多価陽イオンをイオン交換できるものであればどのような形態でもよい。例えば、溶液や混合物、スラリーなど種々の液状物などが挙げられる。液状にする媒体としては、通常用いられるものを特に制限なく採用でき、通常は水(水道水、地下水など)を使用する。   The ion exchange agent is secondarily injected as a liquid (B). This liquid may have any form as long as it can ion-exchange the polyvalent cation in the precursor of the impermeable wall. Examples thereof include various liquid materials such as solutions, mixtures, and slurries. As the medium to be liquefied, those usually used can be employed without any particular limitation, and usually water (tap water, ground water, etc.) is used.

二次注入における、前記イオン交換剤の液(B)の、注入対象の地盤土砂及び一時注入された泥水(A)の合計容量に対する注入率は、外割で、5%以上25%以下が好ましく、5%以上15%以下がより好ましく、5%以上12%以下が更に好ましい。注入率が低すぎると完全にナトリウム置換できず、高すぎると余剰イオンとなり無駄となる。なお、ここでいうイオン交換剤の注入率は、対象の地盤土砂及び泥水(A)の合計容量1mに対する注入容量(m)を示す。 In the secondary injection, the injection rate of the ion exchange agent liquid (B) with respect to the total volume of the ground earth and sand to be injected and the temporarily injected mud water (A) is preferably 5% or more and 25% or less on an external basis. 5% or more and 15% or less are more preferable, and 5% or more and 12% or less are still more preferable. If the implantation rate is too low, the sodium cannot be completely replaced. If the implantation rate is too high, surplus ions are formed and useless. Incidentally, the injection of the ion-exchange agent referred to herein indicates the injection volume (m 3) for the total volume 1 m 3 of the subject of the ground sand and mud (A).

また、イオン交換剤の液(B)について、一次注入された泥水(A)中の粘土の陽イオンを完全に1価の陽イオンに交換するために必要な1価の陽イオン量を100(等量)とした場合のイオン交換剤の比は、100以上が好ましく、110以上150以下がより好ましく、115以上120以下が更に好ましい。   In addition, for the ion exchange agent liquid (B), the amount of monovalent cations required for completely exchanging the cations of clay in the mud water (A) injected into the monovalent cations to 100 ( The ratio of the ion exchange agent is preferably 100 or more, more preferably 110 or more and 150 or less, and still more preferably 115 or more and 120 or less.

したがって、本発明の方法で得られる地中遮水壁中の1価の陽イオン交換粘土の含有量としては、地中遮水壁1mに対し、50kg/m以上が好ましく、60kg/m以上がより好ましく、65kg/m以上が更に好ましい。含有量が少なすぎると十分な遮水性や可塑性が得られない。またその上限は特に無く、求める遮水性や地盤土砂の特徴にあわせて適宜決められる。 Therefore, the content of the monovalent cation exchange clay in the underground impermeable wall obtained by the method of the present invention is preferably 50 kg / m 3 or more with respect to 1 m 3 of the underground impermeable wall, and 60 kg / m. 3 or more is more preferable, and 65 kg / m 3 or more is still more preferable. If the content is too small, sufficient water shielding and plasticity cannot be obtained. Moreover, there is no upper limit in particular, and it is suitably determined according to the required water-impervious properties and characteristics of the ground soil.

前記イオン交換剤と地盤土砂及び多価陽イオン型粘土の混合物(遮水壁の前躯体)との混合は、上記の二次注入と同時、又は、その後に行うことができる。   Mixing of the ion-exchange agent with the ground soil and polyvalent cation-type clay mixture (precursor of the water-impervious wall) can be performed simultaneously with or after the secondary injection.

これにより得られる地中遮水壁は、粘土系地中遮水壁であり、地中の土砂(特に、粒子の粗い砂質分の多い土砂)を改質し、透水係数1×10−9m/秒未満とすることができ、本発明の構築方法を用いない従来工法によるものに比べて高いレベルの遮水性を備えたものとすることができる。しかも、前述のように、高濃度で低粘度発現の泥水(A)を用いた一次注入時の均質化で、二次注入後の粘土による遮水性にムラの無いものとなる。なお、前記「透水係数」はJIS A 1218:2009「土の透水試験方法」に準拠して測定することができる。
なお、本発明の地中遮水壁が有し得る前記透水係数1×10−9m/秒未満は、下記表1(地盤工学会室内試験規格・基準委員会編集「地盤材料試験の方法と解説」−二分冊の1−、(社)地盤工学会、平成21年11月25日、450頁「図4−透水性と試験方法との適用性」の一部抜粋)に示すように、「実質上不透水」の領域であり、極めて高い不透水性を示す。
The underground impervious wall thus obtained is a clay-based impervious impervious wall, which modifies the earth and sand in the ground (particularly, earth and sand having a large amount of grainy sand) and has a permeability coefficient of 1 × 10 −9. It can be set to less than m / second, and can have a high level of water shielding compared with the conventional method that does not use the construction method of the present invention. Moreover, as described above, the homogenization at the time of primary injection using the mud water (A) having a high concentration and low viscosity makes the water imperviousness of clay after the secondary injection uniform. The “water permeability coefficient” can be measured according to JIS A 1218: 2009 “Soil permeability test method”.
The permeability coefficient less than 1 × 10 −9 m / sec that the underground impermeable wall of the present invention may have is shown in the following Table 1 (edited by the Geotechnical Society Indoor Testing Standards / Standards Committee “Ground Material Testing Method and As described in "Explanation"-2-Volume 1-, Geotechnical Society of Japan, November 25, 2009, page 450 "Part 4-Applicability of water permeability and test method" It is a region of “substantially impervious” and exhibits extremely high impermeability.

