JP2005026479A - Electrode paste for ceramic electronic component - Google Patents

Electrode paste for ceramic electronic component Download PDF

Info

Publication number
JP2005026479A
JP2005026479A JP2003190660A JP2003190660A JP2005026479A JP 2005026479 A JP2005026479 A JP 2005026479A JP 2003190660 A JP2003190660 A JP 2003190660A JP 2003190660 A JP2003190660 A JP 2003190660A JP 2005026479 A JP2005026479 A JP 2005026479A
Authority
JP
Japan
Prior art keywords
nickel
electrode
paste
film
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003190660A
Other languages
Japanese (ja)
Inventor
Yasutaka Takahashi
康隆 高橋
Akio Harada
昭雄 原田
Yasumasa Hattori
靖匡 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Daiken Kagaku Kogyo KK
Original Assignee
Sumitomo Metal Mining Co Ltd
Daiken Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Daiken Kagaku Kogyo KK filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003190660A priority Critical patent/JP2005026479A/en
Publication of JP2005026479A publication Critical patent/JP2005026479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize electrode paste improved in the denseness and the film, thickness control property of a nickel electrode film by developing a molecular nickel source increased in a nickel content compared with nickel acetate. <P>SOLUTION: The electrode paste for ceramic electronic component is constituted of a molecular nickel source obtained by dissolving nickel formate into monoethanolamine. The nickel formate is very high in the content of Ni and is uniformly dissolved into monoethanolamine. Accordingly, the nickel formate can be constituted so as to be solution type or paste type depending on the adding amount of monoethanolamine, and screen printing is available while freely controlling the thickness of a film on the surface of a green sheet or the like by the paste type nickel formate. On the other hand, when 3-25 (mass%) of defoaming agent such as isopropanol is added, bubbles will not be generated in a paste electrode film even when the screen printing is effected. Furthermore, when 1-18 (mass%) of stabilized titanium alkoxide solution is added, the quality of the electrode film after baking is improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はセラミックスを主体として形成されるセラミック電子部品用の電極ペーストに関し、更に詳細には、誘電体・圧電体・磁性体・抵抗体・絶縁体などのセラミックスから形成されるコンデンサ・インダクタ・フィルタ・多層基板などからなるセラミック電子部品の電極を形成する電極ペーストに関する。
【0002】
【従来の技術】
近年、セラミックスの特性を活用したセラミック電子部品が広範囲に開発されるようになり、セラミック電子部品の電極を形成する電極ペーストも多種類開発されている。そこで、セラミック電子部品の典型例として積層セラミックコンデンサについて説明する。
【0003】
積層セラミックコンデンサは以下のようにして製造される。まず、誘電体セラミックスを主成分とするグリーンシートを形成し、このグリーンシートの表面に電極ペーストをスクリーン印刷して内部電極を形成する。次に、内部電極の端部が交互に現れるようにグリーンシートを積層して圧着し、この積層体を焼成して積層焼結体とし、この積層焼結体の端部に内部電極と導通する外部電極を形成することによって積層セラミックコンデンサが完成される。
【0004】
前記誘電体セラミックスとしては、チタン酸バリウム、チタン酸ストロンチウム、ジルコン酸バリウムなどのチタン酸塩系、ジルコン酸塩系のセラミックスが存在するが、これらの焼成温度は極めて高く、1000℃以上の高温で焼成されるのが通常である。
【0005】
従来、これらの誘電体セラミックスと同時に焼成される内部電極については、高温でも溶融しないPd、Pt、Ag/Pdなどの高融点貴金属が用いられていた。しかし、貴金属は高価であるだけでなく価格変動も激しいため、セラミック電子部品価格の安価性と安定性を要望する電子機器市場を満足できない弱点を有していた。
【0006】
