JP2022031017A - Resistor and method for manufacturing resistor - Google Patents

Resistor and method for manufacturing resistor Download PDF

Info

Publication number
JP2022031017A
JP2022031017A JP2020135390A JP2020135390A JP2022031017A JP 2022031017 A JP2022031017 A JP 2022031017A JP 2020135390 A JP2020135390 A JP 2020135390A JP 2020135390 A JP2020135390 A JP 2020135390A JP 2022031017 A JP2022031017 A JP 2022031017A
Authority
JP
Japan
Prior art keywords
resistor
resistance
film
thin film
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020135390A
Other languages
Japanese (ja)
Inventor
裕二 高塚
Yuji Takatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020135390A priority Critical patent/JP2022031017A/en
Publication of JP2022031017A publication Critical patent/JP2022031017A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a resistor that does not contain a lead component, in which the absolute value of a resistance temperature coefficient is 100 ppm/K or less.SOLUTION: There is provided a resistor that does not contain a lead component, and has a first resistor that has a negative resistance temperature coefficient and a second resistor that has a positive resistance temperature coefficient, wherein the first resistor and the second resistor are arranged in series, the first resistor is a multilayer film in which an insulating film is laminated on an electroconductive thin film, the second resistor is a thin film including RuO2, and the mixing ratio that is the ratio of the resistance value of the first resistor to the resistance value of the resistor is within a range where the absolute value of the resistance temperature coefficient of the resistor is 100 ppm or less.SELECTED DRAWING: Figure 2

Description

本発明は、抵抗体、抵抗体の製造方法に関する。 The present invention relates to a resistor and a method for manufacturing the resistor.

抵抗体の形成方法としては、抵抗ペーストを用いる厚膜方式と、スパッタ法により膜形成材料を成膜する薄膜方式とが従来からよく用いられている。 As a method for forming a resistor, a thick film method using a resistance paste and a thin film method for forming a film forming material by a sputtering method are often used conventionally.

厚膜方式は、抵抗ペーストをセラミック基板上に印刷、焼成して抵抗体を形成する方法であり、設備が安価で、生産性も高いことから、チップ抵抗器やハイブリッドICなどの抵抗体の製造に広範に利用されている。 The thick film method is a method in which a resistor paste is printed on a ceramic substrate and fired to form a resistor. Since the equipment is inexpensive and the productivity is high, resistors such as chip resistors and hybrid ICs are manufactured. Widely used in.

厚膜方式に用いる抵抗ペーストは、一般的に導電性粒子およびガラスフリットを含む固体成分と、固体成分を印刷に適したペースト状にするための有機ビヒクルとを含有する。 The resistance paste used in the thick film method generally contains a solid component including conductive particles and glass frit, and an organic vehicle for forming the solid component into a paste suitable for printing.

導電性粒子としては、二酸化ルテニウム(RuO)やパイロクロア型ルテニウム系酸化物(PbRu7-X、BiRu)が一般に使用されている。 As the conductive particles, ruthenium dioxide (RuO 2 ) and pyrochlore-type ruthenium oxides (Pb 2 Ru 2 O 7-X , Bi 2 Ru 2 O 7 ) are generally used.

ガラスフリットとしては、ホウケイ酸鉛ガラス(PbO-SiO-B)やアルミノホウケイ酸鉛ガラス(PbO-SiO-B-Al)など、鉛を多量に含むホウケイ酸鉛系ガラスが使われている。 As the glass frit, lead glass containing a large amount of lead such as lead borosilicate glass (PbO-SiO 2 -B 2 O 3 ) and lead alumino borosilicate glass (PbO-SiO 2 -B 2 O 3 -Al 2 O 3 ) Lead acid acid glass is used.

このように、従来の抵抗体は良好な電気特性とするため、鉛を含有する場合があった。しかしながら、近年では電子機器について、鉛の使用の排除が求められている。このため、抵抗体についても、鉛を用いないことが求められているが、同時に良好な電気特性を有することも求められている。 As described above, the conventional resistor may contain lead in order to have good electrical characteristics. However, in recent years, there has been a demand for the elimination of the use of lead in electronic devices. Therefore, the resistor is also required not to use lead, but at the same time, it is also required to have good electrical characteristics.

例えば特許文献1には、酸化イリジウム(IrO)粉を用いてなる厚膜抵抗体形成用ペーストや、該ペーストを用いた厚膜抵抗体が開示されている。特許文献1に開示された厚膜抵抗体用ペーストは、例えば高抵抗領域の厚膜抵抗体用ペーストとして有用であるが、イリジウムは高価であり、特に汎用抵抗部品への適用においては従来の導電物から置き換えるにはコストの点で課題がある。 For example, Patent Document 1 discloses a paste for forming a thick film resistor using iridium oxide (IrO 2 ) powder, and a thick film resistor using the paste. The thick film resistor paste disclosed in Patent Document 1 is useful as, for example, a thick film resistor paste in a high resistance region, but iridium is expensive, and is particularly conductive when applied to general-purpose resistor components. There is a cost issue in replacing things.

そこで厚膜方式ではなく薄膜方式を用いて鉛フリー抵抗体を作成することが検討されている。 Therefore, it is being considered to produce a lead-free resistor by using a thin film method instead of a thick film method.

特許文献2には塊状にて抵抗温度係数の大きさが異なる金属の2層以上の薄膜から成り、各々の薄膜は正負の抵抗温度係数を有し且つ該薄膜の膜厚と各々の膜厚比が制御されることによって所定の抵抗値と小さな抵抗温度係数を有することを特徴とする薄膜抵抗体が開示されている。 Patent Document 2 is composed of two or more thin films of metal having different magnitudes of temperature coefficient of resistance, and each thin film has a positive and negative temperature coefficient of resistance, and the film thickness of the thin film and the film thickness ratio of each. Disclosed is a thin film resistor characterized by having a predetermined resistance value and a small temperature coefficient of resistance by being controlled.

しかしながら、抵抗温度係数の絶対値を100ppm程度以下にするには正負の抵抗体の抵抗値を同程度の値にする必要がある。このため、特許文献2に開示された薄膜抵抗体の構成では、抵抗値が狭い範囲に制約されるため、問題があった。 However, in order to make the absolute value of the temperature coefficient of resistance about 100 ppm or less, it is necessary to make the resistance values of the positive and negative resistors the same. Therefore, the configuration of the thin film resistor disclosed in Patent Document 2 has a problem because the resistance value is restricted to a narrow range.

特開2007-277040号公報Japanese Unexamined Patent Publication No. 2007-277040 特公昭50-25149号公報Special Publication No. 50-25149

以上のように、これまで検討された鉛成分を含有しない抵抗体では、コストや、得られる抵抗体の抵抗値の範囲が狭い等の理由から、一般的に使用することは困難であった。このため、鉛成分を含有せず抵抗温度係数が抑制された新たな抵抗体が求められていた。 As described above, it has been difficult to generally use the lead-free resistors studied so far because of the cost and the narrow range of resistance values of the obtained resistors. Therefore, there has been a demand for a new resistor that does not contain a lead component and has a suppressed temperature coefficient of resistance.

上記従来技術の問題に鑑み、本発明の一側面では、鉛成分を含有せず、抵抗温度係数の絶対値が100ppm/K以下の抵抗体を提供することを目的とする。 In view of the above problems of the prior art, one aspect of the present invention is to provide a resistor that does not contain a lead component and has an absolute temperature coefficient of resistance of 100 ppm / K or less.

上記課題を解決するため本発明は、
鉛成分を含有しない抵抗体であって、
負の抵抗温度係数を有する第1抵抗体と、
正の抵抗温度係数を有する第2抵抗体と、を有し、
前記第1抵抗体と、前記第2抵抗体とが直列に配置され、
前記第1抵抗体が、電気伝導性の薄膜と、絶縁体膜とが積層された多層膜であり、
前記第2抵抗体が、RuOを含む薄膜であり、
前記抵抗体の抵抗値に占める、前記第1抵抗体の抵抗値の割合である混合率が、前記抵抗体の抵抗温度係数の絶対値が100ppm以下となる範囲内にある抵抗体を提供する。
In order to solve the above problems, the present invention
It is a resistor that does not contain lead components.
A first resistor with a negative temperature coefficient of resistance,
With a second resistor having a positive temperature coefficient of resistance,
The first resistor and the second resistor are arranged in series,
The first resistor is a multilayer film in which an electrically conductive thin film and an insulator film are laminated.
The second resistor is a thin film containing RuO 2 and is a thin film.
Provided is a resistor in which the mixing ratio, which is the ratio of the resistance value of the first resistor to the resistance value of the resistor, is within the range in which the absolute value of the temperature coefficient of resistance of the resistor is 100 ppm or less.

