JP2022035565A - Displacement measuring device and displacement measuring method - Google Patents

Displacement measuring device and displacement measuring method Download PDF

Info

Publication number
JP2022035565A
JP2022035565A JP2020139984A JP2020139984A JP2022035565A JP 2022035565 A JP2022035565 A JP 2022035565A JP 2020139984 A JP2020139984 A JP 2020139984A JP 2020139984 A JP2020139984 A JP 2020139984A JP 2022035565 A JP2022035565 A JP 2022035565A
Authority
JP
Japan
Prior art keywords
frequency
intensity
signal
phase
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020139984A
Other languages
Japanese (ja)
Inventor
洋介 田中
Yosuke Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2020139984A priority Critical patent/JP2022035565A/en
Publication of JP2022035565A publication Critical patent/JP2022035565A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a displacement measuring device, etc., with which it is possible to expand a measurement range while maintaining measurement accuracy.SOLUTION: A displacement measurement device comprises: a light generator for generating an intensity-modulated laser beam; an intensity modulator for intensity modulating the return light of the laser beam emitted from the light generator and having been reflected by a measurement object; a first signal generator for outputting a modulation signal to the light generator and the intensity modulator; a phase modulator for phase modulating the modulation signal outputted from the first signal generator to the intensity modulator with a frequency fm; a second signal generator for outputting a modulation signal to the phase modulator; a photodetector for receiving return light having been intensity modulated by the intensity modulator; and a control unit for controlling the first and second signal generators and calculating the distance to the measurement object on the basis of a detection signal from the photodetector. The control unit calculates the distance on the basis of the respective amplitudes of a frequency fm component and a frequency 2 fm component of the detection signal, and corrects the distance in accordance with a combination of signs of respective phases of the frequency fm component and the frequency 2 fm component.SELECTED DRAWING: Figure 1

Description

本発明は、変位測定装置及び変位測定方法に関する。 The present invention relates to a displacement measuring device and a displacement measuring method.

従来、強度変調されたレーザー光を測定対象に向けて出射し、測定対象で反射した戻り光を当該レーザー光と同一の変調周波数の(且つ、位相変調された)変調信号で強度変調し、強度変調された戻り光の検出信号に基づき測定対象の距離(変位)を測定する手法が知られている(例えば、特許文献1)。 Conventionally, intensity-modulated laser light is emitted toward a measurement target, and the return light reflected by the measurement target is intensity-modulated with a modulation signal having the same modulation frequency as the laser light (and phase-modulated) to intensify the intensity. A method of measuring a distance (displacement) of a measurement target based on a modulated return light detection signal is known (for example, Patent Document 1).

特開2018-59789号公報Japanese Unexamined Patent Publication No. 2018-59789

上記手法では、測定レンジと測定精度の間にトレードオフの関係があり、測定レンジを拡大すると測定誤差も拡大するといった問題があった。 In the above method, there is a trade-off relationship between the measurement range and the measurement accuracy, and there is a problem that the measurement error increases when the measurement range is expanded.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、測定精度を保ちつつ測定レンジを拡大することが可能な変位測定装置等を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a displacement measuring device or the like capable of expanding a measuring range while maintaining measurement accuracy.

本発明は、強度変調されたレーザー光を発生する光発生部と、前記光発生部からのレーザー光が測定対象で反射した戻り光を強度変調する強度変調器と、前記光発生部及び前記強度変調器に変調信号を出力する第1信号発生器と、前記第1信号発生器から前記強度変調器に出力される変調信号を周波数fで位相変調する位相変調器と、前記位相変調器に変調信号を出力する第2信号発生器と、前記強度変調器で強度変調された戻り光を受光する光検出器と、前記第1信号発生器及び前記第2信号発生器を制御し、前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御部とを含み、前記制御部は、前記検出信号の周波数f成分及び周波数2f成分それぞれの振幅に基づき前記距離を算出し、前記周波数f成分及び前記周波数2f成分それぞれの位相の符号の組み合わせに応じて前記距離を補正する変位測定装置に関する。 The present invention includes a light generator that generates intensity-modulated laser light, an intensity modulator that modulates the intensity of the return light reflected by the laser beam from the light generator, and the light generator and the intensity. The first signal generator that outputs the modulated signal to the modulator, the phase modulator that phase-modulates the modulated signal output from the first signal generator to the intensity modulator at a frequency fm , and the phase modulator. A second signal generator that outputs a modulated signal, an optical detector that receives return light that has been intensity-modulated by the intensity modulator, and the light that controls the first signal generator and the second signal generator. The control unit includes a control unit that calculates the distance to the measurement target based on the detection signal from the detector, and the control unit calculates the distance based on the amplitudes of the frequency fm component and the frequency 2fm component of the detection signal. The present invention relates to a displacement measuring device that corrects the distance according to the combination of the phase codes of the frequency fm component and the frequency 2fm component.