そこで、電極材料としてNiやCuなどの卑金属系材料が近年になり使用されるようになった。NiやCuは貴金属と比較して安価であると同時に、市場価格に安定性があるため、最終製品である電子機器価格の安価性と安定性の両条件を満足する性質を有している。特に、Niは内部電極の金属材料として多用されつつあるので、Niについて説明する。
【0007】
通常、Niは金属粉末として供給され、このNi粉末を有機ビヒクル及び有機溶剤と混練して電極ペーストとして使用されている。Ni粉末を構成するNi粒子の直径は数μm〜1μmが主流であるが、近年では0.2μm程度のNi粉末が使用されるようになっている。しかし、Ni粒子の微粒化も限界に達しており、これ以上に小さなNi粒子を現段階で使用することは困難な状況にある。
【0008】
電極ペーストに要求される重要な特性として、Ni粉末が有機ビヒクルや有機溶剤と均一に分散し、長時間の分散安定性を有する必要がある。しかし、Ni微粒子の粒径がミクロンサイズとかなり大きいことも原因して、長時間経過すると、Ni粉末が有機ビヒクルと相分離を起こす現象が多々見られる。このような電極ペーストをグリーンシートに塗着すると、内部電極の金属膜厚が不均一になり、内部電極の電気抵抗にバラツキを生起する原因となる。
【0009】
また、グリーンシートにNi粉末からなる電極ペーストをスクリーン印刷して焼成すると、Ni電極膜の膜厚は1μm以上になってしまう。Ni微粒子の粒径が通常1μm以上であるから、膜厚をその粒径以下に抑えることは難しい。特に、多層セラミック電子部品の高密度化を図るために、グリーンシートの積層数は急激に増大し、焼成後のセラミックスの層厚も1μm程度まで薄くなってきている。つまり、Ni粉末からなる電極ペーストを使用する限り、Ni電極膜の一層の薄層化は困難である。
【0010】
【発明が解決しようとする課題】
そこで、本発明者等の一人は、特開2001−192843において、ニッケル微粒子の替わりに、ニッケルイオン原子団を金属源とするニッケル溶液を開発することに成功した。このニッケル溶液は、酢酸ニッケルをアルコールに懸濁させ、ヒドラゾンを所定量加えることにより調製されるものである。
【0011】
ニッケルイオン原子団のサイズは極小であるから、ニッケル薄膜の膜厚についてニッケル粉末を利用した場合の制限は全く存在せず、自在に薄く形成できる利点がある。また、ヒドラゾンの還元力により、ニッケルイオンはニッケル金属に還元され、焼成により耐熱ガラス上に秀麗なニッケル金属膜が形成される。
【0012】
しかし、このニッケル溶液は酢酸ニッケルを使用しているため、ニッケル金属の含有量が少ない。水和酢酸ニッケルは(CHCOO)Ni・4HOで表されるから、水和酢酸ニッケル1分子中でのニッケル含有量は23.6%に過ぎない。また、無水酢酸ニッケルでもニッケル含有量は33.2%に過ぎない。しかも、この酢酸ニッケルをアルコールやヒドラゾンと混合してニッケル溶液にしてしまうと、ニッケル溶液全体に対するニッケル含有量は数%程度に低下してしまう。
【0013】
また、このニッケル溶液は粘性が低いため、スクリーン印刷には向いていない。このニッケル溶液はディッピングやスピンコートにより塗布することができるが、溶液であるため膜厚は極めて薄くなってしまう。ニッケル含有量が極めて少ない上に、膜厚が薄くなるから、焼成後に形成されるNi電極膜の膜厚は100nm以下になり、場合によっては数十nm程度になってしまう。
【0014】
この従来技術はNi電極膜の薄膜化には貢献していると考えられる。しかし、Ni電極膜が過度に薄くなると、電極膜の連続性や均一性に問題が生じる場合がある。例えば、Ni電極膜の一部に不連続部分が存在すると、電極としての導通性が保証されず、また短絡などの危険性も生じやすい。
【0015】
従って、本発明は、酢酸ニッケルよりもNi含有量を更に高めた分子状ニッケル源を開発し、しかもこの分子状Ni源を電極ペーストとして提供して、Ni電極膜の膜厚に厚薄自在性を与えたセラミック電子部品用の電極ペーストを提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は上記課題を解決するために為されたものであり、第1の発明は、蟻酸ニッケルをモノエタノールアミンに溶解させた分子状ニッケル源を用いたセラミック電子部品用電極ペーストである。本発明者等は酢酸ニッケルに替わる物質を探索する中で蟻酸ニッケルが有効なニッケル源であることを想到するに至った。各種のNi化合物の中でも蟻酸ニッケルはNi含有量が極めて高く、水和蟻酸ニッケル中では1分子中のNi含有量が約31.8%にも達する。また、無水蟻酸ニッケルにおいてはNi含有量は39.5%にも達する。従って、水和蟻酸ニッケルや無水蟻酸ニッケルはNi電極ペーストとして最適の材料である。しかも蟻酸ニッケルはモノエタノールアミンに均一に溶解し、優秀な分子状ニッケル源として提供できる。また、モノエタノールアミンの添加量によって溶液状にもペースト状にも構成でき、粘度を調整してペースト状に構成した場合には、グリーンシート等の表面にスクリーン印刷が可能になる。従って、電極膜の膜厚を単に薄くするだけでなく、任意の厚さに自在に制御することが可能になる。
【0017】
第2の発明は、蟻酸ニッケルをモノエタノールアミンに溶解させた分子状ニッケル源を用い、この分子状ニッケル源に対し消泡剤を3〜25(mass%)添加したセラミック電子部品用電極ペーストである。消泡剤を3〜25(mass%)添加すると、電極ペーストをスクリーン印刷してもペースト電極膜の中に気泡が発生せず、焼成後のNi電極膜が緻密になると共に電気抵抗を小さくできる利点がある。つまり、スクリーン印刷においてスクリーンに電極ペーストを刷り込むと、大気中から空気を取り込んでペースト中に気泡が発生し易くなる傾向がある。ところが、イソプロパノール等の消泡剤を添加すると、ペースト中への気泡の取り込みを抑制でき、電極内部が緻密になって電極特性の向上を期することができる。3(mass%)未満では消泡効果が小さくなり、25(mass%)を超えると電極ペーストの粘度が小さくなってスクリーン印刷性が低下するため、3〜25(mass%)の消泡剤の添加が必要である。
【0018】
第3の発明は、蟻酸ニッケルをモノエタノールアミンに溶解させた分子状ニッケル源を用い、この分子状ニッケル源に対し消泡剤を3〜25(mass%)添加し、更に膜質改善剤として安定化したチタンアルコキシド溶液を1〜18(mass%)添加したセラミック電子部品用電極ペーストである。安定化したチタンアルコキシド溶液には、例えばチタンアルコキシドをジエタノールアミンと混合した溶液などがある。この安定化したチタンアルコキシド溶液を本発明の電極ペーストに添加すると、焼成後の電極膜の膜質が改善される効果がある。即ち、電極膜がセラミックスに緻密で強力に密着するから耐久性が向上し、またNi粒子の粒成長が抑制されるから焼成時における電極膜の収縮率が小さくなり、総じて電極特性が向上する。