本発明の一側面によれば、鉛成分を含有せず、抵抗温度係数の絶対値が100ppm/K以下の抵抗体を提供することができる。 According to one aspect of the present invention, it is possible to provide a resistor that does not contain a lead component and has an absolute value of the temperature coefficient of resistance of 100 ppm / K or less.

本開示の一態様に係る抵抗体の上面図である。It is a top view of the resistor which concerns on one aspect of this disclosure. 図1のA-A´線での断面図である。It is sectional drawing which is taken along the line AA'in FIG. 第1抵抗体と第2抵抗体との混合率を変化させた場合の抵抗値の温度依存性の説明図である。It is explanatory drawing of the temperature dependence of the resistance value when the mixing ratio of a 1st resistor and a 2nd resistor is changed. 多層膜を成膜するスパッタ装置の説明図である。It is explanatory drawing of the sputtering apparatus which forms a film of a multilayer film.

以下、本発明の抵抗体、抵抗体の製造方法の一実施形態について説明する。
[抵抗体]
本発明の発明者は、鉛成分を含有しない新たな抵抗体について鋭意検討を行った。
Hereinafter, an embodiment of the resistor of the present invention and a method for manufacturing the resistor will be described.
[Resistance]
The inventor of the present invention has diligently studied a new resistor containing no lead component.

本発明の発明者は、検討を進める中で負の抵抗温度係数を有する導電性薄膜、すなわち電気伝導性の薄膜(電気伝導性を有する薄膜)が物理成膜法により形成でき、積層構造を作製しやすいことに着目した。そして、電気伝導性の薄膜と、絶縁体膜とを交互に積層した第1抵抗体は、負の抵抗温度係数を有し、積層数を選択することで抵抗値を制御可能であることを見出した。 The inventor of the present invention can form a conductive thin film having a negative temperature coefficient of resistance, that is, an electrically conductive thin film (a thin film having electrical conductivity) by a physical film forming method, and prepare a laminated structure. I focused on how easy it is to do. It was also found that the first resistor in which the electrically conductive thin film and the insulator film are alternately laminated has a negative temperature coefficient of resistance, and the resistance value can be controlled by selecting the number of layers. rice field.

さらに、上記負の抵抗温度係数を有する第1抵抗体と、正の抵抗温度係数を有する導電性抵抗体である第2抵抗体とを組み合わせた抵抗体とすることで、抵抗体全体の抵抗温度係数を制御し、抵抗温度係数の絶対値を100ppm/K以下にできることを見出した。 Further, by forming a resistor in which the first resistor having the above negative temperature coefficient of resistance and the second resistor which is a conductive resistor having a positive temperature coefficient of resistance are combined, the resistance temperature of the entire resistor is increased. It has been found that the coefficient can be controlled and the absolute value of the temperature coefficient of resistance can be set to 100 ppm / K or less.

すなわち、第1抵抗体として電気伝導性の薄膜と絶縁体膜とが積層された多層膜を用い、例えば積層数を選択することで抵抗体全体の抵抗値を制御し、選択できる抵抗値の範囲の広い抵抗体とすることができる。そして、負の抵抗温度係数を有する第1抵抗体と、正の抵抗温度係数を有する第2抵抗体とを有する抵抗体とすることで、抵抗体の抵抗温度係数の絶対値を100ppm/K以下にできる。 That is, a multilayer film in which an electrically conductive thin film and an insulator film are laminated is used as the first resistor, and the resistance value of the entire resistor is controlled by selecting, for example, the number of layers, and the range of resistance values that can be selected. Can be a wide resistor. Then, by using a resistor having a first resistor having a negative temperature coefficient of resistance and a second resistor having a positive temperature coefficient of resistance, the absolute value of the temperature coefficient of resistance of the resistor is 100 ppm / K or less. Can be done.

本実施形態の抵抗体の構成例を図1、図2に示す。図1は、本実施形態の抵抗体10の上面図である。図2は、本実施形態の抵抗体10が有する第1抵抗体11と、第2抵抗体12とを通り、第1抵抗体を構成する電気伝導性の薄膜111Aと、絶縁体膜111Bとの積層方向と平行な面での断面図を示している。図2は図1のA-A´線での断面図にあたる。 A configuration example of the resistor of this embodiment is shown in FIGS. 1 and 2. FIG. 1 is a top view of the resistor 10 of the present embodiment. FIG. 2 shows an electrically conductive thin film 111A and an insulator film 111B that pass through the first resistor 11 and the second resistor 12 of the resistor 10 of the present embodiment and constitute the first resistor. The cross-sectional view in the plane parallel to the stacking direction is shown. FIG. 2 corresponds to a cross-sectional view taken along the line AA'of FIG.

本実施形態の抵抗体は鉛成分を含有しない。そして、図1、図2に示すように、本実施形態の抵抗体10は、負の抵抗温度係数を有する第1抵抗体11と、正の抵抗温度係数を有する第2抵抗体12とを有し、第1抵抗体11と、第2抵抗体とは直列に配置できる。 The resistor of this embodiment does not contain a lead component. Then, as shown in FIGS. 1 and 2, the resistor 10 of the present embodiment includes a first resistor 11 having a negative temperature coefficient of resistance and a second resistor 12 having a positive temperature coefficient of resistance. However, the first resistor 11 and the second resistor can be arranged in series.

第1抵抗体11は、電気伝導性の薄膜111Aと、絶縁体膜111Bとが積層された多層膜111を有する。 The first resistor 11 has a multilayer film 111 in which an electrically conductive thin film 111A and an insulator film 111B are laminated.

第2抵抗体12は、RuO(酸化ルテニウム)を含む薄膜である。 The second resistor 12 is a thin film containing RuO 2 (ruthenium oxide).

抵抗体10の抵抗値に占める、第1抵抗体11の抵抗値の割合である混合率を、抵抗体10の抵抗温度係数の絶対値が100ppm以下となる範囲内とすることができる。 The mixing ratio, which is the ratio of the resistance value of the first resistor 11 to the resistance value of the resistor 10, can be set within the range in which the absolute value of the temperature coefficient of resistance of the resistor 10 is 100 ppm or less.

以下、各部材について説明する。
(1)第1抵抗体
第1抵抗体は、負の抵抗温度係数を有する抵抗体である。図2に示すように、電気伝導性の薄膜111Aと、絶縁体膜111Bとを交互に積層した多層膜111(積層膜)を有することができる。
Hereinafter, each member will be described.
(1) First resistor The first resistor is a resistor having a negative temperature coefficient of resistance. As shown in FIG. 2, it is possible to have a multilayer film 111 (laminated film) in which an electrically conductive thin film 111A and an insulator film 111B are alternately laminated.

多層膜111は、図1、図2に示すように電極112の間に配置し、後述する第2抵抗体12や、他の部材と電気的に接続しやすくなるように構成することもできる。電極112の材料は特に限定されないが、電極112は、例えば導電率の高いAl(アルミニウム)、Au(金)、Ag(銀)、Cu(銅)、Pd(パラジウム)、Sn(スズ)、およびPt(白金)等から選択された1種類以上を含有できる。 The multilayer film 111 may be arranged between the electrodes 112 as shown in FIGS. 1 and 2 so as to be easily electrically connected to the second resistor 12 described later and other members. The material of the electrode 112 is not particularly limited, but the electrode 112 may have, for example, highly conductive Al (aluminum), Au (gold), Ag (silver), Cu (copper), Pd (palladium), Sn (tin), and It can contain one or more types selected from Pt (platinum) and the like.

