JP2022028364A - Cultivation method of paddy rice and cultivation plant of paddy rice - Google Patents

Cultivation method of paddy rice and cultivation plant of paddy rice Download PDF

Info

Publication number
JP2022028364A
JP2022028364A JP2020131715A JP2020131715A JP2022028364A JP 2022028364 A JP2022028364 A JP 2022028364A JP 2020131715 A JP2020131715 A JP 2020131715A JP 2020131715 A JP2020131715 A JP 2020131715A JP 2022028364 A JP2022028364 A JP 2022028364A
Authority
JP
Japan
Prior art keywords
paddy rice
cultivation
wavelength range
light intensity
dwarf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020131715A
Other languages
Japanese (ja)
Inventor
博志 岡田
Hiroshi Okada
良晴 木村
Yoshiharu Kimura
和明 十河
Kazuaki Sogo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honest Co Ltd
Original Assignee
Honest Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honest Co Ltd filed Critical Honest Co Ltd
Priority to JP2020131715A priority Critical patent/JP2022028364A/en
Publication of JP2022028364A publication Critical patent/JP2022028364A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a cultivation method and a cultivation plant which are capable of achieving a lower cost by generation acceleration and quality improvement by cultivation of paddy rice in a plant factory, and by increased yield per unit area.SOLUTION: Under an environment inside a container, a building or the like where sunlight is shielded, or inside a vessel 1, a paddy rice A of a dwarf variety cultivated in a cultivation tank such as a water tank 2, which can be installed in multiple stages and holds raising medium such as water, is irradiated with light of a photosynthesis effective wavelength region from an LED illumination device 3, and the irradiation is performed at light intensity adjusted for each wavelength region corresponding to the growth stage so as to be capable of accelerating the generation of the paddy rice A.SELECTED DRAWING: Figure 1

Description

この発明は、水稲の水耕栽培や土壌栽培等による栽培方法及びその方法に適した水稲の栽培プラントに関するものである。 The present invention relates to a cultivation method of paddy rice by hydroponics, soil cultivation, etc., and a paddy rice cultivation plant suitable for the method.

一般に、イネ科植物の育苗および栽培方法として、人工光を利用した栽培方法が知られている。 Generally, as a method for raising and cultivating seedlings of Gramineae plants, a cultivation method using artificial light is known.

例えば、外部光を遮蔽可能な容器の内部にイネ科植物を栽培するための栽培槽を設け、温度や湿度を調整すると共に養液および青色の人工光または太陽光またはそれらを選択的に供給することが知られている(特許文献1)。この文献には、青色光および遠赤色光の双方又は青色光のみをイネ科植物の苗に照射することによって、イネ育苗時における定植後の花芽分化を促進させることが可能という記載もある。 For example, a cultivation tank for cultivating gramineous plants is provided inside a container that can shield external light, and the temperature and humidity are adjusted and nutrient solution and blue artificial light or sunlight or they are selectively supplied. It is known (Patent Document 1). There is also a description in this document that it is possible to promote flower bud differentiation after planting during rice seedling raising by irradiating the seedlings of grasses with both blue light and far-red light or only blue light.

また、青色LEDを利用して短期間にイネを栽培し収穫する方法として、植栽密度を高めて青色LED、または白色光のメタルハライドランプのいずれかを用いて栽培すると、出穂までの時間が白色光では約60日、青色LEDでは45日を要することが知られている(特許文献2の[0025]等)。 In addition, as a method of cultivating and harvesting rice in a short period of time using a blue LED, if the planting density is increased and cultivated using either a blue LED or a white light metal halide lamp, the time until heading is white. It is known that it takes about 60 days for light and 45 days for blue LED (Patent Document 2 [0025], etc.).

稲作プラントの全体構成としては、地中または地上に設けられた工場建物の本体と、密閉型栽培室に設けられた植物栽培装置を備え、密閉空間内において稲の側面からLED光を照射しながら、複数の可動式栽培バケットを横方向及び下方へ移動させることにより、稲の成長に応じて植物工場の建物本体の天井と栽培バケットの間の空間を適宜に広げることが可能な植物工場が知られている(特許文献3)。 The overall configuration of the rice plant is equipped with the main body of the factory building installed in the ground or above the ground and the plant cultivation equipment installed in the closed cultivation room, while irradiating LED light from the side of the rice in the closed space. , The plant factory knows that by moving multiple movable cultivation buckets laterally and downward, the space between the ceiling of the main body of the plant factory building and the cultivation bucket can be appropriately expanded according to the growth of rice. (Patent Document 3).

ところで、イネ(水稲)の品種改良として、経験的に倒伏した稲は生長が正常に進まず、病気になる可能性が高くなることから、草丈(稈長)を短くするという矮性による倒伏性の改良が周知である。 By the way, as an improvement of rice (paddy rice) varieties, empirically lodging rice does not grow normally and is more likely to get sick. Is well known.

矮性化技術は、例えば種子にγ線照射を行なって人為的に突然変異を起こさせることや、植物成長ホルモンであるジベレリンの分泌を抑制する遺伝子の一部を働かなくさせる遺伝子工学的手法で行うことができる。因みに、日本国内で栽培されている品種のほとんどは、正常個体と、それより半分以下の草丈である矮性品種との中間程度の草丈になる半矮性品種であると言われている。 Dwarfing technology is performed by, for example, γ-ray irradiation of seeds to artificially mutate them, or by genetic engineering to disable some of the genes that suppress the secretion of the plant growth hormone gibberellin. be able to. By the way, most of the varieties cultivated in Japan are said to be semi-dwarf varieties having a plant height intermediate between normal individuals and dwarf varieties with a plant height of less than half of that.