【0019】
【発明の実施の形態】
本発明者等は、酢酸ニッケルに替わるニッケル源として、1分子当たりのNi含有率が極めて高い蟻酸ニッケルが有効ではないかと着想し、この蟻酸ニッケルを溶解できる有機溶剤を検討する中で、本発明に係るセラミック電子部品用電極ペーストを想到するに至ったものである。
【0020】
蟻酸ニッケルの中でも、無水蟻酸ニッケル(HCOO)Niの1分子中におけるNi含有量は39.5%であり、従来から使用されている水和酢酸ニッケル(CHCOO)・4HOのNi含有量が23.6%であるから、蟻酸ニッケルの方が約16%もNi含有量を高く調製できる利点がある。また、無水酢酸ニッケルのNi含有量でも33.2%に過ぎないから、無水蟻酸ニッケルのNi含有量は約6%も高いという優れた性質を有している。
【0021】
また、この蟻酸ニッケルは、硫黄やハロゲンなどを含まないから、焼成してもNOやSOなどの腐食性ガスを全く発生せず、作業者や周辺環境に対し極めて安全な物質であり、電極用金属源として最適である。
【0022】
この蟻酸ニッケルを均一に溶解できる低分子量の有機溶剤を検討したところ、モノエタノールアミン(以下、MEAと云う)とジエタノールアミン(以下、DEAと云う)が有効であることが分かった。
【0023】
DEAは、融点が28℃と高く、環境温度によって固体化する可能性がある。また、DEAの分子量は105と大きい。これに対し、MEAの融点は10.5℃と低く、分子量は61とDEAの約半分である。融点が低い方がペーストとして安定性が高く、分子量の小さい方が、ニッケルペーストにした場合のNi含有量を高く調製できる利点がある。この観点から、本発明では蟻酸ニッケルの有機溶剤としてMEAが選択された。
【0024】
蟻酸ニッケルをMEAに均一に溶解できるモル比を検討した。均一に溶解したかどうかは目視で判断された。その結果、室温では、蟻酸ニッケル1モルに対しMEAが3モル以上であれば両者は均一に混合してペースト化し、MEAが3モル以上であれば均一な溶液性を保持できることが分かった。このようなニッケルペースト又はニッケル溶液を本発明では分子状ニッケル源と称する。
【0025】
MEAを増量すると溶液性が増大し、MEAを減量すると粘性が高くなってペースト性が増大する。MEA3モルに蟻酸ニッケル1モルを溶解させると、Ni含有量は17.7(mass%)である。また、溶液性を更に高めるためにMEA4モルに蟻酸ニッケル1モルを溶解させると、Ni含有量は14.9(mass%)である。従って、蟻酸ニッケルとMEAを混合した分子状ニッケル源では、Ni含有量を約14(mass%)以上に調製でき、酢酸ニッケル溶液の数mass%と比較すると、格段にNi含有量を高率に調製できる利点を有する。
【0026】
次に、蟻酸ニッケル1モルをMEA4モルに混合して得られた分子状ニッケル源を電極ペーストとしてスクリーン印刷する試験を行った。スクリーン印刷は、所定パターンのメッシュを介して基板上に電極ペーストを刷り込んで行われた。電極ペーストの粘度にも依存するが、刷り込み時に大気中の空気を取り込んで電極ペースト膜の中に気泡が若干混入していることが確認された。
【0027】
この気泡の混入を防ぐために種々の方法を検討したところ、分子状ニッケル源に対しイソプロパノール(以下、IPAと云う)を添加すると、気泡の混入を防止できることが分かった。分子状ニッケル源に対しIPAを3〜25(mass%)添加すると、電極ペースト膜中の気泡が消失することが確認された。IPAは消泡剤として優れた性質を有していることが確認されたが、その消泡メカニズムの詳細は不明である。IPA以外でも消泡効果を有する物質であれば本発明の消泡剤として使用することができる。
【0028】
更に、蟻酸ニッケル1モルをMEA4モルに混合して分子状ニッケル源を形成し、この分子状ニッケル源にIPAを10(mass%)だけ添加した電極ペーストを作成した。この電極ペーストを基板にスクリーン印刷して電極ペースト膜を形成し、180℃の温度で乾燥し、窒素ガス雰囲気の中で400℃で30分間焼成した。ここで、MEAの沸点は171℃であるから、MEAを完全に蒸発させるために乾燥温度を180℃に設定した。
【0029】
焼成後の電極膜を電子顕微鏡で観察したところ、表面に多少の凹凸が観られ、電極膜の膜厚がやや不均一であることが分かった。この不均一性を改善するために種々の添加剤を検討したところ、安定化したチタンアルコキシド溶液(以下、チタン溶液と云う)が有効であることが確認された。
【0030】
このチタン溶液には、例えばチタンアルコキシドとジエタノールアミン(以下、DEAと云う)等からなるチタン溶液があり、モル比で1:1に混合したチタン溶液が好適である。また、チタンアルコキシドとして例えばチタンテトライソプロポキシド(以下、TIPと云う)が好適である。このチタン溶液は消泡剤であるIPAともよく混合する性質を有する。
【0031】
次に、0.5モル濃度のチタン溶液を調製し、このチタン溶液を分子状ニッケル源に対し10(mass%)だけ添加して電極ペースとを作製した。
【0032】
この電極ペーストを基板にスクリーン印刷し、180℃で乾燥し、窒素雰囲気下400℃で30分間焼成して、Ni電極膜を基板上に形成した。得られた電極膜は、表面が均一で金属光沢を有していることが観察された。
【0033】
粉末X線回折法(XRD法)で電極膜を測定すると、金属Niの結晶子径が16nmであることがSchellerの式から計算された。チタン溶液を添加しない電極ペーストから形成された電極膜では、金属Niの結晶子径は24nmであり、チタン溶液は焼成によるNi電極膜の結晶子径を小さくする効果を有することが分かった。
【0034】
また、チタン溶液を添加した電極膜を原子間力顕微鏡(AFM)により観察すると、金属Niの結晶子が判別され、結晶子径は20〜40nmであることが分かった。同時に、表面の凹凸による高低差は約20nmであることも測定された。これらの測定結果は前述したXRD法による結果とほぼ対応している。
【0035】
従って、チタン溶液を電極ペーストに添加すると、焼成後の電極膜を形成する結晶子径が小さくなり、その結果、基板と電極膜の密着性が良くなるために電極膜の剥離が生じない。また、電極膜の緻密性が高まると同時に、表面の平滑性が良くなり、金属光沢が出現するという利点が生じる。
【0036】
【実施例】
以下に、本発明に係るセラミック電子部品用電極ペーストの実施例を示して、本発明を更に詳細に説明する。
【0037】
蟻酸ニッケルニ水和物1モルとMEA4モルを秤量して混合し、室温で15時間攪拌して分子状ニッケル源を得た。その後、この分子状ニッケル源の全量に対し、IPAを3〜25(mass%)添加し、更にチタン溶液を1〜18(mass%)添加する。この混合物を室温で12時間攪拌し、スクリーン印刷に適した電極ペーストを作製した。
【0038】