多層膜111が有する電気伝導性の薄膜111Aの材料としては特に限定されないが、例えば、Au(金)、Pt(白金)、Ag(銀)、Al(アルミニウム)、Cu(銅)から構成される金属群から選択された1種類以上の金属を含むことができる。電気伝導性の薄膜111Aの材料がAgを含む場合、例えばAg-Mn(マンガン)合金等とすることもできる。抵抗体10の抵抗値を安定させる観点から、電気伝導性の薄膜111Aの材料は酸素雰囲気でもほとんど酸化しないAuや、Pt等の貴金属を含むことがより好ましく、Auや、Pt等の貴金属から構成されることがさらに好ましい。 The material of the electrically conductive thin film 111A of the multilayer film 111 is not particularly limited, but is composed of, for example, Au (gold), Pt (platinum), Ag (silver), Al (aluminum), and Cu (copper). It can contain one or more metals selected from the metal group. When the material of the electrically conductive thin film 111A contains Ag, it may be, for example, an Ag—Mn (manganese) alloy or the like. From the viewpoint of stabilizing the resistance value of the resistor 10, the material of the electrically conductive thin film 111A preferably contains a noble metal such as Au or Pt, which hardly oxidizes even in an oxygen atmosphere, and is composed of a noble metal such as Au or Pt. It is more preferable to be done.

多層膜111が有する絶縁体膜111Bの材料についても特に限定されない。絶縁体膜111Bは、例えばSi(ケイ素)、Ta(タンタル)、Zr(ジルコニウム)、Nb(ニオブ)、Al(アルミニウム)等の元素群から選択された1種類以上を含む酸化物、または窒化物を用いることができる。中でも、Siの酸化物であるSiOや、Alの酸化物であるAlは高抵抗体を製造しやすいので、絶縁体膜111Bの材料として特に好ましく用いることができる。窒化物としては、例えばアモルファスシリコン窒化膜(SiN)や窒化アルミニウム(AlN)を用いることができる。 The material of the insulator film 111B included in the multilayer film 111 is also not particularly limited. The insulator film 111B is an oxide or a nitride containing one or more selected from a group of elements such as Si (silicon), Ta (tantalum), Zr (zirconium), Nb (niobium), and Al (aluminum). Can be used. Among them, SiO 2 which is an oxide of Si and Al 2 O 3 which is an oxide of Al can easily produce a high resistor, and therefore can be particularly preferably used as a material for the insulator film 111B. As the nitride, for example, an amorphous silicon nitride film (SiN x ) or aluminum nitride (AlN) can be used.

本実施形態の抵抗体10は鉛成分を含有しないため、第1抵抗体11についても鉛成分を含有しない。ここで、抵抗体10や、第1抵抗体11が鉛成分を含有しないとは、意図して鉛成分を添加していないことを意味し、鉛成分が製造工程等で不可避成分として第1抵抗体11に混入することを排除するものではない。 Since the resistor 10 of the present embodiment does not contain a lead component, the first resistor 11 also does not contain a lead component. Here, the fact that the resistor 10 and the first resistor 11 do not contain the lead component means that the lead component is not intentionally added, and the lead component is the first resistance as an unavoidable component in the manufacturing process or the like. It does not preclude contamination with the body 11.

各層の厚さは特に限定されないが、例えば電気伝導性の薄膜111Aの膜厚は、例えば1nm以上100nm以下とすることができる。 The thickness of each layer is not particularly limited, but for example, the film thickness of the electrically conductive thin film 111A can be, for example, 1 nm or more and 100 nm or less.

電気伝導性の薄膜111Aの膜厚を1nm以上とすることで安定性して電気伝導性を示し、再現性を高めることができる。また、電気伝導性の薄膜111Aの膜厚を100nm以下とすることで多層膜111をより確実に負の抵抗温度係数を有する膜とすることができる。電気伝導性の薄膜111Aの膜厚は、1nm以上50nm以下であることがより好ましい。 By setting the film thickness of the electrically conductive thin film 111A to 1 nm or more, it is possible to stably exhibit electrical conductivity and improve reproducibility. Further, by setting the film thickness of the electrically conductive thin film 111A to 100 nm or less, the multilayer film 111 can be more reliably formed into a film having a negative temperature coefficient of resistance. The film thickness of the electrically conductive thin film 111A is more preferably 1 nm or more and 50 nm or less.

なお、多層膜111を製造する際、電気伝導性の薄膜111Aと、絶縁体膜111Bと交互に積層した後、アニール処理を行うこともできる。係るアニール処理を行うと、電気伝導性の薄膜111Aと、絶縁体膜111Bとの界面近傍で反応し、電気伝導性の薄膜111Aの膜厚が場所により異なる場合がある。このため、電気伝導性の薄膜111Aの膜厚は一定である必要は無く、任意の場所で測定を行った場合に上記範囲にあればよい。 When manufacturing the multilayer film 111, the electrically conductive thin film 111A and the insulator film 111B may be alternately laminated and then annealed. When such an annealing treatment is performed, the electrically conductive thin film 111A reacts in the vicinity of the interface with the insulator film 111B, and the film thickness of the electrically conductive thin film 111A may differ depending on the location. Therefore, the film thickness of the electrically conductive thin film 111A does not have to be constant, and may be within the above range when the measurement is performed at an arbitrary place.

電気伝導性の薄膜111Aの膜厚は、多層膜111について、電気伝導性の薄膜111Aと絶縁体膜111Bとの積層方向と平行な面の断面について、オージェ電子分光法や、XPS(X-ray photoelectron spectroscopy:X線光電子分光法)等により分析し、電気伝導性の薄膜111Aを構成する元素が分布する範囲の厚さを評価することで求められる。 The film thickness of the electrically conductive thin film 111A is determined by Auger electron spectroscopy or XPS (X-ray) for the cross section of the plane parallel to the stacking direction of the electrically conductive thin film 111A and the insulator film 111B for the multilayer film 111. It is obtained by analyzing by photoelectron spectroscopy (X-ray photoelectron spectroscopy) or the like and evaluating the thickness in the range in which the elements constituting the electrically conductive thin film 111A are distributed.

絶縁体膜111Bの膜厚は100nm以上1000nm以下であることが好ましい。絶縁体膜111Bの膜厚を100nm以上とすることで絶縁性を高められる。また、絶縁体膜111Bの膜厚を1000nm以下とすることで絶縁体膜111B表面の凹凸が大きくなることを抑制できる。絶縁体膜111Bの膜厚についても、電気伝導性の薄膜111Aの膜厚の場合と同様の方法で評価できる。 The film thickness of the insulator film 111B is preferably 100 nm or more and 1000 nm or less. Insulation can be improved by setting the film thickness of the insulator film 111B to 100 nm or more. Further, by setting the film thickness of the insulator film 111B to 1000 nm or less, it is possible to suppress the increase in unevenness on the surface of the insulator film 111B. The film thickness of the insulator film 111B can also be evaluated by the same method as in the case of the film thickness of the electrically conductive thin film 111A.

図2では、模式的に、電気伝導性の薄膜111Aを5層、絶縁体膜111Bを4層積層した例を示したが、電気伝導性の薄膜111A、および絶縁体膜111Bの層の数は特に限定されない。 FIG. 2 schematically shows an example in which five layers of the electrically conductive thin film 111A and four layers of the insulator film 111B are laminated, but the number of layers of the electrically conductive thin film 111A and the insulator film 111B is shown. Not particularly limited.

電気伝導性の薄膜111Aの抵抗値をR111Aとし、第1抵抗体11が、電気伝導性の薄膜111Aをn層有する場合、第1抵抗体11の抵抗値R1は、R1=R111A÷nで表せる。 When the resistance value of the electrically conductive thin film 111A is R111A and the first resistor 11 has n layers of the electrically conductive thin film 111A, the resistance value R1 of the first resistor 11 can be expressed as R1 = R111A ÷ n. ..

このため、抵抗体10に要求される抵抗値や、組み合わせる第2抵抗体12の抵抗値等に応じて電気伝導性の薄膜111A、および絶縁体膜111Bの層数を選択できる。
(2)第2抵抗体
第2抵抗体12は、RuOを含む薄膜である。
Therefore, the number of layers of the electrically conductive thin film 111A and the insulator film 111B can be selected according to the resistance value required for the resistor 10 and the resistance value of the second resistor 12 to be combined.
(2) Second resistor The second resistor 12 is a thin film containing RuO 2 .

第2抵抗体12は、RuOのみから構成することができるが、この場合でも製造工程で混入する不可避不純物を含有することを排除するものではない。 The second resistor 12 can be composed of only RuO 2 , but even in this case, it does not exclude the inclusion of unavoidable impurities mixed in the manufacturing process.

