JP2018059789A - Distance measuring apparatus and distance measuring method - Google Patents

Distance measuring apparatus and distance measuring method Download PDF

Info

Publication number
JP2018059789A
JP2018059789A JP2016196922A JP2016196922A JP2018059789A JP 2018059789 A JP2018059789 A JP 2018059789A JP 2016196922 A JP2016196922 A JP 2016196922A JP 2016196922 A JP2016196922 A JP 2016196922A JP 2018059789 A JP2018059789 A JP 2018059789A
Authority
JP
Japan
Prior art keywords
intensity
modulated
distance
light
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016196922A
Other languages
Japanese (ja)
Inventor
田中 洋介
Yosuke Tanaka
洋介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2016196922A priority Critical patent/JP2018059789A/en
Publication of JP2018059789A publication Critical patent/JP2018059789A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a distance measuring apparatus and the like capable of accurately measuring in a wide range with a simple configuration.SOLUTION: The distance measuring apparatus includes: a light generating part that generates laser light with modulated intensity; an intensity modulator that modulates the intensity of a beam of return light which is reflected by a measurement object at a modulated frequency identical to the modulated frequency of the laser light; a signal generator that outputs a modulated signal to the light generating part and the intensity modulator; a photodetector that detects the return light the intensity of which is modulated by the intensity modulator; and a control unit that controls a signal generator and calculates the distance up to the measurement object based on the detection signal from the photodetector.SELECTED DRAWING: Figure 1

Description

本発明は、距離測定装置及び距離測定方法に関する。   The present invention relates to a distance measuring device and a distance measuring method.

従来から、強度変調されたレーザー光を測定対象に向けて出射し、測定対象からの反射光と基準信号との強度相関をとって距離を測定する手法が知られている(例えば、非特許文献1、特許文献1参照)。   Conventionally, a technique is known in which intensity-modulated laser light is emitted toward a measurement object, and the distance is measured by taking an intensity correlation between reflected light from the measurement object and a reference signal (for example, non-patent literature). 1, see Patent Document 1).

松本弘一、「高精度測距技術」、光学、vol.23、no.3、pp.170−175、1994Koichi Matsumoto, “High-precision ranging technology”, optics, vol. 23, no. 3, pp. 170-175, 1994

特開2007−205949号公報JP 2007-205949 A

強度変調されたレーザー光を用いた距離測定法では、原理的には広範囲の測定を高精度に行うことができる。しかしながら、非特許文献1に開示された、測定対象からの戻り光を光検出器で電気信号に変換し、基準となる電気信号(参照信号)との強度相関をとる手法では、相関器(位相計)の帯域によって受信できる信号の帯域が制限されるため、1台の装置で広範囲の測定を行うことは困難であった。また、特許文献1に開示された、戻り光と基準となる光信号との強度相関を受光素子の非線形応答でとる手法では、受信できる信号の帯域が極めて広く、広範囲の測定が可能である。しかしながら、この手法では、非線形応答を引き起こすために、光増幅器を用いて光パワーを増幅させる必要があり、また、基準光との干渉雑音を防ぐために、2台の光源を用いる必要があった。   In principle, a distance measurement method using intensity-modulated laser light can perform a wide range of measurements with high accuracy. However, in the method disclosed in Non-Patent Document 1, the return light from the measurement target is converted into an electric signal by a photodetector and the intensity correlation with the electric signal (reference signal) serving as a reference is obtained. Therefore, it is difficult to measure a wide range with a single device. Further, the technique disclosed in Patent Document 1 that takes the intensity correlation between the return light and the reference optical signal by the nonlinear response of the light receiving element enables a receivable signal band to be extremely wide and a wide range of measurements to be performed. However, in this method, it is necessary to amplify the optical power using an optical amplifier in order to cause a nonlinear response, and it is necessary to use two light sources in order to prevent interference noise with reference light.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、簡素な構成で広範囲の測定を高精度に行うことが可能な距離測定装置等を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a distance measuring device and the like capable of performing a wide range of measurement with high accuracy with a simple configuration. is there.