他方、チタン酸バリウム系からなる厚さ25μmのグリーンシートを用意し、このグリーンシートの表面に前記電極ペーストを所定パターンにスクリーン印刷した。このグリーンシートを1270℃で2時間焼成してセラミックス化し、特性測定用の試料とした。測定結果は表1に纏められている。
【0039】
【表1】

Figure 2005026479
【0040】
表1から分かるように、試料番号1、2、5で評価を行ったところ、印刷パターンは維持できるが、均一に印刷できなかった。また、IPAによる消泡効果も小さく、焼成後の抵抗値も高い値であった。試料番号16は、焼成後の抵抗値も小さく膜表面が金属光沢を有する電極膜を作製することができたが、印刷パターンが崩れた。
【0041】
以上の結果から、試料番号1、2、5、16のIPA添加量やチタン溶液添加量は適当でないと判断された。従って、本発明においては、IPA添加量は3〜25(mass%)の範囲にあり、チタン溶液添加量は1〜18(mass%)の範囲にあることが必要である。試料番号1、2、5及び16以外の試料については、印刷後のパターンも維持され、焼成後の膜表面は金属光沢を有し、電極ペーストとして適していることが確認された。
【0042】
本発明は上記実施形態及び実施例に限定されるものではなく、本発明を構成する成分以外の添加物を含んでもよく、また微量の不純物が混入しても、本発明を構成する成分要素を最小限含んでおれば本発明の作用及び効果を奏するものである。従って、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更なども本発明の技術的範囲内に包含されることは云うまでもない。
【0043】
【発明の効果】
第1の発明によれば、蟻酸ニッケルをニッケル源として使用するから、そのニッケル含有量は極めて高く、特に無水蟻酸ニッケルでは、1分子中のNi含有量が約39.5%にも達し、Ni電極ペーストとして最適の材料を提供できる。蟻酸ニッケルはモノエタノールアミンに均一に溶解するから、有力な分子状ニッケル源となる。また、モノエタノールアミンの添加量によって溶液状にもペースト状にも構成でき、粘度調節によりペースト状に構成した場合には、グリーンシート等の表面にスクリーン印刷が可能になる。ペーストに所望の粘度を与えると、電極膜の膜厚を単に薄くできるだけでなく、任意の厚さに制御できる利点を有する。
【0044】
第2の発明によれば、分子状ニッケル源に対しイソプロパノール等の消泡剤を3〜25(mass%)添加するから、電極ペーストをスクリーン印刷してもペースト電極膜の中に気泡が発生せず、焼成後のNi電極膜が緻密になり、電気抵抗を小さくできる。
【0045】
第3の発明によれば、分子状ニッケル源に対し消泡剤を3〜25(mass%)添加し、更に膜質改善剤として安定化したチタンアルコキシド溶液を1〜18(mass%)添加するから、スクリーン印刷における消泡性と同時に、焼成後の電極膜の膜質が高度に改善される。即ち、安定化したチタンアルコキシド溶液を添加すると、焼成時におけるニッケル結晶子径が極めて小さくなる。その結果、電極膜がセラミックスに緻密且つ強力に密着して耐久性が向上し、また電極膜の収縮率が小さくなり、電極特性が向上する効果がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode paste for ceramic electronic components formed mainly of ceramics, and more specifically, a capacitor, inductor, filter formed of ceramics such as dielectric, piezoelectric, magnetic, resistor, and insulator. -It is related with the electrode paste which forms the electrode of the ceramic electronic components which consist of multilayer substrates etc.
[0002]
[Prior art]
In recent years, ceramic electronic parts utilizing the characteristics of ceramics have been widely developed, and many types of electrode pastes for forming electrodes of ceramic electronic parts have been developed. Therefore, a multilayer ceramic capacitor will be described as a typical example of the ceramic electronic component.
[0003]
The multilayer ceramic capacitor is manufactured as follows. First, a green sheet mainly composed of dielectric ceramics is formed, and an internal electrode is formed by screen printing an electrode paste on the surface of the green sheet. Next, the green sheets are laminated and pressure-bonded so that the end portions of the internal electrodes appear alternately, and the laminated body is fired to form a laminated sintered body, which is electrically connected to the end portions of the laminated sintered body. A multilayer ceramic capacitor is completed by forming external electrodes.
[0004]
As the dielectric ceramics, there are titanate-based and zirconate-based ceramics such as barium titanate, strontium titanate, and barium zirconate, but these firing temperatures are extremely high, at a high temperature of 1000 ° C. or higher. Usually it is fired.