また、本実施形態の抵抗体10は鉛成分を含有しないことから、第2抵抗体12についても鉛成分を含有しない。ここで、第2抵抗体12が鉛成分を含有しないとは、意図して鉛成分を添加していないことを意味し、鉛成分が製造工程等で不可避成分として第2抵抗体12に混入することを排除するものではない。 Further, since the resistor 10 of the present embodiment does not contain a lead component, the second resistor 12 also does not contain a lead component. Here, the fact that the second resistor 12 does not contain the lead component means that the lead component is not intentionally added, and the lead component is mixed in the second resistor 12 as an unavoidable component in the manufacturing process or the like. It does not exclude that.

第2抵抗体12は、その厚さT、長さL、幅Wを調整することで、抵抗値や、後述する混合率を調整できる。
(3)基板
本実施形態の抵抗体10は、図1、図2に示すように、基板13上に形成できる。基板13は、抵抗体10を形成する面が平坦であれば材質は特に限定されない。基板13の材料としては、平坦性の良いSi(ケイ素)や、石英等が挙げられる。
By adjusting the thickness T, the length L, and the width W of the second resistor 12, the resistance value and the mixing ratio described later can be adjusted.
(3) Substrate The resistor 10 of the present embodiment can be formed on the substrate 13 as shown in FIGS. 1 and 2. The material of the substrate 13 is not particularly limited as long as the surface forming the resistor 10 is flat. Examples of the material of the substrate 13 include Si (silicon) having good flatness, quartz and the like.

なお、基板13が導電性を有する場合、基板13の影響を避けるため、抵抗体10を形成する面にはSiO等の絶縁体膜131を配置できる。 When the substrate 13 has conductivity, an insulator film 131 such as SiO 2 can be arranged on the surface forming the resistor 10 in order to avoid the influence of the substrate 13.

本実施形態の抵抗体は、所望の抵抗値となるように、かつ抵抗温度係数の絶対値が100ppm/K以下となるように、第1抵抗体と、第2抵抗体との混合率を選択できる。
(4)抵抗体の抵抗温度係数、および第1抵抗体と第2抵抗体との混合率
(4-1)抵抗温度係数
抵抗体の抵抗温度係数について説明する。
For the resistor of the present embodiment, the mixing ratio of the first resistor and the second resistor is selected so that the desired resistance value is obtained and the absolute value of the temperature coefficient of resistance is 100 ppm / K or less. can.
(4) The temperature coefficient of resistance of the resistor and the mixing ratio of the first resistor and the second resistor (4-1) Temperature coefficient of resistance The resistance temperature coefficient of the resistor will be described.

抵抗温度係数は、300Kの抵抗値に対して220Kまたは420Kでの抵抗値により求められる抵抗値の温度変化率であり、それぞれ下記の式(A)、式(B)により求められる。 The temperature coefficient of resistance is the temperature change rate of the resistance value obtained by the resistance value at 220K or 420K with respect to the resistance value of 300K, and is obtained by the following equations (A) and (B), respectively.

Cold-TCR(ppm/K)=(R220-R300)/R300/(-80)×10・・・(A)
Hot-TCR(ppm/K)=(R420-R300)/R300/(120)×10・・・(B)
300Kと220Kの抵抗値から求められる抵抗温度係数を低温側TCR(Cold-TCR)という。なお、TCRはTemperature Coefficient of resistanceを意味する。
Cold-TCR (ppm / K) = (R 220 -R 300 ) / R 300 / (-80) × 10 6 ... (A)
Hot-TCR (ppm / K) = (R 420 -R 300 ) / R 300 / (120) × 10 6 ... (B)
The temperature coefficient of resistance obtained from the resistance values of 300K and 220K is called the low temperature side TCR (Cold-TCR). In addition, TCR means Temperature Coefficient of response.

300Kと420Kの抵抗値から求められる抵抗温度係数を高温側TCR(Hot-TCR)という。 The temperature coefficient of resistance obtained from the resistance values of 300K and 420K is called the high temperature side TCR (Hot-TCR).

本実施形態の抵抗体は、抵抗温度係数、すなわち低温側TCR、および高温側TCRの絶対値がいずれも100ppm/K以下であることが好ましい。 The resistor of the present embodiment preferably has a resistance temperature coefficient, that is, an absolute value of the low temperature side TCR and the high temperature side TCR of 100 ppm / K or less.

そこで、本実施形態の抵抗体は、抵抗温度係数の絶対値が100ppm/K以下となるように、第1抵抗体と第2抵抗体との混合率を選択できる。
(4-2)第1抵抗体と第2抵抗体との混合率
第1抵抗体と第2抵抗体との混合率とは、抵抗体の抵抗値のうち、第1抵抗体の抵抗値が占める割合、すなわち寄与する割合を意味する。
Therefore, in the resistor of the present embodiment, the mixing ratio of the first resistor and the second resistor can be selected so that the absolute value of the temperature coefficient of resistance is 100 ppm / K or less.
(4-2) Mixing ratio of the first resistor and the second resistor The mixing ratio of the first resistor and the second resistor is the resistance value of the first resistor among the resistance values of the resistors. It means the ratio to occupy, that is, the ratio to contribute.

抵抗体の抵抗値をR、第1抵抗体の抵抗値をR1、第2抵抗体の抵抗値をR2とした場合、第1抵抗体と第2抵抗体とは直列に配列されているため、R=R1+R2の関係にある。そして、第1抵抗体と第2抵抗体との混合率をrとした場合、R1=r×R、R2=(1-r)×Rとなる。 When the resistance value of the resistor is R, the resistance value of the first resistor is R1, and the resistance value of the second resistor is R2, the first resistor and the second resistor are arranged in series. There is a relationship of R = R1 + R2. Then, when the mixing ratio of the first resistor and the second resistor is r, R1 = r × R and R2 = (1-r) × R.

本実施形態の抵抗体において、抵抗体の抵抗値に占める第1抵抗体の抵抗値の割合である混合率rは、該抵抗体の抵抗温度係数の絶対値が100ppm以下となる範囲内にあることが好ましい。すなわち、上記混合率rは、抵抗体の抵抗温度係数の絶対値が100ppm以下となるように選択されていることが好ましい。なお、第1抵抗体の抵抗値と第2抵抗体の抵抗値との合計は、既述のように抵抗体の抵抗値となる。 In the resistor of the present embodiment, the mixing ratio r, which is the ratio of the resistance value of the first resistor to the resistance value of the resistor, is within the range in which the absolute value of the temperature coefficient of resistance of the resistor is 100 ppm or less. Is preferable. That is, the mixing ratio r is preferably selected so that the absolute value of the temperature coefficient of resistance of the resistor is 100 ppm or less. The total of the resistance value of the first resistor and the resistance value of the second resistor is the resistance value of the resistor as described above.

以下に、第1抵抗体と第2抵抗体との混合率(以下、単に「混合率」とも記載する)を変化させた場合の抵抗温度係数の変化の例を示す。 The following is an example of the change in the temperature coefficient of resistance when the mixing ratio between the first resistor and the second resistor (hereinafter, also simply referred to as “mixing ratio”) is changed.

図3に、後述する実施例1と同じ構成の第1抵抗体、第2抵抗体を有する抵抗体について、混合率を変化させた場合の、抵抗値の温度依存性を示す。 FIG. 3 shows the temperature dependence of the resistance value of a resistor having the same configuration as that of Example 1 described later, when the mixing ratio is changed.

図3に示した例では、第1抵抗体は、電気伝導性の薄膜である厚さが1nmのAu膜と、絶縁体膜である厚さが100nmのSiO膜とを交互にそれぞれ5層積層した多層膜である。また、第2抵抗体は、厚さTが1μm、幅Wが100μmのRuO膜である。図3中、点線31が第1抵抗体の抵抗値の温度依存性を、点線32が第2抵抗体の抵抗値の温度依存性を示している。 In the example shown in FIG. 3, the first resistor has five layers of an Au film having a thickness of 1 nm, which is an electrically conductive thin film, and a SiO 2 film having a thickness of 100 nm, which is an insulator film, respectively. It is a laminated multilayer film. The second resistor is a RuO 2 film having a thickness T of 1 μm and a width W of 100 μm. In FIG. 3, the dotted line 31 shows the temperature dependence of the resistance value of the first resistor, and the dotted line 32 shows the temperature dependence of the resistance value of the second resistor.