(1)本発明は、強度変調されたレーザー光を発生する光発生部と、測定対象で反射した戻り光を、前記レーザー光の変調周波数と同一の変調周波数で強度変調する強度変調器と、前記光発生部及び前記強度変調器に変調信号を出力する信号発生器と、前記強度変調器で強度変調された戻り光を検出する光検出器と、前記信号発生器を制御し、前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御部とを含む、距離測定装置に関する。   (1) The present invention includes a light generation unit that generates intensity-modulated laser light, an intensity modulator that modulates the intensity of the return light reflected by the measurement target at the same modulation frequency as the modulation frequency of the laser light, A signal generator for outputting a modulation signal to the light generator and the intensity modulator; a photodetector for detecting return light intensity-modulated by the intensity modulator; and controlling the signal generator to detect the light And a control unit that calculates a distance to the measurement object based on a detection signal from the device.

また、本発明は、強度変調されたレーザー光を光発生部により発生する光発生ステップと、測定対象で反射した戻り光を、強度変調器により前記レーザー光の変調周波数と同一の変調周波数で強度変調する強度変調ステップと、前記強度変調器で強度変調された戻り光を光検出器により検出する光検出ステップと、前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御ステップとを含む、距離測定方法に関する。   The present invention also provides a light generation step for generating an intensity-modulated laser beam by the light generation unit and an intensity of the return light reflected by the measurement target at the same modulation frequency as the modulation frequency of the laser beam by the intensity modulator. An intensity modulation step for modulating, a light detection step for detecting return light intensity-modulated by the intensity modulator by a photodetector, and a control for calculating a distance to the measurement object based on a detection signal from the photodetector And a distance measuring method.

本発明によれば、戻り光を光源(レーザー光)の変調周波数と同一の変調周波数で強度
変調し、強度変調された戻り光の検出信号に基づき距離を算出することで、簡素な構成で広範囲の測定を高精度に行うことができる。
According to the present invention, the return light is intensity-modulated at the same modulation frequency as that of the light source (laser light), and the distance is calculated based on the detection signal of the intensity-modulated return light. Can be measured with high accuracy.

(2)また本発明に係る距離測定装置及び距離測定方法では、前記光検出器としてカットオフ周波数が前記変調周波数よりも低い光検出器を用いてもよい。   (2) In the distance measuring apparatus and the distance measuring method according to the present invention, a photodetector having a cutoff frequency lower than the modulation frequency may be used as the photodetector.

本発明によれば、検出信号に別途信号処理を施すことを要せず、簡素な構成で強度変調された戻り光の高周波成分を除去することができる。   According to the present invention, it is not necessary to separately perform signal processing on the detection signal, and the high-frequency component of the return light whose intensity is modulated with a simple configuration can be removed.

(3)また本発明に係る距離測定装置及び距離測定方法では、前記制御部は(前記制御ステップでは)、前記変調周波数を掃引したときの前記検出信号の変化に基づいて前記測定対象までの距離を算出してもよい。   (3) In the distance measuring apparatus and the distance measuring method according to the present invention, the control unit (in the control step) is configured to measure the distance to the measurement object based on a change in the detection signal when the modulation frequency is swept. May be calculated.

本発明によれば、簡素な構成で広範囲にわたる複数の反射点までの距離を精度良く測定することができる。   According to the present invention, it is possible to accurately measure the distance to a plurality of reflection points over a wide range with a simple configuration.

本実施形態に係る距離測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the distance measuring device which concerns on this embodiment. 変調周波数と検出信号の強度との関係を示す図である。It is a figure which shows the relationship between a modulation frequency and the intensity | strength of a detection signal. 他の実施形態に係る距離測定装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the distance measuring device which concerns on other embodiment.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。   Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.

1.構成
図1は、本実施形態に係る距離測定装置の構成を模式的に示す図である。距離測定装置1は、光発生部として機能するレーザー光源10と、強度変調器20と、信号発生器30と、光検出器40と、演算処理部(プロセッサー)及び記憶部を有する制御部50とを含む。
1. Configuration FIG. 1 is a diagram schematically illustrating a configuration of a distance measuring apparatus according to the present embodiment. The distance measuring apparatus 1 includes a laser light source 10 that functions as a light generation unit, an intensity modulator 20, a signal generator 30, a photodetector 40, a control unit 50 that includes an arithmetic processing unit (processor) and a storage unit. including.