Figure 0006163173
Figure 0006163173

さらに、地盤土砂中に均質に存在する1価の陽イオン交換粘土の可塑性により、地中遮水壁全体が、亀裂を生じ難く、地盤追従性と自己修復性とによる耐震性を有する。しかも、有機材料を含まない無機の粘土を用いているため、腐敗による劣化がない。このように、得られる地中遮水壁は耐久性に優れ、長期間、高い遮水性を保持することができる。   Furthermore, due to the plasticity of the monovalent cation exchange clay that exists uniformly in the ground soil, the entire underground impervious wall is hardly cracked and has earthquake resistance due to ground followability and self-repairability. In addition, since inorganic clay containing no organic material is used, there is no deterioration due to decay. Thus, the underground water-impervious wall obtained is excellent in durability and can maintain high water-impervious properties for a long period of time.

上記の特性は、具体的には次のように説明される。
すなわち、地中遮水壁は、1価の陽イオン交換粘土の可塑性と高水膨潤性により、時間が経過しても壁としての纏まり(一体性)を維持しつつ、柔らかな状態を保持する。さらに構築後も、1価の陽イオン交換粘土が有する高い水膨潤性によって、遮水壁としての一体性と柔軟性が安定的に保持される。すなわち、遮水壁の可塑性が時間と共に発達し得る。これにより、本発明の地中遮水壁は、地震などの外圧による地中の変動に対する、地盤追従性(追随性)を有し、亀裂などの壁の破損が生じ難いものとなって、その性能の安定性が高いものとなる。
The above characteristics are specifically explained as follows.
That is, the underground water-impervious wall keeps a soft state while maintaining the unity (integration) as a wall over time due to the plasticity and high water swellability of monovalent cation exchange clay. . Further, even after the construction, the high water swellability of the monovalent cation exchange clay stably maintains the integrity and flexibility as the water shielding wall. That is, the plasticity of the impermeable wall can develop over time. Thereby, the underground impervious wall of the present invention has a ground followability (following property) against an underground change due to an external pressure such as an earthquake, and the wall such as a crack is difficult to break. High performance stability.

地中遮水壁の可塑性の程度は、土の種類、軟らかさと非せん断強さの関係で示され、表2(地盤工学会基準(案)「原位置ベーンせん断試験方法」JGS1411、「表B.3−ベーンブレードの幅」の一部抜粋)に示すベーンせん断強さ(非排水せん断強さ)が参考になる。
前記ベーンせん断強さとしては、50kPa(50kN/m)以下がより好ましく、20kPa(20kN/m)以下が更に好ましく、10kPa(10kN/m)未満が更に好ましい。また、その下限は、地中遮水壁の一体性の観点から、0.5kN/mが好ましい。上記のベーンせん断強さは、地盤工学会基準(案)原位置ベーンせん断試験方法に準拠して測定することができる。
The degree of plasticity of the underground impermeable walls is indicated by the relationship between soil type, softness and non-shear strength. Table 2 (Geotechnical Society Standard (draft) “In-situ Vane Shear Test Method” JGS1411, “Table B .3 Excerpt from “Vane blade width” (partial excerpt)) is useful for reference.
As the vane shear strength, more preferably 50 kPa (50kN / m 2) or less, more preferably 20 kPa (20kN / m 2) or less, still more preferably less than 10 kPa (10kN / m 2) . The lower limit is preferably 0.5 kN / m 2 from the viewpoint of the integrity of the underground impermeable wall. The vane shear strength can be measured in accordance with the Geotechnical Society standard (draft) in-situ vane shear test method.

Figure 0006163173
Figure 0006163173

また、本発明の地中遮水壁の構築方法によれば、構築する地中の深さや、該地中遮水壁の大きさ(幅、厚み、深さ)を任意のものとでき、その場合も、均質な遮水性を長期間の保持する地中遮水壁を構築できる。これにより、汚染土や汚染水の囲い込み、地下水の流出入の遮断を長期的かつ効果的に行うことができる。   Moreover, according to the construction method of the underground impermeable wall of the present invention, the depth of the underground to be constructed and the size (width, thickness, depth) of the underground impermeable wall can be arbitrarily determined. Even in this case, it is possible to construct an underground water-impervious wall that maintains a uniform water-impervious property for a long period of time. As a result, the contaminated soil and contaminated water can be enclosed, and the inflow and outflow of groundwater can be effectively blocked over a long period of time.

本発明の地中遮水壁の構築方法においては、一次注入及び二次注入の方法、混合方法、これらの方法で用いられる機械及び装置は、地中遮水壁を構築するための通常の原位置土攪拌工法に用いられる方法、機械及び装置を特に制限なく採用できる。   In the construction method of the underground impermeable wall according to the present invention, the primary injection method and the secondary injection method, the mixing method, and the machines and devices used in these methods are the normal source for constructing the underground impermeable wall. The method, machine and apparatus used for the position soil agitation method can be employed without any particular limitation.

次に、本発明の地中遮水壁の構築に用いられる粘土、イオン交換剤について説明する。
一次注入で用いられる多価陽イオン型粘土は、本発明の地中遮水壁の構築方法に適したものであれば特に制限することなく用いることができる。特に、層状珪酸塩鉱物のスメクタイトを有する粘土が、膨潤性ないし溶媒への分散性を有する点で好ましい。
前記スメクタイトとしては、例えば、モンモリロナイト、バイデライト、サボナイトなどから選ばれるものを用いることができる。このような層状珪酸塩鉱物を有する粘土としては、例えばベントナイトが挙げられる。
Next, the clay and ion exchanger used for construction of the underground impermeable wall of the present invention will be described.
The polyvalent cation type clay used in the primary injection can be used without any particular limitation as long as it is suitable for the construction method of the underground impermeable wall of the present invention. In particular, clay having a smectite of a layered silicate mineral is preferable in that it has swelling property or dispersibility in a solvent.
As the smectite, for example, one selected from montmorillonite, beidellite, saponite and the like can be used. Examples of the clay having such a layered silicate mineral include bentonite.

