JP2022026770A - Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY - Google Patents

Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY Download PDF

Info

Publication number
JP2022026770A
JP2022026770A JP2020130391A JP2020130391A JP2022026770A JP 2022026770 A JP2022026770 A JP 2022026770A JP 2020130391 A JP2020130391 A JP 2020130391A JP 2020130391 A JP2020130391 A JP 2020130391A JP 2022026770 A JP2022026770 A JP 2022026770A
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
secondary battery
lithium ion
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020130391A
Other languages
Japanese (ja)
Inventor
恒良 中嶋
Tsuneyoshi Nakashima
弘貴 西
Hiroki Nishi
裕也 稲垣
Yuya Inagaki
祐貴 高橋
Yuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2020130391A priority Critical patent/JP2022026770A/en
Publication of JP2022026770A publication Critical patent/JP2022026770A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To achieve both of suppression of deposition and an effective use of a metalli lithium and of a lithium ion secondary battery.SOLUTION: A Li precipitation suppression control method of a lithium ion secondary battery, using a side reaction current, comprises: a voltage measurement step (S5) of measuring a cell voltage; an electric potential estimation step (S6) of estimating an electric potential of positive and negative electrodes from the cell voltage to be acquired; a cell temperature measurement step (S7) of acquiring a battery temperature; side reaction current estimation step (S8) of estimating a positive and negative electrode side reaction current value from the electric potential of the estimated positive and negative electrodes and the cell temperature; a negative electrode deterioration amount estimation step (S9) of estimating a negative electrode deterioration amount by integrating the estimated positive and negative electrode side reaction current value; and a charging current determination step (S10) of continuously determining an upper limit charging current permitted in the range where the Li precipitation is suppressed in accordance with the estimated negative electrode deterioration amount.SELECTED DRAWING: Figure 3

Description

本発明は、リチウムイオン二次電池のLi析出抑制制御方法及び制御装置に係り、詳しくは副反応電流を用いたリチウムイオン二次電池のLi析出抑制制御方法及び制御装置に関する。 The present invention relates to a Li precipitation suppression control method and a control device for a lithium ion secondary battery, and more particularly to a Li precipitation suppression control method and a control device for a lithium ion secondary battery using a side reaction current.

一般に、リチウムイオン二次電池は、エネルギー密度が高く、他の二次電池に比べ、初期開路電圧及び平均動作電圧が高い。このことから、大きな電池容量、高い電圧を必要とするハイブリッド自動車用電源システムには好適である。また、リチウムイオン二次電池は、クーロン効率が100%に近いことから充放電効率が高く、したがって、他の二次電池に比べエネルギーの有効利用が可能であるという利点も有する。 In general, a lithium ion secondary battery has a high energy density, and has a higher initial opening voltage and average operating voltage than other secondary batteries. Therefore, it is suitable for a power supply system for a hybrid vehicle that requires a large battery capacity and a high voltage. Further, the lithium ion secondary battery has an advantage that the charge / discharge efficiency is high because the coulomb efficiency is close to 100%, and therefore energy can be effectively used as compared with other secondary batteries.

しかしながら、リチウムイオン二次電池は、使用態様(例えば、ハイレートで充電、高充電状態(高SOC)からの充電、長時間充電継続、低温での充電(抵抗が高い状態での充電))において、リチウムイオン二次電池の負極表面に金属リチウムが析出する虞があり、結果として、リチウムイオン二次電池の劣化を招く虞がある。 However, the lithium-ion secondary battery is used in a usage mode (for example, charging at a high rate, charging from a high charging state (high SOC), continuing charging for a long time, charging at a low temperature (charging in a high resistance state)). Metallic lithium may be deposited on the surface of the negative electrode of the lithium ion secondary battery, and as a result, the lithium ion secondary battery may be deteriorated.

電動車両では、バッテリで駆動されるモータジェネレータに接続された駆動輪を回生制動力で制動する。この際、モータジェネレータが発電する電力は、バッテリに充電させて回収する。しかし、限度を超えて回生により得られた電力でバッテリを充電すると、バッテリが過充電状態となり金属リチウムの析出が生じてしまう。これを防止するために、バッテリ電圧とバッテリ電圧リミットとを比較し、バッテリ電圧がバッテリ電圧リミットを超えないようにバッテリの充電を制御するバッテリ充電制御装置が提案されている。 In an electric vehicle, the drive wheels connected to a battery-powered motor generator are braked by regenerative braking force. At this time, the electric power generated by the motor generator is recovered by charging the battery. However, if the battery is charged with the electric power obtained by regeneration exceeding the limit, the battery becomes overcharged and the precipitation of metallic lithium occurs. In order to prevent this, a battery charge control device that compares the battery voltage with the battery voltage limit and controls the battery charge so that the battery voltage does not exceed the battery voltage limit has been proposed.

特許文献1に記載された発明では、充電電流が許容電流を上回らないように二次電池の充電を制御する。 In the invention described in Patent Document 1, charging of the secondary battery is controlled so that the charging current does not exceed the allowable current.

国際公開第2010/005079号International Publication No. 2010/005079

しかしながら、特許文献1に記載された発明では、セル電池全体の電圧に基づいてリチウム析出を判定しているため、リチウム析出に影響が少ない正極の劣化によりセル電池全体の容量劣化量が大きいと、負極の劣化が少ない場合でも充電電流が規制されてしまうという問題があった。 However, in the invention described in Patent Document 1, since lithium precipitation is determined based on the voltage of the entire cell battery, it is said that the amount of capacity deterioration of the entire cell battery is large due to the deterioration of the positive electrode, which has little effect on lithium precipitation. There is a problem that the charging current is regulated even when the deterioration of the negative electrode is small.

また、図15に示すように、充電電流が、負極に金属Liが析出しない電流として設定される許容電流を上回らないように充電を制御する際に、車両の利用様態に関わらずあらかじめ決められた許容電流のユーザ設定値を領域2の部分に一律に静的に設定する。そのため、あらかじめ想定された劣化状態に達するまでの期間は、領域1の範囲でも金属リチウムの析出は抑制できるにもかかわらず、充電性能が過度に制限されてしまうという問題もあった。 Further, as shown in FIG. 15, when the charging is controlled so that the charging current does not exceed the allowable current set as the current at which the metal Li does not deposit on the negative electrode, it is determined in advance regardless of the usage mode of the vehicle. The user-set value of the allowable current is uniformly and statically set in the region 2. Therefore, there is also a problem that the charging performance is excessively limited even though the precipitation of metallic lithium can be suppressed even in the range of the region 1 during the period until the deterioration state assumed in advance is reached.

本発明は、上記問題点を解決するため、リチウムイオン二次電池の金属リチウムの析出の抑制と効率的な利用の両立を図ることができるリチウムイオン二次電池のLi析出抑制制御方法及び装置を提供することにある。 In order to solve the above problems, the present invention provides a Li precipitation suppression control method and apparatus for a lithium ion secondary battery, which can achieve both suppression of precipitation of metallic lithium in a lithium ion secondary battery and efficient utilization. To provide.

前記課題を解決するため、本発明のリチウムイオン二次電池のLi析出抑制制御方法では、セル電圧を測定する電圧測定のステップと、取得した前記セル電圧から正極開放電位と負極開放電位を推定する電位推定のステップと、セル温度を取得するセル温度測定のステップと、前記推定した正極開放電位及び負極開放電位とセル温度とから、正極副反応電流値及び負極副反応電流値を推定する副反応電流推定のステップと、推定した前記負極副反応電流値を積算して負極劣化量を推定する負極劣化量推定のステップと、前記推定した負極劣化量に応じてLi析出を抑制する範囲で許容される上限の充電電流を決定する充電電流決定のステップとを備えたことを特徴とする。 In order to solve the above problems, in the Li precipitation suppression control method of the lithium ion secondary battery of the present invention, the positive electrode open potential and the negative electrode open potential are estimated from the voltage measurement step of measuring the cell voltage and the acquired cell voltage. A side reaction that estimates the positive electrode side reaction current value and the negative electrode side reaction current value from the potential estimation step, the cell temperature measurement step for acquiring the cell temperature, and the estimated positive electrode open potential, negative electrode open potential, and cell temperature. A current estimation step, a negative electrode deterioration amount estimation step for estimating the negative electrode deterioration amount by integrating the estimated negative electrode side reaction current values, and a range in which Li precipitation is suppressed according to the estimated negative electrode deterioration amount are allowed. It is characterized by including a step of determining the charging current for determining the upper limit charging current.

前記充電電流決定のステップにおいて、負極劣化量に応じて、Li析出を生じない限界の充電電流と対応させたマップに基づいて、Li析出を抑制する範囲で許容される上限の充電電流を決定してもよい。 In the step of determining the charging current, the upper limit charging current allowed within the range of suppressing Li precipitation is determined based on the map corresponding to the limit charging current that does not cause Li precipitation according to the amount of deterioration of the negative electrode. You may.

また、推定した前記正極副反応電流値及び負極副反応電流値から容量劣化量を推定する容量劣化量予測のステップをさらに備えることも好ましい。
前記充電電流決定のステップにおいて決定されたLi析出を抑制する範囲で許容される上限の充電電流を閾値として、前記リチウムイオン二次電池の充電電流を制限する充電のステップとを備えることもできる。
It is also preferable to further include a step of predicting the amount of capacity deterioration by estimating the amount of capacity deterioration from the estimated positive electrode side reaction current value and the negative electrode side reaction current value.
It is also possible to include a charging step that limits the charging current of the lithium ion secondary battery with the upper limit charging current allowed within the range of suppressing Li precipitation determined in the charging current determination step as a threshold value.

前記充電のステップにおいて、前記負極劣化量推定のステップにおいて負極劣化量を推定する毎に前記閾値を更新することも好ましい。
前記負極劣化量算出のステップにおいて、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位、UPEを正極開放電位としたとき、下記式(3)により算出した負極副反応電流値iNEを算出する。
It is also preferable to update the threshold value every time the negative electrode deterioration amount is estimated in the negative electrode deterioration amount estimation step in the charging step.
In the step of calculating the amount of deterioration of the negative electrode, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UNE is the negative electrode open potential. When the UPE is set to the positive electrode open potential, the negative electrode side reaction current value iNE calculated by the following equation (3) is calculated.

Figure 2022026770000002
また、正極劣化量算出のステップにおいて、下記式(4)により正極副反応電流値iPEを算出することも好ましい。
Figure 2022026770000002
It is also preferable to calculate the positive electrode side reaction current value iPE by the following equation (4) in the step of calculating the amount of deterioration of the positive electrode.

Figure 2022026770000003
また、前記負極劣化量算出のステップにおいて、経過時間に応じて副反応電流値を減衰させた値を用いて負極劣化量を算出することも好ましい。
Figure 2022026770000003
Further, in the step of calculating the negative electrode deterioration amount, it is also preferable to calculate the negative electrode deterioration amount by using the value obtained by attenuating the side reaction current value according to the elapsed time.