また、本発明は、強度変調されたレーザー光を光発生部により発生する光発生ステップと、前記光発生部からのレーザー光が測定対象で反射した戻り光を強度変調器により強度変調する強度変調ステップと、第1信号発生器により前記光発生部及び前記強度変調器に変調信号を出力する第1信号発生ステップと、前記第1信号発生器から前記強度変調器に出力される変調信号を位相変調器により周波数fで位相変調する位相変調ステップと、第2信号発生器により前記位相変調器に変調信号を出力する第2信号発生ステップと、前記強度変調器で強度変調された戻り光を光検出器により受光する光検出ステップと、前記第1信号発生器及び前記第2信号発生器を制御し、前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御ステップとを含み、前記制御ステップでは、前記検出信号の周波数f成分及び周波数2f成分それぞれの振幅に基づき前記距離を算出し、前記周波数f成分及び前記周波数2f成分それぞれの位相の符号の組み合わせに応じて前記距離を補正する変位測定方法に関する。 Further, the present invention has a light generation step in which an intensity-modulated laser beam is generated by a light generation unit, and an intensity modulation in which the return light reflected by the laser light from the light generation unit is intensity-modulated by an intensity modulator. The phase of the step, the first signal generation step of outputting the modulation signal to the light generator and the intensity modulator by the first signal generator, and the modulation signal output from the first signal generator to the intensity modulator. A phase modulation step in which phase modulation is performed at a frequency fm by a modulator, a second signal generation step in which a modulation signal is output to the phase modulator by a second signal generator, and a return light intensity-modulated by the intensity modulator. A light detection step that receives light from the light detector, and a control step that controls the first signal generator and the second signal generator and calculates the distance to the measurement target based on the detection signal from the light detector. In the control step, the distance is calculated based on the amplitudes of the frequency fm component and the frequency 2fm component of the detection signal, and the combination of the phase codes of the frequency fm component and the frequency 2fm component is used. The present invention relates to a displacement measuring method for correcting the distance according to the above.

本発明によれば、検出信号の周波数f成分及び周波数2f成分それぞれの位相の符号の組み合わせに応じて測定距離を補正することで、測定精度を保ちつつ測定レンジを拡大することができる。 According to the present invention, the measurement range can be expanded while maintaining the measurement accuracy by correcting the measurement distance according to the combination of the phase codes of the frequency fm component and the frequency 2fm component of the detection signal.

本実施形態に係る変位測定装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the displacement measuring apparatus which concerns on this embodiment. ゾーン番号について説明するための図である。It is a figure for demonstrating a zone number. 制御部の処理の流れを示すフローチャート。A flowchart showing the processing flow of the control unit. 本実施形態の手法により変位を測定する実験で得られた位相と測定変位を示す図。The figure which shows the phase and the measured displacement obtained in the experiment which measured the displacement by the method of this embodiment. 本実施形態の手法により変位を測定する実験で得られた補正後の測定変位を示す図。The figure which shows the measured displacement after correction obtained in the experiment which measured the displacement by the method of this embodiment.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。 Hereinafter, this embodiment will be described. The embodiments described below do not unreasonably limit the content of the present invention described in the claims. Moreover, not all of the configurations described in the present embodiment are essential constituent requirements of the present invention.

図1は、本実施形態に係る変位測定装置の構成の一例を図である。変位測定装置1は、光発生部として機能するレーザー光源10及び強度変調器11と、強度変調器20と、信号発生器30(第1信号発生器)と、位相変調器40と、信号発生器50(第2信号発生器)と、光検出器60と、ロックインアンプ70と、演算処理部(プロセッサー)及び記憶部を有する制御部80とを含む。 FIG. 1 is a diagram showing an example of the configuration of the displacement measuring device according to the present embodiment. The displacement measuring device 1 includes a laser light source 10 and an intensity modulator 11 that function as a light generator, an intensity modulator 20, a signal generator 30 (first signal generator), a phase modulator 40, and a signal generator. It includes 50 (second signal generator), an optical detector 60, a lock-in amplifier 70, and a control unit 80 having an arithmetic processing unit (processor) and a storage unit.

強度変調器11は、レーザー光源10からのレーザー光を変調周波数fで強度変調して、変調周波数fで強度変調されたレーザー光(プローブ光)を発生する。ここでは、レーザー光源10(単一モードレーザー)の波長を1550nmとした。図1に示す例では、光発生部をレーザー光源と強度変調器で構成する場合について説明するが、変調信号をレーザー光源10に出力してレーザー光を強度変調する直接変調方式(変調信号に基づき駆動電流を強度変調することでレーザー光源の出力強度を直接変調する方式)を採用してもよい。 The intensity modulator 11 intensity-modulates the laser light from the laser light source 10 at the modulation frequency f 0 to generate the intensity-modulated laser light (probe light) at the modulation frequency f 0 . Here, the wavelength of the laser light source 10 (single mode laser) is set to 1550 nm. In the example shown in FIG. 1, a case where the light generation unit is composed of a laser light source and an intensity modulator will be described, but a direct modulation method (based on a modulation signal) in which a modulation signal is output to the laser light source 10 to modulate the intensity of the laser light. A method of directly modulating the output intensity of the laser light source by intensifying the drive current) may be adopted.

光発生部(レーザー光源10、強度変調器11)から出射されたプローブ光はレンズ12で平行光となり、偏光ビームスプリッタ13を透過し、λ/4波長板14で円偏光となり、測定対象となる反射点R(コーナーキューブミラー等のミラー)に至る。反射点Rで反射した戻り光(反射点Rからの反射光)は、λ/4波長板14で直線偏光となり、偏光ビームスプリッタ13で反射され、レンズ15を通過して強度変調器20に入射する。なお、偏光ビームスプリッタ13、λ/4波長板14に代えて、ハーフミラーや光サーキュレータ等を用いてもよい。 The probe light emitted from the light generation unit (laser light source 10, intensity modulator 11) becomes parallel light in the lens 12, passes through the polarization beam splitter 13, and becomes circularly polarized in the λ / 4 wave plate 14, and becomes a measurement target. It reaches the reflection point R (mirror such as a corner cube mirror). The return light reflected at the reflection point R (reflected light from the reflection point R) is linearly polarized by the λ / 4 wave plate 14, reflected by the polarizing beam splitter 13, passes through the lens 15, and is incident on the intensity modulator 20. do. Instead of the polarizing beam splitter 13 and the λ / 4 wave plate 14, a half mirror, an optical circulator, or the like may be used.