上記の多価陽イオン型粘土の泥水(A)の調製に用いる分散媒は、特に制限されず、通常用いられるものを採用できる。例えば、水、メタノール、エタノールなどが挙げられる。通常は水(水道水、地下水など)を使用する。   The dispersion medium used for the preparation of the polyvalent cation clay mud (A) is not particularly limited, and a commonly used one can be employed. For example, water, methanol, ethanol, etc. are mentioned. Usually water (tap water, groundwater, etc.) is used.

さらに、前記泥水(A)の調製には分散剤を用いてもよい。これにより、より安定的な粘性特性が確保される。該分散剤としては、特に制限なく、通常用いられるものを使用でき、無機、有機を問わず使用できる。例えば、ポリアクリル酸ナトリウム、ヘキサメタリン酸ナトリウム、珪酸ソーダ、ピロリン酸ナトリウムなどが挙げられる。特に、ポリアクリル酸ナトリウムが、安定・大量入手、安価(経済性)、効果の点でより好ましい。   Furthermore, you may use a dispersing agent for preparation of the said muddy water (A). Thereby, a more stable viscosity characteristic is ensured. The dispersant is not particularly limited, and those commonly used can be used regardless of inorganic or organic. Examples include sodium polyacrylate, sodium hexametaphosphate, sodium silicate, sodium pyrophosphate and the like. In particular, sodium polyacrylate is more preferable in terms of stability, mass availability, low cost (economic efficiency), and effects.

二次注入で用いるイオン交換剤としては、イオン交換に通常用いられるものと特に制限なく採用できる。例えば、ナトリウムイオンに置換させるイオン交換剤として、炭酸ナトリウム、炭酸水素ナトリウム、過炭酸ナトリウム、水酸化ナトリウム、クエン酸ナトリウム、珪酸ナトリウムなどが挙げられる。その中でも、炭酸ナトリウムが費用、安全性、汎用性の点でより好ましい。   The ion exchange agent used in the secondary implantation can be employed without particular limitation as that used for ion exchange. For example, sodium carbonate, sodium hydrogencarbonate, sodium percarbonate, sodium hydroxide, sodium citrate, sodium silicate and the like can be used as ion exchangers to be substituted with sodium ions. Among these, sodium carbonate is more preferable in terms of cost, safety, and versatility.

以下、実施例に基づいて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、本実施例において組成を示す「部」および「%」とは特に断らない限りいずれも質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these. In the examples, “part” and “%” indicating the composition are based on mass unless otherwise specified.

<実施例1、比較例1及び2>
(1)模擬地盤Aの作製
砂質分:6号珪砂を95質量%、4号珪砂を5質量%混合した。
粘土・シルト:「トチクレー」(商品名、大竹工業(株)社製)を準備した。トチクレーの液性限界は36.0%、塑性限界は18.9%、塑性指数は17.1であった。また、トチクレーの含水率は1.9%であった。
次いで、砂質分を全体量の80質量%、粘土・シルト分を全体量の20質量%として混合し、さらに含水比14.2%(含水率12.4%)に調製して模擬土(細粒分20%模擬土)を作製した。
作製した模擬土をアクリル製円筒の容器に入れ、直径150mm、高さ60mmの模擬地盤Aを形成した。この模擬地盤Aの湿潤密度は2.046g/cmであり、乾燥密度は1.792g/cmであった。この湿潤密度と乾燥密度は寸法計測と重量計により測定した。
<Example 1, Comparative Examples 1 and 2>
(1) Preparation of simulated ground A Sandy part: No. 6 silica sand was mixed by 95% by mass and No. 4 silica sand was mixed by 5% by mass.
Clay / silt: “Tochi clay” (trade name, manufactured by Otake Industrial Co., Ltd.) was prepared. The liquid limit of tocicle was 36.0%, the plastic limit was 18.9%, and the plastic index was 17.1. Further, the water content of the Tochi clay was 1.9%.
Next, the sandy content is mixed with 80% by mass of the total amount and the clay / silt content is mixed with 20% by mass of the total amount, and further adjusted to a moisture content of 14.2% (moisture content of 12.4%). 20% simulated soil).
The prepared simulated soil was put in an acrylic cylindrical container to form a simulated ground A having a diameter of 150 mm and a height of 60 mm. This simulated ground A had a wet density of 2.046 g / cm 3 and a dry density of 1.792 g / cm 3 . The wet density and the dry density were measured with a dimensional measurement and a weight scale.

(2)泥水(A)の調製
カルシウム型ベントナイト(商品名「クニボンド」、商標登録、クニミネ工業社製)と水道水とを、濃度60%になるように大型DESPA(700rpm)(商品名、浅田鉄工(株)社製)に投入し、15分間攪拌した。
(2) Preparation of mud (A) Calcium-type bentonite (trade name “Kunibond”, registered trademark, manufactured by Kunimine Kogyo Co., Ltd.) and tap water, large-scale DESPA (700 rpm) (trade name, Asada) (Steel Co., Ltd.) and stirred for 15 minutes.

(3)イオン交換剤の液(B)の調製
炭酸ナトリウムを用いて水溶液を調製した。
(3) Preparation of ion exchanger liquid (B) An aqueous solution was prepared using sodium carbonate.