さらに、前記リチウムイオン二次電池のLi析出抑制制御方法を実行する前に、リチウムイオン二次電池を特定の条件で保存する保存のステップと、前記保存したリチウムイオン二次電池の保存前後の電池満容量の容量低下量を測定する容量低下量測定のステップと、前記保存したリチウムイオン二次電池の保存前後の自己放電容量を測定する自己放電容量測定のステップと、前記容量低下量及び自己放電容量とから、前記保存時の特定条件における正極及び負極の副反応電流値を求めるステップとを含む劣化特性取得のステップを備えることも好ましい。 Further, before executing the method for controlling Li precipitation suppression of the lithium ion secondary battery, a storage step of storing the lithium ion secondary battery under specific conditions and a battery before and after the storage of the stored lithium ion secondary battery are further performed. The step of measuring the capacity reduction amount to measure the capacity reduction amount of the full capacity, the self-discharge capacity measurement step of measuring the self-discharge capacity before and after storage of the stored lithium ion secondary battery, and the capacity reduction amount and self-discharge. It is also preferable to include a step of acquiring deterioration characteristics including a step of obtaining a side reaction current value of the positive electrode and the negative electrode under the specific conditions at the time of storage from the capacity.

本発明のリチウムイオン二次電池の制御装置では、リチウムイオン二次電池のセル電圧を検出する電圧センサと、リチウムイオン二次電池のセル温度を検出する温度センサと、
CPUとメモリとを有したコンピュータとを備えたリチウムイオン二次電池の制御装置であって、前記コンピュータは、請求項1~8のいずれか一項に記載のリチウムイオン二次電池のLi析出抑制制御方法を実行する制御手段を構成することを特徴とする。
In the control device for the lithium ion secondary battery of the present invention, a voltage sensor for detecting the cell voltage of the lithium ion secondary battery, a temperature sensor for detecting the cell temperature of the lithium ion secondary battery, and a temperature sensor are used.
A control device for a lithium ion secondary battery including a computer having a CPU and a memory, wherein the computer suppresses Li precipitation of the lithium ion secondary battery according to any one of claims 1 to 8. It is characterized by configuring a control means for executing a control method.

この場合、前記リチウムイオン二次電池は車両に搭載され、前記コンピュータが前記車両に搭載されたコンピュータとすることもできる。 In this case, the lithium ion secondary battery may be mounted on a vehicle, and the computer may be a computer mounted on the vehicle.

本発明のリチウムイオン二次電池のLi析出抑制制御方法及び装置では、リチウムイオン二次電池の金属リチウムの析出の抑制と効率的な利用の両立を図ることができる。 In the Li precipitation suppression control method and apparatus of the lithium ion secondary battery of the present invention, it is possible to achieve both suppression of precipitation of metallic lithium in the lithium ion secondary battery and efficient utilization.

リチウムイオン二次電池の構造の一例を示す模式図。The schematic diagram which shows an example of the structure of a lithium ion secondary battery. 本実施形態に係るリチウムイオン二次電池を搭載する車両の全体構成を概略的に示す模式図。The schematic diagram schematically showing the whole structure of the vehicle equipped with the lithium ion secondary battery which concerns on this embodiment. 副反応電流を用いたリチウムイオン二次電池のLi析出を抑制する制御方法のフローチャート。The flowchart of the control method which suppresses Li precipitation of a lithium ion secondary battery using a side reaction current. リチウムイオン二次電池の劣化特性取得のため装置の構成を示すブロック図。The block diagram which shows the structure of the apparatus for acquiring the deterioration characteristic of a lithium ion secondary battery. 劣化特性取得の手順を示すフローチャート。A flowchart showing the procedure for acquiring deterioration characteristics. (a)劣化前の正極・負極の容量-OCP(Open circuit potential)特性(電池容量とそのときの正極・負極の開放電位との関係を示すもの)を示すグラフ。(b)劣化後のOCP特性を示すグラフ。(A) A graph showing the positive electrode / negative electrode capacity before deterioration-OCP (Open circuit potential) characteristics (showing the relationship between the battery capacity and the open potential of the positive electrode / negative electrode at that time). (B) A graph showing OCP characteristics after deterioration. 本実施形態の劣化後の正極・負極のSOC-OCP特性を示すグラフ。The graph which shows the SOC-OCP characteristic of the positive electrode and the negative electrode after deterioration of this embodiment. 本実施形態の時間tから所定の時間tまでに積算された負極劣化量Qを算出するフローチャート。The flowchart which calculates the negative electrode deterioration amount Q integrated from the time t 0 of this embodiment to a predetermined time t 1 . 被膜成長のモデルを示す模式図。Schematic diagram showing a model of film growth. 被膜形成量と副反応電流値の関係を示す式。An equation showing the relationship between the amount of film formed and the side reaction current value. 被膜量の逆数に対する電流値の減衰率を示すグラフ。A graph showing the attenuation rate of the current value with respect to the reciprocal of the coating amount. 経過時間と被膜形成量と副反応電流値の関係を示す表。A table showing the relationship between the elapsed time, the amount of film formation, and the side reaction current value. 従来技術の劣化度推定結果と本実施形態の劣化度推定結果を比較するグラフ。The graph which compares the deterioration degree estimation result of the prior art and the deterioration degree estimation result of this embodiment. 負極劣化-Li析出許容電流マップの概念的な一例を示すグラフ。A graph showing a conceptual example of a negative electrode deterioration-Li precipitation allowable current map. 従来のバッテリ充電制御装置の制御を示すグラフ。The graph which shows the control of the conventional battery charge control device.

図1~14を参照して、本発明の副反応電流を用いたリチウムイオン二次電池のLi析出抑制制御方法及び制御装置を、一実施形態を例に説明する。
<実施形態の概略>
本実施形態の車両10は、例えばハイブリッド車であり回生ブレーキなどにより充電を行うような車両を例示している。もちろん、車両10はリチウムイオン二次電池によりモータジェネレータを駆動するものであれば、プラグインハイブリッド車はもちろん電気自動車なども対象となる。この車両10は、リチウムイオン二次電池1を搭載しており、このリチウムイオン二次電池1は、ECU(電子制御装置:Electronic Control Unit)100により、充電電流が制御されている。
With reference to FIGS. 1 to 14, a Li precipitation suppression control method and a control device for a lithium ion secondary battery using the side reaction current of the present invention will be described by way of an embodiment.
<Outline of Embodiment>
The vehicle 10 of the present embodiment is, for example, a hybrid vehicle and exemplifies a vehicle that is charged by a regenerative brake or the like. Of course, as long as the vehicle 10 drives a motor generator with a lithium-ion secondary battery, not only a plug-in hybrid vehicle but also an electric vehicle and the like are targeted. The vehicle 10 is equipped with a lithium ion secondary battery 1, and the charging current of the lithium ion secondary battery 1 is controlled by an ECU (Electronic Control Unit) 100.

リチウム金属の析出は、リチウムイオン二次電池1の劣化により、許容される充電電流の上限値が低くなることがわかっている。特に負極の容量が減少することによりその上限値が低下する。 It is known that the precipitation of the lithium metal lowers the upper limit of the allowable charging current due to the deterioration of the lithium ion secondary battery 1. In particular, as the capacity of the negative electrode decreases, the upper limit value decreases.

そこで本実施形態では、このECU100により、測定したセル電圧VBと、随時変化する正負極組成対応ずれ容量ΔQから、その時の負極開放電位VNE0及び正極開放電位VPE0を正確に推定する。このように正確に推定した負極開放電位VNE0及び正極開放電位VPE0に加えてセル温度TBに基づいて、負極における副反応電流値iNE及び正極における副反応電流値iPEを正確に算出する。そしてこれらをそれぞれ積算して、負極における副反応電流値iNE及び正極における副反応電流値iPEの累積に基づいて、負極劣化量INE及び、正極劣化量IPEをそれぞれ算出し、正負極組成対応ずれ容量ΔQを補正していく。この繰り返しで常に正確な負極開放電位VNE0及び正極開放電位VPE0に基づいて負極における副反応電流値iNE及び正極における副反応電流値iPEを推定する。言い換えれば、副反応電流値iNEにより形成される負極のSEI被膜(solid electrolyte interphase)の厚さを正確に推定すれば、負極の劣化及び正極の劣化を区別して、負極の劣化が正確に推定できることになる。 Therefore, in the present embodiment, the negative electrode open potential VNE0 and the positive electrode open potential VPE0 at that time are accurately estimated from the measured cell voltage VB and the shift capacity ΔQ corresponding to the positive / negative electrode composition that changes at any time by the ECU 100. Based on the cell temperature TB in addition to the negative electrode open potential V NE0 and the positive electrode open potential V PE0 estimated accurately in this way, the side reaction current value i NE at the negative electrode and the side reaction current value i PE at the positive electrode are accurately calculated. .. Then, by integrating these, the negative electrode deterioration amount I NE and the positive electrode deterioration amount I PE are calculated based on the accumulation of the side reaction current value i NE at the negative electrode and the side reaction current value i PE at the positive electrode, respectively, and the positive and negative electrodes are calculated. The composition correspondence deviation capacity ΔQ is corrected. By repeating this process, the side reaction current value iNE at the negative electrode and the side reaction current value iPE at the positive electrode are estimated based on the negative electrode open potential VNE0 and the positive electrode open potential VPE0 . In other words, if the thickness of the SEI film (solid electrolyte interphase) of the negative electrode formed by the side reaction current value iNE is accurately estimated, the deterioration of the negative electrode and the deterioration of the positive electrode can be distinguished and the deterioration of the negative electrode can be accurately estimated. You will be able to do it.

リチウムイオン二次電池1の全体の容量低下は、電池の劣化により進行するが、金属リチウムの析出は主に負極で発生するため、金属リチウムの析出の抑制のためには、負極における劣化を正確に推定する必要がある。本実施形態のLi析出抑制制御装置であるECU100による制御方法では、このように推定した負極の劣化の変化に応じて充電電流閾値ICmaxを設定する。この「充電電流閾値ICmax」は、実験的に、リチウムイオン二次電池1に、充電するときの電流値を、このICmaxを超えないようにすれば、負極における金属リチウムの析出を抑制することができる閾値である。そしてこの充電電流閾値ICmaxにより、金属リチウムの析出が生じるようなハイレートの充電電流ICの上限を逐次動的に制限して金属リチウムの析出を回避する。したがって、常に金属リチウムの析出を抑制できる範囲で、充電電流ICを最大にして、リチウムイオン二次電池1の劣化の抑制と効率的な利用の両立を図っている。 The decrease in the overall capacity of the lithium ion secondary battery 1 progresses due to the deterioration of the battery, but since the precipitation of metallic lithium mainly occurs at the negative electrode, the deterioration at the negative electrode is accurate in order to suppress the precipitation of metallic lithium. Need to be estimated. In the control method by the ECU 100, which is the Li precipitation suppression control device of the present embodiment, the charge current threshold value ICmax is set according to the change in the deterioration of the negative electrode estimated in this way. This "charging current threshold ICmax" can suppress the precipitation of metallic lithium in the negative electrode by experimentally setting the current value at the time of charging the lithium ion secondary battery 1 not to exceed this ICmax. It is a possible threshold. Then, by this charging current threshold ICmax, the upper limit of the high-rate charging current IC that causes the precipitation of metallic lithium is sequentially and dynamically limited to avoid the precipitation of metallic lithium. Therefore, the charging current IC is maximized within the range in which the precipitation of metallic lithium can always be suppressed, and the deterioration of the lithium ion secondary battery 1 is suppressed and the efficient use is achieved at the same time.