信号発生器30は、制御部80からの制御信号に基づき、強度変調器11及び強度変調器20に変調周波数fの変調信号を出力する。 The signal generator 30 outputs a modulation signal having a modulation frequency f 0 to the intensity modulator 11 and the intensity modulator 20 based on the control signal from the control unit 80.

位相変調器40は、信号発生器30から強度変調器20に出力される変調信号を変調周波数fで位相変調する。変調周波数fは変調周波数fよりも低い。ここでは、変調周波数fを910MHzとし、変調周波数fを100kHzとした。 The phase modulator 40 phase-modulates the modulated signal output from the signal generator 30 to the intensity modulator 20 at a modulation frequency fm . The modulation frequency f m is lower than the modulation frequency f 0 . Here, the modulation frequency f 0 is set to 910 MHz, and the modulation frequency f m is set to 100 kHz.

強度変調器20は、信号発生器30からの変調周波数(基本周波数)fの変調信号であって且つ変調周波数fで位相変調された変調信号により、反射点Rで反射した戻り光を強度変調する。 The intensity modulator 20 intensifies the return light reflected at the reflection point R by the modulated signal having a modulation frequency (basic frequency) f 0 from the signal generator 30 and phase-modulated at the modulation frequency fm. Modulate.

信号発生器50は、制御部80からの制御信号に基づき、位相変調器40に変調周波数fの変調信号を出力し、ロックインアンプ70に周波数fの参照信号を出力する。 The signal generator 50 outputs a modulation signal having a modulation frequency fm to the phase modulator 40 and outputs a reference signal having a frequency fm to the lock-in amplifier 70 based on the control signal from the control unit 80.

光検出器60(フォトダイオード)は、強度変調器20で強度変調された戻り光を受光する。光検出器60の高域カットオフ周波数fは、周波数3f(変調周波数fの3倍の周波数)よりも高く、変調周波数fよりも低い。 The photodetector 60 (photodiode) receives the return light intensity-modulated by the intensity modulator 20. The high cutoff frequency f c of the photodetector 60 is higher than the frequency 3 fm (a frequency three times the modulation frequency fm) and lower than the modulation frequency f 0 .

ロックインアンプ70は、光検出器60からの検出信号の周波数f成分と周波数2f成分(周波数fの2倍の周波数成分)それぞれの振幅と位相を検出(同期検波)する。ロックインアンプ70の出力信号は、図示しないAD変換器によりデジタルデータに変換され、制御部80に出力される。 The lock-in amplifier 70 detects (synchronous detection) the amplitude and phase of each of the frequency fm component and the frequency 2fm component (frequency component twice the frequency fm ) of the detection signal from the optical detector 60. The output signal of the lock-in amplifier 70 is converted into digital data by an AD converter (not shown) and output to the control unit 80.

制御部80は、信号発生器30,50を制御し、また、ロックインアンプ70の出力信号に基づいて反射点Rまでの距離を算出する。より詳細には、制御部80は、ロックインアンプ70で検出された周波数f成分と周波数2f成分それぞれの振幅の比に基づいて反射点Rまでの距離を算出し、周波数f成分と周波数2f成分それぞれの位相の符号(正負)の組み合わせに応じて当該距離を補正する。 The control unit 80 controls the signal generators 30 and 50, and calculates the distance to the reflection point R based on the output signal of the lock-in amplifier 70. More specifically, the control unit 80 calculates the distance to the reflection point R based on the ratio of the amplitudes of the frequency fm component and the frequency 2fm component detected by the lock-in amplifier 70, and uses the frequency fm component. The distance is corrected according to the combination of the sign (positive or negative) of the phase of each of the frequency 2fm components.

ここで、光発生部(強度変調器11)から出射したプローブ光の強度Iは、以下の式(1)で表される。 Here, the intensity Ip of the probe light emitted from the light generating unit (intensity modulator 11) is expressed by the following equation (1).

Figure 2022035565000002
ここで、Iinはレーザー光源10から出射したレーザー光の強度であり、mは強度変調器11の変調度であり、tは時間であり、θは初期位相である。プローブ光が強度変調器11から出射してから強度変調器20に至るまでの光路長(反射点Rまでの往復距離に屈折率を乗じた値)をΔL~(ΔL~>0)とすると、強度変調器20の入射端でのプローブ光の強度I’は、以下の式(2)で表される。
Figure 2022035565000002
Here, I in is the intensity of the laser light emitted from the laser light source 10, m 1 is the degree of modulation of the intensity modulator 11, t is the time, and θ is the initial phase. Let ΔL ~ (ΔL ~> 0) be the optical path length (value obtained by multiplying the round-trip distance to the reflection point R by the refractive index) from the time when the probe light is emitted from the intensity modulator 11 to the intensity modulator 20. The intensity I p'of the probe light at the incident end of the intensity modulator 20 is expressed by the following equation (2).