レーザー光源10は、変調周波数fで強度変調されたレーザー光を発生する。レーザー光源10から出射されたレーザー光はレンズ11で平行光となり、ハーフミラー12を透過して測定対象Tに至る。測定対象Tで反射した戻り光(測定対象Tからの反射光)は、ハーフミラー12で反射され、強度変調器20に入射する。 Laser light source 10 generates an intensity modulated laser beam at the modulation frequency f m. Laser light emitted from the laser light source 10 is converted into parallel light by the lens 11, passes through the half mirror 12, and reaches the measurement target T. The return light reflected from the measurement target T (reflected light from the measurement target T) is reflected by the half mirror 12 and enters the intensity modulator 20.

強度変調器20は、測定対象Tで反射した戻り光を、変調周波数f(レーザー光源10の変調周波数と同一の変調周波数)で強度変調する。 The intensity modulator 20 modulates the intensity of the return light reflected by the measurement target T at a modulation frequency f m (the same modulation frequency as that of the laser light source 10).

信号発生器30は、制御部50からの制御信号に基づき、レーザー光源10及び強度変調器20に変調周波数fの変調信号を出力する。 Signal generator 30 based on the control signal from the control unit 50, and outputs a modulated signal of the modulation frequency f m to the laser light source 10 and intensity modulator 20.

光検出器40は、強度変調器20で強度変調された戻り光を検出する。光検出器40からの検出信号(電気信号)は、図示しないAD変換器によりデジタルデータに変換され、制御部50に出力される。ここで、光検出器40のカットオフ周波数は変調周波数fよりも低く、光検出器40は、強度変調された戻り光の直流成分のみを検出する。 The photodetector 40 detects the return light whose intensity is modulated by the intensity modulator 20. A detection signal (electric signal) from the photodetector 40 is converted into digital data by an AD converter (not shown) and output to the control unit 50. Here, the cutoff frequency of the optical detector 40 is lower than the modulation frequency f m, the photodetector 40 detects only the DC component of the intensity-modulated return light.

制御部50は、信号発生器30を制御し、また、光検出器40からの検出信号(AD変換器の出力信号)に基づいて測定対象Tまでの距離Lを算出する。制御部50は、信号発
生器30を制御して変調周波数fを一定の周波数間隔で離散的に掃引(例えば、数十MHz〜数GHzまで、数十kHzのステップで掃引)し、変調周波数fを掃引したときの検出信号の変化に基づいて距離Lを算出してもよい(第1の手法)。また、制御部50は、信号発生器30を制御してレーザー光源10又は強度変調器20のいずれか一方に出力する変調信号の位相を掃引し、当該変調信号の位相を掃引したときの検出信号の変化に基づいて距離Lを算出してもよい(第2の手法)。
The control unit 50 controls the signal generator 30 and calculates the distance L to the measurement target T based on the detection signal from the photodetector 40 (output signal of the AD converter). Control unit 50 discretely sweeping the modulation frequency f m at a constant frequency interval controls the signal generator 30 (e.g., up to several tens MHz~ number GHz, swept several tens kHz step), and the modulation frequency may be calculated the distance L based on a change of the detection signal when the sweep f m (first method). In addition, the control unit 50 controls the signal generator 30 to sweep the phase of the modulation signal output to either the laser light source 10 or the intensity modulator 20 and detect the detection signal when the phase of the modulation signal is swept. The distance L may be calculated based on the change in the second (second method).

2.本実施形態の手法
レーザー光源10からのレーザー光は周波数fで強度変調されている。強度変調されたレーザー光の強度Iは、以下の式(1)で表される。
2. Laser light from the method the laser light source 10 of this embodiment is intensity modulated at a frequency f m. The intensity I of the intensity-modulated laser beam is expressed by the following formula (1).

Figure 2018059789
ここで、α、aは定数であり、tは時間である。
Figure 2018059789
Here, α and a are constants, and t is time.

測定対象Tで反射した戻り光は、強度変調器20において再び周波数fで強度変調される。強度変調された戻り光の強度I’は、以下の式(2)で表される。 Return light reflected by the measurement target T is intensity modulated again frequency f m in the intensity modulator 20. The intensity I ′ of the intensity-modulated return light is expressed by the following formula (2).