<リチウムイオン二次電池1>
図1は、リチウムイオン二次電池1の構造の一例を示す模式図である。リチウムイオン二次電池1は、図示しない電解質とともに、その正極3、負極4、及びセパレータ5が内側に封入されたセルを構成要素とする。そして、例えば、車載電源等、その用途に応じて、このようなセルを複数組み合わせてパッケージ化する構成が一般的となっている。
<Lithium-ion secondary battery 1>
FIG. 1 is a schematic diagram showing an example of the structure of the lithium ion secondary battery 1. The lithium ion secondary battery 1 includes an electrolyte (not shown) and a cell in which a positive electrode 3, a negative electrode 4, and a separator 5 are enclosed inside. Then, for example, a configuration in which a plurality of such cells are combined and packaged according to the application such as an in-vehicle power supply is common.

正極3及び負極4、及びセパレータ5は、シート状の外形を有して積層される。更に、この積層体を巻回することにより、正極3と負極4との間にセパレータ5を挟み込む状態で、その径方向において、正負の電極とセパレータ5とが交互に並ぶ電極体11が形成される。即ち、電極体11の形成には、二枚のセパレータ5が用いられる。また、多くの場合、電極体11は、その巻回された正極3、負極4、及びセパレータ5を径方向外側から押圧することで、扁平した外形を有するものとなっている。そして、リチウムイオン二次電池1は、このような電極体11を、電解質となる非水電解液や非水電解質ポリマー等とともに、そのセル10の外殻を構成するケース12内に収容する構成となっている。 The positive electrode 3, the negative electrode 4, and the separator 5 have a sheet-like outer shape and are laminated. Further, by winding this laminated body, an electrode body 11 in which positive and negative electrodes and the separator 5 are alternately arranged in the radial direction is formed in a state where the separator 5 is sandwiched between the positive electrode 3 and the negative electrode 4. To. That is, two separators 5 are used to form the electrode body 11. Further, in many cases, the electrode body 11 has a flat outer shape by pressing the wound positive electrode 3, the negative electrode 4, and the separator 5 from the outside in the radial direction. The lithium ion secondary battery 1 is configured to accommodate such an electrode body 11 together with a non-aqueous electrolyte solution as an electrolyte, a non-aqueous electrolyte polymer, and the like in a case 12 constituting the outer shell of the cell 10. It has become.

また、正極3及び負極4は、それぞれ、例えば、シート状の外形を有した正極集電体13及び負極集電体14に対し、活物質を含んだスラリーを塗布することにより形成される。具体的には、正極集電体13には、例えば、アルミニウム等が用いられ、正極活物質には、リチウム遷移金属酸化物が用いられる。また、負極集電体14には、例えば、銅等が用いられ、負極活物質には、炭素系材料が用いられる。更に、リチウムイオン二次電池1のケース12には、その外部に突出する正極端子15及び負極端子16が設けられている。そして、リチウムイオン二次電池1は、これらの正極端子15及び負極端子16に対して、それぞれ、その対応する正極集電体13及び負極集電体14が電気的に接続される構成となっている。 Further, the positive electrode 3 and the negative electrode 4 are formed by, for example, applying a slurry containing an active material to the positive electrode current collector 13 and the negative electrode current collector 14 having a sheet-like outer shape, respectively. Specifically, for example, aluminum or the like is used for the positive electrode current collector 13, and lithium transition metal oxide is used as the positive electrode active material. Further, for example, copper or the like is used for the negative electrode current collector 14, and a carbon-based material is used for the negative electrode active material. Further, the case 12 of the lithium ion secondary battery 1 is provided with a positive electrode terminal 15 and a negative electrode terminal 16 projecting to the outside thereof. The lithium ion secondary battery 1 is configured such that the positive electrode current collector 13 and the negative electrode current collector 14 corresponding to the positive electrode terminal 15 and the negative electrode terminal 16 are electrically connected to the positive electrode terminal 15 and the negative electrode terminal 16, respectively. There is.

リチウムイオン二次電池は、使用態様(例えば、ハイレートで充電、高充電状態(高SOC)からの充電、長時間充電継続、低温での充電(抵抗が高い状態での充電))において、リチウムイオンの負極における吸収拡散がリチウムイオンの供給に追い付かず、リチウムイオン二次電池の負極表面に金属リチウムが析出する虞がある。 Lithium-ion secondary batteries are used in modes of use (for example, charging at a high rate, charging from a high charge state (high SOC), continuous charging for a long time, charging at a low temperature (charging in a high resistance state)). The absorption and diffusion at the negative electrode of the lithium ion secondary battery may not catch up with the supply of lithium ions, and metallic lithium may be deposited on the surface of the negative electrode of the lithium ion secondary battery.

金属リチウムの析出は、セパレータ5を突き抜けて正極3と負極4との短絡の原因ともなり、自己放電が大きく劣化が著しく早くなる。また、一旦金属リチウムとして析出すると、リチウムイオンには戻らないため、リチウムイオンの減少による劣化も進む。 Precipitation of metallic lithium causes a short circuit between the positive electrode 3 and the negative electrode 4 by penetrating the separator 5, and the self-discharge is large and the deterioration is remarkably accelerated. Further, once precipitated as metallic lithium, it does not return to lithium ions, so that deterioration due to a decrease in lithium ions progresses.

したがって、充電電流や充電電圧を制御するなどして金属リチウムの析出を抑制しなければならない。
<リチウムイオン二次電池1が搭載される車両10の全体構成>
次に、本実施形態のリチウムイオン二次電池1が搭載される車両10について、簡単に説明する。
Therefore, it is necessary to suppress the precipitation of metallic lithium by controlling the charging current and the charging voltage.
<Overall configuration of vehicle 10 equipped with lithium-ion secondary battery 1>
Next, the vehicle 10 on which the lithium ion secondary battery 1 of the present embodiment is mounted will be briefly described.

図2は、実施形態に係るリチウムイオン二次電池1を搭載する車両10の全体構成を概略的に示す模式図である。車両10は、ハイブリッド車両である。車両10は、リチウムイオン二次電池1の制御装置18と、PCU(パワーコントロールユニット:Power Control Unit)30と、モータジェネレータ41,42と、エンジン50と、動力分割装置60と、駆動軸70と、駆動輪80とを備える。 FIG. 2 is a schematic diagram schematically showing the overall configuration of the vehicle 10 equipped with the lithium ion secondary battery 1 according to the embodiment. The vehicle 10 is a hybrid vehicle. The vehicle 10 includes a control device 18 for a lithium ion secondary battery 1, a PCU (Power Control Unit) 30, motor generators 41 and 42, an engine 50, a power split device 60, and a drive shaft 70. , The drive wheel 80 is provided.

リチウムイオン二次電池の制御装置18は、リチウムイオン二次電池1と、このリチウムイオン二次電池1のセル電圧VB、セル電流IB、セル温度TBを常時監視する監視ユニット20と、これらのセル電圧VB・セル電流IB・セル温度TBを記憶するメモリ102、及びこれらを処理するCPU101を備えたECU100とを備える。 The control device 18 of the lithium ion secondary battery includes the lithium ion secondary battery 1, the monitoring unit 20 that constantly monitors the cell voltage VB, the cell current IB, and the cell temperature TB of the lithium ion secondary battery 1, and these cells. It includes a memory 102 that stores a voltage VB, a cell current IB, and a cell temperature TB, and an ECU 100 having a CPU 101 that processes them.

<モータジェネレータ42>
モータジェネレータ42は、主として電動機として動作し、急加速時にはリチウムイオン二次電池1から供給された大電流で駆動輪80を駆動する。一方、車両の制動時や下り斜面では、モータジェネレータ42は、発電機として動作して大電流の回生発電を行ない、リチウムイオン二次電池1に大電流を供給する。
<Motor generator 42>
The motor generator 42 mainly operates as an electric motor, and drives the drive wheels 80 with a large current supplied from the lithium ion secondary battery 1 at the time of sudden acceleration. On the other hand, when the vehicle is braking or on a downward slope, the motor generator 42 operates as a generator to regenerate a large current and supply a large current to the lithium ion secondary battery 1.

このような車載用のリチウムイオン二次電池1では、使用環境により劣化の進み方が異なることがある。例えば、環境温度が低温から高温まで変化してセル温度TBが低温から高温まで変化したり、ハイレートの充放電が行われたり、その充放電の状況から低いセルSOCから高いセルSOCまで変化したりしたような場合である。 In such an in-vehicle lithium ion secondary battery 1, the progress of deterioration may differ depending on the usage environment. For example, the environmental temperature changes from low temperature to high temperature and the cell temperature TB changes from low temperature to high temperature, high-rate charging / discharging is performed, and the charging / discharging status changes from low cell SOC to high cell SOC. This is the case.

<リチウムイオン二次電池の監視ユニット20>
監視ユニット20は、電圧センサ21と、電流センサ22と、温度センサ23とを含む。電圧センサ21は、セル電圧VBを検出する。電流センサ22は、リチウムイオン二次電池1に入出力される電流IBを検出する。温度センサ23は、ブロック毎のセル温度TBを検出する。各センサは、その検出結果を示す信号をECU100に出力する。これらのセル電圧VB、セル電流IBは、このリチウムイオン二次電池1の履歴として、一定時間毎にセル温度TB、セル電圧VBとして記憶される。
<Lithium-ion secondary battery monitoring unit 20>
The monitoring unit 20 includes a voltage sensor 21, a current sensor 22, and a temperature sensor 23. The voltage sensor 21 detects the cell voltage VB. The current sensor 22 detects the current IB input / output to / from the lithium ion secondary battery 1. The temperature sensor 23 detects the cell temperature TB for each block. Each sensor outputs a signal indicating the detection result to the ECU 100. These cell voltage VB and cell current IB are stored as cell temperature TB and cell voltage VB at regular time intervals as the history of the lithium ion secondary battery 1.

<セル電圧VB・セル電流IB・セル温度TB>
本実施形態では、リチウムイオン二次電池1が車両10に搭載された使用開始の時間tから、その運用時には、Δt(例えば、0.1秒)毎に、セル電圧VB・セル電流IB・セル温度TBの測定及び記録、劣化の判定が行われている。
<Cell voltage VB, cell current IB, cell temperature TB>
In the present embodiment, the cell voltage VB, the cell current IB, and so on are every Δt (for example, 0.1 seconds) from the start time t 0 when the lithium ion secondary battery 1 is mounted on the vehicle 10 and during its operation. The cell temperature TB is measured and recorded, and deterioration is determined.

<ECU100>
メモリ102、CPU101を備えたECU(電子制御装置:Electronic Control Unit)100は、制御用のコンピュータとして機能し、本発明のリチウムイオン二次電池の制御装置として機能する。
<ECU100>
The ECU (Electronic Control Unit) 100 provided with the memory 102 and the CPU 101 functions as a computer for control and functions as a control device for the lithium ion secondary battery of the present invention.

(実施形態の作用)
<副反応電流を用いたリチウムイオン二次電池のLi析出を抑制する制御方法>
図3は、副反応電流を用いたリチウムイオン二次電池のLi析出を抑制する制御方法のフローチャートである。本実施形態では、リチウムイオン二次電池1とこれを搭載する車両10により、以下のような手順で、副反応電流を用いたリチウムイオン二次電池のLi析出を抑制するように制御する。
(Action of Embodiment)
<Control method for suppressing Li precipitation of lithium ion secondary battery using side reaction current>
FIG. 3 is a flowchart of a control method for suppressing Li precipitation of a lithium ion secondary battery using a side reaction current. In the present embodiment, the lithium ion secondary battery 1 and the vehicle 10 on which the lithium ion secondary battery 1 is mounted are controlled by the following procedure so as to suppress Li precipitation of the lithium ion secondary battery using a side reaction current.