特開2002-345337号公報Japanese Unexamined Patent Publication No. 2002-345337 特開2010-233509号公報Japanese Unexamined Patent Publication No. 2010-233509 特開2017-23022号公報Japanese Unexamined Patent Publication No. 2017-23022

しかし、水稲の矮性品種を選択して栽培する目的は、稲の倒伏性を改善することにあるから、屋内で風の影響を受けない環境で栽培する際に、敢えて半矮性品種やそれより小型化された矮性品種を選択する必要性がなかった。 However, since the purpose of selecting and cultivating dwarf varieties of paddy rice is to improve the lodging property of rice, when cultivating indoors in an environment that is not affected by wind, we dare to cultivate semi-dwarf varieties or smaller ones. There was no need to select cultivated dwarf varieties.

ただし、限られた室内空間である植物工場内で水稲を栽培する場合には、できるだけ草丈(稈長)を短くすることが有利である。すなわち、半矮性品種の水稲といえども高さ方向に100cm以上の空間が栽培槽の上方に必要であるから、植物工場内の単位面積または容積当たりの収量の増大は、正常品種または半矮性品種ではあまり大きく見込めなかった。 However, when cultivating paddy rice in a plant factory, which is a limited indoor space, it is advantageous to shorten the plant height (culm length) as much as possible. That is, even a semi-dwarf cultivar of paddy rice requires a space of 100 cm or more in the height direction above the cultivation tank, so that the increase in yield per unit area or volume in the plant factory is a normal cultivar or semi-dwarf cultivar. Then I couldn't expect it to be very big.

ここで、矮性化された水稲が植物工場に採用されない上記以外の理由として、植物成長ホルモン不足の影響や病気などで収量の低下や品質不良を招きやすいという理由もある。
低コストで栽培するために適した特定品種や特定の栽培方法が発見されていないのが現状である。
このように無農薬で水稲の矮性品種を栽培する植物工場では、低コスト化のために世代促進と、単位面積当たりの収量の増大、さらには品質の向上が課題であった。
Here, another reason why dwarfed paddy rice is not adopted in plant factories is that it is likely to cause a decrease in yield and poor quality due to the influence of plant growth hormone deficiency and diseases.
At present, no specific variety or specific cultivation method suitable for low-cost cultivation has been found.
In a plant factory that cultivates dwarf varieties of paddy rice without pesticides in this way, it was a challenge to promote generations, increase yield per unit area, and improve quality in order to reduce costs.

この発明は、人工照明装置による水稲の栽培方法において、特定の光の照射調節方法により矮性品種の世代促進及び収量の増大が可能であることを見出し、発明の完成に至ったものであり、さらにはこの方法に適した特定品種を用いることで、より顕著な効果を得る手段は以下の通りである。 The present invention has been found that, in a method for cultivating paddy rice using an artificial lighting device, it is possible to promote the generation of dwarf varieties and increase the yield by a specific light irradiation adjustment method, which has led to the completion of the invention. By using a specific variety suitable for this method, the means for obtaining a more remarkable effect is as follows.

すなわち、この発明では太陽光を遮蔽した閉鎖環境下で複数段に配置される栽培槽内で栽培される水稲の矮性品種に対し、LED照明装置から光合成有効波長域の光を照射し、この照射は前記水稲の世代促進が可能であるように、育成段階に応じて波長域別に調整された光強度で行なう水稲の栽培方法としたのである。 That is, in the present invention, the dwarf varieties of paddy rice cultivated in the cultivation tanks arranged in a plurality of stages in a closed environment where sunlight is shielded are irradiated with light in the effective wavelength range of photosynthesis from the LED lighting device, and this irradiation is performed. Is a method for cultivating paddy rice with a light intensity adjusted for each wavelength range according to the growing stage so that the generation of paddy rice can be promoted.

因みに、イネ科植物の葉は、基部側の葉を支える葉鞘(ようしょう)と先端側で光合成を行う葉身(ようしん)と呼ばれる2つの部分から構成されるのであるが、それらの比率によって一日当たりに生産される光合成量が変化する。 By the way, the leaves of grasses are composed of two parts called leaf sheaths that support the leaves on the base side and leaf blades that perform photosynthesis on the tip side. The amount of photosynthesis produced per day changes.

水稲の成長段階に合わせて、一枚の葉の中で別々の役割を担っている葉鞘と葉身の比率および葉身の面積によって、一日当たりに生産される光合成量が変化することから、この発明では、光合成有効波長域の光の照射を水稲の世代促進が可能であるように育成段階に応じて波長域別に調整された光強度で行なう。 This is because the amount of photosynthesis produced per day changes depending on the ratio of the leaf sheath and the leaf blade, which play different roles in one leaf, and the area of the leaf blade, according to the growth stage of the paddy rice. In the present invention, the irradiation of light in the effective wavelength range of photosynthesis is performed with the light intensity adjusted for each wavelength range according to the growing stage so that the generation of paddy rice can be promoted.

さらに、光合成のために必要な葉身内のクロロフィル量または葉身の単位面積当たりの密度は、吸収可能な波長域別の光強度が育成段階に応じて変化していると考えられるから、育成段階に応じて波長域別に調整された光強度によって効率のよい栽培を行なえる。 Furthermore, the amount of chlorophyll in the leaf blade or the density per unit area of the leaf blade required for photosynthesis is considered to change depending on the growth stage in the light intensity for each wavelength range that can be absorbed. Efficient cultivation can be performed by the light intensity adjusted for each wavelength range according to the above.