Figure 2022035565000003
ここで、cは光速である。強度変調器20を出射したプローブ光の強度Iは、以下の式(3)で表される。
Figure 2022035565000003
Here, c is the speed of light. The intensity IS of the probe light emitted from the intensity modulator 20 is represented by the following equation (3).

Figure 2022035565000004
ここで、mは強度変調器20の変調度であり、Φは位相変調器40の変調度である。高域カットオフ周波数fの光検出器60からの出力電流iは、以下の式(4)で表される。
Figure 2022035565000004
Here, m 2 is the degree of modulation of the intensity modulator 20, and Φ m is the degree of modulation of the phase modulator 40. The output current i from the photodetector 60 having a high cutoff frequency fc is expressed by the following equation (4).

Figure 2022035565000005
ここで、Jは第一種ベッセル関数である。ロックインアンプ70からの出力信号(S、S、S)は、以下の式(5)~(7)で表される。
Figure 2022035565000005
Here, J is a first-class Bessel function. The output signals (S 1 , S 2 , S 3 ) from the lock-in amplifier 70 are represented by the following equations (5) to (7).

Figure 2022035565000006
ここで、Sはロックインアンプ70で検出された周波数f成分の振幅であり、Sは周波数2f成分の振幅であり、Sは周波数3f成分の振幅である。位相変調に用いる変調信号の位相θを調節して、Sが0になるようにする。ここで、ΔL~をあらためて、基準点から反射点Rまでの光路長(反射点Rまでの距離に屈折率を乗じた値)として再定義すると、S、S、Sは、以下の式(8)~式(10)で表される。
Figure 2022035565000006
Here, S 1 is the amplitude of the frequency fm component detected by the lock-in amplifier 70, S 2 is the amplitude of the frequency 2 fm component, and S 3 is the amplitude of the frequency 3 fm component. Adjust the phase θ of the modulation signal used for phase modulation so that S 1 becomes 0. Here, if ΔL ~ is redefined as the optical path length from the reference point to the reflection point R (the value obtained by multiplying the distance to the reflection point R by the refractive index), S 1 , S 2 , and S 3 are as follows. It is represented by the formulas (8) to (10).

Figure 2022035565000007
変調度Φは、以下の式(11)から求められる。Rは周波数f成分の振幅Sと周波数3f成分の振幅Sの比である。この計算は測定前に一回だけ行えばよい。
Figure 2022035565000007
The modulation degree Φ m is obtained from the following equation (11). R 1 is the ratio of the amplitude S 1 of the frequency fm component to the amplitude S 3 of the frequency 3 fm component. This calculation only needs to be done once before the measurement.

Figure 2022035565000008
周波数f成分の振幅Sと周波数2f成分の振幅Sの比をRとすると、Rは、以下の式(12)で表され、基準点から反射点Rまでの光路長ΔL~は、以下の式(13)で表される。
Figure 2022035565000008
Assuming that the ratio of the amplitude S1 of the frequency fm component and the amplitude S2 of the frequency 2fm component is R2 , R2 is expressed by the following equation ( 12 ), and the optical path length ΔL from the reference point to the reflection point R. ~ Is expressed by the following equation (13).

Figure 2022035565000009
すなわち、周波数f成分の振幅Sと周波数2f成分の振幅Sの比Rに基づいて反射点Rまでの距離を算出することができる。但し、以下の式(14)の条件を満たすときのみ、式(13)が正しい距離を与える。すなわち、測定レンジはc/8fで与えられる。プローブ光の変調周波数fを低くすることで測定レンジは拡大するが、測定誤差も拡大する。
Figure 2022035565000009
That is, the distance to the reflection point R can be calculated based on the ratio R2 of the amplitude S1 of the frequency fm component and the amplitude S2 of the frequency 2fm component. However, the equation (13) gives the correct distance only when the condition of the following equation (14) is satisfied. That is, the measurement range is given at c / 8f 0 . By lowering the modulation frequency f 0 of the probe light, the measurement range is expanded, but the measurement error is also expanded.

Figure 2022035565000010
本実施形態の手法では、周波数f成分の振幅Sの式がsin波であり周波数2f成分の振幅Sの式がcos波であることに着目して、周波数f成分の位相符号と周波数2f成分の位相符号の組み合わせを用いて測定レンジを拡大する(式(13)により算出した距離を補正する)。
Figure 2022035565000010
In the method of the present embodiment, focusing on the fact that the equation of the amplitude S1 of the frequency fm component is a sine wave and the equation of the amplitude S2 of the frequency 2fm component is a cos wave, the phase code of the frequency fm component is The measurement range is expanded by using the combination of the phase code of the frequency 2fm component and the frequency code (correcting the distance calculated by the equation (13)).

基準点が決まり、最初の状態での位相が決まると、周波数f成分の位相符号と周波数2f成分の位相符号の組み合わせと距離との関係が決まる。図2に示すように、c/8fおきの距離範囲をゾーン番号Nに対応させる。位相符号の変化には周期性があるので、位相符号の組み合わせから距離は一意には決まらないが、逐次、位相符号の組み合わせとその変化を追跡することで、ΔL~を超える距離変位がわかる。 When the reference point is determined and the phase in the initial state is determined, the relationship between the combination of the phase code of the frequency fm component and the phase code of the frequency 2fm component and the distance is determined. As shown in FIG. 2, the distance range every c / 8f 0 corresponds to the zone number N. Since the change of the phase sign has periodicity, the distance is not uniquely determined from the combination of the phase codes, but by sequentially tracking the combination of the phase codes and the change, the distance displacement exceeding ΔL ~ can be found.