[0005]
Conventionally, high-melting-point noble metals such as Pd, Pt, Ag / Pd and the like that do not melt even at high temperatures have been used for internal electrodes fired simultaneously with these dielectric ceramics. However, since precious metals are not only expensive, but also fluctuate in price, they have a weak point that cannot satisfy the electronic equipment market that requires low price and stability of ceramic electronic component prices.
[0006]
Therefore, base metal materials such as Ni and Cu have recently been used as electrode materials. Ni and Cu are cheaper than precious metals and at the same time have a stable market price, and therefore have the property of satisfying both the low cost and stability of the price of the electronic device as the final product. In particular, since Ni is being frequently used as a metal material for internal electrodes, Ni will be described.
[0007]
Usually, Ni is supplied as a metal powder, and this Ni powder is kneaded with an organic vehicle and an organic solvent and used as an electrode paste. The diameter of Ni particles constituting the Ni powder is mainly several μm to 1 μm, but in recent years, Ni powder of about 0.2 μm has been used. However, the atomization of Ni particles has reached the limit, and it is difficult to use Ni particles smaller than this at this stage.
[0008]
As an important characteristic required for the electrode paste, Ni powder needs to be uniformly dispersed with an organic vehicle or an organic solvent and to have long-term dispersion stability. However, there are many phenomena in which Ni powder undergoes phase separation from the organic vehicle over a long period of time due to the fact that the particle size of Ni fine particles is quite large, such as a micron size. When such an electrode paste is applied to a green sheet, the metal film thickness of the internal electrode becomes non-uniform, causing variations in the electric resistance of the internal electrode.
[0009]
Further, when an electrode paste made of Ni powder is screen-printed and fired on a green sheet, the Ni electrode film has a thickness of 1 μm or more. Since the particle diameter of the Ni fine particles is usually 1 μm or more, it is difficult to keep the film thickness below the particle diameter. In particular, in order to increase the density of multilayer ceramic electronic components, the number of stacked green sheets has increased rapidly, and the thickness of the ceramic layer after firing has decreased to about 1 μm. That is, as long as an electrode paste made of Ni powder is used, it is difficult to make the Ni electrode film thinner.
[0010]
[Problems to be solved by the invention]
Accordingly, one of the present inventors has succeeded in developing a nickel solution using nickel ion atomic groups as a metal source instead of nickel fine particles in Japanese Patent Application Laid-Open No. 2001-192843. This nickel solution is prepared by suspending nickel acetate in alcohol and adding a predetermined amount of hydrazone.
[0011]
Since the size of the nickel ion atomic group is extremely small, there is no limitation on the thickness of the nickel thin film when nickel powder is used, and there is an advantage that it can be formed thinly. Further, nickel ions are reduced to nickel metal by the reducing power of hydrazone, and an excellent nickel metal film is formed on the heat-resistant glass by firing.
[0012]
However, since this nickel solution uses nickel acetate, the nickel metal content is low. Since hydrated nickel acetate is represented by (CH 3 COO) 2 Ni · 4H 2 O, the nickel content in one molecule of hydrated nickel acetate is only 23.6%. In addition, even with anhydrous nickel acetate, the nickel content is only 33.2%. Moreover, when this nickel acetate is mixed with alcohol or hydrazone to form a nickel solution, the nickel content with respect to the entire nickel solution is reduced to about several percent.
[0013]
Moreover, since this nickel solution has low viscosity, it is not suitable for screen printing. Although this nickel solution can be applied by dipping or spin coating, the film thickness becomes extremely thin because it is a solution. Since the nickel content is extremely small and the film thickness becomes thin, the film thickness of the Ni electrode film formed after firing is 100 nm or less, and in some cases, is about several tens of nm.
[0014]
This prior art is considered to contribute to the thinning of the Ni electrode film. However, when the Ni electrode film becomes excessively thin, there may be a problem in the continuity and uniformity of the electrode film. For example, if a discontinuous portion exists in a part of the Ni electrode film, the conductivity as an electrode is not guaranteed, and there is a risk of short circuiting.
[0015]
Therefore, the present invention has developed a molecular nickel source with a Ni content higher than that of nickel acetate, and provides this molecular Ni source as an electrode paste so that the thickness of the Ni electrode film can be reduced. An object is to provide an electrode paste for a given ceramic electronic component.
[0016]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the first invention is an electrode paste for a ceramic electronic component using a molecular nickel source in which nickel formate is dissolved in monoethanolamine. The present inventors have come up with the idea that nickel formate is an effective nickel source in search of a substance that can replace nickel acetate. Among various Ni compounds, nickel formate has a very high Ni content, and in hydrated nickel formate, the Ni content in one molecule reaches about 31.8%. In addition, the nickel content in anhydrous nickel formate reaches 39.5%. Therefore, hydrated nickel formate and anhydrous nickel formate are the most suitable materials for the Ni electrode paste. Moreover, nickel formate is uniformly dissolved in monoethanolamine and can be provided as an excellent source of molecular nickel. Further, it can be formed into a solution or a paste depending on the amount of monoethanolamine added, and when the viscosity is adjusted to form a paste, screen printing can be performed on the surface of a green sheet or the like. Therefore, the film thickness of the electrode film can be freely controlled not only to be thin, but also to an arbitrary thickness.
[0017]
A second invention is an electrode paste for a ceramic electronic component in which a molecular nickel source in which nickel formate is dissolved in monoethanolamine is used and 3 to 25 (mass%) of an antifoaming agent is added to the molecular nickel source. is there. When 3 to 25 (mass%) of an antifoaming agent is added, even if the electrode paste is screen-printed, bubbles are not generated in the paste electrode film, the Ni electrode film after firing becomes dense and the electric resistance can be reduced. There are advantages. That is, when an electrode paste is imprinted on a screen in screen printing, air tends to be generated from the atmosphere and air bubbles are easily generated in the paste. However, when an antifoaming agent such as isopropanol is added, the incorporation of bubbles into the paste can be suppressed, and the inside of the electrode becomes dense, and the electrode characteristics can be improved. If it is less than 3 (mass%), the defoaming effect becomes small, and if it exceeds 25 (mass%), the viscosity of the electrode paste becomes small and the screen printability is lowered. Addition is necessary.