Figure 2018059789
ここで、β、bは定数であり、θは初期位相であり、Lは、所与の基準位置から測定対象Tまでの距離であり、nは周囲(光が伝播する媒質)の屈折率であり、cは光速である。
Figure 2018059789
Here, β and b are constants, θ is the initial phase, L is the distance from a given reference position to the measurement target T, and n is the refractive index of the surroundings (the medium through which light propagates). C is the speed of light.

強度変調された戻り光を、帯域の狭い(カットオフ周波数が変調周波数fよりも低い)光検出器40で検出すると、高周波成分(式(2)の3行目におけるtを含む項)が除去され、直流成分のみが得られる。光検出器40で得られる検出信号の強度Sは、以下の式(3)で表される。 The intensity-modulated return light, the narrow band detected by (cutoff frequency modulation frequency f lower than m) photodetector 40, a high frequency component (the term including t in the third row of Equation (2)) is Only the DC component is obtained. The intensity S of the detection signal obtained by the photodetector 40 is expressed by the following formula (3).

Figure 2018059789
ここで、γは定数である。
Figure 2018059789
Here, γ is a constant.

本実施形態の第1の手法では、変調周波数fを掃引したときの検出信号の変化に基づき距離Lを算出する。変調周波数fを掃引すると、図2に示すように、検出信号の強度Sは、周波数掃引幅c/2nLを周期として正弦波状に変化する(反射点が1点の場合)。この周期の逆数から距離Lを直ちに求めることができる。実際には、周波数の掃引に応じて周期的に変化する検出信号をフーリエ変換することで距離Lを算出する。第1の手法
では、検出信号の周波数スペクトルから、レーザー光の伝播経路上に半透明の反射体等があった場合も含め、全ての反射点までの距離Lを算出することができる。
In a first approach of the present embodiment calculates the distance L based on a change in detection signal when sweeping the modulation frequency f m. When sweeping the modulation frequency f m, as shown in FIG. 2, the intensity S of the detection signal (when the reflection point is one point) which varies sinusoidally with frequency sweep width c / 2nL as a cycle. The distance L can be obtained immediately from the reciprocal of this period. Actually, the distance L is calculated by Fourier-transforming the detection signal that periodically changes according to the frequency sweep. In the first method, the distance L to all the reflection points can be calculated from the frequency spectrum of the detection signal, including the case where there is a translucent reflector or the like on the propagation path of the laser light.

本実施形態の第2の手法では、レーザー光源10又は強度変調器20のいずれか一方に出力する変調信号の位相を掃引したときの検出信号の変化に基づき距離Lを算出する。変調信号の位相を掃引すると検出信号の強度は正弦波状に変化する。変調信号の位相が0であるときの検出信号の位相をΔΦ(f)とすると、距離Lは、以下の式(4)で表される。 In the second method of the present embodiment, the distance L is calculated based on the change in the detection signal when the phase of the modulation signal output to either the laser light source 10 or the intensity modulator 20 is swept. When the phase of the modulation signal is swept, the intensity of the detection signal changes in a sine wave shape. If the phase of the detection signal when the phase of the modulation signal is 0 is ΔΦ (f m ), the distance L is expressed by the following equation (4).

Figure 2018059789
ここで、kは整数である。変調周波数fが高く、強度変調されたレーザー光の1周期分の波長が測定距離に比べて小さい場合、空間分解能は向上するが、kが0以外の整数となり、測定値に波長の整数倍の不定性が生じる。そこで、まず、低い変調周波数fm,l(1周期分の波長が測定距離よりも大きくなる変調周波数)によってk=0のときについて低分解能で距離L(fm,l)を測定する。その上で、高い変調周波数fm,h(1周期分の波長が測定距離よりも小さくなる変調周波数)によって測定を行い、変調信号の位相が0であるときの検出信号の位相ΔΦ(fm,h)を求めるとともに、以下の式(5)によりkを求める。
Figure 2018059789
Here, k is an integer. The modulation frequency f m is high, when the wavelength of one cycle of the intensity-modulated laser beam is smaller than the measured distance, although the spatial resolution is improved, k is an integer other than 0, an integer number of wavelengths to the measured value Indeterminacy occurs. Therefore, first, the distance L (f m, l ) is measured with low resolution when k = 0 by the low modulation frequency f m, l (the modulation frequency at which the wavelength for one period is larger than the measurement distance). Then, measurement is performed with a high modulation frequency f m, h (a modulation frequency in which the wavelength for one period is smaller than the measurement distance), and the phase ΔΦ (f m of the detection signal when the phase of the modulation signal is 0 , H ) and k in accordance with the following equation (5).