<電池劣化特性取得(S1)>
まず、車両10にリチウムイオン二次電池1を搭載する前に、車載するリチウムイオン二次電池1の最初の状態と、劣化の速度の固有の特性を測定する。このように車載するリチウムイオン二次電池1を予め測定することで、車載後の劣化の推定を正確なものとすることができる。
<Battery deterioration characteristic acquisition (S1)>
First, before mounting the lithium ion secondary battery 1 on the vehicle 10, the initial state of the lithium ion secondary battery 1 mounted on the vehicle and the inherent characteristics of the deterioration rate are measured. By measuring the lithium-ion secondary battery 1 mounted on the vehicle in advance in this way, it is possible to accurately estimate the deterioration after the vehicle is mounted.

ここで、図4及び図5を参照して、この劣化特性取得の手順を説明する。正確な劣化の推定のためには、その推定の基準となる車両10に搭載されたリチウムイオン二次電池1の劣化の速度、つまり、リチウムイオン二次電池1の固有の劣化特性を予め取得しておくことが重要である。そこで、リチウムイオン二次電池1を車両に搭載する前、若しくは車両に搭載されたリチウムイオン二次電池1を車両から取り外して、劣化特性取得の装置200にセットして測定をする。そして、予め設定された特定の温度、時間、充放電の条件で「保存」を行い、その前後での副反応電流の実測値の差から、このリチウムイオン二次電池1の固有の劣化の速度を正極と負極に分けて測定する。この副反応電流の実測値を基準として、将来的に予想される条件で補正することにより、リチウムイオン二次電池1の負極劣化量INE[Ah]と正極劣化量IPE[Ah]を正確に算出することができるものである。 Here, the procedure for acquiring the deterioration characteristics will be described with reference to FIGS. 4 and 5. In order to accurately estimate the deterioration, the deterioration rate of the lithium ion secondary battery 1 mounted on the vehicle 10 which is the reference for the estimation, that is, the deterioration characteristics peculiar to the lithium ion secondary battery 1 are acquired in advance. It is important to keep it. Therefore, before the lithium ion secondary battery 1 is mounted on the vehicle, or the lithium ion secondary battery 1 mounted on the vehicle is removed from the vehicle and set in the device 200 for acquiring deterioration characteristics for measurement. Then, "preservation" is performed under a specific preset temperature, time, and charge / discharge conditions, and the rate of deterioration peculiar to the lithium ion secondary battery 1 is obtained from the difference between the measured values of the side reaction currents before and after that. Is measured separately for the positive electrode and the negative electrode. By correcting the measured side reaction current under the conditions expected in the future, the negative electrode deterioration amount I NE [Ah] and the positive electrode deterioration amount I PE [Ah] of the lithium ion secondary battery 1 can be accurately determined. It can be calculated in.

<リチウムイオン二次電池の劣化特性取得の装置200の構成>
図4は、リチウムイオン二次電池1の劣化特性取得のため装置200の構成を示すブロック図である。本実施形態のリチウムイオン二次電池1の劣化情報取得の装置200の構成は、周知の充放電装置203、セル電圧測定器204、セル電流測定器205、温度計206、保温装置207を備える。また、これらを制御するインタフェースを備えた周知のコンピュータからなる制御装置208を備える。制御装置208は、CPU281とメモリ282を備える。メモリ282は、RAM、ROMを備える。
<Structure of device 200 for acquiring deterioration characteristics of lithium ion secondary battery>
FIG. 4 is a block diagram showing the configuration of the device 200 for acquiring the deterioration characteristics of the lithium ion secondary battery 1. The configuration of the device 200 for acquiring deterioration information of the lithium ion secondary battery 1 of the present embodiment includes a well-known charging / discharging device 203, a cell voltage measuring device 204, a cell current measuring device 205, a thermometer 206, and a heat retaining device 207. Further, a control device 208 including a well-known computer provided with an interface for controlling these is provided. The control device 208 includes a CPU 281 and a memory 282. The memory 282 includes a RAM and a ROM.

これらは、リチウムイオン二次電池1の劣化特性取得の装置の構成として、リチウムイオン二次電池1を特定の条件で保存する保存手段として機能する。また保存したリチウムイオン二次電池1の保存前後の電池満容量の容量低下量Qlossを測定する電池容量低下量測定手段として機能する。また、保存したリチウムイオン二次電池1の保存前後の自己放電容量QSDを測定する自己放電量測定手段として機能する。また、測定した容量低下量Qloss及び自己放電容量QSDと、予め取得した副反応速度と使用環境の関係を用いて、想定される使用環境下における正極の劣化量と、負極の劣化量とをそれぞれ算出する劣化量算出手段として機能する。 These function as a storage means for storing the lithium ion secondary battery 1 under specific conditions as a configuration of a device for acquiring deterioration characteristics of the lithium ion secondary battery 1. It also functions as a battery capacity reduction measuring means for measuring the capacity reduction amount Q loss of the battery full capacity before and after storage of the stored lithium ion secondary battery 1. It also functions as a self-discharge amount measuring means for measuring the self-discharge capacity QSD of the stored lithium ion secondary battery 1 before and after storage. In addition, using the measured capacity reduction Q loss and self-discharge capacity Q SD , and the relationship between the pre-acquired side reaction rate and the usage environment, the amount of deterioration of the positive electrode and the amount of deterioration of the negative electrode under the assumed usage environment Functions as a deterioration amount calculation means for calculating each of the above.

<劣化特性取得のフローチャート>
図5は、劣化特性取得の手順を示すフローチャートである。このフローチャートに沿って劣化特性の取得の手順について説明する。
<Flow chart for acquiring deterioration characteristics>
FIG. 5 is a flowchart showing a procedure for acquiring deterioration characteristics. The procedure for acquiring deterioration characteristics will be described with reference to this flowchart.

ここでまず、このフローチャートの説明に先立って、説明で用いる用語について予め説明する。
「T1[°C]」は、任意の保存温度(例えば50°C)である。
Here, first, prior to the explanation of this flowchart, the terms used in the explanation will be described in advance.
“T1 [° C]” is an arbitrary storage temperature (for example, 50 ° C).

「t1[h]」は、任意の保存期間(例えば24時間)である。
「V1[V]」は、セル電圧VBが完全放電の電圧3.0[V](この実施形態では、セルSOC0%の完全放電状態のセル電圧VBを「下限電圧」という。)から、満充電の4.1[V](セルSOC0~100%、本実施形態では、「上限電圧」という。)の間で任意に設定した電圧(例えば3.8[V])で、本実施形態では、「基準電圧」という。本実施形態では、自己放電容量の測定の基準電圧に用いられるとともに、保存の任意の初期セル電圧VBでもある。
“T1 [h]” is an arbitrary storage period (for example, 24 hours).
"V1 [V]" is full from the voltage 3.0 [V] in which the cell voltage VB is completely discharged (in this embodiment, the cell voltage VB in the fully discharged state of the cell SOC 0% is referred to as "lower limit voltage"). A voltage (for example, 3.8 [V]) arbitrarily set between 4.1 [V] of charging (cell SOC 0 to 100%, referred to as "upper limit voltage" in this embodiment), and in this embodiment. , Called "reference voltage". In this embodiment, it is used as a reference voltage for measuring the self-discharge capacity and is also an arbitrary initial cell voltage VB for storage.

「Q1[Ah]」は、セル電圧VBを下限電圧3.0[V]から上限電圧(満充電のセル電圧VB=4.1[V](ここでは、セルSOC100%の電圧))の電池容量を測定した保存前電池満容量である。 "Q1 [Ah]" is a battery in which the cell voltage VB is changed from the lower limit voltage 3.0 [V] to the upper limit voltage (fully charged cell voltage VB = 4.1 [V] (here, the voltage of the cell SOC 100%)). It is the full capacity of the pre-storing battery whose capacity has been measured.

「Q2[Ah]」下限電圧3.0[V]から基準電圧V1=3.8[V]で測定した保存前の区間容量である。
「Q3[Ah]」は、基準電圧V1=3.8[V]から保存を経て下限電圧3.0[V]まで放電した保存後の残存容量である。
It is the section capacity before storage measured at the reference voltage V1 = 3.8 [V] from the lower limit voltage 3.0 [V] of "Q2 [Ah]".
"Q3 [Ah]" is the remaining capacity after storage, which is discharged from the reference voltage V1 = 3.8 [V] to the lower limit voltage 3.0 [V] after storage.

「Q4[Ah]」は、下限電圧3.0[V]から、上限電圧4.1[V]で測定した保存後電池満容量である。
「QSD[Ah]」は、保存前の区間容量Q2と保存後の残存容量Q3の差から求めた保存期間中の自己放電容量である。
"Q4 [Ah]" is the full capacity of the battery after storage measured from the lower limit voltage of 3.0 [V] to the upper limit voltage of 4.1 [V].
QSD [Ah]” is the self-discharge capacity during the storage period obtained from the difference between the section capacity Q2 before storage and the remaining capacity Q3 after storage.

「Qloss[Ah]」は、保存前電池満容量Q1から保存後電池満容量の差から求めた容量低下量である。
「iNE0[A]」は、自己放電容量QSD[Ah]÷保存時間t1[h]で求めた負極の副反応電流(速度)である。
"Q loss [Ah]" is a capacity decrease amount obtained from the difference between the battery full capacity before storage Q1 and the battery full capacity after storage.
“I NE0 [A]” is a negative electrode side reaction current (velocity) determined by the self-discharge capacity QSD [Ah] ÷ storage time t1 [h].

「iPE0[A]」は、負極の副反応電流(速度)iNE0から、容量低下量Qloss[Ah]÷保存時間t1[h]の商との差から求めた正極の副反応電流(速度)である。 “I PE0 [A]” is a positive electrode side reaction current obtained from the difference between the negative electrode side reaction current (velocity) iNE0 and the quotient of the volume reduction amount Q loss [Ah] ÷ storage time t1 [h]. Speed).

本実施形態では以上のように規定する。
<劣化特性取得のフローチャートの手順>
次に、これらの定義を用いて、リチウムイオン二次電池1の劣化特性取得の手順を図5のフローチャートに沿って説明する。
In this embodiment, it is defined as described above.
<Procedure of flowchart for acquiring deterioration characteristics>
Next, using these definitions, the procedure for acquiring the deterioration characteristics of the lithium ion secondary battery 1 will be described with reference to the flowchart of FIG.

まず、劣化特性取得の処理を開始すると(START)、完全放電時のセルSOC0%の下限電圧3.0[V]からセルSOC100%の上限電圧4.1[V]の満充電まで充電して保存前の電池満容量Q1[Ah]を測定する(S101)。 First, when the process of acquiring deterioration characteristics is started (START), the battery is charged from the lower limit voltage 3.0 [V] of the cell SOC 0% at the time of complete discharge to the full charge of the upper limit voltage 4.1 [V] of the cell SOC 100%. The battery full capacity Q1 [Ah] before storage is measured (S101).