上記水稲の矮性品種が、オリザ・ルフィポゴン(oryza rufipogon)の矮性品種である場合には、上記栽培方法が特に適しており、収量はより大きく改善される。 When the dwarf variety of the paddy rice is the dwarf variety of oryza rufipogon, the above cultivation method is particularly suitable, and the yield is further improved.

特に、上記LED照明装置が、太陽光スペクトルを再現して照射可能なLED照明装置である場合、オリザ・ルフィポゴン(oryza rufipogon)の矮性品種は、太陽光スペクトルに近い白色光に適性を示すから、有効分げつ開始時期まで極めて生育速度が速く、世代促進、品質の向上および単位面積当たりの収量の増大が認められる。 In particular, when the LED lighting device is an LED lighting device capable of reproducing and irradiating the sunlight spectrum, the dwarf variety of oryza rufipogon shows suitability for white light close to the sunlight spectrum. The growth rate is extremely fast until the start of effective sprouting, and generation promotion, quality improvement and increase in yield per unit area are observed.

前記調整された光強度は、太陽光の地表面での波長域別光強度の周期変化に対応するように調整された光強度であることが好ましく、例えば、上記波長域別光強度の周期変化が、日の出から日の入りまでの周期変化、日の入り後を含む24時間の周期変化または春夏秋冬を含む一年間の季節的周期変化及びそのような周期変化の調整であることが好ましい。 The adjusted light intensity is preferably a light intensity adjusted so as to correspond to a periodic change in the light intensity for each wavelength range on the ground surface of sunlight, and for example, a periodic change in the light intensity for each wavelength range. It is preferable that the cycle change from sunrise to sunset, the cycle change of 24 hours including after sunset, or the seasonal cycle change of one year including spring, summer, autumn and winter, and the adjustment of such cycle change.

このような栽培に必要な水稲の栽培プラントは、矮性品種を播種から成熟までの育成が可能であるように、上方に空間を設けて複数段に配置され育成媒体を保持する栽培槽と、光合成有効波長域の光強度を水稲の育成段階に応じて波長域別に制御可能なLED照明装置と、前記育成媒体に所要の養分を供給する養分供給装置と、少なくとも二酸化炭素濃度を調整可能な空気等の送気装置とを備えていることが必要であり、これらを用いて太陽光を遮蔽した閉鎖環境下で前記水稲の矮性品種の世代促進が可能である。 The paddy rice cultivation plant required for such cultivation has a cultivation tank in which a space is provided above and is arranged in multiple stages to hold a cultivation medium so that dwarf varieties can be cultivated from sowing to maturity, and photosynthesis. An LED lighting device that can control the light intensity in the effective wavelength range for each wavelength range according to the growing stage of paddy rice, a nutrient supply device that supplies the required nutrients to the growing medium, air that can adjust at least the carbon dioxide concentration, etc. It is necessary to have an air supply device of the above, and it is possible to promote the generation of the dwarf variety of the paddy rice in a closed environment where sunlight is shielded by using these.

この発明は、上述のように、水稲の矮性品種に対し、育成段階に応じて波長域別に調整された光強度でLED照明装置から光合成有効波長域の光を照射するので、栽培による水稲の世代促進及び品質の向上と単位面積当たりの収量の増大による低コスト化が可能であるという利点を有する栽培方法になる。
また、この発明の水稲の栽培プラントは、上記の利点を有する栽培方法を効率よく行なえる機構を有する。
As described above, the present invention irradiates the dwarf varieties of paddy rice with light in the effective wavelength range of photosynthesis from the LED lighting device with the light intensity adjusted for each wavelength range according to the growing stage. It is a cultivation method having the advantages of being able to reduce costs by promoting and improving quality and increasing the yield per unit area.
Further, the paddy rice cultivation plant of the present invention has a mechanism capable of efficiently performing a cultivation method having the above-mentioned advantages.

実施形態の水耕栽培方法に用いる栽培槽及びその付属装置を示す説明図Explanatory drawing which shows the cultivation tank used for the hydroponic cultivation method of embodiment and the attached apparatus thereof. 実施形態の栽培方法による水稲の一世代の成長期を模式的に示す説明図Explanatory diagram schematically showing the growth period of one generation of paddy rice by the cultivation method of the embodiment 実施形態に用いるLED照明の調整された早朝の発光スペクトルを示す図表Chart showing the adjusted early morning emission spectrum of the LED lighting used in the embodiments. 実施形態に用いるLED照明の調整された正午の発光スペクトルを示す図表A chart showing the adjusted noon emission spectrum of the LED lighting used in the embodiments. 実施形態に用いるLED照明の調整された夕方の発光スペクトルを示す図表A chart showing the adjusted evening emission spectrum of the LED lighting used in the embodiments. 実施形態の水稲の水耕栽培プラントの概略構成を模式的に示す斜視図A perspective view schematically showing a schematic configuration of a hydroponic cultivation plant for paddy rice according to an embodiment.

この発明の実施形態を以下に添付図面を参照して説明する。
図1に示すように、実施形態の水稲の栽培方法は、閉鎖環境下において複数段に積み重ね可能な容器1内に収容され、育成媒体として水を入れた栽培槽である水槽2内の矮性品種の水稲Aに対し、LED照明装置3から光合成有効波長域の光を照射し、この照射を水稲Aの世代促進が可能であるように育成段階に応じて波長域別に調整された光強度で行なう水耕栽培方法である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, the method for cultivating paddy rice according to the embodiment is a dwarf variety in a water tank 2 which is a cultivation tank in which water is contained as a growing medium and is housed in a container 1 that can be stacked in a plurality of stages in a closed environment. The paddy rice A is irradiated with light in the effective wavelength range of photosynthesis from the LED lighting device 3, and this irradiation is performed with the light intensity adjusted for each wavelength range according to the growing stage so that the generation of paddy rice A can be promoted. It is a hydroponic cultivation method.