(実施例1の試料)
模擬地盤Aの土砂中(無水重量)に対して前記濃度60%の泥水(A)を注入し攪拌・混合を行い、模擬地盤Aと泥水との混合体(遮水壁前躯体)を得た。濃度60%の泥水の注入率は92%であった。その結果、模擬地盤Aの土砂中(無水重量)に対して、前記カルシウム型ベントナイトが20質量%の割合を占めるものとなった。このときの含水率は32.2%、含水比は47.5%であった。また、湿潤密度は1.736g/cm、乾燥密度は1.177g/cmであった。この湿潤密度と乾燥密度は、前述した模擬地盤作製時の測定方法と同様の方法により測定した。
次いで、前記イオン交換剤水溶液(B)を、前記泥水及び模擬地盤Aの合計容量に対し注入率10%で注入し攪拌・混合を行った。このときの含水率は33.3%、含水比は49.9%であった。また、湿潤密度は1.562g/cm、乾燥密度は1.042g/cmであった。
なお、このときの湿潤密度と乾燥密度は、前述した模擬地盤作製時の測定方法と同様の方法により測定した。また、泥水の「注入率」は、前述のとおり、模擬地盤Aの土量1mに対する注入容量(m)を示す。イオン交換剤水溶液の「注入率」は、前述のとおり、模擬地盤A及び泥水の合計容量1mに対する注入容量(m)を示す。
これにより得たものを実施例1の試料とした。
(Sample of Example 1)
The muddy water (A) having a concentration of 60% was injected into the earth and sand (anhydrous weight) of the simulated ground A, and the mixture was stirred and mixed to obtain a mixture of the simulated ground A and the muddy water (prelude of the impermeable wall). . The injection rate of muddy water having a concentration of 60% was 92%. As a result, the calcium-type bentonite accounted for 20% by mass with respect to the earth and sand (anhydrous weight) of the simulated ground A. The water content at this time was 32.2%, and the water content ratio was 47.5%. The wet density was 1.736 g / cm 3 and the dry density was 1.177 g / cm 3 . The wet density and the dry density were measured by the same method as the measurement method at the time of preparing the simulated ground described above.
Next, the ion exchange agent aqueous solution (B) was injected at a rate of 10% with respect to the total volume of the muddy water and the simulated ground A, and stirred and mixed. At this time, the water content was 33.3%, and the water content was 49.9%. The wet density was 1.562 g / cm 3 and the dry density was 1.042 g / cm 3 .
In addition, the wet density and dry density at this time were measured by the method similar to the measurement method at the time of the simulation ground preparation mentioned above. Further, the “injection rate” of muddy water indicates the injection capacity (m 3 ) with respect to the soil volume 1 m 3 of the simulated ground A as described above. As described above, the “injection rate” of the ion exchange agent aqueous solution indicates the injection capacity (m 3 ) with respect to the total capacity 1 m 3 of the simulated ground A and mud water.
The sample obtained in this manner was used as the sample of Example 1.

(比較例1の試料)
前記(1)で得た模擬地盤Aを比較例1の試料とした。
(Sample of Comparative Example 1)
The simulated ground A obtained in (1) was used as a sample of Comparative Example 1.

(比較例2の試料)
実施例1の二次注入を行わなかったものを比較例2の試料とした。
(Sample of Comparative Example 2)
The sample of Comparative Example 2 that was not subjected to the secondary injection of Example 1 was used.

(透水試験(遮水性試験))
上記の実施例1、比較例1及び2の各試料について、水道水を用いて水頭500cm定水位で透水試験を行った。各試料についてそれぞれ3回行い、3回目の測定値をその試料の透水係数とした。該透水係数は、JIS A 1218:2009「土の透水試験方法」に準拠して測定した。
上記の透水試験の結果は、下記の表3に示すとおりであった。
(Water permeability test (water-impervious test))
About each sample of said Example 1 and the comparative examples 1 and 2, the water permeability test was done at the head water 500cm constant water level using tap water. Each sample was performed three times, and the third measured value was taken as the water permeability coefficient of the sample. The water permeability coefficient was measured according to JIS A 1218: 2009 “Soil permeability test method”.
The results of the water permeability test were as shown in Table 3 below.

Figure 0006163173
Figure 0006163173

表3が示すように、実施例1では、透水係数は1×10−9m/秒未満となっていた。この透水係数は、比較例1や比較例2が1×10−8m/秒オーダーであるのに対し2桁小さい値で、高いレベルの遮水性を示すものであった。 As Table 3 shows, in Example 1, the water permeability coefficient was less than 1 × 10 −9 m / sec. The water permeability coefficient was two orders of magnitude smaller than those of Comparative Example 1 and Comparative Example 2 on the order of 1 × 10 −8 m / sec, indicating a high level of water shielding.

<実施例2>
(1)模擬地盤Bの作製
次のようにして、実施例1、比較例1及び2(以下、実施例1等ともいう。)で用いた模擬地盤Aよりも砂質分(粗めの粒度)が多く、粘土・シルト(細粒分)が極端に少なく設定した模擬地盤Bを作製した。
砂質分:6号珪砂50質量%、4号珪砂50質量%を混合した。
粘土・シルト:「トチクレー」(商品名、大竹工業(株)社製)を準備した。トチクレーの液性限界は36.0%、塑性限界は18.9%、塑性指数は17.1であった。また、トチクレーの含水率は1.9%であった。
次いで、砂質分を全体量の95質量%、粘度・シルト分を全体量の5質量%として混合し、さらに含水比9.9%(含水率9.0%)に調製して模擬土(細粒分5%模擬土)を作製した。この、上記の条件以外を実施例1等と同様にして作製したものの透水係数は、6.43×10−5m/秒であった。
(2)泥水(A)及びイオン交換剤の液(B)の調製
実施例1等と同様にして調製した。
<Example 2>
(1) Production of Simulated Ground B As follows, sand content (coarse grain size) than simulated ground A used in Example 1, Comparative Examples 1 and 2 (hereinafter also referred to as Example 1). ), And a simulated ground B set up with extremely few clays and silts (fine particles) was produced.
Sand content: No. 6 silica sand 50% by mass, No. 4 silica sand 50% by mass were mixed.
Clay / silt: “Tochi clay” (trade name, manufactured by Otake Industrial Co., Ltd.) was prepared. The liquid limit of tocicle was 36.0%, the plastic limit was 18.9%, and the plastic index was 17.1. Further, the water content of the Tochi clay was 1.9%.
Next, the sandy content is mixed with 95% by mass of the total amount and the viscosity / silt content is mixed with 5% by mass of the total amount, and further adjusted to a water content ratio of 9.9% (water content 9.0%) to simulate soil ( 5% simulated soil). The water permeability coefficient of the sample produced in the same manner as Example 1 except for the above conditions was 6.43 × 10 −5 m / sec.
(2) Preparation of Muddy Water (A) and Ion Exchanger Liquid (B) Prepared in the same manner as Example 1 and the like.