Figure 2018059789
ここで、FL[x]は、xを超えない最大の整数を与える関数である。式(5)で得られたkを式(4)に代入すると、高い変調周波数fにより距離Lを求めることができる。第2の手法では、高い変調周波数fを用いることができるため、空間分解能を向上することができる。また、限られた範囲の位相掃引を行うだけで距離を測定することができるため、測定時間を短縮することができる。
Figure 2018059789
Here, FL [x] is a function that gives the maximum integer not exceeding x. Substituting k obtained in formula (5) into equation (4), can determine the distance L by a high modulation frequency f m. In the second approach, it is possible to use a high modulation frequency f m, it is possible to improve the spatial resolution. In addition, since the distance can be measured simply by performing a phase sweep within a limited range, the measurement time can be shortened.

本実施形態の手法によれば、強度変調器20(光変調器)を用いて、戻り光をレーザー光源10の変調周波数と同一の周波数で強度変調し、強度変調された戻り光を帯域の狭い(従って安価な)光検出器40で検出するだけで、強度相関をとることができる。光を強度変調する強度変調器の帯域は極めて広く、また、光損失は小さいため、光増幅器や複数台の光源を用いることなく簡素な構成で広範囲にわたる正確な距離測定を行うことができる。   According to the method of the present embodiment, the intensity of the return light is modulated using the intensity modulator 20 (optical modulator) at the same frequency as the modulation frequency of the laser light source 10, and the intensity-modulated return light is narrow in bandwidth. Intensity correlation can be obtained only by detection with the photodetector 40 (thus inexpensive). The band of the intensity modulator that modulates the intensity of light is extremely wide, and the optical loss is small. Therefore, accurate distance measurement over a wide range can be performed with a simple configuration without using an optical amplifier or a plurality of light sources.

なお、実際の測定では、まず、レーザー光源10からのレーザー光を直接(ハーフミラー12から先の往復の光路がない状態で)強度変調器20に入射させ、このときに式(3)により算出される距離をLとし、Lを基準値とする。その上で、ハーフミラー12から先の往復の光路がある状態で測定を行い、このときに式(3)により算出される距離をLとし、Lと基準値Lとの差(L−L)を、測定対象Tまでの距離Lとして求める。 In actual measurement, first, the laser light from the laser light source 10 is directly incident on the intensity modulator 20 (without the reciprocating optical path from the half mirror 12), and at this time, the calculation is performed by the equation (3). The distance to be measured is L 1 and L 1 is a reference value. On top of that, was measured in a state in which a half mirror 12 there is an optical path of the previous round-trip, the distance calculated by the equation (3) at this time as L 2, the difference between L 2 and the reference value L 1 (L 2 −L 1 ) is determined as the distance L to the measurement target T.

3.変形例
なお、本発明は、上述の実施の形態に限定されるものではなく、種々の変更が可能である。本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及
び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。
3. Modifications The present invention is not limited to the above-described embodiment, and various modifications can be made. The present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

例えば、上記実施形態では、変調信号をレーザー光源10に出力してレーザー光を変調する直接変調方式を採用した場合について説明したが、光発生部をレーザー光源と変調器とで構成し、変調信号を当該変調器に出力してレーザー光を変調する外部変調方式を採用することもできる。   For example, in the above-described embodiment, the case where the direct modulation method that outputs the modulation signal to the laser light source 10 and modulates the laser light has been described. However, the light generation unit includes the laser light source and the modulator, and the modulation signal It is also possible to adopt an external modulation system that outputs laser to the modulator and modulates the laser light.