次に、下限電圧3.0[V]から基準電圧V1=3.8[V]までの電圧区間において充電することで保存前の区間容量Q2[Ah]を測定する(S102)。
続いて、基準電圧V1=3.8[V]に電圧を調整したまま、任意の温度T1(例えば50°C)で任意の時間t1(例えば24時間)保存する(S104)。この手順が「保存のステップ」に相当する。したがって、この保存は、開始セル電圧、保存温度T1、保存時間t1が常に一定な条件で行われる。
Next, the section capacity Q2 [Ah] before storage is measured by charging in the voltage section from the lower limit voltage 3.0 [V] to the reference voltage V1 = 3.8 [V] (S102).
Subsequently, while adjusting the voltage to the reference voltage V1 = 3.8 [V], it is stored at an arbitrary temperature T1 (for example, 50 ° C.) for an arbitrary time t1 (for example, 24 hours) (S104). This procedure corresponds to the "save step". Therefore, this storage is performed under the conditions that the start cell voltage, the storage temperature T1, and the storage time t1 are always constant.

保存前に基準電圧V1=3.8[V]に電圧を調整した後、保存を経て、下限電圧3.0[V]まで放電し、保存後の残存容量Q3[Ah]を測定する(S105)。続いて、下限電圧3.0[V]から、上限電圧4.1[V]までの満充電を行い、保存後の電池満容量Q4[Ah]を測定する(S106)。この場合は、電圧で規定する。保存後は、活物質・電解質の劣化、被膜の形成などの理由から保存前より満充電容量が低下するからである。 After adjusting the voltage to the reference voltage V1 = 3.8 [V] before storage, the battery is discharged to the lower limit voltage 3.0 [V] after storage, and the remaining capacity Q3 [Ah] after storage is measured (S105). ). Subsequently, the battery is fully charged from the lower limit voltage of 3.0 [V] to the upper limit voltage of 4.1 [V], and the battery full capacity Q4 [Ah] after storage is measured (S106). In this case, it is specified by the voltage. This is because after storage, the full charge capacity is lower than before storage due to deterioration of the active material / electrolyte, formation of a film, and the like.

そして、保存前の区間容量Q2[Ah]と、保存後の残存容量Q3[Ah]との差を求める。保存前の区間容量Q2に対し、保存後の残存容量Q3は、自己放電による容量の低下がある。下限電圧3.0[V]から基準電圧V1=3.8[V]まで充電した容量を、保存を経て、下限電圧3.0[V]まで放電したときの残存容量を求める。このことで保存時間t1の自己放電量を求めることができる。この手順により、保存時間t1に減少した電気容量から自己放電容量QSDを算出する(S107)。この手順が、「自己放電量測定のステップ」に相当する。 Then, the difference between the section capacity Q2 [Ah] before storage and the remaining capacity Q3 [Ah] after storage is obtained. Compared to the section capacity Q2 before storage, the remaining capacity Q3 after storage has a decrease in capacity due to self-discharge. The remaining capacity when the capacity charged from the lower limit voltage 3.0 [V] to the reference voltage V1 = 3.8 [V] is discharged to the lower limit voltage 3.0 [V] after storage is obtained. From this, the self-discharge amount of the storage time t1 can be obtained. By this procedure, the self-discharge capacity QSD is calculated from the electric capacity reduced to the storage time t1 (S107). This procedure corresponds to the "step of self-discharge amount measurement".

次に、自己放電容量QSD[Ah]を保存時間t1[h]で除して、被膜の成長速度、つまり劣化速度に相当する負極の副反応電流値(被膜形成電流)iNE0[A]を算出する(S108)。 Next, the self-discharge capacity QSD [Ah] is divided by the storage time t1 [h], and the side reaction current value (film formation current) of the negative electrode corresponding to the growth rate of the film, that is, the deterioration rate is i NE0 [A]. Is calculated (S108).

また、容量低下量Qloss[Ah]を、保存前の電池満容量Q1[Ah]と保存後の電池満容量Q4[Ah]との差から算出する(S109)。
最後に、負極の副反応電流値iNE0[A]と、容量低下量Qlossを保存時間t1[h]で除した商[A]との差から、正極の副反応電流値iPE0[A]を算出する(S110)。
Further, the capacity decrease amount Q loss [Ah] is calculated from the difference between the battery full capacity Q1 [Ah] before storage and the battery full capacity Q4 [Ah] after storage (S109).
Finally, from the difference between the negative electrode side reaction current value i NE0 [A] and the quotient [A] obtained by dividing the capacity reduction amount Q loss by the storage time t1 [h], the positive electrode side reaction current value i PE0 [A]. ] Is calculated (S110).

以上で、本実施形態の所定の保存区間におけるリチウムイオン二次電池の負極の副反応電流値iNE0[A]と正極の副反応電流値iPE0[A]を測定する劣化特定取得の手順が終了する(END)。 As described above, the procedure for acquiring the deterioration identification for measuring the side reaction current value i NE0 [A] of the negative electrode of the lithium ion secondary battery and the side reaction current value i PE0 [A] of the positive electrode in the predetermined storage section of the present embodiment is completed. End (END).

このような手順により、保存を開始する基準電圧V1[V]、保存温度T1[°C]、保存時間t1[h]の条件での正極の副反応電流値iPE0[A]と、負極の副反応電流値iNE0[A]とが測定できる。すなわち、このリチウムイオン二次電池1の劣化特性が判明する。すなわち、「劣化特性」とは、セル電圧BVとセル温度TBとから劣化を判定する基準となるデータである。この手順は、セル毎に行ってもよいが、同じ構成のリチウムイオン二次電池1であれば、全数検査せず抜き取り検査でも十分である。 By such a procedure, the side reaction current value i PE0 [A] of the positive electrode under the conditions of the reference voltage V1 [V] for starting storage, the storage temperature T1 [° C], and the storage time t1 [h], and the negative electrode. The side reaction current value i NE0 [A] can be measured. That is, the deterioration characteristics of the lithium ion secondary battery 1 are revealed. That is, the "deterioration characteristic" is data that serves as a reference for determining deterioration from the cell voltage BV and the cell temperature TB. This procedure may be performed for each cell, but if the lithium ion secondary battery 1 has the same configuration, sampling inspection is sufficient without 100% inspection.

以上が、リチウムイオン二次電池1の劣化特性取得の手順である。以上のような手順で取得した劣化特性が、リチウムイオン二次電池1が車両10に搭載されるときに、ECU100のメモリ102に格納される。 The above is the procedure for acquiring the deterioration characteristics of the lithium ion secondary battery 1. The deterioration characteristics acquired by the above procedure are stored in the memory 102 of the ECU 100 when the lithium ion secondary battery 1 is mounted on the vehicle 10.

<負極劣化-Li析出許容電流マップ取得(S2)>
また、電池の使用の開始に先立って、負極の劣化量、すなわちここでは負極のSEI被膜を形成する副反応電流が積算された値[Ah]に応じて、Li析出を生じない限界の充電電流IC[A]を実験的に求めたマップを取得する。
<Negative electrode deterioration-Acquisition of Li precipitation allowable current map (S2)>
Further, prior to the start of use of the battery, the charge current at the limit where Li precipitation does not occur according to the deterioration amount of the negative electrode, that is, the value [Ah] in which the side reaction current forming the SEI film of the negative electrode is integrated. Acquire a map obtained experimentally for IC [A].

図14は、この負極劣化-Li析出許容電流マップ2の概念的な一例を示す。ここでは、縦軸に充電電流IC[A]をとり、横軸に負極劣化量INE[Ah]をとっており、その時のリチウムイオン二次電池1の劣化量、すなわち積算された負極の副反応電流値[Ah]に応じて、充電電流閾値ICmaxのグラフで充電電流ICが何Aまで許容できるかがわかるようになっている。例えば、劣化がない負極劣化量INE0=0のときは、ICmaxが最大で、高い充電電流ICで充電が可能である。電池の使用に応じて負極の劣化が進み、INE1になると、対応する充電電流閾値ICmaxがICとなり、使用開始時より、充電可能な充電電流ICが制限される。さらに電池の使用により劣化が進み、INE2になると、対応する充電電流閾値ICmaxがICとなり、さらに充電可能な充電電流ICが制限される。このようにして、ユーザが使用可能として設定した負極の劣化がINE ENDとなったとき、充電電流ICは、ICENDとなり、車載のリチウムイオン二次電池1としては、十分な機能が果たせず、電池の使用が終了される。なお本実施形態では、負極劣化量INEが、例えば0.1秒ごとに算出され、連続的に変化し、対応する充電電流閾値ICmaxもこれに伴って連続的に変化する。なお充電電流閾値ICmaxの決定の間隔は、任意に決定することができる。図14では、グラフは直線で表しているが、もちろん実験値に基づいた曲線であってもよい。マップはもちろんその形式は問わず、表形式のテーブルでも換算式でもよいが、負極の劣化量[Ah]を引数に、直ちに許容される充電電流閾値ICmaxが導くことができればよい。 FIG. 14 shows a conceptual example of this negative electrode deterioration-Li precipitation allowable current map 2. Here, the vertical axis represents the charging current IC [A], and the horizontal axis represents the negative electrode deterioration amount IN [Ah]. The deterioration amount of the lithium ion secondary battery 1 at that time, that is, the integrated negative negative voltage sub Depending on the reaction current value [Ah], the graph of the charge current threshold ICmax shows how much A the charge current IC can tolerate. For example, when the negative electrode deterioration amount I NE0 = 0 without deterioration, the ICmax is maximum and charging is possible with a high charging current IC. Deterioration of the negative electrode progresses with the use of the battery, and when it reaches NEC 1, the corresponding charge current threshold ICmax becomes IC 1 , and the chargeable current IC that can be charged is limited from the start of use. Further, deterioration progresses due to the use of the battery, and when it becomes NEC 2, the corresponding charge current threshold IC max becomes IC 2 , and the charge current IC that can be charged is further limited. In this way, when the deterioration of the negative electrode set to be usable by the user becomes I NE END , the charging current IC becomes IC END , and the lithium ion secondary battery 1 in the vehicle cannot perform a sufficient function. , The use of the battery is finished. In the present embodiment, the negative electrode deterioration amount IN is calculated every 0.1 seconds, for example, and continuously changes, and the corresponding charge current threshold ICmax also continuously changes accordingly. The interval for determining the charge current threshold value ICmax can be arbitrarily determined. In FIG. 14, the graph is represented by a straight line, but of course, it may be a curve based on experimental values. The map may be of course in any format, and may be a tabular table or a conversion formula, but it is sufficient if the allowable charging current threshold ICmax can be immediately derived with the deterioration amount [Ah] of the negative electrode as an argument.

<リチウムイオン二次電池1の使用開始(S3)>
車両10の電源が投入され車載されたリチウムイオン二次電池1の運用が開始される(S3)。リチウムイオン二次電池1の使用が開始されると、それまでに積算された負極副反応電流値である負極劣化量INEと、それまでに積算された正極副反応電流値である正極劣化量IPEとが読み出される。初めて開始する場合には、リチウムイオン二次電池1の劣化の情報はないため、最初に取得された劣化特性に基づいて、記録を開始させる。その後、使用する毎に、S4~S14に示すような手順でリチウムイオン二次電池1の劣化がECU100で算出されメモリ102に記憶される。車両の運用を開始すると、この劣化のデータが読み込まれ積算される。
<Start of use of lithium ion secondary battery 1 (S3)>
The power of the vehicle 10 is turned on, and the operation of the lithium ion secondary battery 1 mounted on the vehicle is started (S3). When the use of the lithium ion secondary battery 1 is started, the negative electrode deterioration amount INE , which is the negative electrode side reaction current value accumulated up to that point, and the positive electrode deterioration amount, which is the positive electrode side reaction current value accumulated up to that point, are started. I PE and is read out. When starting for the first time, since there is no information on the deterioration of the lithium ion secondary battery 1, recording is started based on the deterioration characteristics acquired first. After that, each time it is used, the deterioration of the lithium ion secondary battery 1 is calculated by the ECU 100 and stored in the memory 102 by the procedure as shown in S4 to S14. When the operation of the vehicle is started, the data of this deterioration is read and integrated.