図示した容器1は、太陽光を遮蔽したコンテナや建物等の室6内に既設の棚等(図外)に載置されており、水槽2の上に高さ方向に水稲Aの育成に必要な適度な空間を有しており、室6内の大きさに応じて許容される高さの複数段に設置可能である。 The illustrated container 1 is placed on an existing shelf or the like (outside the figure) in a room 6 such as a container or a building that shields sunlight, and is necessary for growing paddy rice A in the height direction on the water tank 2. It has an appropriate space and can be installed in a plurality of stages with an allowable height according to the size of the room 6.

水稲Aの矮性品種は、この発明に適性のあるできるだけ低い草丈(稈長)であることが好ましく、例えば100cm以下、好ましくは50cm以下、より好ましくは30cm以下の草丈(稈長)であるものを採用することが好ましい。栽培プラントにおける建物内の床から天井までの高さが、例えば2.5~3m以下である場合などにおいて、空気循環性および温度が均一な室内であるようにし、かつ、できるだけ多くの水槽2等の栽培槽を複数段だけ所要間隔を空けて設置するために、水稲の育成に所要の空間をできるだけ小さくしておく必要があるからである。 The dwarf variety of paddy rice A preferably has a plant height (culm length) as low as possible suitable for the present invention, and for example, a plant having a plant height (culm length) of 100 cm or less, preferably 50 cm or less, more preferably 30 cm or less is adopted. Is preferable. When the height from the floor to the ceiling in the building in the cultivation plant is, for example, 2.5 to 3 m or less, the room should have uniform air circulation and temperature, and as many aquariums as possible 2 etc. This is because it is necessary to make the space required for growing paddy rice as small as possible in order to install the cultivation tanks in multiple stages at the required intervals.

前述したように、矮性化の技術は、例えば種子にγ線照射を行なって人為的に突然変異を起こさせることや、植物成長ホルモンであるジベレリンの分泌を抑制する遺伝子(矮性遺伝子)を働かなくさせる遺伝子工学的手法を利用して行なえる。 As mentioned above, the dwarfing technique does not work, for example, by irradiating seeds with γ-rays to artificially mutate them, or by using a gene that suppresses the secretion of the plant growth hormone gibberellin (dwarf gene). It can be done by using the genetic engineering method to make it.

また、稲の原種ではないかと考えられている野生稲の品種として、オリザ・ルフィポゴン(oryza rufipogon)があり、これは和名がノイネまたはヒゲナガイネとも称され、インド西部からインドネシアの島嶼部まで自生し、諸外国では直播のイネと自然発芽したルフィポゴンが混じる場合のあることが知られており、矮性でない健全なもの、または自然突然変異により矮性化したものについては採取することも可能である。 Oryza rufipogon is a wild rice variety that is thought to be the original species of rice, and its Japanese name is also called Neune or Higenagaine, which grows naturally from western India to the islands of Indonesia. In other countries, it is known that directly sown rice and naturally sprouted rufipogon may be mixed, and it is also possible to collect healthy non-dwarf rice or dwarfed rice by natural mutation.

さらにオリザ・ルフィポゴン(oryza rufipogon)の染色体の断片を「コシヒカリ」等の周知な品種の系統群に遺伝子組み換え技術を利用して導入し、さらに矮性化させたものもこの発明の矮性品種として用いることができる。 Furthermore, a fragment of the chromosome of oryza rufipogon is introduced into a strain group of a well-known variety such as "Koshihikari" by using genetic recombination technology, and further dwarfized is also used as the dwarf variety of the present invention. Can be done.

図1及び図2に示されるように、矮性品種の水稲Aは、水槽2内の養液で水耕栽培する際、または図外の土壌などの育成媒体を保持する栽培槽で栽培する際に、播種から生長した主茎から分枝した分蘖(ぶんげつ)が有効分蘖期から無効分蘖期となり、幼穂を形成し、開花、登塾、成熟期となって収穫する育成段階に応じて青色域または赤色域の波長域別の光強度を調整して光合成有効波長域の光を照射する。 As shown in FIGS. 1 and 2, the dwarf cultivar paddy rice A is hydroponically cultivated with the nutrient solution in the aquarium 2, or when cultivated in a cultivation tank holding a growing medium such as soil (not shown). , The tillers branched from the main stem grown from sowing change from the effective tillering stage to the ineffective tillering stage, form young ears, and become blue depending on the growing stage of flowering, attending school, and maturity. The light intensity of each wavelength region in the region or red region is adjusted to irradiate light in the effective wavelength range for hydroponics.

太陽から放射されて地上に到達する光は、波長300~3000nmの放射光であるが、植物に生理的に有効な放射域が波長300~800nmの帯域であり、そのうち、光合成有効波長域の光は、波長400~700nmの範囲の帯域である。 The light emitted from the sun and reaching the ground is synchrotron radiation with a wavelength of 300 to 3000 nm, but the radiation range physiologically effective for plants is the band with a wavelength of 300 to 800 nm, of which the light in the photosynthesis effective wavelength range is light. Is a band having a wavelength in the range of 400 to 700 nm.