また、上記実施形態では、帯域の狭い光検出器40を用いて、強度変調された戻り光の高周波成分を除去する(直流成分のみを検出する)構成について説明したが、光検出器からの検出信号をフィルタ(例えば、ローパスフィルタ)に入力させることで、強度変調された戻り光の高周波成分を除去するように構成してもよい。また、制御部50において光検出器からの検出信号(デジタルデータ)を信号処理することで、強度変調された戻り光の高周波成分を除去するように構成してもよい。   In the above-described embodiment, the configuration has been described in which the high-frequency component of the intensity-modulated return light is removed (only the DC component is detected) using the narrow-band photodetector 40. However, the detection from the photodetector is performed. The signal may be input to a filter (for example, a low-pass filter) to remove the high-frequency component of the intensity-modulated return light. In addition, the control unit 50 may process the detection signal (digital data) from the photodetector to remove the high-frequency component of the intensity-modulated return light.

また、上記実施形態では、変調信号の周波数或いは位相を掃引する構成について説明したが、変調信号の周波数或いは位相を掃引することに代えて、変調信号を位相変調するように構成してもよい。図3は、変調信号を位相変調する場合の距離測定装置の構成を模式的に示す図である。なお、図3において、図1の構成と同様の構成については同一の符号を付し、その説明を適宜省略する。図3に示す距離測定装置1は、位相変調器60とフィルタ70とを更に含む。位相変調器60は、信号発生器30から強度変調器20に出力される変調信号を位相Φで位相変調する。変調信号の基本周波数をf、変調周波数をf、振幅をVとすると、位相変調された変調信号Sは、Vcos(2πft+Φcos2πft)で表される。なお、信号発生器30が発生する変調信号は、Vcos(2πft)で表される。 In the above embodiment, the configuration for sweeping the frequency or phase of the modulation signal has been described. However, instead of sweeping the frequency or phase of the modulation signal, the modulation signal may be phase-modulated. FIG. 3 is a diagram schematically showing the configuration of the distance measuring device when the modulated signal is phase-modulated. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted as appropriate. The distance measuring device 1 shown in FIG. 3 further includes a phase modulator 60 and a filter 70. Phase modulator 60, the modulated signal output from the signal generator 30 to the intensity modulator 20 phase-modulates the phase [Phi m. When the fundamental frequency of the modulation signal is f 0 , the modulation frequency is f m , and the amplitude is V m , the phase-modulated modulation signal S m is represented by V m cos (2πf 0 t + Φ m cos 2πf m t). Note that the modulation signal generated by the signal generator 30 is represented by V m cos (2πf 0 t).

このとき、光検出器40で得られる検出信号の強度Sは、以下の式(6)で表される。   At this time, the intensity S of the detection signal obtained by the photodetector 40 is expressed by the following equation (6).

Figure 2018059789
ここで、J、Jはベッセル関数であり、式(6)の2行目はベッセル関数による展開式(周波数f成分及び周波数2f成分を抜粋)を示している。この実施形態では、検出信号の周波数f成分と周波数2f成分の振幅をフィルタ70(ロックインアンプ)を用いて測定し、制御部50において、両者の比を算出し、算出した比から距離Lを算出する。検出信号の周波数f成分の振幅と周波数2f成分の振幅の比をRとすると、比Rは、以下の式(7)で表され、距離Lは、以下の式(8)で表される。
Figure 2018059789
Here, J 1, J 2 is a Bessel function, the second line of Equation (6) shows the deployable by Bessel function (excerpt frequency f m component and frequency 2f m component). In this embodiment, the distance the amplitude of the frequency f m component and frequency 2f m component of the detected signal was measured using a filter 70 (lock-in amplifier), the control unit 50 calculates the ratio of the two, from the calculated ratio L is calculated. When the amplitude ratio of the amplitude and frequency 2f m component of the frequency f m component of the detection signal is R, the ratio R is expressed by the following equation (7), the distance L is expressed by the following equation (8) The