基準点を設定し、その後、式(13)により振幅S,Sから求めた距離をΔL’とする。但し、最初はゾーン番号「1」にあるものとする。また、位相符号の逐次測定から得られたゾーン番号をNとし、各ゾーンの幅をL(L=c/8f)とする。このとき、ゾーン番号N、時刻Tにおける基準点から反射点Rまでの距離ΔL(N,T)は、N>0のとき以下の式(15)で与えられ、N<0のとき以下の式(16)で与えられる。 A reference point is set, and then the distance obtained from the amplitudes S1 and S2 by Eq. ( 13 ) is set to ΔL'. However, it is assumed that the zone number is "1" at first. Further, the zone number obtained from the sequential measurement of the phase code is N, and the width of each zone is L 0 (L 0 = c / 8f 0 ). At this time, the distance ΔL (N, T) from the reference point to the reflection point R at the zone number N and the time T is given by the following equation (15) when N> 0, and the following equation when N <0. Given in (16).

Figure 2022035565000011
ここで、Foor[x]は、実数xに対してxを超えない最大の整数を与える関数である。
Figure 2022035565000011
Here, Floor [x] is a function that gives the maximum integer that does not exceed x for the real number x.

図3は、ゾーン番号Nを逐一求めて距離ΔL(N,T)を測定する処理の流れを示すフローチャートである。ステップS10~S13の処理は、測定前の準備段階での処理であり、ステップS14以降の処理は測定中の処理である。 FIG. 3 is a flowchart showing a flow of processing for measuring the distance ΔL (N, T) by obtaining the zone number N one by one. The processes of steps S10 to S13 are processes in the preparatory stage before measurement, and the processes after step S14 are processes during measurement.

まず、制御部80は、ロックインアンプ70で検出された周波数f成分の振幅Sと位相θ、周波数2f成分の振幅Sと位相θを取得する(ステップS10)。次に、信号発生器50を制御して、周波数f成分の振幅Sが0となるように、位相変調器40の初期位相θを調整する(ステップS11)。このときの初期位相θをθとして、初期位相θが正の値θ=θ+δθ(δθ>0)となるように更に調整する(ステップS12)。初期位相θ=θのとき、反射点Rが仮想的に遠ざかったことに等しい。このとき計算される距離ΔL(N,T)がc/8fよりも小さくなる(ゾーン番号N=1を超えない)範囲でθを設定しこれを初期値とする。初期値を0から始めると反射点Rが近づいているのか遠のいているのかの区別ができなくなるが、初期値を正の値θまで移動しておくことで、反射点Rが近づいているのか遠のいているのか区別できる。なお、初期値を負の値θ=θ-δθまで移動しておくようにしてもよい。 First, the control unit 80 acquires the amplitude S 1 and the phase θ 1 of the frequency fm component detected by the lock-in amplifier 70, and the amplitude S 2 and the phase θ 2 of the frequency 2 fm component (step S10). Next, the signal generator 50 is controlled to adjust the initial phase θ of the phase modulator 40 so that the amplitude S1 of the frequency fm component becomes 0 (step S11). The initial phase θ at this time is set to θ 0 , and further adjustment is made so that the initial phase θ has a positive value θ + = θ 0 + δ θ (δ θ> 0) (step S12). When the initial phase θ = θ + , it is equivalent to the reflection point R being virtually moved away. Set θ + in the range where the distance ΔL (N, T) calculated at this time is smaller than c / 8f 0 (zone number N = 1 does not exceed), and this is used as the initial value. If the initial value is started from 0, it becomes impossible to distinguish whether the reflection point R is approaching or far away, but by moving the initial value to the positive value θ + , is the reflection point R approaching? You can tell if you are far away. The initial value may be moved to a negative value θ = θ 0 − δθ.