[0018]
The third invention uses a molecular nickel source in which nickel formate is dissolved in monoethanolamine, and 3 to 25 (mass%) of an antifoaming agent is added to the molecular nickel source, and is further stable as a film quality improving agent. It is the electrode paste for ceramic electronic components which added 1-18 (mass%) of the titanium alkoxide solution which changed. Examples of the stabilized titanium alkoxide solution include a solution in which titanium alkoxide is mixed with diethanolamine. Addition of this stabilized titanium alkoxide solution to the electrode paste of the present invention has an effect of improving the film quality of the electrode film after firing. That is, since the electrode film is densely and strongly adhered to the ceramic, the durability is improved, and the grain growth of Ni particles is suppressed, so that the contraction rate of the electrode film during firing is reduced, and the electrode characteristics are generally improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have conceived that nickel formate with a very high Ni content per molecule is effective as a nickel source in place of nickel acetate, and have studied the organic solvent that can dissolve this nickel formate. The electrode paste for ceramic electronic components according to the present invention has been conceived.
[0020]
Among nickel formate, and 39.5% of Ni content in one molecule of anhydrous nickel formate (HCOO) 2 Ni, hydrated nickel acetate which has been conventionally used (CH 3 COO) 2 · 4H 2 O in Since the Ni content is 23.6%, nickel formate has an advantage that the Ni content can be adjusted as high as about 16%. In addition, since the nickel content of anhydrous nickel acetate is only 33.2%, the nickel content of anhydrous nickel formate has an excellent property of about 6%.
[0021]
In addition, since this nickel formate does not contain sulfur or halogen, it does not generate any corrosive gas such as NO X or SO X even when fired, and is a very safe substance for workers and the surrounding environment. It is optimal as a metal source for electrodes.
[0022]
When a low molecular weight organic solvent capable of uniformly dissolving the nickel formate was examined, it was found that monoethanolamine (hereinafter referred to as MEA) and diethanolamine (hereinafter referred to as DEA) were effective.
[0023]
DEA has a high melting point of 28 ° C. and may solidify depending on the environmental temperature. The molecular weight of DEA is as large as 105. In contrast, the melting point of MEA is as low as 10.5 ° C., and the molecular weight is 61, which is about half that of DEA. The lower the melting point, the higher the stability as a paste, and the smaller the molecular weight, there is an advantage that the Ni content can be adjusted to be high when nickel paste is used. From this viewpoint, MEA was selected as the organic solvent for nickel formate in the present invention.
[0024]
A molar ratio capable of uniformly dissolving nickel formate in MEA was examined. It was judged visually whether or not the solution was uniformly dissolved. As a result, it was found that, at room temperature, if MEA was 3 mol or more per 1 mol of nickel formate, both were uniformly mixed to form a paste, and if MEA was 3 mol or more, uniform solution could be maintained. Such a nickel paste or nickel solution is referred to as a molecular nickel source in the present invention.
[0025]
When the amount of MEA is increased, the solution property is increased, and when the amount of MEA is decreased, the viscosity is increased and the paste property is increased. When 1 mol of nickel formate is dissolved in 3 mol of MEA, the Ni content is 17.7 (mass%). Further, when 1 mol of nickel formate is dissolved in 4 mol of MEA in order to further improve the solution property, the Ni content is 14.9 (mass%). Therefore, in the molecular nickel source in which nickel formate and MEA are mixed, the Ni content can be adjusted to about 14 (mass%) or more, and the Ni content is remarkably increased as compared with several mass% of the nickel acetate solution. It has the advantage that it can be prepared.
[0026]
Next, the test which screen-printed using the molecular nickel source obtained by mixing 1 mol of nickel formate with 4 mol of MEA as an electrode paste was done. Screen printing was performed by imprinting an electrode paste on a substrate through a predetermined mesh pattern. Although depending on the viscosity of the electrode paste, it was confirmed that air in the atmosphere was taken in at the time of imprinting and some bubbles were mixed in the electrode paste film.
[0027]
As a result of examining various methods for preventing the mixing of bubbles, it was found that the addition of isopropanol (hereinafter referred to as IPA) to the molecular nickel source can prevent the mixing of bubbles. It was confirmed that bubbles in the electrode paste film disappeared when 3 to 25 (mass%) of IPA was added to the molecular nickel source. Although IPA was confirmed to have excellent properties as an antifoaming agent, details of the defoaming mechanism are unknown. Any substance other than IPA that has an antifoaming effect can be used as the antifoaming agent of the present invention.
[0028]
Furthermore, 1 mol of nickel formate was mixed with 4 mol of MEA to form a molecular nickel source, and an electrode paste was prepared by adding 10 (mass%) of IPA to this molecular nickel source. The electrode paste was screen printed on a substrate to form an electrode paste film, dried at a temperature of 180 ° C., and baked at 400 ° C. for 30 minutes in a nitrogen gas atmosphere. Here, since the boiling point of MEA is 171 ° C., the drying temperature was set to 180 ° C. in order to completely evaporate MEA.
[0029]
When the electrode film after firing was observed with an electron microscope, it was found that some unevenness was observed on the surface, and the film thickness of the electrode film was slightly non-uniform. In order to improve this non-uniformity, various additives were examined, and it was confirmed that a stabilized titanium alkoxide solution (hereinafter referred to as titanium solution) was effective.