(実施例2の試料)
上記の模擬地盤Bの土砂中に対して前記濃度60%の泥水(A)を注入し攪拌・混合を行い、模擬地盤Bと泥水との混合体(遮水壁前躯体)を得た。濃度60%の泥水の注入率は40%であった。このときの含水率は20.9%、含水比は24.6%であった。また、湿潤密度は1.536g/cm、乾燥密度は1.383g/cmであった。
次いで、前記イオン交換剤水溶液(B)を、前記泥水及び模擬地盤Bの合計容量に対し注入率10%で注入し攪拌・混合を行った。このときの含水率は24.6%、含水比は32.6%であった。また、湿潤密度は1.891g/cm、乾燥密度は1.426g/cmであった。
なお、実施例2において、注入、攪拌・混合、湿潤密度及び乾燥密度の測定は実施例1等と同様の方法により行った。
これにより得たものを実施例2の試料とした。
(Sample of Example 2)
The muddy water (A) having a concentration of 60% was injected into the soil of the simulated ground B, and the mixture was stirred and mixed to obtain a mixture of the simulated ground B and the muddy water (an impervious wall precursor). The injection rate of muddy water having a concentration of 60% was 40%. The water content at this time was 20.9%, and the water content ratio was 24.6%. The wet density was 1.536 g / cm 3 and the dry density was 1.383 g / cm 3 .
Next, the ion exchange agent aqueous solution (B) was injected at an injection rate of 10% with respect to the total volume of the muddy water and the simulated ground B, and stirred and mixed. The water content at this time was 24.6%, and the water content ratio was 32.6%. The wet density was 1.891 g / cm 3 and the dry density was 1.426 g / cm 3 .
In Example 2, injection, stirring / mixing, wet density and dry density were measured by the same method as in Example 1 and the like.
The sample obtained in this manner was used as the sample of Example 2.

(透水試験(遮水性試験))
作製した実施例2の試料について、実施例1と同様にして透水試験(遮水性試験)を行い、3回目の測定値をその試料の透水係数とした。その結果は、下記表4に示すとおりであった。
(Water permeability test (water-impervious test))
The produced sample of Example 2 was subjected to a water permeability test (water-impervious test) in the same manner as in Example 1, and the third measured value was taken as the water permeability coefficient of the sample. The results were as shown in Table 4 below.

Figure 0006163173
Figure 0006163173

表4が示すように、実施例2の試料では、模擬地盤Bが実施例1等で用いた模擬地盤Aよりも粗めの粒度の砂質分が多かったにも変わらず、前述した比較例1及び2の透水係数よりも2桁小さい値で、高いレベルの遮水性を示すものであった。   As shown in Table 4, in the sample of Example 2, the simulated ground B did not change even though the sandy part of coarser grain size was larger than the simulated ground A used in Example 1 etc. It was a value that was two orders of magnitude smaller than the hydraulic conductivity of 1 and 2, and showed a high level of water shielding.

<実施例3〜7>
実施例1で用いた模擬地盤Aに対して、実施例1で用いた濃度60%の泥水(A)の注入率を下記表5に示すように変化させて一次注入した以外は実施例1と同様にして実施例3〜7の各試料を作製した。二次注入におけるイオン交換水溶液(B)の注入率は10%に固定した。
ただし、二次注入に際しては、「カルシウム型ベントナイト中のカルシウムイオンをナトリウムイオンに置換するために必要な等量」の1.5倍量のイオン交換剤が投入されるよう、カルシウム型ベントナイトの含有量に応じて、イオン交換剤水溶液の濃度を下記表5に示すように変化させた。
<Examples 3 to 7>
Example 1 except that the simulated ground A used in Example 1 was subjected to primary injection by changing the injection rate of mud water (A) having a concentration of 60% used in Example 1 as shown in Table 5 below. Similarly, each sample of Examples 3 to 7 was produced. The injection rate of the ion exchange aqueous solution (B) in the secondary injection was fixed at 10%.
However, at the time of secondary injection, the calcium-type bentonite is contained so that 1.5 times the amount of ion-exchange agent is added to the “equivalent amount necessary for replacing calcium ions in calcium-type bentonite with sodium ions”. Depending on the amount, the concentration of the aqueous ion exchanger solution was changed as shown in Table 5 below.

(透水試験(遮水性試験))
作製した実施例3〜7の試料について、実施例1と同様にして透水試験(遮水性試験)を行い、3回目の測定値をその試料の透水係数とした。その結果は、下記表5に示すとおりであった。また、この測定値とベントナイト含有量との関係をグラフに示すと図2のとおりであった。
(Water permeability test (water-impervious test))
About the produced sample of Examples 3-7, the water-permeation test (water-imperviousness test) was performed like Example 1, and the measured value of the 3rd time was made into the water-permeability coefficient of the sample. The results were as shown in Table 5 below. Moreover, when the relationship between this measured value and bentonite content is shown in a graph, it is as shown in FIG.