次に、初期値を正の値θ=θ+δθとしたとき、ゾーン番号Nに「1」をセットする。なお、初期値を負の値θ=θ-δθとしたときは、ゾーン番号Nに「-1」をセットする。また、時刻Tに「0」をセットし、調整後に取得した振幅S、Sに基づき式(12)、式(13)、式(15)により計算される距離ΔL(1,0)を距離の初期値ΔLiniとして記録しておく(ステップS13)。また、ステップS13では、調整後に取得した位相θの符号sgn(θ)と位相θの符号sgn(θ)の組み合わせ(sgn(θ),sgn(θ))を記録しておく。sgn(x)は実数xの符号(正負)を与える関数である。当該符号の組み合わせは、ΔL~がc/8f変化する毎に変化する。ΔL~が0から単調に増え続けると、符号の組み合わせは、(sgn(θ),sgn(θ))→(sgn(θ),-sgn(θ))→(-sgn(θ),-sgn(θ))→(-sgn(θ),sgn(θ))→以下繰り返し、のように変
化する(位相θの符号から先に交互に変化する)。ΔL~が0から単調に減り続けると、符号の組み合わせは、(sgn(θ),sgn(θ))→(-sgn(θ),sgn(θ))→(-sgn(θ),-sgn(θ))→(sgn(θ),-sgn(θ))→以下繰り返し、のように変化する(位相θの符号から先に交互に変化する)。従って、初期状態の位相符号の組み合わせを記録しておき、その後の位相符号の組み合わせの変化を追跡することで、ゾーン番号が増加した(反射点Rが遠ざかった)のかゾーン番号が減少したのか(反射点Rが近づいたのか)を判定することができる。
Next, when the initial value is a positive value θ + = θ 0 + δθ, “1” is set in the zone number N. When the initial value is a negative value θ = θ 0 − δθ, “-1” is set in the zone number N. Further, " 0 " is set at the time T, and the distance ΔL (1,0) calculated by the equations ( 12 ), (13), and (15) based on the amplitudes S1 and S2 acquired after the adjustment is set. It is recorded as the initial value ΔL ini of the distance (step S13). Further, in step S13, the combination (sgn (θ 1 ), sgn (θ 2 )) of the sign sgn (θ 1 ) of the phase θ 1 and the sign sgn (θ 2 ) of the phase θ 2 acquired after the adjustment is recorded. deep. sgn (x) is a function that gives a sign (positive or negative) of a real number x. The combination of the symbols changes every time ΔL ~ changes by c / 8f 0 . When ΔL ~ continues to increase monotonically from 0, the sign combination is (sgn (θ 1 ), sgn (θ 2 )) → (sgn (θ 1 ), −sgn (θ 2 )) → (−sgn (θ)). 1 ), -sgn (θ 2 )) → (-sgn (θ 1 ), sgn (θ 2 )) → Repeatedly, and so on (changes alternately from the sign of phase θ 2 ). When ΔL ~ continues to decrease monotonically from 0, the sign combination is (sgn (θ 1 ), sgn (θ 2 )) → (-sgn (θ 1 ), sgn (θ 2 )) → (-sgn (θ)). 1 ), -sgn (θ 2 )) → (sgn (θ 1 ), -sgn (θ 2 )) → Repeatedly, and so on (changes alternately from the sign of phase θ 1 ). Therefore, by recording the combination of the phase codes in the initial state and tracking the change of the combination of the phase codes after that, whether the zone number has increased (the reflection point R has moved away) or the zone number has decreased (the zone number has decreased). Whether the reflection point R is approaching) can be determined.

次に、制御部80は、時間ΔTが経過した(時刻Tが時間ΔTだけ増加した)か否かを判断する(ステップS14)。ここで、反射点Rは時間ΔTの間にc/8fよりも十分に小さい距離しか移動しないものとする。時間ΔTが経過した場合(ステップS14のY)には、ロックインアンプ70で検出された振幅S、Sと位相θ、θを取得し、位相符号sgn(θ)、sgn(θ)を計算する(ステップS15)。位相符号の組み合わせは時刻Tに対応付けて履歴として記録しておく。次に、位相符号の組み合わせ(sgn(θ),sgn(θ))が前回の組み合わせから変化したか否かを判断する(ステップS16)。位相符号の組み合わせが変化していない場合(ステップS16のN)には、ゾーン番号Nを更新せず、ステップS21に移行する。位相符号の組み合わせが変化した場合(ステップS16のY)には、振幅S、Sのいずれか一方が「0」であるか否かを判断する(ステップS17)。振幅S、Sのいずれか一方が「0」である場合(ステップS17のY)には、時間ΔTが経過する前の振幅S、S、位相θ、θ、ゾーン番号Nを維持し、ステップS14に移行する。振幅S、Sのいずれも「0」でない場合(ステップS17のN)には、位相符号の組み合わせの変化(履歴)からゾーン番号Nが増加したか減少したかを判断する(ステップS18)。ゾーン番号Nが増加した場合(ステップS18のY)には、ゾーン番号Nを1だけ増加させ(ステップS19)、ゾーン番号Nが減少した場合(ステップS18のN)には、ゾーン番号Nを1だけ減少させる(ステップS20)。 Next, the control unit 80 determines whether or not the time ΔT has elapsed (the time T has increased by the time ΔT) (step S14). Here, it is assumed that the reflection point R moves only a distance sufficiently smaller than c / 8f 0 during the time ΔT. When the time ΔT has elapsed (Y in step S14), the amplitudes S 1 and S 2 and the phases θ 1 and θ 2 detected by the lock-in amplifier 70 are acquired, and the phase codes sgn (θ 1 ) and sgn ( θ 2 ) is calculated (step S15). The combination of phase codes is recorded as a history in association with the time T. Next, it is determined whether or not the combination of phase codes (sgn (θ 1 ), sgn (θ 2 )) has changed from the previous combination (step S16). If the combination of phase codes has not changed (N in step S16), the zone number N is not updated and the process proceeds to step S21. When the combination of phase codes changes (Y in step S16), it is determined whether or not one of the amplitudes S1 and S2 is "0" (step S17). When any one of the amplitudes S1 and S2 is "0" (Y in step S17), the amplitudes S1, S2, the phase θ1, θ2, and the zone number N before the time ΔT elapses. Is maintained, and the process proceeds to step S14. When neither of the amplitudes S1 and S2 is " 0 " (N in step S17), it is determined from the change (history) of the combination of phase codes whether the zone number N has increased or decreased (step S18). .. When the zone number N increases (Y in step S18), the zone number N is increased by 1 (step S19), and when the zone number N decreases (N in step S18), the zone number N is increased by 1. (Step S20).