[0030]
This titanium solution includes, for example, a titanium solution composed of titanium alkoxide and diethanolamine (hereinafter referred to as DEA), and a titanium solution mixed at a molar ratio of 1: 1 is preferable. As the titanium alkoxide, for example, titanium tetraisopropoxide (hereinafter referred to as TIP) is suitable. This titanium solution has a property of being well mixed with IPA which is an antifoaming agent.
[0031]
Next, a 0.5 molar titanium solution was prepared, and this titanium solution was added by 10 (mass%) with respect to the molecular nickel source to produce an electrode pace.
[0032]
This electrode paste was screen-printed on a substrate, dried at 180 ° C., and baked at 400 ° C. for 30 minutes in a nitrogen atmosphere to form a Ni electrode film on the substrate. The obtained electrode film was observed to have a uniform surface and metallic luster.
[0033]
When the electrode film was measured by the powder X-ray diffraction method (XRD method), it was calculated from the Scheller equation that the crystallite diameter of the metal Ni was 16 nm. In the electrode film formed from the electrode paste to which no titanium solution was added, the crystallite diameter of metallic Ni was 24 nm, and it was found that the titanium solution had the effect of reducing the crystallite diameter of the Ni electrode film by firing.
[0034]
Moreover, when the electrode film to which the titanium solution was added was observed with an atomic force microscope (AFM), it was found that the metal Ni crystallites were discriminated and the crystallite diameter was 20 to 40 nm. At the same time, the height difference due to surface irregularities was also measured to be about 20 nm. These measurement results substantially correspond to the results obtained by the XRD method described above.
[0035]
Therefore, when the titanium solution is added to the electrode paste, the crystallite diameter for forming the electrode film after firing is reduced, and as a result, the adhesion between the substrate and the electrode film is improved, and the electrode film does not peel off. In addition, the denseness of the electrode film is increased, and at the same time, the smoothness of the surface is improved and the metallic luster appears.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail by showing examples of electrode pastes for ceramic electronic components according to the present invention.
[0037]
1 mol of nickel formate dihydrate and 4 mol of MEA were weighed and mixed, and stirred at room temperature for 15 hours to obtain a molecular nickel source. Thereafter, 3 to 25 (mass%) of IPA is added to the total amount of the molecular nickel source, and further 1 to 18 (mass%) of a titanium solution is added. This mixture was stirred at room temperature for 12 hours to prepare an electrode paste suitable for screen printing.
[0038]
On the other hand, a 25 μm-thick green sheet made of barium titanate was prepared, and the electrode paste was screen-printed in a predetermined pattern on the surface of the green sheet. This green sheet was fired at 1270 ° C. for 2 hours to form a ceramic, which was used as a sample for characteristic measurement. The measurement results are summarized in Table 1.
[0039]
[Table 1]
Figure 2005026479
[0040]
As can be seen from Table 1, when evaluation was performed using sample numbers 1, 2, and 5, the print pattern could be maintained, but printing could not be performed uniformly. Moreover, the defoaming effect by IPA was small, and the resistance value after baking was also a high value. Sample No. 16 was able to produce an electrode film having a small resistance value after firing and having a metallic luster on the film surface, but the printed pattern was broken.
[0041]
From the above results, it was determined that the IPA addition amount and titanium solution addition amount of sample numbers 1, 2, 5, and 16 were not appropriate. Accordingly, in the present invention, the IPA addition amount needs to be in the range of 3 to 25 (mass%), and the titanium solution addition amount needs to be in the range of 1 to 18 (mass%). About samples other than sample number 1, 2, 5, and 16, the pattern after printing was also maintained, the film | membrane surface after baking had metal luster, and it was confirmed that it is suitable as an electrode paste.
[0042]
The present invention is not limited to the above-described embodiments and examples, and may contain additives other than the components constituting the present invention. Even if a trace amount of impurities is mixed, the component elements constituting the present invention are not limited. If it is included at a minimum, the effects and effects of the present invention can be obtained. Therefore, it is needless to say that various modifications, design changes, and the like within the scope not departing from the technical idea of the present invention are also included in the technical scope of the present invention.
[0043]
【The invention's effect】
According to the first invention, since nickel formate is used as a nickel source, the nickel content is extremely high. In particular, in nickel formate anhydrous, the Ni content in one molecule reaches about 39.5%. An optimal material can be provided as an electrode paste. Since nickel formate dissolves uniformly in monoethanolamine, it becomes a powerful source of molecular nickel. Moreover, it can be configured in the form of a solution or a paste depending on the amount of monoethanolamine added, and when it is configured as a paste by adjusting the viscosity, screen printing can be performed on the surface of a green sheet or the like. When a desired viscosity is given to the paste, not only the film thickness of the electrode film can be simply reduced, but also there is an advantage that it can be controlled to an arbitrary thickness.
[0044]
According to the second invention, since 3 to 25 (mass%) of an antifoaming agent such as isopropanol is added to the molecular nickel source, bubbles are generated in the paste electrode film even when the electrode paste is screen-printed. Therefore, the Ni electrode film after firing becomes dense, and the electrical resistance can be reduced.
[0045]
According to the third invention, 3 to 25 (mass%) of an antifoaming agent is added to the molecular nickel source, and further 1 to 18 (mass%) of a titanium alkoxide solution stabilized as a film quality improving agent is added. The film quality of the electrode film after firing is highly improved simultaneously with the defoaming property in screen printing. That is, when a stabilized titanium alkoxide solution is added, the nickel crystallite diameter during firing becomes extremely small. As a result, there is an effect that the electrode film is densely and strongly adhered to the ceramic and durability is improved, and the contraction rate of the electrode film is reduced, and the electrode characteristics are improved.