そして、混合率が0.7の場合の抵抗体の抵抗値の温度依存性を線分331、混合率が0.75の場合の抵抗体の抵抗値の温度依存性を線分332、混合率が0.8の場合の抵抗体の抵抗値の温度依存性を線分333に示す。混合率が0.85の場合の抵抗体の抵抗値の温度依存性を線分334、混合率が0.9の場合の抵抗体の抵抗値の温度依存性を線分335にそれぞれ示す。 Then, the temperature dependence of the resistance value of the resistor when the mixing ratio is 0.7 is the line segment 331, and the temperature dependence of the resistance value of the resistor when the mixing ratio is 0.75 is the line segment 332, the mixing ratio. The temperature dependence of the resistance value of the resistor when is 0.8 is shown in line segment 333. The temperature dependence of the resistance value of the resistor when the mixing ratio is 0.85 is shown on the line segment 334, and the temperature dependence of the resistance value of the resistor when the mixing ratio is 0.9 is shown on the line segment 335.

また、表1に、混合率を変化させた場合の抵抗体の抵抗温度係数を示す。 Table 1 shows the temperature coefficient of resistance of the resistor when the mixing ratio is changed.

Figure 2022031017000002
なお、第2抵抗体であるRuO膜の比抵抗は120μΩmなので、例えば厚さTが1μm、長さLが4mmの場合、幅Wを1~100μmの範囲で変化させると、抵抗値は以下の表2に示すように48000Ωから480Ωの範囲で変化する。このため、幅Wを変化させることで第2抵抗体の抵抗値を変化させ、上記混合率を変化させている。
Figure 2022031017000002
Since the specific resistance of the RuO 2 film, which is the second resistor, is 120 μΩm, for example, when the thickness T is 1 μm and the length L is 4 mm, if the width W is changed in the range of 1 to 100 μm, the resistance value is as follows. As shown in Table 2 of the above, it varies in the range of 48000Ω to 480Ω. Therefore, the resistance value of the second resistor is changed by changing the width W, and the mixing ratio is changed.

Figure 2022031017000003
表1に示した構成例の場合、混合率が0.79以上0.82以下の場合に抵抗温度係数の絶対値が100ppm以下になることを確認できる。すなわち、第1抵抗体11の電気伝導性の薄膜がAu膜、絶縁体膜がSiOであり、第2抵抗体がRuO膜の場合、混合率は0.79以上0.82以下であることが好ましいことを確認できる。
Figure 2022031017000003
In the case of the configuration example shown in Table 1, it can be confirmed that the absolute value of the temperature coefficient of resistance is 100 ppm or less when the mixing ratio is 0.79 or more and 0.82 or less. That is, when the electrically conductive thin film of the first resistor 11 is an Au film, the insulator film is SiO 2 , and the second resistor is a RuO 2 film, the mixing ratio is 0.79 or more and 0.82 or less. Can be confirmed that is preferable.

なお、ここでは、上記構成の第1抵抗体、第2抵抗体を用いた場合を例に説明したが、各抵抗体の構成を変更することで好適な混合率の範囲も変化するため、上記範囲に限定されるものではない。 Here, the case where the first resistor and the second resistor having the above configuration are used has been described as an example, but since the range of the suitable mixing ratio can be changed by changing the configuration of each resistor, the above description is made. It is not limited to the range.

上述のように、製造する抵抗体が有する第1抵抗体、第2抵抗体の温度依存性を予め測定し、混合率による抵抗温度係数の変化を算出することで、適切な混合率を選択できる。
[抵抗体の製造方法]
本実施形態の抵抗体の製造方法について説明する。本実施形態の抵抗体の製造方法によれば、既述の抵抗体を製造できる。このため、既に説明した事項については一部説明を省略する。
As described above, an appropriate mixing ratio can be selected by measuring the temperature dependence of the first resistor and the second resistor of the resistor to be manufactured in advance and calculating the change in the temperature coefficient of resistance depending on the mixing ratio. ..
[Manufacturing method of resistor]
The method of manufacturing the resistor of this embodiment will be described. According to the method for manufacturing a resistor of the present embodiment, the above-mentioned resistor can be manufactured. Therefore, some of the matters already explained will be omitted.

本実施形態の抵抗体の製造方法は、鉛成分を含有しない抵抗体の製造方法に関し、以下の第1抵抗体形成工程と、第2抵抗体形成工程とを有することができる。 The method for producing a resistor of the present embodiment may include the following first resistor forming step and second resistor forming step with respect to the method for manufacturing a resistor containing no lead component.

負の抵抗温度係数を有する第1抵抗体を形成する第1抵抗体形成工程。 A first resistor forming step of forming a first resistor having a negative temperature coefficient of resistance.

正の抵抗温度係数を有する第2抵抗体を形成する第2抵抗体形成工程。 A second resistance forming step of forming a second resistance having a positive temperature coefficient of resistance.

第1抵抗体形成工程および第2抵抗体形成工程においては、第1抵抗体と、第2抵抗体とが直列に配置されるように、第1抵抗体および第2抵抗体を形成できる。 In the first resistor forming step and the second resistor forming step, the first resistor and the second resistor can be formed so that the first resistor and the second resistor are arranged in series.

また、抵抗体の抵抗値に占める第1抵抗体の抵抗値の割合である混合率を、抵抗体の抵抗温度係数の絶対値が100ppm以下となる範囲内とすることができる。すなわち、第1抵抗体形成工程および第2抵抗体形成工程においては、抵抗体の抵抗値に占める第1抵抗体の抵抗値の割合である混合率を、抵抗体の抵抗温度係数の絶対値が100ppm以下となるように、第1抵抗体および第2抵抗体を形成できる。 Further, the mixing ratio, which is the ratio of the resistance value of the first resistor to the resistance value of the resistor, can be set within the range in which the absolute value of the temperature coefficient of resistance of the resistor is 100 ppm or less. That is, in the first resistor forming step and the second resistor forming step, the absolute value of the resistance temperature coefficient of the resistor is the mixing ratio, which is the ratio of the resistance value of the first resistor to the resistance value of the resistor. The first resistor and the second resistor can be formed so as to be 100 ppm or less.

なお、第1抵抗体形成工程と、第2抵抗体形成工程とを実施する順番は特に限定されず、第1抵抗体形成工程と、第2抵抗体形成工程とをその順に実施することもできる。また、第2抵抗体形成工程を実施してから、第1抵抗体形成工程を実施することもできる。 The order in which the first resistor forming step and the second resistor forming step are carried out is not particularly limited, and the first resistor forming step and the second resistor forming step may be carried out in that order. .. Further, it is also possible to carry out the first resistor forming step after carrying out the second resistor forming step.

各工程について以下に説明する。
(第1抵抗体形成工程)
第1抵抗体形成工程では、電気伝導性の薄膜と、絶縁体膜とをスパッタ法により交互に積層できる。
Each process will be described below.
(First resistor forming step)
In the first resistor forming step, the electrically conductive thin film and the insulator film can be alternately laminated by a sputtering method.

例えば図4に示すように、スパッタ装置40のチャンバー41内に、電気伝導性の薄膜形成用の第1ターゲット42と、絶縁体膜形成用の第2ターゲット43とを配置しておく。また、基板ホルダー44の基板固定部441に抵抗体10を形成する基板13を保持し、基板固定部441に接続された回転軸442により、基板ホルダー44を回転できるように構成する。なお、第1ターゲット42、第2ターゲット43と、基板13の抵抗体10を形成する面とが対向するように配置する。 For example, as shown in FIG. 4, a first target 42 for forming an electrically conductive thin film and a second target 43 for forming an insulator film are arranged in a chamber 41 of the sputtering apparatus 40. Further, the substrate 13 forming the resistor 10 is held in the substrate fixing portion 441 of the substrate holder 44, and the substrate holder 44 is configured to be rotatable by the rotating shaft 442 connected to the substrate fixing portion 441. The first target 42 and the second target 43 are arranged so that the surfaces forming the resistor 10 of the substrate 13 face each other.