次に、振幅S、Sとゾーン番号Nに基づき式(12)、式(13)、式(15)、式(16)により距離ΔL(N,T)を計算する(ステップS21)。次に、計算した距離ΔL(N,T)からΔLiniを減算した値を、時刻Tにおける距離の測定結果として出力して(ステップS22)、ステップS14に移行し、ステップS14以降の処理を測定を終了するまで繰り返す。 Next, the distance ΔL (N, T) is calculated by the equations (12), (13), (15), and (16) based on the amplitudes S1 and S2 and the zone number N (step S21). Next, the value obtained by subtracting ΔL ini from the calculated distance ΔL (N, T) is output as the measurement result of the distance at time T (step S22), the process proceeds to step S14, and the processing after step S14 is measured. Repeat until you finish.

図1に示す例において、変調周波数fが910MHz、測定レンジ(c/8f)が約40mmの条件下で、反射点Rの変位を測定する実験を行った。図4に、反射点R(ミラー)を取り付けたステージ(微動台)を2mmずつ80mm移動させたときの、周波数f成分の位相θと周波数2f成分の位相θと変位(補正前の距離ΔL~)の測定値を示す。ここでは、測定変位に20mm分のバイアスをかけている。図4から、測定レンジの前後で位相θ、θの符号の組み合わせが変化していることが確認できる。図4の例では、測定変位が約40mmを超えると位相θ、θの符号の組み合わせが「負、正」から「負、負」に変化し、更に約40mm変位すると「正、負」に変化している。図5に、位相符号の組み合わせの変化に基づき補正した測定変位(距離ΔL(N,T))を示す。図5から、本実施形態の手法によりc/8fの測定レンジを超えて変位測定が可能なことが確認できる。 In the example shown in FIG. 1, an experiment was conducted in which the displacement of the reflection point R was measured under the conditions that the modulation frequency f 0 was 910 MHz and the measurement range (c / 8f 0 ) was about 40 mm. In FIG. 4, when the stage (fine movement table) to which the reflection point R (mirror) is attached is moved by 80 mm by 2 mm , the phase θ 1 of the frequency fm component, the phase θ 2 of the frequency 2 fm component, and the displacement (before correction). The measured value of the distance ΔL ~) is shown. Here, the measured displacement is biased by 20 mm. From FIG. 4, it can be confirmed that the combination of the signs of the phases θ 1 and θ 2 changes before and after the measurement range. In the example of FIG. 4, when the measured displacement exceeds about 40 mm, the combination of the signs of the phases θ 1 and θ 2 changes from “negative, positive” to “negative, negative”, and when the measured displacement is further displaced by about 40 mm, it becomes “positive, negative”. Has changed to. FIG. 5 shows the measured displacement (distance ΔL (N, T)) corrected based on the change in the combination of phase codes. From FIG. 5, it can be confirmed that the displacement can be measured beyond the measurement range of c / 8f 0 by the method of the present embodiment.

以上のように本実施形態の手法によれば、光検出器60の出力信号の周波数f成分の振幅Sと位相θ、周波数2f成分の振幅Sと位相θを検出し、検出した振幅S、Sの比に基づき距離ΔL~を算出し、検出した位相θ、θそれぞれの符号の組み合わせの変化に応じてゾーン番号Nを更新し、このゾーン番号Nに基づき距離ΔL~を補正する(距離ΔL(N,T)を算出する)ことで、測定精度を保ちつつ測定レンジを拡
大することができる。また、本実施形態の手法では、位相の符号を測定できればよいため、位相の値に対する測定精度は要求されず、位相を検出する装置として高価な装置を必要としないという利点も有する。
As described above, according to the method of the present embodiment, the amplitude S 1 and the phase θ 1 of the frequency fm component of the output signal of the optical detector 60 and the amplitude S 2 and the phase θ 2 of the frequency 2 fm component are detected. The distance ΔL ~ is calculated based on the ratio of the detected amplitudes S 1 and S 2 , and the zone number N is updated according to the change in the combination of the codes of the detected phases θ 1 and θ 2 , and based on this zone number N. By correcting the distance ΔL ~ (calculating the distance ΔL (N, T)), the measurement range can be expanded while maintaining the measurement accuracy. Further, in the method of the present embodiment, since it is sufficient that the sign of the phase can be measured, the measurement accuracy for the phase value is not required, and there is an advantage that an expensive device is not required as a device for detecting the phase.

なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変更が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。 The present invention is not limited to the above-described embodiment, and various modifications can be made. The present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect). The present invention also includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. Further, the present invention includes a configuration having the same action and effect as the configuration described in the embodiment or a configuration capable of achieving the same object. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

1…変位測定装置、10…レーザー光源、11…強度変調器、12…レンズ、13…偏光ビームスプリッタ、14…λ/4波長板、15…レンズ、20…強度変調器、30…信号発生器、40…位相変調器、50…信号発生器、60…光検出器、70…ロックインアンプ、80…制御部、R…反射点 1 ... displacement measuring device, 10 ... laser light source, 11 ... intensity modulator, 12 ... lens, 13 ... polarized beam splitter, 14 ... λ / 4 wave plate, 15 ... lens, 20 ... intensity modulator, 30 ... signal generator , 40 ... phase modulator, 50 ... signal generator, 60 ... optical detector, 70 ... lock-in amplifier, 80 ... control unit, R ... reflection point

Claims (2)