<データの収集(S5,S7)>
リチウムイオン二次電池の使用が開始されると、車両10の監視ユニット20は、電圧センサ21によりセル電圧VBが測定される(S5)。また、これと並行して温度センサ23により電池温度であるセル温度TBが測定される(S7)。測定したデータは、ECU100のメモリ102に蓄積される。
<Data collection (S5, S7)>
When the use of the lithium ion secondary battery is started, the cell voltage VB is measured by the voltage sensor 21 in the monitoring unit 20 of the vehicle 10 (S5). In parallel with this, the cell temperature TB, which is the battery temperature, is measured by the temperature sensor 23 (S7). The measured data is stored in the memory 102 of the ECU 100.

<正負極の電位の推定(S6)>
S5で測定されたセル電圧VBに基づいて負極開放電位VNE、正極開放電位VPEが推定される(S6)。
<Estimation of positive and negative electrode potential (S6)>
The negative electrode open potential V NE and the positive electrode open potential V PE are estimated based on the cell voltage VB measured in S5 (S6).

図6(a)は、劣化前の正極・負極の容量-OCP(Open circuit potential)特性(電池容量とそのときの正極・負極の開放電位との関係を示すもの)を示すグラフである。図6(b)は、劣化後のOCP特性を示すグラフである。図6(a)に示すグラフは電極の組成などから特定される電池の初期の劣化前の特性を示すグラフで、セル電圧VBがわかれば、負極及び正極の容量に応じた初期の負極開放電位VNE0及び初期の正極開放電位VPE0がわかっている。その後、リチウムイオン二次電池1において負極と負極の劣化がそれぞれ進む。このため、電池の初期状態でのフローチャートの1巡目では正極開放電位VPEと負極開放電位VNEの関係は図6(a)に示すような関係であるが、2巡目以降では、逐次劣化のズレが生じて図7のように変化していく。 FIG. 6A is a graph showing the capacity-OCP (Open circuit potential) characteristics of the positive electrode / negative electrode before deterioration (showing the relationship between the battery capacity and the open potential of the positive electrode / negative electrode at that time). FIG. 6B is a graph showing the OCP characteristics after deterioration. The graph shown in FIG. 6A is a graph showing the characteristics of the battery before initial deterioration, which is specified from the composition of the electrodes and the like. If the cell voltage VB is known, the initial negative electrode open potential according to the capacities of the negative electrode and the positive electrode is known. VNE0 and the initial positive electrode open potential VPE0 are known. After that, in the lithium ion secondary battery 1, the negative electrode and the negative electrode deteriorate, respectively. Therefore, in the first round of the flowchart in the initial state of the battery, the relationship between the positive electrode open potential V PE and the negative electrode open potential V NE is as shown in FIG. 6A, but in the second and subsequent rounds, the relationship is sequential. Deterioration shift occurs and changes as shown in FIG. 7.

<正負極組成対応ずれ容量ΔQに基づくS6における正負極の電位の推定の補正>
図3に示すフローチャートの正負極の電位を推定する手順(S6)では、1巡目では、リチウムイオン二次電池1が劣化していない状態である図6(a)に示すように、正極と負極の容量には、ずれは生じていない。ところが、リチウムイオン二次電池1の正極と負極の劣化は、一般に負極の方が大きく、その結果正極の劣化と負極の劣化の差によって正負極組成対応ずれ容量ΔQを生じる。ここで、説明の便宜からまず負極のみの容量のずれについて説明する。
<Correction of estimation of positive and negative electrode potentials in S6 based on positive and negative electrode composition deviation capacitance ΔQ>
In the procedure (S6) for estimating the potentials of the positive and negative electrodes in the flowchart shown in FIG. 3, in the first round, the lithium ion secondary battery 1 is in a state of not being deteriorated, as shown in FIG. There is no deviation in the capacity of the negative electrode. However, the deterioration of the positive electrode and the negative electrode of the lithium ion secondary battery 1 is generally larger in the negative electrode, and as a result, the difference between the deterioration of the positive electrode and the deterioration of the negative electrode causes a deviation capacity ΔQ corresponding to the positive / negative electrode composition. Here, for convenience of explanation, first, the displacement of the capacitance of only the negative electrode will be described.

図6(a)に示すグラフは電極の組成などから特定される電池の初期の劣化前の特性を示すグラフで、セル電圧VBがわかれば、負極の容量に応じた負極開放電位VNE0及び正極の容量に応じた正極開放電位VPE0がわかる。図6(a)からわかるように、正極OCPのグラフUPE及び負極OCPのグラフUNE0は、不規則な曲線となっている。特に、負極はリチウムイオンのインターカレーションにより階段状のグラフとなる。ここでセル電圧VBは、正極の電位VPE0と負極の電位VNE0の電位差となる。そうすると、図6(a)に示す正極OCPのグラフUPE0と負極OCPのグラフUNE0との相対的な位置関係と、正負極の容量により、セル電圧VBは変化することになる。このときには、正負極組成対応ずれ容量ΔQは生じていない。 The graph shown in FIG. 6A is a graph showing the characteristics of the battery before initial deterioration, which is specified from the composition of the electrodes and the like. If the cell voltage VB is known, the negative electrode open potential VNE0 and the positive electrode corresponding to the capacity of the negative electrode are known. The positive electrode open potential V PE0 corresponding to the capacity of is found. As can be seen from FIG. 6A, the graph UPE of the positive electrode OCP and the graph UNE0 of the negative electrode OCP have irregular curves. In particular, the negative electrode becomes a stepped graph due to the intercalation of lithium ions. Here, the cell voltage VB is the potential difference between the potential V PE0 of the positive electrode and the potential V NE0 of the negative electrode. Then, the cell voltage VB changes depending on the relative positional relationship between the graph UPE0 of the positive electrode OCP and the graph UNE0 of the negative electrode OCP shown in FIG. 6A and the capacity of the positive and negative electrodes. At this time, the deviation capacity ΔQ corresponding to the positive and negative electrode compositions does not occur.

そこで、リチウムイオン二次電池1において、「正負極組成対応ずれ容量ΔQ」を用いることでリチウムイオン二次電池1の電位を推定する。「正負極組成対応ずれ容量ΔQ」とは、初期状態から正極活物質の表面の局所充電率と負極活物質の表面の局所充電率の対応関係のずれによる電池容量の変動量である。 Therefore, in the lithium ion secondary battery 1, the potential of the lithium ion secondary battery 1 is estimated by using the “shift capacity ΔQ corresponding to the positive / negative electrode composition”. The “positive electrode composition correspondence deviation capacity ΔQ” is the amount of fluctuation in the battery capacity due to the deviation in the correspondence between the local charge rate on the surface of the positive electrode active material and the local charge rate on the surface of the negative electrode active material from the initial state.

図6(b)は、負極のみの劣化を考慮した正極・負極の容量-OCP特性を示すグラフである。図6(b)を参照して負極における正負極組成対応ずれ容量ΔQを説明する。図6(a)に示す状態から、使用により劣化が進むと、図6(b)に示すように負極における副反応による負極ずれ量ΔQNEが大きくなる。このため、負極OCPのグラフUNE0上の点の位置が、当初の位置から、左側に示す負極OCPのグラフUNE1上の点の位置にずれ、左向きの矢印で示す正負極組成対応ずれ容量ΔQが生じる。 FIG. 6B is a graph showing the capacitance-OCP characteristics of the positive electrode and the negative electrode in consideration of the deterioration of only the negative electrode. The deviation capacity ΔQ corresponding to the positive and negative electrode composition in the negative electrode will be described with reference to FIG. 6 (b). As the deterioration progresses due to use from the state shown in FIG. 6 (a), the negative electrode deviation amount ΔQ NE due to a side reaction in the negative electrode becomes large as shown in FIG. 6 (b). Therefore, the position of the point on the graph UNE0 of the negative electrode OCP shifts from the initial position to the position of the point on the graph UNE1 of the negative electrode OCP shown on the left side, and the deviation capacity ΔQ corresponding to the positive and negative electrode composition indicated by the arrow pointing to the left. Occurs.

ここでセル電圧VBは、正極開放電位VPEと負極開放電位VNEの電位差となる。そうするとセル電圧VBは、例えば<正極開放電位VPE0-負極開放電位VNE0>の電位差から、<正極開放電位VPE0-負極開放電位VNE1>の電位差となり、図6(a)で示すように、電位差が小さくなる。そうすると検出したセル電圧VBと容量との対応関係に差が生じることになる。 Here, the cell voltage VB is the potential difference between the positive electrode open potential V PE and the negative electrode open potential V NE . Then, the cell voltage VB becomes, for example, a potential difference of <positive open potential V PE0 -negative open potential V NE1 > from the potential difference of <positive positive open potential V PE0 -negative open potential V NE0 >, as shown in FIG. 6 (a). , The potential difference becomes smaller. Then, there will be a difference in the correspondence between the detected cell voltage VB and the capacity.

そこで、使用による容量劣化をターフェル式などを使ってSEI被膜の形成から推定し、この正負極組成対応ずれ容量ΔQを算出する。この正負極組成対応ずれ容量ΔQは、随時積算されて、セル電圧VBから、正極開放電位VPEと負極開放電位VNEをそれぞれ算出する場合に正負極組成対応ずれ容量ΔQが参照される。 Therefore, the capacity deterioration due to use is estimated from the formation of the SEI film using the Tafel equation or the like, and the deviation capacity ΔQ corresponding to the positive / negative electrode composition is calculated. The positive / negative electrode composition-corresponding deviation capacity ΔQ is integrated at any time, and the positive / negative electrode composition-corresponding deviation capacity ΔQ is referred to when the positive electrode open potential V PE and the negative electrode open potential V NE are calculated from the cell voltage VB, respectively.

ここでは、正負極組成対応ずれ容量ΔQは、正極に変化がない前提であるので、負極における副反応による負極ずれ量ΔQNEの低下と等しい。
<本実施形態の正負極組成対応ずれ容量ΔQの算出の特徴>
続いて、正極の劣化も考慮した正負極組成対応ずれ容量ΔQの算出について説明する。従来においても正極が負極と同じように副反応を生じること自体は知られていたが、どのような副反応がどのように作用するかは周知ではなかった。また、将来の副反応電流を推定することも容易ではなかった。さらに正極の副反応の影響は小さなものと思われていた。このため、専ら負極の劣化のみを考慮し、正極のずれを考慮することに対しては、単に処理を複雑にするだけであるという阻害要因があったといえる。そのため、当業者において図6(b)に示すのと同じように正極の副反応は考慮されていなかった。
Here, since it is assumed that there is no change in the positive electrode, the deviation capacity ΔQ corresponding to the positive / negative electrode composition is equal to the decrease in the negative electrode deviation amount ΔQ NE due to the side reaction in the negative electrode.
<Characteristics of calculation of deviation capacity ΔQ corresponding to positive / negative electrode composition of this embodiment>
Next, the calculation of the deviation capacity ΔQ corresponding to the positive and negative electrode composition in consideration of the deterioration of the positive electrode will be described. Although it has been known in the past that a positive electrode causes a side reaction in the same manner as a negative electrode, it is not well known what kind of side reaction acts and how. Also, it was not easy to estimate future side reaction currents. Furthermore, the effect of adverse reactions on the positive electrode was thought to be small. Therefore, it can be said that there was an impediment to considering only the deterioration of the negative electrode and considering the displacement of the positive electrode, which merely complicates the processing. Therefore, as shown in FIG. 6 (b), a side reaction of the positive electrode was not considered by those skilled in the art.