そして、基板ホルダー44の回転軸442をブロック矢印Bに沿って回転させながら、第1ターゲット42に接続された第1電源421、第2ターゲット43に接続された第2電源431から電力を供給し、スパッタを行う。これにより、基板13上に電気伝導性の薄膜と、絶縁体膜とを交互に積層できる。 Then, while rotating the rotation shaft 442 of the board holder 44 along the block arrow B, power is supplied from the first power supply 421 connected to the first target 42 and the second power supply 431 connected to the second target 43. , Spatter. As a result, the electrically conductive thin film and the insulator film can be alternately laminated on the substrate 13.

成膜速度と基板ホルダー44を回転させる速度を調整することで、所望の厚さを有する積層膜を形成できる。例えば各ターゲットの数や、ターゲットの位置、ターゲットのサイズ、ターゲットと基板との間の距離を選択することで、成膜速度を変化させることができる。 By adjusting the film forming speed and the speed at which the substrate holder 44 is rotated, a laminated film having a desired thickness can be formed. For example, the film formation rate can be changed by selecting the number of each target, the position of the target, the size of the target, and the distance between the target and the substrate.

電気伝導性の薄膜と、絶縁体膜との厚さは特に限定されないが、既述のように、電気伝導性の薄膜111Aの膜厚は、例えば1nm以上100nm以下とすることが好ましく、1nm以上50nm以下とすることがより好ましい。 The thickness of the electrically conductive thin film and the insulator film is not particularly limited, but as described above, the film thickness of the electrically conductive thin film 111A is preferably 1 nm or more and 100 nm or less, and is preferably 1 nm or more. It is more preferably 50 nm or less.

絶縁体膜111Bの膜厚は100nm以上1000nm以下であることが好ましい。
(第2抵抗体形成工程)
第2抵抗体は、既述のようにRuOを含む薄膜である。第2抵抗体形成工程において第2抵抗体を形成する方法は特に限定されず、例えばスパッタ法、CVD法(chemical vapor deposition法)、およびゾル-ゲル法のいずれかの方法により薄膜を形成できる。
The film thickness of the insulator film 111B is preferably 100 nm or more and 1000 nm or less.
(Second resistor forming step)
The second resistor is a thin film containing RuO 2 as described above. The method for forming the second resistor in the second resistor forming step is not particularly limited, and a thin film can be formed by, for example, a sputtering method, a CVD method (chemical vapor deposition method), or a sol-gel method.

本実施形態の抵抗体の製造方法は、上記第1抵抗体形成工程、第2抵抗体形成工程以外に、さらに任意の工程を有することもできる。 The method for producing a resistor according to the present embodiment may further include an arbitrary step in addition to the first resistor forming step and the second resistor forming step.

本実施形態の抵抗体の製造方法は、例えば、第1抵抗体形成工程、第2抵抗体形成工程を実施した後に、第1抵抗体、第2抵抗体を所望の形状、サイズにするために、第1抵抗体、第2抵抗体をエッチングするエッチング工程を有することもできる。なお、エッチング工程は、第1抵抗体形成工程後、および、第2抵抗体形成工程後のそれぞれで実施してもよく、両工程を終えた後に実施することもできる。 The method for manufacturing a resistor according to the present embodiment is, for example, in order to make the first resistor and the second resistor into a desired shape and size after performing the first resistor forming step and the second resistor forming step. It is also possible to have an etching step of etching the first resistor and the second resistor. The etching step may be carried out after each of the first resistor forming step and the second resistor forming step, or may be carried out after both steps are completed.

また、本実施形態の抵抗体の製造方法は、所定の領域外に、第1抵抗体、第2抵抗体が形成されないように、マスキングを行うマスキング工程を有することもできる。なお、マスキング工程は、例えば第1抵抗体形成工程前、および、第2抵抗体形成工程前のそれぞれで実施できる。 Further, the method for manufacturing a resistor according to the present embodiment may include a masking step of masking so that the first resistor and the second resistor are not formed outside the predetermined region. The masking step can be performed, for example, before the first resistor forming step and before the second resistor forming step.

本実施形態の抵抗体の製造方法は、アニール処理を行うアニール工程をさらに有することもできる。アニール処理を行うことで、得られる抵抗体の電気特性を安定させることができる。アニール処理の条件は特に限定されないが、例えば、酸素含有雰囲気下、300℃以上500℃以下で1時間以上5時間以下、アニールを行うことができる。なお、酸素含有雰囲気は、酸素を18体積%以上100体積%以下の割合で含むことが好ましい。 The method for producing a resistor of the present embodiment may further include an annealing step of performing an annealing treatment. By performing the annealing treatment, the electrical characteristics of the obtained resistor can be stabilized. The conditions of the annealing treatment are not particularly limited, but for example, annealing can be performed at 300 ° C. or higher and 500 ° C. or lower for 1 hour or longer and 5 hours or shorter in an oxygen-containing atmosphere. The oxygen-containing atmosphere preferably contains oxygen in a proportion of 18% by volume or more and 100% by volume or less.

アニール処理は、少なくとも第1抵抗体について行うことが好ましいため、アニール処理工程は、第1抵抗体形成工程後に実施することが好ましい。アニール処理工程は、第1抵抗体形成工程、および第2抵抗体形成工程の終了後に実施してもよい。 Since the annealing treatment is preferably performed on at least the first resistor, the annealing treatment step is preferably performed after the first resistor forming step. The annealing treatment step may be carried out after the completion of the first resistor forming step and the second resistor forming step.

以下に具体的な実施例、比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
以下の手順により抵抗体を製造し、評価を行った。
(第1抵抗体形成工程)
図4に示したスパッタ装置40と同様の構造を有するスパッタ装置を用いて、第1抵抗体の多層膜を成膜した。
Specific examples and comparative examples will be described below, but the present invention is not limited to these examples.
[Example 1]
A resistor was manufactured and evaluated by the following procedure.
(First resistor forming step)
A multilayer film of the first resistor was formed by using a sputtering apparatus having the same structure as the sputtering apparatus 40 shown in FIG.

具体的にはアルバック株式会社製スパッタ装置(型式:SIH-450)を用いてArと酸素を含むガス中で0.5Paの条件で行った。なお、成膜を行う間Arと酸素(O)とは流量比がAr:O=9:1~2:1の範囲となるように制御した。本実施例での初期流量比は5.6:1である。スパッタ前のチャンバー41内の到達真空度は1.5×10-4Pa、スパッタ時のAr+Oガスのガス圧は0.5Paとした。 Specifically, it was carried out under the condition of 0.5 Pa in a gas containing Ar and oxygen using a sputtering apparatus (model: SIH-450) manufactured by ULVAC, Inc. During the film formation, the flow rate ratio of Ar and oxygen (O 2 ) was controlled to be in the range of Ar: O 2 = 9: 1 to 2: 1. The initial flow rate ratio in this embodiment is 5.6: 1. The ultimate vacuum in the chamber 41 before sputtering was 1.5 × 10 -4 Pa, and the gas pressure of Ar + O 2 gas during sputtering was 0.5 Pa.

第1ターゲット42としては、導電性を付与するためにP(リン)を添加したSiターゲットを用い、6インチ、5mm厚であった。用いたスパッタ装置は3個のターゲットを設置でき、上記第1ターゲット42を2つのカソードに1枚ずつ装着した。 As the first target 42, a Si target to which P (phosphorus) was added to impart conductivity was used, and the thickness was 6 inches and 5 mm. In the sputtering apparatus used, three targets could be installed, and the first target 42 was attached to each of the two cathodes.

第2ターゲット43としては、Auターゲットを用い、6インチ0.5mm厚の円板形状を有していた。第2ターゲット43を銅製のバッキングプレートにIn(インジウム)でボンディングして使用した。 An Au target was used as the second target 43, and it had a disk shape of 6 inches and a thickness of 0.5 mm. The second target 43 was used by bonding it to a copper backing plate with In (indium).

第1ターゲット42と、抵抗体を形成する基板13との間の距離L42を40mmとした。また、第2ターゲット43と基板13との間の距離L43は80mmとした。 The distance L 42 between the first target 42 and the substrate 13 forming the resistor was set to 40 mm. Further, the distance L 43 between the second target 43 and the substrate 13 was set to 80 mm.