Figure 2018059789
この実施形態によれば、測定対象までの凡その距離が既知である場合に、変調信号の周波数や位相の掃引を行うことなく、距離Lを測定することができる。変調信号の基本周波数fは、例えば数MHz〜数GHzの範囲で設定し、変調周波数fは、例えば数百kHz〜数MHzの範囲で設定する。例えば、位相Φを0.5rad、基本周波数fを910MHz、変調周波数fを62kHzとした場合、凡そ1〜3mmの範囲で距離Lを測定することができる。また、基本周波数fを低くすれば、より長い距離を測定することができる。例えば、上記の条件で基本周波数fを910kHzとした場合、凡そ1〜3mの範囲で距離Lを測定することができる。
Figure 2018059789
According to this embodiment, when the approximate distance to the measurement target is known, the distance L can be measured without sweeping the frequency and phase of the modulation signal. The fundamental frequency f 0 of the modulated signal, for example, set in the range of several MHz~ number GHz, the modulation frequency f m is set in the range of hundreds kHz~ several MHz, for example. For example, the phase [Phi m 0.5 rad, 910 MHz fundamental frequency f 0, if the modulation frequency f m was 62 kHz, it is possible to measure the distance L in a range of approximately 1 to 3 mm. Further, if lowering the basic frequency f 0, it is possible to measure a longer distance. For example, when the fundamental frequency f 0 is 910 kHz under the above conditions, the distance L can be measured in a range of approximately 1 to 3 m.

1…距離測定装置、10…レーザー光源、11…レンズ、12…ハーフミラー、20…強度変調器、30…信号発生器、40…光検出器、50…制御部、60…位相変調器、70…フィルタ、T…測定対象 DESCRIPTION OF SYMBOLS 1 ... Distance measuring device, 10 ... Laser light source, 11 ... Lens, 12 ... Half mirror, 20 ... Intensity modulator, 30 ... Signal generator, 40 ... Photo detector, 50 ... Control part, 60 ... Phase modulator, 70 ... Filter, T ... Measurement target

Claims (4)

強度変調されたレーザー光を発生する光発生部と、
測定対象で反射した戻り光を、前記レーザー光の変調周波数と同一の変調周波数で強度変調する強度変調器と、
前記光発生部及び前記強度変調器に変調信号を出力する信号発生器と、
前記強度変調器で強度変調された戻り光を検出する光検出器と、
前記信号発生器を制御し、前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御部とを含む、距離測定装置。
A light generator that generates intensity-modulated laser light;
An intensity modulator that modulates the intensity of the return light reflected by the measurement target at the same modulation frequency as the modulation frequency of the laser beam;
A signal generator for outputting a modulation signal to the light generator and the intensity modulator;
A photodetector for detecting return light intensity-modulated by the intensity modulator;
And a control unit that controls the signal generator and calculates a distance to the measurement object based on a detection signal from the photodetector.
請求項1において、
前記光検出器のカットオフ周波数は、前記変調周波数よりも低い、距離測定装置。
In claim 1,
The distance measuring device, wherein a cutoff frequency of the photodetector is lower than the modulation frequency.
請求項1又は2において
前記制御部は、
前記変調周波数を掃引したときの前記検出信号の変化に基づいて前記測定対象までの距離を算出する、距離測定装置。
The control unit according to claim 1 or 2,
A distance measuring device that calculates a distance to the measurement object based on a change in the detection signal when the modulation frequency is swept.
強度変調されたレーザー光を光発生部により発生する光発生ステップと、
測定対象で反射した戻り光を、強度変調器により前記レーザー光の変調周波数と同一の変調周波数で強度変調する強度変調ステップと、
前記強度変調器で強度変調された戻り光を光検出器により検出する光検出ステップと、
前記光検出器からの検出信号に基づき前記測定対象までの距離を算出する制御ステップとを含む、距離測定方法。
A light generation step of generating intensity-modulated laser light by a light generation unit;
An intensity modulation step of intensity-modulating the return light reflected by the measurement object with an intensity modulator at the same modulation frequency as the modulation frequency of the laser beam;
A light detection step of detecting the return light intensity-modulated by the intensity modulator with a photodetector;
And a control step of calculating a distance to the measurement object based on a detection signal from the photodetector.
JP2016196922A 2016-10-05 2016-10-05 Distance measuring apparatus and distance measuring method Pending JP2018059789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016196922A JP2018059789A (en) 2016-10-05 2016-10-05 Distance measuring apparatus and distance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196922A JP2018059789A (en) 2016-10-05 2016-10-05 Distance measuring apparatus and distance measuring method