このように太陽の白色光から光合成に有効な波長を選択的に利用する植物の光合成作用曲線の特徴については、波長600~700nmの赤色光部に大きなピークを有し、その中で約675nmと625nmに小さな2つのピークを有している。また、波長400~500nmの青色光部のうち、440~450nmに小さなピークを有している。 As for the characteristics of the photosynthetic action curve of plants that selectively utilize the wavelength effective for photosynthesis from the white light of the sun, it has a large peak in the red light part with a wavelength of 600 to 700 nm, and it is about 675 nm. It has two small peaks at 625 nm. Further, it has a small peak at 440 to 450 nm in the blue light portion having a wavelength of 400 to 500 nm.

これらのことから、水稲においても太陽光スペクトルの地表面での波長域別光強度の周期変化に対応させて、赤色光部および青色光部を増減させる必要があり、また光合成のために必要な葉身内のクロロフィル量または葉身の単位面積当たりのクロロフィル密度は、吸収可能な波長域別の光強度が育成段階に応じて変化していると推定され、育成段階に応じて波長域別に調整された光強度によって効率のよい栽培の効果を得ることができる。 From these facts, it is necessary to increase or decrease the red light part and the blue light part in response to the periodic change of the light intensity by wavelength range on the ground surface of the sunlight spectrum even in paddy rice, and it is also necessary for photosynthesis. The amount of chlorophyll in the leaf blade or the chlorophyll density per unit area of the leaf blade is estimated that the light intensity for each absorbable wavelength range changes according to the growing stage, and is adjusted for each wavelength range according to the growing stage. The effect of efficient cultivation can be obtained by the light intensity.

この発明に用いるLED照明装置は、上述の太陽光スペクトルのスペクトル特性に近い平均演色評価数97以上のスペクトル特性で照射可能なLED照明装置を用いることが好ましく、例えば東芝マテリアル社製の太陽光スペクトル再現性白色LED(商品名TRI-R;トライアール)を購入して用いることができる。 As the LED lighting device used in the present invention, it is preferable to use an LED lighting device capable of irradiating with a spectral characteristic having an average color performance evaluation number of 97 or more, which is close to the spectral characteristic of the above-mentioned solar spectrum. Reproducible white LED (trade name TRI-R; Trial) can be purchased and used.

このようなLED照明装置を用いることにより、図3に示すような調整された早朝の発光スペクトル、図4に示すような調整された正午の発光スペクトル、または図5に示すような調整された夕方の発光スペクトルの光合成有効波長域の光を、さらに波長域別に日の出から日の入りまでの周期変化、日の入り後を含む24時間の周期変化または春夏秋冬を含む一年間の季節的周期変化に対応した光強度に調整して栽培対象の水稲に照射することができる。 By using such an LED lighting device, an adjusted early morning emission spectrum as shown in FIG. 3, an adjusted noon emission spectrum as shown in FIG. 4, or an adjusted evening emission spectrum as shown in FIG. Light in the effective wavelength range of photosynthesis in the emission spectrum of the The intensity can be adjusted to irradiate the paddy rice to be cultivated.

図6に示されるように、実施形態の水稲の栽培プラントは、水稲Aの矮性品種を播種から成熟までの育成が可能であるように上方に空間を設けて複数段に配置される水耕栽培用の水槽2と、光合成有効波長域の光強度を水稲の育成段階に応じて波長域別に制御可能なLED照明装置3と、育成に所要の養液を供給する送液装置4と、少なくとも二酸化炭素濃度を調整可能な送気装置5とを備えている。なお、図中の各装置に供給される電源等の駆動システムについては、図示を省略している。 As shown in FIG. 6, in the paddy rice cultivation plant of the embodiment, hydroponic cultivation is arranged in a plurality of stages with an upper space so that the dwarf varieties of paddy rice A can be cultivated from sowing to maturity. A water tank 2 for this purpose, an LED lighting device 3 capable of controlling the light intensity in the effective photosynthetic wavelength range for each wavelength range according to the growing stage of paddy rice, a liquid feeding device 4 for supplying the nutrient solution required for growing, and at least carbon dioxide. It is provided with an air supply device 5 capable of adjusting the carbon concentration. The drive system such as the power supply supplied to each device in the figure is not shown.

水耕栽培用の水槽2は、密閉または内圧を高めた室6やコンテナの内部などのように、太陽光を遮蔽した閉鎖環境下に、棚や積み上げ可能な箱型の容器1内において室6内の雰囲気とは常時または適時に換気口を介して通気可能な状態で収容されている。 The water tank 2 for hydroponics is a room 6 in a shelf or a stackable box-shaped container 1 in a closed environment where sunlight is shielded, such as a closed or increased internal pressure room 6 or the inside of a container. The atmosphere inside is housed in a state where it can be ventilated through the ventilation port at all times or in a timely manner.

容器1内には、水以外の育成媒体を保持する水槽2以外の栽培槽を配置してもよく、例えば育成媒体が、ゲル等の半固体状や粉粒体、スポンジ状や多層体状等の天然土壌または人工土壌である場合には、ポットやプランターまたは溝体状の栽培槽を配置して土壌栽培を行なうこともできる。
土壌栽培を行なう場合には、水槽2に代えて前記栽培槽内に稲作に適した所要の保水性を有する土壌を、例えば3~20cm程度の厚さに適量収容して栽培することが好ましい。
A cultivation tank other than the water tank 2 for holding a growth medium other than water may be arranged in the container 1. For example, the growth medium may be in the form of a semi-solid such as gel, powder or granules, sponge or multilayer. In the case of natural soil or artificial soil, pots, planters or groove-shaped cultivation tanks can be arranged for soil cultivation.
When cultivating soil, it is preferable to cultivate the soil in the cultivation tank instead of the water tank 2 by accommodating an appropriate amount of soil having the required water retention suitable for rice cultivation in a thickness of, for example, about 3 to 20 cm.