基板13は基板ホルダー44に固定した。基板ホルダー44は120度回転して静止成膜を繰り返すようにステップ回転を行った。印加するDC電力は第2ターゲット43が50W、第1ターゲット42は各800Wとした。これにより、絶縁体膜であるSiO層の膜厚が100nm、電気伝導性の薄膜であるAu層の膜厚が1nmになるように成膜時間を調整して成膜を行った。 The substrate 13 was fixed to the substrate holder 44. The substrate holder 44 was rotated 120 degrees and step-rotated so as to repeat the static film formation. The DC power to be applied was 50 W for the second target 43 and 800 W for the first target 42. As a result, the film thickness was adjusted so that the film thickness of the SiO 2 layer, which is an insulator film, was 100 nm and the film thickness of the Au layer, which was an electrically conductive thin film, was 1 nm.

第1抵抗体形成工程では、絶縁体膜と、電気伝導性の薄膜とをそれぞれ5層成膜した。成膜後、フォトリソグラフィ法により、多層膜のサイズが幅1mm、長さ10mmとなるように成形した(エッチング工程)。得られた多層膜にはAgを含む導電性ペーストにより電極112を形成した。得られた多層膜の室温での抵抗値は2023Ωであった。
(第2抵抗体形成工程)
スパッタ法により、第1抵抗体と直列に配列されるように、第2抵抗体を形成した。第2抵抗体としてはRuO膜を形成した。
In the first resistor forming step, five layers of an insulator film and an electrically conductive thin film were formed. After the film formation, the multilayer film was formed by a photolithography method so that the size of the multilayer film was 1 mm in width and 10 mm in length (etching step). An electrode 112 was formed on the obtained multilayer film with a conductive paste containing Ag. The resistance value of the obtained multilayer film at room temperature was 2023Ω.
(Second resistor forming step)
The second resistor was formed by the sputtering method so as to be arranged in series with the first resistor. A RuO 2 film was formed as the second resistor.

第2抵抗体12は、厚さTが1μm、幅Wが100μmとなるように成膜し、第1抵抗体11と、第2抵抗体12との混合率が0.8、すなわち第2抵抗体の室温での抵抗値が505Ωになるように長さLを調整した。 The second resistor 12 is formed so that the thickness T is 1 μm and the width W is 100 μm, and the mixing ratio of the first resistor 11 and the second resistor 12 is 0.8, that is, the second resistance. The length L was adjusted so that the resistance value of the body at room temperature was 505Ω.

なお、第2抵抗体12の長さLは、第2抵抗体12の上にマスクを形成し、Agペーストを塗布して電極141を形成することで調整し、4.2mmとした。また、第1抵抗体11の電極112にも電極142をAgペーストにより形成した。 The length L of the second resistor 12 was adjusted to 4.2 mm by forming a mask on the second resistor 12 and applying Ag paste to form the electrode 141. Further, the electrode 142 was also formed on the electrode 112 of the first resistor 11 by Ag paste.

得られた抵抗体10の室温での抵抗値は2530Ωであった。また、得られた抵抗体の抵抗温度係数を求めたところCold-TCRは-43ppm、Hot-TCRは83ppmであった。 The resistance value of the obtained resistor 10 at room temperature was 2530 Ω. Further, when the temperature coefficient of resistance of the obtained resistor was determined, the Cold-TCR was −43 ppm and the Hot-TCR was 83 ppm.

評価結果を表3にまとめて示す。 The evaluation results are summarized in Table 3.

抵抗温度係数は、作製した抵抗体を220K、300K、420Kにそれぞれ15分保持してから抵抗値を測定し、各温度での抵抗値をR220、R300、R420とした。そして、以下の式(A)、式(B)によってCold-TCRと、Hot-TCRとを計算した。
Cold-TCR(ppm/℃)=(R220-R300)/R300/(-80)×10 ・・・(A)
Hot-TCR(ppm/℃)=(R420-R300)/R300/(120)×10 ・・・(B)
抵抗値は、-140℃~400℃の範囲で温度制御可能な温度制御ステージ(東陽テクニカ社製 型番:HCS302-mK2000)を設置した、金属容器内に被測定物を配置し、金属容器内を窒素ガスで置換してから、デジタルマルチメータ(KEITHLEY社製 型番:DMM7510)により測定した。
For the temperature coefficient of resistance, the prepared resistors were held at 220K, 300K, and 420K for 15 minutes, and then the resistance values were measured, and the resistance values at each temperature were set to R 220 , R 300 , and R 420 . Then, the Cold-TCR and the Hot-TCR were calculated by the following equations (A) and (B).
Cold-TCR (ppm / ° C) = (R 220 -R 300 ) / R 300 / (-80) × 10 6 ... (A)
Hot-TCR (ppm / ° C) = (R 420 -R 300 ) / R 300 / (120) × 10 6 ... (B)
The resistance value is set in a metal container equipped with a temperature control stage (model number: HCS302-mK2000 manufactured by Toyo Technica Co., Ltd.) that can control the temperature in the range of -140 ° C to 400 ° C. After replacement with nitrogen gas, the measurement was performed with a digital multimeter (model number: DMM7510 manufactured by KEITHLEY).

抵抗値であるR220、R300、R420は、同じ条件で作製した25個の抵抗体について測定を行い、25個分の測定結果を平均することで算出した。以下の他の実験例でも同様にして抵抗値を測定し、抵抗温度係数を算出した。
[実施例2]
第1抵抗体形成工程で、絶縁体膜と、電気伝導性の薄膜とをそれぞれ50層成膜した。以上の点以外は実施例1と同様にして抵抗体を製造し、評価を行った。第1抵抗体11と、第2抵抗体12との混合率は、実施例1と同様に0.8とした。
The resistance values R 220 , R 300 , and R 420 were calculated by measuring 25 resistors manufactured under the same conditions and averaging the measurement results for 25 resistors. In the other experimental examples below, the resistance value was measured in the same manner, and the temperature coefficient of resistance was calculated.
[Example 2]
In the first resistor forming step, 50 layers of an insulator film and 50 layers of an electrically conductive thin film were formed. Except for the above points, a resistor was manufactured and evaluated in the same manner as in Example 1. The mixing ratio of the first resistor 11 and the second resistor 12 was set to 0.8 as in Example 1.

得られた抵抗体の室温での抵抗値は503Ωであった。また、得られた抵抗体の抵抗温度係数を求めたところCold-TCRは-40ppm/K、Hot-TCRは82ppm/Kであった。 The resistance value of the obtained resistor at room temperature was 503Ω. Further, when the temperature coefficient of resistance of the obtained resistor was determined, the Cold-TCR was -40 ppm / K and the Hot-TCR was 82 ppm / K.

評価結果を表3にまとめて示す。
[実施例3]
第1抵抗体形成工程で、絶縁体膜と、電気伝導性の薄膜とをそれぞれ1層成膜した。また、第1抵抗体11と、第2抵抗体12との混合率が0.82になるように第2抵抗体の長さLを調整した。以上の点以外は実施例1と同様にして抵抗体を製造し、評価を行った。
The evaluation results are summarized in Table 3.
[Example 3]
In the first resistor forming step, one layer of an insulator film and one layer of an electrically conductive thin film were formed. Further, the length L of the second resistor was adjusted so that the mixing ratio of the first resistor 11 and the second resistor 12 was 0.82. Except for the above points, a resistor was manufactured and evaluated in the same manner as in Example 1.

得られた抵抗体の室温での抵抗値は25005Ωであった。また、得られた抵抗体の抵抗温度係数を求めたところCold-TCRは-81ppm/K、Hot-TCRは50ppm/Kであった。 The resistance value of the obtained resistor at room temperature was 25005Ω. Further, when the temperature coefficient of resistance of the obtained resistor was determined, the Cold-TCR was −81 ppm / K and the Hot-TCR was 50 ppm / K.

評価結果を表3にまとめて示す。
[比較例1]
第1抵抗体11と、第2抵抗体12との混合率が0.85になるように第2抵抗体の長さLを調整した。以上の点以外は実施例1と同様にして抵抗体を製造し、評価を行った。
The evaluation results are summarized in Table 3.
[Comparative Example 1]
The length L of the second resistor was adjusted so that the mixing ratio of the first resistor 11 and the second resistor 12 was 0.85. Except for the above points, a resistor was manufactured and evaluated in the same manner as in Example 1.