Figure 0006163173
Figure 0006163173

表5が示すように、実施例3〜7では、前述した比較例1及び2よりも透水係数が1桁ないし2桁小さい値で、高いレベルの遮水性を示すものであった。特に、表5及び図2から分かるように、一次注入されたカルシウム型ベントナイトの含有量が60kg/m以上とし、全てをナトリウム型ベントナイトに置換することで、極めて高い遮水性を示すことが分かった。 As Table 5 shows, in Examples 3-7, the water-permeability coefficient was one or two orders of magnitude smaller than that of Comparative Examples 1 and 2 described above, indicating a high level of water shielding. In particular, as can be seen from Table 5 and FIG. 2, it is found that the content of the primary injected calcium type bentonite is 60 kg / m 3 or more and that all is replaced with sodium type bentonite, thereby showing extremely high water shielding properties. It was.

<実施例8〜12>
実施例1で用いた模擬地盤Aに対して、実施例1で用いた濃度60%の泥水(A)の注入率を30%に固定して一次注入し、イオン交換剤(炭酸ナトリウム)の注入量を下記表6のように変化させて二次注入した以外は実施例1と同様にして実施例8〜12の各試料を作製した。ただし、イオン交換剤の注入量は、イオン交換剤水溶液(B)の注入率を10%に固定し、濃度を変化させることで調整した。
<Examples 8 to 12>
For the simulated ground A used in Example 1, the injection rate of mud water (A) having a concentration of 60% used in Example 1 is fixed at 30%, and primary injection is performed, and ion exchange agent (sodium carbonate) is injected. Samples of Examples 8 to 12 were prepared in the same manner as in Example 1 except that the amount was changed as shown in Table 6 and secondary injection was performed. However, the injection amount of the ion exchanger was adjusted by fixing the injection rate of the ion exchanger aqueous solution (B) at 10% and changing the concentration.

(透水試験(遮水性試験))
作製した実施例8〜12の試料について、実施例1と同様にして透水試験(遮水性試験)を行い、3回目の測定値をその試料の透水係数とした。その結果は、下記表6に示すとおりであった。
(Water permeability test (water-impervious test))
About the produced sample of Examples 8-12, the water-permeation test (water-imperviousness test) was performed like Example 1, and the measured value of the 3rd time was made into the water-permeability coefficient of the sample. The results were as shown in Table 6 below.

Figure 0006163173
Figure 0006163173

表6が示すように、実施例8〜12では、前述した比較例1及び2よりも透水係数が低いもので高い遮水性を示すものであった。特に、カルシウム型ベントナイト含有量69.3kg/mに対し、イオン交換に必要な炭酸ナトリウム量の等量の75以上の注入、すなわちイオン交換率75%以上(約51.9kg/m以上のカルシウム型ベントナイトをナトリウム型ベントナイトに置換)で、極めて高い遮水性・止水性を示すことが分かった。 As Table 6 shows, in Examples 8-12, the water-permeability coefficient was lower than Comparative Examples 1 and 2 described above, indicating high water shielding. In particular, for a calcium type bentonite content of 69.3 kg / m 3 , 75 or more equivalent injections of sodium carbonate required for ion exchange, that is, an ion exchange rate of 75% or more (about 51.9 kg / m 3 or more It was found that calcium-type bentonite was replaced with sodium-type bentonite), which showed extremely high water and water barrier properties.

<実施例13〜17>
(可塑化試験)
実施例13〜16については、上記の実施例8〜11と同様の試料を準備した。
また、実施例17の試料として、泥水に対して分散剤「KSフロー」(商品名、クニミネ工業社製)を添加率0.75%で加えて一次注入した以外は、実施例12と同様にして作製した。
作製した実施例13〜17について、作製直後、90分後、2時間後、4時間後、24時間後に、ベーンせん断強さの測定試験を行った。なお、前記ベーンせん断強さは、地盤工学会基準(案)原位置ベーンせん断試験方法に準拠して測定した。
その結果は、下記表7に示すとおりであった。
<Examples 13 to 17>
(Plasticization test)
About Examples 13-16, the sample similar to said Examples 8-11 was prepared.
Moreover, as a sample of Example 17, a dispersant “KS flow” (trade name, manufactured by Kunimine Kogyo Co., Ltd.) was added to the muddy water at an addition rate of 0.75%, and the same as Example 12 was carried out. Made.
About the produced Examples 13-17, the measurement test of vane shear strength was done immediately after preparation, 90 minutes, 2 hours, 4 hours, and 24 hours later. The vane shear strength was measured in accordance with the Geotechnical Society Standard (draft) in-situ vane shear test method.
The results were as shown in Table 7 below.

Figure 0006163173
Figure 0006163173

表7が示すように、実施例13〜17の試料は、二次注入混合体の作製後、ゆっくりゆるやかな可塑化がすすみ(発達し)、24時間経過後において50kN/mよりも低い値で平衡した状態で安定していた。その結果、各試料から得られた地中遮水壁は、一体性を保持しつつ柔軟性のある可塑体となっていた。なお、二次注入混合体の作製直後の一時的なベーンせん断強さの低下は炭酸ナトリウム水溶液の水分によるもので、その後のイオン交換により、ナトリウム交換粘土の作用でゆるやかにベーンせん断強さの値が上昇していったものと考えられる。 As Table 7 shows, the samples of Examples 13 to 17 were slowly developed (developed) slowly after the secondary injection mixture was prepared, and values lower than 50 kN / m 2 after 24 hours. It was stable in an equilibrium state. As a result, the underground water-impervious wall obtained from each sample was a flexible plastic body while maintaining unity. The temporary decrease in vane shear strength immediately after the preparation of the secondary injection mixture is due to the water content of the sodium carbonate aqueous solution. By subsequent ion exchange, the value of the vane shear strength is gradually increased by the action of sodium exchange clay. Seems to have risen.