Claims (3)

蟻酸ニッケルをモノエタノールアミンに溶解させた分子状ニッケル源を用いたことを特徴とするセラミック電子部品用電極ペースト。An electrode paste for ceramic electronic parts, wherein a molecular nickel source in which nickel formate is dissolved in monoethanolamine is used. 蟻酸ニッケルをモノエタノールアミンに溶解させた分子状ニッケル源を用い、この分子状ニッケル源に対し消泡剤を3〜25(mass%)添加したことを特徴とするセラミック電子部品用電極ペースト。An electrode paste for a ceramic electronic component, wherein a molecular nickel source in which nickel formate is dissolved in monoethanolamine is used, and 3 to 25 (mass%) of an antifoaming agent is added to the molecular nickel source. 蟻酸ニッケルをモノエタノールアミンに溶解させた分子状ニッケル源を用い、この分子状ニッケル源に対し消泡剤を3〜25(mass%)添加し、更に膜質改善剤として安定化したチタンアルコキシド溶液を1〜18(mass%)添加したことを特徴とするセラミック電子部品用電極ペースト。Using a molecular nickel source in which nickel formate is dissolved in monoethanolamine, 3 to 25 (mass%) of an antifoaming agent is added to the molecular nickel source, and a stabilized titanium alkoxide solution as a film quality improving agent is added. 1-18 (mass%) addition, The electrode paste for ceramic electronic components characterized by the above-mentioned.
JP2003190660A 2003-07-02 2003-07-02 Electrode paste for ceramic electronic component Pending JP2005026479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003190660A JP2005026479A (en) 2003-07-02 2003-07-02 Electrode paste for ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190660A JP2005026479A (en) 2003-07-02 2003-07-02 Electrode paste for ceramic electronic component

Publications (1)

Publication Number Publication Date
JP2005026479A true JP2005026479A (en) 2005-01-27

Family

ID=34188478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190660A Pending JP2005026479A (en) 2003-07-02 2003-07-02 Electrode paste for ceramic electronic component

Country Status (1)

Country Link
JP (1) JP2005026479A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775664B2 (en) * 2005-06-17 2011-09-21 住友金属鉱山株式会社 Nickel film forming coating solution, nickel film and method for producing the same
WO2013042785A1 (en) * 2011-09-22 2013-03-28 株式会社日本触媒 Electroconductive fine particles and anisotropic conductive material containing same
JP2017022080A (en) * 2015-07-13 2017-01-26 Jsr株式会社 Manufacturing method of nickel film, manufacturing method of lamination type ceramic electronic component and composition for forming nickel film
CN109300697A (en) * 2016-05-28 2019-02-01 蓝色地平线创新有限公司 Advanced dielectric energy storage device and manufacturing method
WO2021033387A1 (en) * 2019-08-22 2021-02-25 株式会社村田製作所 Electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775664B2 (en) * 2005-06-17 2011-09-21 住友金属鉱山株式会社 Nickel film forming coating solution, nickel film and method for producing the same
WO2013042785A1 (en) * 2011-09-22 2013-03-28 株式会社日本触媒 Electroconductive fine particles and anisotropic conductive material containing same
JP5245021B1 (en) * 2011-09-22 2013-07-24 株式会社日本触媒 Conductive fine particles and anisotropic conductive material containing the same
JP2017022080A (en) * 2015-07-13 2017-01-26 Jsr株式会社 Manufacturing method of nickel film, manufacturing method of lamination type ceramic electronic component and composition for forming nickel film
CN109300697A (en) * 2016-05-28 2019-02-01 蓝色地平线创新有限公司 Advanced dielectric energy storage device and manufacturing method
WO2021033387A1 (en) * 2019-08-22 2021-02-25 株式会社村田製作所 Electronic component
US11887788B2 (en) 2019-08-22 2024-01-30 Murata Manufacturing Co., Ltd. Electronic component

Similar Documents

Publication Publication Date Title
JP5569747B2 (en) Gravure printing conductive paste used for multilayer ceramic capacitor internal electrode
JP2012174797A5 (en)
JP2007103594A (en) Resistor composition and thick film resistor
JP2001214201A (en) Nickel powder, producing method therefor and paste for forming electrode for electronic part
JP2006310760A (en) Multilayer ceramic electronic component and its manufacturing method
CN106104711A (en) Thick-film resistor body and manufacture method thereof
CN103288452A (en) Dielectric ceramic composition and electronic device
JP2015157941A (en) Silver flake conductive paste ink with nickel particles
CN106104712A (en) Resistance composition
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
JP2006299385A (en) Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
JP4146119B2 (en) Copper alloy powder for conductive paste
JP2005026479A (en) Electrode paste for ceramic electronic component
JP4096661B2 (en) Ceramic electronic component and method for manufacturing ceramic electronic component
JP2002060877A (en) Ni ALLOY POWDER FOR ELECTRICALLY CONDUCTIVE PASTE
JP2007234330A (en) Conductor paste and electronic part
KR101118838B1 (en) Preparing method for wiring and electrode using nano metal paste
JP4834848B2 (en) Copper powder for low-temperature firing or copper powder for conductive paste
US20040188659A1 (en) Conductor composition and uses thereof
JPH087644A (en) High temperature baking complying noble metal powder and conductor paste
JP4515334B2 (en) Barrel plating method and electronic component manufacturing method
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
JP2008274324A (en) Composition, and method for forming copper film
JP2001118424A (en) Copper alloy powder for conductive paste
TW201920001A (en) Composition for thick film resistor, thick film resistance paste, and thick film resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512