強度変調されたレーザー光を発生する光発生部と、
前記光発生部からのレーザー光が測定対象で反射した戻り光を強度変調する強度変調器と、
前記光発生部及び前記強度変調器に変調信号を出力する第1信号発生器と、
前記第1信号発生器から前記強度変調器に出力される変調信号を周波数fで位相変調する位相変調器と、
前記位相変調器に変調信号を出力する第2信号発生器と、
前記強度変調器で強度変調された戻り光を受光する光検出器と、
前記第1信号発生器及び前記第2信号発生器を制御し、前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御部とを含み、
前記制御部は、
前記検出信号の周波数f成分及び周波数2f成分それぞれの振幅に基づき前記距離を算出し、前記周波数f成分及び前記周波数2f成分それぞれの位相の符号の組み合わせに応じて前記距離を補正する、変位測定装置。
A light generator that generates intensity-modulated laser light,
An intensity modulator that modulates the intensity of the return light reflected by the laser beam from the light generating unit on the measurement target.
A first signal generator that outputs a modulated signal to the light generator and the intensity modulator,
A phase modulator that phase-modulates a modulated signal output from the first signal generator to the intensity modulator at a frequency fm , and
A second signal generator that outputs a modulated signal to the phase modulator,
A photodetector that receives the intensity-modulated return light with the intensity modulator,
It includes a control unit that controls the first signal generator and the second signal generator and calculates the distance to the measurement target based on the detection signal from the photodetector.
The control unit
The distance is calculated based on the amplitudes of the frequency fm component and the frequency 2fm component of the detection signal, and the distance is corrected according to the combination of the phase codes of the frequency fm component and the frequency 2fm component. , Displacement measuring device.
強度変調されたレーザー光を光発生部により発生する光発生ステップと、
前記光発生部からのレーザー光が測定対象で反射した戻り光を強度変調器により強度変調する強度変調ステップと、
第1信号発生器により前記光発生部及び前記強度変調器に変調信号を出力する第1信号発生ステップと、
前記第1信号発生器から前記強度変調器に出力される変調信号を位相変調器により周波数fで位相変調する位相変調ステップと、
第2信号発生器により前記位相変調器に変調信号を出力する第2信号発生ステップと、
前記強度変調器で強度変調された戻り光を光検出器により受光する光検出ステップと、
前記第1信号発生器及び前記第2信号発生器を制御し、前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御ステップとを含み、
前記制御ステップでは、
前記検出信号の周波数f成分及び周波数2f成分それぞれの振幅に基づき前記距離を算出し、前記周波数f成分及び前記周波数2f成分それぞれの位相の符号の組み合わせに応じて前記距離を補正する、変位測定方法。
A light generation step in which an intensity-modulated laser beam is generated by a light generator,
An intensity modulation step in which the return light reflected by the laser beam from the light generating unit is intensity-modulated by an intensity modulator, and
A first signal generation step of outputting a modulated signal to the light generator and the intensity modulator by the first signal generator, and
A phase modulation step in which a modulation signal output from the first signal generator to the intensity modulator is phase-modulated by a phase modulator at a frequency fm , and
A second signal generation step of outputting a modulated signal to the phase modulator by the second signal generator, and
A photodetection step in which the photodetector receives the return light intensity-modulated by the intensity modulator,
A control step of controlling the first signal generator and the second signal generator and calculating the distance to the measurement target based on the detection signal from the photodetector is included.
In the control step,
The distance is calculated based on the amplitudes of the frequency fm component and the frequency 2fm component of the detection signal, and the distance is corrected according to the combination of the phase codes of the frequency fm component and the frequency 2fm component. , Displacement measurement method.
JP2020139984A 2020-08-21 2020-08-21 Displacement measuring device and displacement measuring method Pending JP2022035565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020139984A JP2022035565A (en) 2020-08-21 2020-08-21 Displacement measuring device and displacement measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020139984A JP2022035565A (en) 2020-08-21 2020-08-21 Displacement measuring device and displacement measuring method

Publications (1)

Publication Number Publication Date
JP2022035565A true JP2022035565A (en) 2022-03-04

Family

ID=80443504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139984A Pending JP2022035565A (en) 2020-08-21 2020-08-21 Displacement measuring device and displacement measuring method

Country Status (1)

Country Link
JP (1) JP2022035565A (en)

Similar Documents

Publication Publication Date Title
JP5433846B2 (en) Laser interference length measuring apparatus and laser interference length measuring method
JP3307730B2 (en) Optical measuring device
US6876441B2 (en) Optical sensor for distance measurement
JP2004527765A5 (en)
US5767688A (en) Electro-optic voltage measurement apparatus
JP4925139B2 (en) Dispersion interferometer and method for measuring physical quantity of object to be measured
JP2018059789A (en) Distance measuring apparatus and distance measuring method
JP2022035565A (en) Displacement measuring device and displacement measuring method
JPS6371674A (en) Laser distance measuring instrument
CN109084884B (en) Homodyne laser vibration measurement device and vibration detection method thereof
KR101871213B1 (en) Atom interferometer gyroscope based on single raman laser beam
WO2006018897A1 (en) Laser phase difference detector and laser phase controller
JPH06186337A (en) Laser distance measuring equipment
JP2004264116A (en) Optical wave range finder
JP5947184B2 (en) Position detection method and position detection apparatus
JPS6371675A (en) Laser distance measuring instrument
JP2020118498A (en) Electric field sensor
JPH03282289A (en) Method and apparatus for measuring distance
JPS5866881A (en) Surveying equipment by light wave
JP5234653B2 (en) Light wave distance meter
JPH09189537A (en) Measuring method using optical heterodyne interference and device using the method
JPH1096601A (en) Light wave interference measuring device
JPH09236542A (en) Optical active body detecting device
JP2004077223A (en) Optical heterodyne interferometer
JP3632834B6 (en) Focusing error detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507