Publications (1)

Publication Number Publication Date
JP2018059789A true JP2018059789A (en) 2018-04-12

Family

ID=61907649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196922A Pending JP2018059789A (en) 2016-10-05 2016-10-05 Distance measuring apparatus and distance measuring method

Country Status (1)

Country Link
JP (1) JP2018059789A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215165A (en) * 2018-06-11 2019-12-19 国立大学法人東京農工大学 Distance measuring device and distance measuring method
WO2020170796A1 (en) * 2019-02-19 2020-08-27 日本電信電話株式会社 Rangefinder and rangefinding method
JP2020148606A (en) * 2019-03-13 2020-09-17 国立大学法人東京農工大学 Multiple core optical fiber sensing system
JP2020186949A (en) * 2019-05-10 2020-11-19 株式会社東芝 Electronic device and distance measurement method
JP7493773B2 (en) 2020-08-21 2024-06-03 国立大学法人東京農工大学 Displacement measuring device and displacement measuring method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215165A (en) * 2018-06-11 2019-12-19 国立大学法人東京農工大学 Distance measuring device and distance measuring method
JP7061364B2 (en) 2018-06-11 2022-04-28 国立大学法人東京農工大学 Distance measuring device and distance measuring method
WO2020170796A1 (en) * 2019-02-19 2020-08-27 日本電信電話株式会社 Rangefinder and rangefinding method
JP2020134285A (en) * 2019-02-19 2020-08-31 日本電信電話株式会社 Device and method for measuring distance
JP7143780B2 (en) 2019-02-19 2022-09-29 日本電信電話株式会社 Ranging device and ranging method
JP2020148606A (en) * 2019-03-13 2020-09-17 国立大学法人東京農工大学 Multiple core optical fiber sensing system
JP7247446B2 (en) 2019-03-13 2023-03-29 国立大学法人東京農工大学 Multi-core optical fiber sensing system
JP2020186949A (en) * 2019-05-10 2020-11-19 株式会社東芝 Electronic device and distance measurement method
JP7193413B2 (en) 2019-05-10 2022-12-20 株式会社東芝 Electronic device and distance measurement method
JP7493773B2 (en) 2020-08-21 2024-06-03 国立大学法人東京農工大学 Displacement measuring device and displacement measuring method

Similar Documents

Publication Publication Date Title
Norgia et al. Self-mixing instrument for simultaneous distance and speed measurement
JP2018059789A (en) Distance measuring apparatus and distance measuring method
Zhang et al. Vibration measurement based on multiple Hilbert transform for self-mixing interferometry
JPWO2018230474A1 (en) Optical distance measuring device and measuring method
US20210405194A1 (en) Optical measurement device and measurement method
JP2017156094A (en) Brillouin scattering measuring method and brillouin scattering measuring apparatus
US11098998B2 (en) Apparatus and method for optical angle modulation measurement by a delayed self-heterodyne method
JP2016524715A (en) Optical pulse compression reflector
JP2013083581A5 (en)
Orakzai et al. Fast and highly accurate phase unwrapping algorithm for displacement retrieval using self-mixing interferometry sensor
JP4925139B2 (en) Dispersion interferometer and method for measuring physical quantity of object to be measured
Amin et al. Improved displacement sensing by spectral processing of laser self-mixing interferometry signal phase
JP7061364B2 (en) Distance measuring device and distance measuring method
US8649010B2 (en) Integral transformed optical measurement method and apparatus
CN108007307B (en) Optical fiber measuring method and measuring device
Zhao et al. Research on micro-vibration measurement by a laser diode self-mixing interferometer
JP5371933B2 (en) Laser light measuring method and measuring apparatus
JP7192959B2 (en) Ranging device and ranging method
En et al. A surface profile reconstruction system using sinusoidal phase-modulating interferometry and fiber-optic fringe projection
US10775503B2 (en) Absolute distance measurement to dynamic targets
JP6501307B2 (en) Heterodyne interference device
JPS6371675A (en) Laser distance measuring instrument
JP7380382B2 (en) range finder
Wang et al. A self-mixing laser diode for micro-displacement measurement
JPS5866881A (en) Surveying equipment by light wave