LED照明装置3は、多数のボタン型の光源が板状の基台に1列以上固定された状態で等間隔に配置されており、これは栽培槽である水槽2の上方および側方からの照射が可能であるように配置されている。特に側方からの照射は、水稲Aの下部(茎部)および上部(葉部)に対してそれぞれ個別に照射できるように、2段以上に分けて配置しておくことが好ましい。 In the LED lighting device 3, a large number of button-shaped light sources are arranged at equal intervals in a state where one or more rows are fixed to a plate-shaped base, which is from above and from the side of the water tank 2 which is a cultivation tank. It is arranged so that it can be irradiated. In particular, it is preferable to arrange the irradiation from the side in two or more stages so that the lower part (stem part) and the upper part (leaf part) of the paddy rice A can be individually irradiated.

このようなLED照明装置3は、図外の制御装置において、照射光の強度や波長および照射時間、点滅の周期等を各種センサー及び制御用コンピュータの利用により電子制御することができる。 In such an LED lighting device 3, in a control device (not shown), the intensity, wavelength, irradiation time, blinking cycle, etc. of the irradiation light can be electronically controlled by using various sensors and a control computer.

水耕栽培に所要の養液は、水槽2内に配管4aを介して送液装置4から供給されており、同栽培用容器2内の要所には養液を循環させるための攪拌、または循環もしくは還流させるための流量および流速が調整可能であるように、養液中の要所に水中ポンプ等の攪拌・循環装置(図外)が設置されている。 The nutrient solution required for hydroponic cultivation is supplied from the liquid feeding device 4 into the water tank 2 via the pipe 4a, and stirring or stirring for circulating the nutrient solution is performed at the key points in the cultivation container 2. A stirring / circulation device (not shown) such as a submersible pump is installed at a key point in the nutrient solution so that the flow rate and the flow velocity for circulating or recirculating can be adjusted.

前記養分は、栽培用容器内に保持される媒体が、主に水である水耕栽培の場合は液状であり、また前記媒体が土壌である場合は液状であっても固形状または半固形状のいずれであってもよい。 The nutrients are liquid when the medium held in the cultivation container is mainly water for hydroponics, and solid or semi-solid even if the medium is liquid when the medium is soil. It may be any of.

また、このような養分を供給するための装置は、養液を供給する溝又は管状の流路を備えた送液装置または、ベルトコンベア等による固形物等の搬送路及びその散布装置を備えた養分供給装置を用いることができる。 Further, the device for supplying such nutrients is provided with a liquid feeding device having a groove for supplying the nutrient solution or a tubular flow path, or a transport path for solid matter by a belt conveyor or the like and a spraying device thereof. A nutrient supply device can be used.

養分の組成については、例えば窒素成分としてアンモニア態窒素(NH4-N)と硝酸態窒素(NO3-N)の割合を施用時期に応じて変化させ、その他に比較的多量にP、K、Ca、Mgや、比較的少量のMn、B、Fe、Cu、Zn、Mo等を含む栄養成分を配合し、水稲の栽培に用いられる周知の処方を採用できる。 Regarding the composition of nutrients, for example, the ratio of ammonia nitrogen (NH 4 -N) and nitrate nitrogen (NO 3 -N) as nitrogen components is changed according to the application time, and in addition, a relatively large amount of P, K, A well-known formulation used for cultivation of paddy rice can be adopted by blending a nutritional component containing Ca, Mg and a relatively small amount of Mn, B, Fe, Cu, Zn, Mo and the like.

また、送気装置5は、室6外のボンベ5bなどから供給される二酸化炭素ガスを、配管5aを介して個々の箱型の容器1内に分配し、その送気量は、電磁弁を利用した周知の制御機構により人為的に制御またはガス濃度センサー及び制御用コンピュータを用いた電子制御が可能である。 Further, the air supply device 5 distributes carbon dioxide gas supplied from a cylinder 5b or the like outside the chamber 6 into each box-shaped container 1 via a pipe 5a, and the amount of the air supply is determined by using a solenoid valve. The well-known control mechanism used enables artificial control or electronic control using a gas concentration sensor and a control computer.

また、温度および湿度は、空調機(エアコンディショナー)8で調整される。空調機8から室6内に給気されるガスや空気は、ヘパフィルター等でろ過されて無菌状態であることが望ましい。 Further, the temperature and humidity are adjusted by the air conditioner (air conditioner) 8. It is desirable that the gas and air supplied from the air conditioner 8 into the room 6 are filtered by a hepa filter or the like and are in an aseptic state.

さらに、実施形態の水稲の栽培プラントを用いた栽培方法では、完全な無農薬米を育成するシステム上に必要な室内での無菌状態を作り出すため、抗微生物性物質を有効成分として含有する所定の殺菌消毒剤(FLC株式会社製:FLCリキッド)を微粒子として含むエアロゾルを栽培環境に導入することも好ましい実施態様である。 Further, in the cultivation method using the paddy rice cultivation plant of the embodiment, in order to create the indoor sterile state required for the system for growing completely pesticide-free rice, a predetermined amount containing an antimicrobial substance as an active ingredient is predetermined. It is also a preferable embodiment to introduce an aerosol containing a bactericidal disinfectant (manufactured by FLC Co., Ltd .: FLC liquid) as fine particles into the cultivation environment.