<実施例18〜24>
(可塑化試験)
実施例18及び19の試料として、泥水に対して分散剤「AKフロー」(商品名、(株)TGコーポレーション社製)を添加率1.0%で加えて一次注入した以外は、実施例10及び12それぞれと同様にして作製した。
実施例20及び21の試料として、前記分散剤「AKフロー」の添加率を1.2%とした以外は、実施例10及び12それぞれと同様にして作製した。
実施例22〜24の試料として、泥水に対して分散剤「KSフロー」を添加率0.85%で加えて一次注入した以外は、実施例10〜12それぞれと同様にして作製した。
作製した実施例18〜24について、作製直後、90分後、2時間後、24時間後に、前記ベーンせん断強さの測定試験を行った。
その結果は、下記表8に示すとおりであった。
<Examples 18 to 24>
(Plasticization test)
As a sample of Examples 18 and 19, Example 10 was carried out except that a dispersant “AK Flow” (trade name, manufactured by TG Corporation) was added to the muddy water at an addition rate of 1.0% and the primary injection was performed. And 12, respectively.
Samples of Examples 20 and 21 were prepared in the same manner as in Examples 10 and 12, respectively, except that the addition rate of the dispersant “AK flow” was 1.2%.
As samples of Examples 22 to 24, samples were prepared in the same manner as in Examples 10 to 12 except that the dispersant “KS flow” was added to the muddy water at an addition rate of 0.85% and the primary injection was performed.
About the produced Examples 18-24, the measurement test of the said vane shear strength was done immediately after preparation, 90 minutes, 2 hours, and 24 hours after.
The results were as shown in Table 8 below.

Figure 0006163173
Figure 0006163173

表8が示すように、実施例18〜24の試料は、二次注入混合体の作製後、ゆっくりゆるやかな可塑化がすすみ(発達し)、24時間経過後において50kN/mよりも低い値で平衡した状態で安定していた。その結果、各試料から得られた地中遮水壁は、一体性を保持しつつ柔軟性のある可塑体となっていた。なお、二次注入混合体の作製直後の一時的なベーンせん断強さの低下は炭酸ナトリウム水溶液の水分によるもので、その後のイオン交換により、ナトリウム交換粘土の作用でゆるやかにベーンせん断強さの値が上昇していったものと考えられる。
また、泥水に使用する分散剤の種類を選択することにより、泥水の流動性の調整ができ、遮水壁前躯体の構築および二次注入前後での機械及び装置による混合しやすさが制御できることが分かった。
As Table 8 shows, the samples of Examples 18 to 24 were slowly developed (developed) after the secondary injection mixture was prepared, and values lower than 50 kN / m 2 after 24 hours. It was stable in an equilibrium state. As a result, the underground water-impervious wall obtained from each sample was a flexible plastic body while maintaining unity. The temporary decrease in vane shear strength immediately after the preparation of the secondary injection mixture is due to the water content of the sodium carbonate aqueous solution. By subsequent ion exchange, the value of the vane shear strength is gradually increased by the action of sodium exchange clay. Seems to have risen.
In addition, by selecting the type of dispersant used in the muddy water, the fluidity of the muddy water can be adjusted, and the ease of mixing by the machine and device before and after the secondary injection can be controlled. I understood.

Claims (7)

層間に多価陽イオンを有する層状珪酸塩鉱物を主成分とする粘土の泥水(A)を地中の地盤土砂の所定深さに注入し該地盤土砂と混合して遮水壁の前駆体を形成する工程と、前記多価陽イオンを1価の陽イオンに交換するためのイオン交換剤の液(B)を注入し前記遮水壁の前駆体と混合して地中遮水壁を構築する工程とを有する地中遮水壁の構築方法。   A clay muddy water (A) mainly composed of a layered silicate mineral having a multivalent cation between layers is injected to a predetermined depth of the ground soil and mixed with the ground soil and the precursor of the impermeable wall is obtained. And forming an underground impermeable wall by injecting a liquid (B) of an ion exchange agent for exchanging the polyvalent cation with a monovalent cation and mixing with the precursor of the impermeable wall A method for constructing an underground impermeable wall. 前記多価陽イオンがカルシウムイオンである請求項1記載の地中遮水壁の構築方法。   The method for constructing an underground impermeable wall according to claim 1, wherein the polyvalent cation is a calcium ion. 前記1価の陽イオンがナトリウムイオンである請求項1又は2に記載の地中遮水壁の構築方法。   The construction method of an underground impermeable wall according to claim 1 or 2, wherein the monovalent cation is a sodium ion. 前記泥水(A)における粘土の濃度が50%以上である請求項1〜3のいずれか1項に記載の地中遮水壁の構築方法。   The construction method of the underground impermeable wall according to any one of claims 1 to 3, wherein the clay concentration in the muddy water (A) is 50% or more. 前記地盤土砂に対する前記泥水(A)の注入率が10%以上50%以下である請求項1〜4のいずれか1項に記載の地中遮水壁の構築方法。   The construction method of the underground impermeable wall according to any one of claims 1 to 4, wherein an injection rate of the muddy water (A) to the ground soil is 10% or more and 50% or less. 前記地盤土砂と前記泥水(A)との混合物に対し、前記イオン交換剤の液(B)の注入率が5%以上25%以下である請求項1〜5のいずれか1項に記載の地中遮水壁の構築方法。   The ground according to any one of claims 1 to 5, wherein an injection rate of the liquid (B) of the ion exchange agent is 5% or more and 25% or less with respect to the mixture of the ground soil and the muddy water (A). Construction method of middle impermeable wall. 前記地中遮水壁1mに対し、前記イオン交換剤の液(A)の注入で得られた、層間に1価の陽イオンを有する層状珪酸塩鉱物を主成分とする粘土の含有量が50kg/m以上である請求項1〜6のいずれか1項に記載の地中遮水壁の構築方法 The content of clay mainly composed of a layered silicate mineral having a monovalent cation between layers obtained by injecting the liquid (A) of the ion exchanger to the underground impermeable wall 1m 3 is as follows. It is 50 kg / m < 3 > or more, The construction method of the underground impermeable wall of any one of Claims 1-6 .
JP2015055316A 2015-03-18 2015-03-18 Construction method of underground impermeable walls Active JP6163173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015055316A JP6163173B2 (en) 2015-03-18 2015-03-18 Construction method of underground impermeable walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015055316A JP6163173B2 (en) 2015-03-18 2015-03-18 Construction method of underground impermeable walls