しかしながら本発明者は、そのリチウムイオン二次電池1自体が、どのような特性を持った電池であるかを解析したうえで、さらに正極にどのような副反応が生じそれがどのように作用するかを解明し、実験によりその影響が小さくないことを見出し、本発明に至ったものである。また、正極も負極と同様に、ターフェルの式により副反応の反応速度を規定することができることを実験的に確認した。 However, the present inventor analyzes what kind of characteristics the lithium ion secondary battery 1 itself has, and then what kind of side reaction occurs on the positive electrode and how it works. We have clarified this and found that the influence is not small by experiments, which led to the present invention. It was also experimentally confirmed that the reaction rate of the side reaction can be defined by the Tafel equation for the positive electrode as well as the negative electrode.

<本実施形態の正負極組成対応ずれ容量ΔQの算出>
図7は、本実施形態の劣化後の正極・負極のSOC-OCP特性を示すグラフである。本発明者の知見によれば、実際には、図7に示すように、正極においても副反応による正極ずれ量ΔQPEが生じる。正極ずれ量ΔQPEが生じると、図6(a)に示す正極OCPのグラフ上の点UPE0上の位置が、左向きの矢印で示す正極ずれ量ΔQPEだけ左側の位置にずれ、グラフ上の点UPE1となる。
<Calculation of deviation capacity ΔQ corresponding to positive / negative electrode composition of this embodiment>
FIG. 7 is a graph showing the SOC-OCP characteristics of the positive electrode and the negative electrode after deterioration of the present embodiment. According to the findings of the present inventor, in reality, as shown in FIG. 7, a positive electrode deviation amount ΔQ PE due to a side reaction also occurs in the positive electrode. When the positive electrode deviation amount ΔQ PE occurs, the position on the point UP E0 on the graph of the positive electrode OCP shown in FIG. 6A shifts to the left position by the positive electrode deviation amount ΔQ PE indicated by the arrow pointing to the left, and is on the graph. It becomes the point UPE1 .

つまり、セル電圧VBの低下は、負極開放電位VNEの上昇と正極開放電位VPEの低下の両者から生じる。従来は、図6(b)に示されるようにセル電圧VBの低下は、負極開放電位VNEの影響が大きいことから負極のみを参照していた。言い換えると、正負極組成対応ずれ容量ΔQ=負極ずれ量ΔQNEとみなされていた。しかしながら、本実施形態では、セル電圧VBの低下は、負極開放電位VNEの上昇と正極開放電位VPEの低下の両者から生じるものとし、これらをそれぞれ切り分けて分析することとしたものである。 That is, the decrease in the cell voltage VB is caused by both the increase in the negative electrode open potential VNE and the decrease in the positive electrode open potential VPE . Conventionally, as shown in FIG. 6B, since the decrease in the cell voltage VB is greatly affected by the negative electrode open potential VNE, only the negative electrode is referred to. In other words, the deviation capacity ΔQ corresponding to the positive / negative electrode composition was regarded as the negative electrode deviation amount ΔQ NE . However, in the present embodiment, the decrease in the cell voltage VB is caused by both the increase in the negative electrode open potential VNE and the decrease in the positive electrode open potential VPE , and these are separately analyzed.

本実施形態では、ずれが生じる前のセル電圧VBは、図6(a)に示すように<正極開放電位VPE0-負極開放電位VNE0>の電位差であるが、ずれを生じると、図7に示すように<正極開放電位VPE1-負極開放電位VNE1>の電位差となる。 In the present embodiment, the cell voltage VB before the deviation occurs is the potential difference of <positive electrode open potential V PE0 -negative electrode open potential V NE0 > as shown in FIG. 6A, but when the deviation occurs, FIG. 7 As shown in the above, the potential difference is <positive electrode open potential V PE1 -negative electrode open potential V NE1 >.

本実施形態では、図7に示すように、セル電圧VBの低下を、負極開放電位VNEの上昇と正極開放電位VPEの低下に振り分けた結果、セル電圧VBが同じ電圧であったとしても、図6(b)の従来技術で示す負極開放電位VNEの上昇よりも本実施形態の図7に示す負極開放電位VNEの上昇は小さいものとなっている。 In the present embodiment, as shown in FIG. 7, as a result of dividing the decrease in the cell voltage VB into the increase in the negative electrode open potential VNE and the decrease in the positive electrode open potential VPE , even if the cell voltage VB is the same voltage. The increase in the negative electrode open potential VNE shown in FIG. 7 of the present embodiment is smaller than the increase in the negative electrode open potential VNE shown in the prior art of FIG. 6 (b).

これを正負極組成対応ずれ容量ΔQについて言い換えれば、(従来の負極ずれ量ΔQNE)>(本実施形態の負極ずれ量ΔQNE)という関係から本実施形態の正負極組成対応ずれ容量ΔQは、従来の正負極組成対応ずれ容量ΔQよりも小さなものとなる。 In other words, the deviation capacity ΔQ corresponding to the positive and negative electrode composition is expressed as (conventional negative electrode deviation amount ΔQ NE )> (negative electrode deviation amount ΔQ NE of the present embodiment). The deviation capacity corresponding to the conventional positive and negative electrode composition is smaller than the deviation capacity ΔQ.

さらに、(従来の負極ずれ量ΔQNE)>(本実施形態の負極ずれ量ΔQNE)という関係から、負極における副反応による負極ずれ量ΔQNEの低下によるずれと、正極における副反応による正極ずれ量ΔQPEの低下によるずれとが、相殺されてΔQが小さくなる。すなわち、(正負極組成対応ずれ容量ΔQ)=(負極ずれ量ΔQNE-正極ずれ量ΔQPE)という関係になる。したがって、本実施形態の正負極組成対応ずれ容量ΔQは、従来の正負極組成対応ずれ容量ΔQよりもさらに小さなものとなる。 Further, from the relationship of (conventional negative electrode deviation amount ΔQ NE )> (negative electrode deviation amount ΔQ NE of the present embodiment), the deviation due to the decrease in the negative electrode deviation amount ΔQ NE due to the side reaction at the negative electrode and the positive electrode deviation due to the side reaction at the positive electrode. The deviation due to the decrease in the amount ΔQ PE is offset and the ΔQ becomes smaller. That is, the relationship is (positive electrode deviation composition corresponding deviation capacity ΔQ) = (negative electrode deviation amount ΔQ NE − positive electrode deviation amount ΔQ PE ). Therefore, the deviation capacity ΔQ corresponding to the positive / negative electrode composition of the present embodiment is further smaller than the conventional deviation capacity ΔQ corresponding to the positive / negative electrode composition.

つまり、本発明者は、従来の方法では、セル電圧VBが同じ電圧であったとしても、正負極組成対応ずれ容量ΔQを大きく見積もる可能性があったことを見出した。本実施形態においては、負極ずれ量ΔQNEと正極ずれ量ΔQPEとをそれぞれ劣化を正確に算出する。ここから導かれた正負極組成対応ずれ容量ΔQを用いることで、セル電圧VBを正極開放電位VPEと負極開放電位VNEに正しく振り分け、さらに負極ずれ量ΔQNEと正極ずれ量ΔQPEとをそれぞれ劣化を正確に算出する。これを繰り返すことで、常に正負極組成対応ずれ容量ΔQをより正確に推定することができるものとした。 That is, the present inventor has found that, in the conventional method, even if the cell voltage VB is the same voltage, there is a possibility that the deviation capacity ΔQ corresponding to the positive / negative electrode composition can be largely estimated. In the present embodiment, the deterioration is accurately calculated for each of the negative electrode deviation amount ΔQ NE and the positive electrode deviation amount ΔQ PE . By using the positive and negative electrode composition-corresponding deviation capacity ΔQ derived from this, the cell voltage VB is correctly distributed to the positive electrode open potential V PE and the negative electrode open potential V NE , and the negative electrode deviation amount ΔQ NE and the positive electrode deviation amount ΔQ PE are further divided. Accurately calculate the deterioration of each. By repeating this, the deviation capacity ΔQ corresponding to the positive and negative electrode composition can always be estimated more accurately.

このような手順により、負極開放電位VNE0及び正極開放電位VPE0を正確に推定することができる。
<正負極副反応電流値を推定(S8)
ここで、図3のフローチャートに戻って、S6において推定した負極開放電位VNE及び正極開放電位VPEと、S4で取得した電池温度であるセル温度TBに基づいて正負極副反応電流値を推定するステップ(S5)を説明する。
By such a procedure, the negative electrode open potential VNE0 and the positive electrode open potential VPE0 can be accurately estimated.
<Estimate the positive and negative side reaction current values (S8)
Here, returning to the flowchart of FIG. 3, the positive and negative electrode side reaction current values are estimated based on the negative electrode open potential VNE and the positive electrode open potential VPE estimated in S6 and the cell temperature TB which is the battery temperature acquired in S4. The step (S5) to be performed will be described.

<負極開放電位VNE、正極開放電位VPEから負極副反応電流値iNE、正極副反応電流値iPEの算出>
図8は、本実施形態の時間tから所定の時間tまでに積算された正負極組成対応ずれ容量Δを算出するフローチャートの一例である。
<Calculation of negative electrode side reaction current value i NE and positive electrode side reaction current value i PE from negative electrode open potential V NE and positive electrode open potential V PE >
FIG. 8 is an example of a flowchart for calculating the positive / negative electrode composition-corresponding deviation capacity Δ integrated from the time t 0 of the present embodiment to the predetermined time t 1 .

<正負極組成対応ずれ容量ΔQ(t~t)の算出を開始する(S81)>
以下、図8に沿って、図3のフローチャートの「正負極副反応電流値を推定(S8)」の具体的な手順を説明する。まず、正負極組成対応ずれ容量ΔQ(t~t)の算出を開始する(S81)。ここで時間tは、このリチウムイオン二次電池1の劣化の推定の開始時である。また、時間tは、リチウムイオン二次電池1の劣化の推定の終了時である。Δtは、時間tから時間tまでの経過時間である。そして時間tは、測定間隔時間である。例えば、0.1秒である。
<Start calculating the deviation capacity ΔQ (t 0 to t 1 ) corresponding to the positive and negative electrode composition (S81)>
Hereinafter, a specific procedure of “estimating the positive / negative electrode side reaction current value (S8)” in the flowchart of FIG. 3 will be described with reference to FIG. First, the calculation of the deviation capacity ΔQ (t 0 to t 1 ) corresponding to the positive and negative electrode compositions is started (S81). Here, the time t 0 is the time when the estimation of the deterioration of the lithium ion secondary battery 1 is started. Further, the time t 1 is the time when the estimation of the deterioration of the lithium ion secondary battery 1 is completed. Δt is the elapsed time from time t 0 to time t 1 . The time t 2 is the measurement interval time. For example, 0.1 seconds.