具体的には、上記所定の殺菌消毒剤を加湿器等に添加し、室6内の湿度を調整すると共にウイルスや雑菌等の微生物を駆除し、植物育成に所要の二酸化炭素以外のガスや空気は、室内が大気圧よりも若干高くなるように給排気装置7で正圧に制御する。 Specifically, the above-mentioned predetermined sterilizing and disinfecting agent is added to a humidifier or the like to adjust the humidity in the room 6 and exterminate microorganisms such as viruses and germs, and gas and air other than carbon dioxide required for plant growth. Is controlled to a positive pressure by the air supply / exhaust device 7 so that the room becomes slightly higher than the atmospheric pressure.

太陽光が遮蔽され大気圧より若干高い正圧に制御された栽培プラントの室内に、7段の栽培用棚を設置すると共に各段に水耕栽培用の栽培用容器を配置し、別に設けた水タンクに栄養成分を配合した養液を供給し、水耕栽培用の水槽へポンプで送水すると共に、送水過程にナノレベル(粒径1μm以下のナノメートル単位のもの)の気泡が混入可能なバルブを接続し、水素及び空気をナノレベルの気泡として混入する水槽中に、オリザ・ルフィポゴン(oryza rufipogon)の矮性品種(開花期の草丈30cm以下)を播種し、太陽光スペクトル再現性白色LED照明装置(東芝マテリアル社製:TRI-R)から光合成有効波長域(波長400~700nm)の光を照射し、成熟期まで栽培した。 In the room of the cultivation plant where the sunlight is shielded and the pressure is controlled to be slightly higher than the atmospheric pressure, a 7-stage cultivation shelf is installed and a cultivation container for hydroponics is arranged in each stage, which is separately provided. A nutrient solution containing nutrients is supplied to the water tank, and water is pumped to the hydroponic water tank, and nano-level (nanometer units with a particle size of 1 μm or less) bubbles can be mixed in the water supply process. A dwarf variety of oryza rufipogon (plant height of 30 cm or less during the flowering period) is sown in a water tank that connects a valve and mixes hydrogen and air as nano-level bubbles, and solar spectrum reproducible white LED lighting. The device (manufactured by Toshiba Materials Co., Ltd .: TRI-R) was irradiated with light in the effective photosynthesis wavelength range (wavelength 400 to 700 nm) and cultivated until the mature stage.

前記照射に際しては、光強度を育成段階に応じて波長域別に調整すると共に、日の出から日の入り後までを含む24時間の日周期変化及び春から秋の季節変化に対応させて調整した。また栽培室内の気温及び養液の水温は、25~32℃を目安にして至適温度に調整し、さらに一日の気温差及び春、夏、秋を想定した季節的変化を空調機及び送液装置で調整し、また湿度及び二酸化炭素濃度を殺菌浄化機能付きの送気装置で調整して栽培環境を整えた。 In the irradiation, the light intensity was adjusted for each wavelength range according to the growing stage, and was adjusted according to the 24-hour daily cycle change including from sunrise to sunset and the seasonal change from spring to autumn. In addition, the temperature in the cultivation room and the water temperature of the nutrient solution are adjusted to the optimum temperature with 25 to 32 ° C as a guide, and the daily temperature difference and seasonal changes assuming spring, summer, and autumn are sent to the air conditioner. The cultivation environment was adjusted by adjusting with a liquid device and adjusting the humidity and carbon dioxide concentration with an air supply device with a sterilizing and purifying function.

上記のように栽培された前記矮性品種は、栽培槽内で播種から生長した主茎から分枝した分蘖が開始されるまで2週間以内であり、また有効分蘖開始期から無効分蘖期までを4週間で終えることができ、さらに幼穂を形成し、開花、登塾、成熟期となって収穫まで8週間で終了させることができた。 The dwarf varieties cultivated as described above are within 2 weeks until the start of branching from the main stem grown from sowing in the cultivation tank, and the period from the start of effective tillering to the ineffective tillering is 4 It could be completed in a week, and it was possible to form young ears, and to complete flowering, attending school, and maturity in 8 weeks until harvesting.

このようにして実施例の栽培における水稲の世代は2か月に促進されると共に稲の作付け密度も高められることにより、単位面積当たりの年間収量が、従来の0.4~0.5kg/m2に比べて40~50倍という大幅な向上が認められた。 In this way, the generation of paddy rice in the cultivation of the examples is promoted to two months and the planting density of the rice is also increased, so that the annual yield per unit area is 0.4 to 0.5 kg / m. A significant improvement of 40 to 50 times was observed compared to 2 .

1 容器
2 水槽
3 LED照明装置
4 送液装置
4a 配管
5 送気装置
5a 配管
5b ボンベ
6 室
7 給排気装置
8 空調機
A 水稲
1 Container 2 Water tank 3 LED lighting device 4 Liquid supply device 4a Piping 5 Air supply device 5a Piping 5b Cylinder 6 Room 7 Air supply / exhaust device 8 Air conditioner A Paddy rice

Claims (6)