Publications (2)

Publication Number Publication Date
JP2016176198A JP2016176198A (en) 2016-10-06
JP6163173B2 true JP6163173B2 (en) 2017-07-12

Family

ID=57068967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015055316A Active JP6163173B2 (en) 2015-03-18 2015-03-18 Construction method of underground impermeable walls

Country Status (1)

Country Link
JP (1) JP6163173B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7128731B2 (en) * 2018-12-04 2022-08-31 ライト工業株式会社 Construction method of impermeable wall
JP7128732B2 (en) * 2018-12-04 2022-08-31 ライト工業株式会社 Construction method of impermeable wall
JP7193324B2 (en) * 2018-12-04 2022-12-20 ライト工業株式会社 Construction method of impermeable wall
KR102344163B1 (en) * 2018-12-19 2021-12-28 서울시립대학교 산학협력단 Liner and cover material comprising ferrate
JP7388973B2 (en) * 2020-04-16 2023-11-29 ライト工業株式会社 How to build a water barrier wall
JP7477088B2 (en) 2021-01-18 2024-05-01 成幸利根株式会社 Methods for constructing and testing underground impermeable walls

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603573B2 (en) * 1981-07-06 1985-01-29 太平洋セメント株式会社 Peat ground improvement method
JP3539928B2 (en) * 2000-06-28 2004-07-07 株式会社神戸製鋼所 Buried facility and its construction method, molded body used for it
JP3839023B2 (en) * 2004-02-27 2006-11-01 クニミネ工業株式会社 Impermeable structure and construction method thereof
JP2008115618A (en) * 2006-11-06 2008-05-22 Shimizu Corp Grouting in base rock
JP5166984B2 (en) * 2008-06-11 2013-03-21 ライト工業株式会社 Construction method of impermeable wall
JP5554490B2 (en) * 2008-12-05 2014-07-23 ライト工業株式会社 Chemical for building impermeable walls and method for constructing impermeable walls
JP5554491B2 (en) * 2008-12-05 2014-07-23 ライト工業株式会社 Chemical for building impermeable walls and method for constructing impermeable walls

Also Published As

Publication number Publication date
JP2016176198A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP6163173B2 (en) Construction method of underground impermeable walls
Jamsawang et al. Laboratory investigations on the swelling behavior of composite expansive clays stabilized with shallow and deep clay-cement mixing methods
Mypati et al. Feasibility of alkali-activated low-calcium fly ash as a binder for deep soil mixing
JP5999718B2 (en) Underground impermeable wall construction material
JP6322452B2 (en) Backfill material
Fattahi Masrour et al. Effect of nanosilica on the macro-and microbehavior of dispersive clays
Zhang et al. The effect of polyvinyl alcohol solution with a high degree of alcoholysis on the expansion and cracking behaviour of quicklime-treated soil in earthen sites
JP6101019B2 (en) Soil-based deformation following water-blocking material and method for producing the same
Latifi et al. Experimental investigations on behaviour of strip footing placed on chemically stabilised backfills and flexible retaining walls
JP6207149B2 (en) Underground continuous water barrier method
Li et al. Unlocking the potential of iron ore tailings in controlled low-strength material: Feasibility, performance, and evaluation
Dun et al. Laboratory Tests on Performance of Waste‐Clay‐Brick‐Powder Cement Grouting Materials for Ground Improvement in Mine Goaf
Bayesteh et al. Behavior of cement-stabilized marine clay and pure clay minerals exposed to high salinity grout
Estabragh et al. Stabilisation of a clay soil by injection of different ions
JPH04221116A (en) Grouting engineering method
JP2014171977A (en) Deformation follow-up impervious material, method for producing deformation follow-up impervious material and construction method using deformation follow-up impervious material
JP5192186B2 (en) Cement mixture containing concrete glass and method for producing the same
JP7477088B2 (en) Methods for constructing and testing underground impermeable walls
Elsiragy Geotechnical behaviour of reinforced soft clay by marble dust as a waste material
JP6193105B2 (en) Deformation following type water shielding material
JP2017198033A (en) Filler for gap space in artificial structure and sealing method for gap space in artificial structure
JP7266311B2 (en) Underground Impermeable Wall by In-Situ Stirring Method and Construction Method of Underground Impermeable Wall by In-Situ Stirring
Chen Development and performance of self-healing and self-immune soil-cement systems subjected to freeze-thaw cycles
Semugaza Comparative shrinkage properties of pavement materials including recycled concrete aggregates with and without cement stabilisation
JP6270567B2 (en) Impermeable civil engineering materials

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161220

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170616

R150 Certificate of patent or registration of utility model

Ref document number: 6163173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250