得られた抵抗体の室温での抵抗値は2400Ωであった。また、得られた抵抗体の抵抗温度係数を求めたところCold-TCRは-145ppm/K、Hot-TCRは-2ppm/Kであった。 The resistance value of the obtained resistor at room temperature was 2400Ω. Further, when the temperature coefficient of resistance of the obtained resistor was determined, the Cold-TCR was -145 ppm / K and the Hot-TCR was -2 ppm / K.

評価結果を表3にまとめて示す。
[比較例2]
第1抵抗体11と、第2抵抗体12との混合率が0.75になるように第2抵抗体の長さLを調整した。以上の点以外は実施例1と同様にして抵抗体を製造し、評価を行った。
The evaluation results are summarized in Table 3.
[Comparative Example 2]
The length L of the second resistor was adjusted so that the mixing ratio of the first resistor 11 and the second resistor 12 was 0.75. Except for the above points, a resistor was manufactured and evaluated in the same manner as in Example 1.

得られた抵抗体の室温での抵抗値は2700Ωであった。また、得られた抵抗体の抵抗温度係数を求めたところCold-TCRは47ppm/K、Hot-TCRは159ppm/Kであった。 The resistance value of the obtained resistor at room temperature was 2700 Ω. The temperature coefficient of resistance of the obtained resistor was found to be 47 ppm / K for Cold-TCR and 159 ppm / K for Hot-TCR.

評価結果を表3にまとめて示す。 The evaluation results are summarized in Table 3.

Figure 2022031017000004
表3に示したように、実施例1~3においては抵抗値が503Ω~25005Ωと広く、抵抗温度係数の絶対値が100ppm/K以下の抵抗体が得られることを確認できた。
Figure 2022031017000004
As shown in Table 3, it was confirmed that in Examples 1 to 3, a resistor having a wide resistance value of 503Ω to 25005Ω and an absolute value of the temperature coefficient of resistance of 100 ppm / K or less can be obtained.

10 抵抗体
11 第1抵抗体
111 多層膜
111A 電気伝導性の薄膜
111B 絶縁体膜
12 第2抵抗体
10 Resistor 11 First resistor 111 Multilayer film 111A Electrically conductive thin film 111B Insulator film 12 Second resistor

Claims (4)

鉛成分を含有しない抵抗体であって、
負の抵抗温度係数を有する第1抵抗体と、
正の抵抗温度係数を有する第2抵抗体と、を有し、
前記第1抵抗体と、前記第2抵抗体とが直列に配置され、
前記第1抵抗体が、電気伝導性の薄膜と、絶縁体膜とが積層された多層膜であり、
前記第2抵抗体が、RuOを含む薄膜であり、
前記抵抗体の抵抗値に占める、前記第1抵抗体の抵抗値の割合である混合率が、前記抵抗体の抵抗温度係数の絶対値が100ppm以下となる範囲内にある抵抗体。
It is a resistor that does not contain lead components.
A first resistor with a negative temperature coefficient of resistance,
With a second resistor having a positive temperature coefficient of resistance,
The first resistor and the second resistor are arranged in series,
The first resistor is a multilayer film in which an electrically conductive thin film and an insulator film are laminated.
The second resistor is a thin film containing RuO 2 and is a thin film.
A resistor whose mixing ratio, which is the ratio of the resistance value of the first resistor to the resistance value of the resistor, is within the range in which the absolute value of the temperature coefficient of resistance of the resistor is 100 ppm or less.
前記電気伝導性の薄膜の膜厚が1nm以上100nm以下である請求項1に記載の抵抗体。 The resistor according to claim 1, wherein the electrically conductive thin film has a film thickness of 1 nm or more and 100 nm or less. 鉛成分を含有しない抵抗体の製造方法であって、
負の抵抗温度係数を有する第1抵抗体を形成する第1抵抗体形成工程と、
正の抵抗温度係数を有する第2抵抗体を形成する第2抵抗体形成工程と、を有し、
前記第1抵抗体形成工程および前記第2抵抗体形成工程において、前記第1抵抗体と、前記第2抵抗体とが直列に配置されるように、前記第1抵抗体および前記第2抵抗体を形成し、
前記第1抵抗体形成工程では、電気伝導性の薄膜と、絶縁体膜とをスパッタ法により積層し、
前記第2抵抗体は、RuOを含む薄膜であり、前記第2抵抗体形成工程では、スパッタ法、CVD法、およびゾル-ゲル法のいずれかの方法により前記薄膜を形成し、
前記抵抗体の抵抗値に占める前記第1抵抗体の抵抗値の割合である混合率が、前記抵抗体の抵抗温度係数が100ppm以下となる範囲内にある抵抗体の製造方法。
A method for manufacturing a resistor that does not contain a lead component.
A first resistor forming step of forming a first resistor having a negative temperature coefficient of resistance,
It has a second resistance forming step of forming a second resistance having a positive temperature coefficient of resistance.
In the first resistor forming step and the second resistor forming step, the first resistor and the second resistor are arranged so that the first resistor and the second resistor are arranged in series. Form and
In the first resistor forming step, the electrically conductive thin film and the insulator film are laminated by a sputtering method.
The second resistor is a thin film containing RuO 2 , and in the second resistor forming step, the thin film is formed by any of a sputtering method, a CVD method, and a sol-gel method.
A method for producing a resistor in which the mixing ratio, which is the ratio of the resistance value of the first resistor to the resistance value of the resistor, is within the range in which the temperature coefficient of resistance of the resistor is 100 ppm or less.
前記第1抵抗体形成工程では、膜厚が1nm以上100nm以下となるように前記電気伝導性の薄膜を成膜する請求項3に記載の抵抗体の製造方法。 The method for producing a resistor according to claim 3, wherein in the first resistor forming step, the electrically conductive thin film is formed so that the film thickness is 1 nm or more and 100 nm or less.
JP2020135390A 2020-08-07 2020-08-07 Resistor and method for manufacturing resistor Pending JP2022031017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020135390A JP2022031017A (en) 2020-08-07 2020-08-07 Resistor and method for manufacturing resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020135390A JP2022031017A (en) 2020-08-07 2020-08-07 Resistor and method for manufacturing resistor

Publications (1)

Publication Number Publication Date
JP2022031017A true JP2022031017A (en) 2022-02-18

Family

ID=80324447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020135390A Pending JP2022031017A (en) 2020-08-07 2020-08-07 Resistor and method for manufacturing resistor

Country Status (1)

Country Link
JP (1) JP2022031017A (en)

Similar Documents

Publication Publication Date Title
CN104871270B (en) Monolithic ceramic electronic component and its manufacture method
JPH01220402A (en) Resistor, manufacture thereof and thermal head using same
JP2022031017A (en) Resistor and method for manufacturing resistor
JP2022031016A (en) Resistor and method for manufacturing resistor
JP2022031015A (en) Resistor and method for manufacturing resistor
JP4862371B2 (en) Thin film electronic component and manufacturing method thereof
JP4760177B2 (en) Thin film chip type electronic component and manufacturing method thereof
CN114551101B (en) Laminated electronic component
JP7399753B2 (en) Piezoelectric film, piezoelectric laminate, piezoelectric element, and piezoelectric laminate manufacturing method
US3809627A (en) Anodized cermet film components and their manufacture
JP3684430B2 (en) Thick film resistor composition
JP2555536B2 (en) Method for manufacturing platinum temperature sensor
US6784618B2 (en) Glass plate provided with electrodes made of a conducting material
JPH0696988A (en) Paste for forming internal electrode of multilayer ceramic capacitor and multilayer ceramic capacitor employing the paste
TW201920001A (en) Composition for thick film resistor, thick film resistance paste, and thick film resistor
JPH113802A (en) Resistance paste for low-temperature baking
JP3636534B2 (en) Mechanical quantity sensor and manufacturing method thereof
JPH0794302A (en) Resistor containing copper terminal electrode
JP2005026479A (en) Electrode paste for ceramic electronic component
US20230360825A1 (en) Temperature sensor and method for producing a temperature sensor of this kind
JPH0652721A (en) Conductor
JP2646751B2 (en) Thermal head
JP2004119561A (en) Resistive paste and resistor
JPH0620803A (en) Thin film resistor and manufacture thereof
JPH0521205A (en) Square plate-shaped chip fixed resistor