太陽光を遮蔽した閉鎖環境下で複数段に配置される栽培槽内で栽培される水稲の矮性品種に対し、LED照明装置から光合成有効波長域の光を照射し、この照射は前記水稲の世代促進が可能であるように育成段階に応じて波長域別に調整された光強度で行なう水稲の栽培方法。 The dwarf varieties of paddy rice cultivated in multiple stages of cultivation tanks in a closed environment shielded from sunlight are irradiated with light in the effective wavelength range of photosynthesis from an LED lighting device, and this irradiation is the generation of the paddy rice. A method of cultivating paddy rice with a light intensity adjusted for each wavelength range according to the growing stage so that it can be promoted. 上記水稲の矮性品種が、オリザ・ルフィポゴン(oryza rufipogon)の矮性品種である請求項1に記載の水稲の栽培方法。 The method for cultivating paddy rice according to claim 1, wherein the dwarf variety of paddy rice is a dwarf variety of oryza rufipogon. 上記LED照明装置が、太陽光スペクトルを再現して照射可能なLED照明装置である請求項1または2に記載の水稲の栽培方法。 The method for cultivating paddy rice according to claim 1 or 2, wherein the LED lighting device is an LED lighting device capable of reproducing and irradiating a sunlight spectrum. 前記調整された光強度が、太陽光の地表面での波長域別光強度の周期変化に対応するように調整された光強度である請求項1~3のいずれかに記載の水稲の栽培方法。 The method for cultivating paddy rice according to any one of claims 1 to 3, wherein the adjusted light intensity is a light intensity adjusted so as to correspond to a periodic change in the light intensity for each wavelength range on the ground surface of sunlight. .. 上記波長域別光強度の周期変化が、日の出から日の入りまでの周期変化、日の入り後を含む24時間の周期変化または春夏秋冬を含む一年間の季節的周期変化である請求項4に記載の水稲の栽培方法。 The paddy rice according to claim 4, wherein the periodic change of the light intensity for each wavelength range is a periodic change from sunrise to sunset, a 24-hour periodic change including after sunset, or a one-year seasonal periodic change including spring, summer, autumn and winter. Cultivation method. 閉鎖環境下で水稲の矮性品種を播種から成熟までの育成が可能であるように上方に空間を設けて複数段に配置され育成媒体を保持する栽培槽と、
光合成有効波長域の光強度を水稲の育成段階に応じて波長域別に制御可能なLED照明装置と、
前記育成媒体に所要の養分を供給する養分供給装置と、
少なくとも二酸化炭素濃度を調整可能な送気装置を備え、
太陽光を遮蔽した前記閉鎖環境下で前記LED照明装置の照明により前記矮性品種の世代促進が可能な水稲の栽培プラント。
A cultivation tank that holds a growing medium and is arranged in multiple stages with a space above so that dwarf varieties of paddy rice can be cultivated from sowing to maturity in a closed environment.
An LED lighting device that can control the light intensity in the effective wavelength range of photosynthesis for each wavelength range according to the growing stage of paddy rice.
A nutrient supply device that supplies the required nutrients to the growth medium,
Equipped with an air supply device that can adjust at least the carbon dioxide concentration
A paddy rice cultivation plant capable of promoting the generation of the dwarf varieties by lighting the LED lighting device in the closed environment where sunlight is shielded.
JP2020131715A 2020-08-03 2020-08-03 Cultivation method of paddy rice and cultivation plant of paddy rice Pending JP2022028364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020131715A JP2022028364A (en) 2020-08-03 2020-08-03 Cultivation method of paddy rice and cultivation plant of paddy rice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020131715A JP2022028364A (en) 2020-08-03 2020-08-03 Cultivation method of paddy rice and cultivation plant of paddy rice

Publications (1)

Publication Number Publication Date
JP2022028364A true JP2022028364A (en) 2022-02-16

Family

ID=80267569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020131715A Pending JP2022028364A (en) 2020-08-03 2020-08-03 Cultivation method of paddy rice and cultivation plant of paddy rice

Country Status (1)

Country Link
JP (1) JP2022028364A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248792A1 (en) * 2022-06-22 2023-12-28 ウシオ電機株式会社 Plant cultivation device and plant cultivation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248792A1 (en) * 2022-06-22 2023-12-28 ウシオ電機株式会社 Plant cultivation device and plant cultivation method

Similar Documents

Publication Publication Date Title
WO2022048302A1 (en) Method for accelerating vegetative growth to reproductive growth of leafy vegetables
AU2007202477A1 (en) Method of producing rooted cuttings or mother trees for collection of cuttings
WO2021248642A1 (en) Method for controlling plant growth
CN110495318A (en) A kind of illumination method of regulation plants ' reproduction development
JP2022518259A (en) Light irradiation method that promotes plant growth, plant lamps and their applications
WO2015163217A1 (en) Plant cultivation method
CN111802129A (en) Plant seedling raising device and seedling raising method
CN112533476A (en) Plant cultivation light source and plant cultivation device
JP2022028364A (en) Cultivation method of paddy rice and cultivation plant of paddy rice
JP6781593B2 (en) Hydroponic cultivation method and hydroponic cultivation equipment
JP7127067B2 (en) Method and device for growing crops
CN107873518B (en) A kind of tissue culture method of Fourstamen Stephania Root seedling
CN109964816A (en) A kind of method for culturing seedlings of African Chrysanthemum monoploid transplanted seedling
RU2715604C1 (en) Method of producing healthier potato minitubers
JP2020129978A (en) Production method of seedlings of Cunninghamia and production method of Cunninghamia
KR101926384B1 (en) Method for hydroponics of nicotina benthamiana
JP5303583B2 (en) Ginseng cultivating soil sterilization method and apparatus using electron beam, and ginseng cultivating system using the same
Yang et al. Effects of the red: far-red light ratio on photosynthetic characteristics of greenhouse cut Chrysanthemum-short communication
JPH10313683A (en) Grafting cell forming seedling low temperature storing method controllable in gas composition under weak light radiation
CN114847029A (en) Luminous environment regulation and control method for reducing melon melting rate of indoor cultivated cucumber
JP5376667B2 (en) Flower seedling raising method and seedling system
KR101172762B1 (en) Method of improving texture of spring onion in factory type cultivating facility
WO2023248792A1 (en) Plant cultivation device and plant cultivation method
WO2023218911A1 (en) Method for growing fruit vegetable plant, apparatus for growing fruit vegetable plant, and tomato plant
JP5993156B2 (en) How to grow wasabi seedlings

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402