<セル電圧VBとセル温度TBの測定(S82)>
続いて、S7において測定した検査の対象となるリチウムイオン二次電池1のセル電圧VBとセルのセル温度Tを読み込む(S82)。セル電圧VBとセル温度TBは、リチウムイオン二次電池1が搭載された車両10の監視ユニット20の電圧センサ21と温度センサ23(図1)により測定されている。
<Measurement of cell voltage VB and cell temperature TB (S82)>
Subsequently, the cell voltage VB of the lithium ion secondary battery 1 to be inspected measured in S7 and the cell temperature T of the cell are read (S82). The cell voltage VB and the cell temperature TB are measured by the voltage sensor 21 and the temperature sensor 23 (FIG. 1) of the monitoring unit 20 of the vehicle 10 on which the lithium ion secondary battery 1 is mounted.

<負極開放電位VNE算出(S83)>
S82の処理に続いてS6においてセル電圧VBから算出した負極開放電位VNEを読み込む(S83)。フローチャートの1巡目では、時間tにおいては、正負極組成対応ずれ容量ΔQ=0であるので、図6(a)のグラフに従ってセル電圧VBを正極開放電位VPEと負極開放電位VNEに振り分けることができる。2巡目以降は、図7のように変化していく。
<Calculation of negative electrode open potential VNE (S83)>
Following the processing of S82, the negative electrode open potential VNE calculated from the cell voltage VB is read in S6 (S83). In the first round of the flowchart, since the deviation capacity ΔQ = 0 corresponding to the positive and negative electrode compositions at time t 0 , the cell voltage VB is set to the positive electrode open potential V PE and the negative electrode open potential V NE according to the graph of FIG. 6 (a). Can be sorted. From the second round onward, the changes are as shown in FIG.

<負極副反応電流値iNE算出(S84)>
負極開放電位VNEとセル温度TBから負極副反応電流値iNEを算出する(S84)。
<Negative side reaction current value iNE calculation (S84)>
The negative electrode side reaction current value iNE is calculated from the negative electrode open potential VNE and the cell temperature TB (S84).

<正極開放電位VPE算出(S85)>
S83の処理と並行して、S82の処理に続けて同様な手順でセル電圧VBから正極開放電位VPEを読み込む(S85)。
<Calculation of positive electrode open potential V PE (S85)>
In parallel with the processing of S83, the positive electrode open potential VPE is read from the cell voltage VB in the same procedure following the processing of S82 (S85).

<正極副反応電流値iPE算出(S86)>
正極開放電位VPEから正極副反応電流値iPEを算出する(S86)。
<正負極組成対応ずれ容量ΔQ(t~t)算出(S87)>
S84で算出した負極ずれ量ΔQNEと、S86で算出した正極ずれ量ΔQPEとから、正負極組成対応ずれ容量ΔQ(t~t)=(負極反応電流値iNE-正極反応電流値iPE)×Δtを算出する。すなわち、負極副反応電流値iNEと正極副反応電流値iPEの差に、経過時間Δtを掛けて、経過時間Δtの正負極組成対応ずれ容量ΔQ(t~t)の総容量を算出する(S87)。
<Positive side reaction current value iPE calculation (S86)>
The positive electrode side reaction current value iPE is calculated from the positive electrode open potential V PE (S86).
<Calculation of deviation capacity ΔQ (t 0 to t 1 ) corresponding to the positive and negative electrode composition (S87)>
From the negative electrode deviation amount ΔQ NE calculated in S84 and the positive electrode deviation amount ΔQ PE calculated in S86, the positive and negative electrode composition-corresponding deviation capacity ΔQ (t 0 to t 1 ) = (negative electrode reaction current value i NE -positive electrode reaction current value). i PE ) × Δt is calculated. That is, the difference between the negative electrode side reaction current value iNE and the positive electrode side reaction current value iPE is multiplied by the elapsed time Δt to obtain the total capacity of the positive and negative electrode composition-corresponding deviation capacity ΔQ (t 0 to t 1 ) with the elapsed time Δt. Calculate (S87).

この処理は、時間t0から時間t1まで、Δtが順次処理される。この処理が一巡終了すると、次の処理時には正負極組成対応ずれ容量ΔQ(t~t)が算出されている。このようにt~tn+1の処理時には正負極組成対応ずれ容量ΔQ(tn-1~t)が算出されている。そこで、S82で取得したセル電圧VBは、図7に示すように、すでに算出し累積された正負極組成対応ずれ容量ΔQによりセル電圧VBを正極開放電位VPEと負極開放電位VNEに振り分けることができる。これを繰り返すことで、その後も、その時点で算出した正負極組成対応ずれ容量ΔQによりセル電圧VBを正確に正極開放電位VPEと負極開放電位VNEに振り分けて、図7に示すように、正負極対応ずれ容量ΔQを参照することで、S83、S85における処理を正確に行うことができる。 In this process, Δt is sequentially processed from time t0 to time t1. When this process is completed, the deviation capacity ΔQ (t 0 to t 1 ) corresponding to the positive and negative electrode composition is calculated in the next process. In this way, the deviation capacity ΔQ (t n-1 to t n ) corresponding to the positive and negative electrode compositions is calculated during the processing of t n to t n + 1 . Therefore, as shown in FIG. 7, the cell voltage VB acquired in S82 divides the cell voltage VB into the positive electrode open potential V PE and the negative electrode open potential V NE according to the already calculated and accumulated deviation capacity ΔQ corresponding to the positive and negative electrode compositions. Can be done. By repeating this, the cell voltage VB is accurately divided into the positive electrode open potential VPE and the negative electrode open potential VNE according to the positive / negative electrode composition-corresponding shift capacity ΔQ calculated at that time, and as shown in FIG. By referring to the positive and negative electrode deviation capacity ΔQ, the processing in S83 and S85 can be performed accurately.

<負極副反応電流値iNE及び正極副反応電流値iPEの算出>
ここで、負極副反応電流値iNEと正極副反応電流値iPEは、以下のようにして求められる。
<Calculation of negative electrode side reaction current value i NE and positive electrode side reaction current value i PE >
Here, the negative electrode side reaction current value i NE and the positive electrode side reaction current value i PE are obtained as follows.

負極副反応電流値iNEは、aNEを負極上で起こる副反応の交換電流密度とし、bNEを負極上で起こる副反応の過電圧項としたとき、下記式(1)により負極副反応電流値iNEを算出することができる。 The negative electrode side reaction current value iNE is the negative electrode side reaction current according to the following equation (1), where a NE is the exchange current density of the side reaction occurring on the negative electrode and b NE is the overvoltage term of the side reaction occurring on the negative electrode. The value iNE can be calculated.

Figure 2022026770000004
また、正極副反応電流値iPEは、aPEを正極上で起こる副反応の交換電流密度とし、bPEを正極上で起こる副反応の過電圧項としたとき、下記式(2)により正極副反応電流値iPEを算出することができる。
Figure 2022026770000004
The positive electrode side reaction current value iPE is based on the following equation (2) when a PE is the exchange current density of the side reaction occurring on the positive electrode and b PE is the overvoltage term of the side reaction occurring on the positive electrode. The reaction current value iPE can be calculated.

Figure 2022026770000005
なお、セル電池の副反応電流値は、電流密度に応じて算出される。これら式(1)及び式(2)から、負極副反応電流値iNEと正極副反応電流値iPEは、過電圧項bNEの変化により指数関数的に増大することがわかる。
Figure 2022026770000005
The side reaction current value of the cell battery is calculated according to the current density. From these equations (1) and (2), it can be seen that the negative electrode side reaction current value i NE and the positive electrode side reaction current value i PE increase exponentially with the change of the overvoltage term b NE .

<負極における副反応電流による劣化量の低下の求め方>
次に、ターフェル式を用いて具体的に負極副反応電流値iNEと正極副反応電流値iPEの低下を求める方法について説明する。
<How to determine the decrease in the amount of deterioration due to the side reaction current at the negative electrode>
Next, a method of specifically obtaining a decrease in the negative electrode side reaction current value iNE and the positive electrode side reaction current value iPE using the Tafel equation will be described.

ここでは、まず、負極について説明する。副反応による負極劣化量iNEはターフェル式を用いて求めることができる。
すなわち、負極における副反応による劣化量は、負極副反応電流値iNEをΔtの間で積分する。負極副反応電流値iNEは、セル電圧VB及びセル温度TBに基づいて、次のターフェル式により求めることができる。
Here, first, the negative electrode will be described. The negative electrode deterioration amount iNE due to a side reaction can be obtained by using the Tafel equation.
That is, the amount of deterioration due to the side reaction in the negative electrode integrates the negative electrode side reaction current value iNE between Δt. The negative electrode side reaction current value iNE can be obtained by the following Tafel equation based on the cell voltage VB and the cell temperature TB.

<ターフェル式による負極副反応電流値iNEの算出>
本実施形態では、以下に示すターフェル式(式(3))により、負極副反応電流値iNEを求める。
<Calculation of negative electrode side reaction current value iNE by Tafel equation>
In this embodiment, the negative electrode side reaction current value iNE is obtained by the Tafel equation (formula (3)) shown below.

Figure 2022026770000006
ここで、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位とする。
Figure 2022026770000006
Here, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UNE is the negative electrode open potential.

<ターフェルの式を用いた負極ずれ量ΔQNEの計算>
ターフェル式(式(3))による負極副反応電流値iNEの求め方は、詳しくは、特開2017-190979号公報の段落0024~0081、特にターフェルの式を用いた正負極組成対応ずれ容量ΔQの計算方法は、段落0076~0081に詳細に開示されているため、ここでは詳しい記載は省略する。また、もちろん電流密度は必要に応じて副反応電流値に換算される。式(3)の交換電流密度iは、リチウムイオン二次電池1の製造完了後に数回充放電を繰り返すと、SEI被膜の形成速度が略定常となるので略一定の値に落ち着いてくる。このため、試験等により予めセル温度TBに対応するマップを作成しておき、このマップから読み出すようにしてもよい。
<Calculation of negative electrode deviation amount ΔQ NE using Tafel equation>
For details on how to obtain the negative electrode side reaction current value iNE by the Tafel equation (formula (3)), see paragraphs 0024 to 0081 of JP-A-2017-190979, in particular, the displacement capacity corresponding to the positive and negative electrode composition using the Tafel equation. Since the method for calculating ΔQ is disclosed in detail in paragraphs 0076 to 0081, detailed description thereof will be omitted here. Of course, the current density is converted into a side reaction current value as needed. The exchange current density i 0 of the formula (3) becomes a substantially constant value because the formation rate of the SEI film becomes substantially constant when charging / discharging is repeated several times after the production of the lithium ion secondary battery 1 is completed. Therefore, a map corresponding to the cell temperature TB may be created in advance by a test or the like and read from this map.

移動係数αは、例えば、充放電効率が同一と仮定して、0.5としてもよい。また、被膜形成の主要因である電解液の還元分解は、負極開放電位が0.6V~1.0Vで連続的に起こるので、例えば、被膜形成電位Usideを0.6V、0.8Vあるいは1.0Vのように設定してもよい。 The transfer coefficient α may be set to 0.5, for example, assuming that the charge / discharge efficiencies are the same. Further, the reduction decomposition of the electrolytic solution, which is the main factor of film formation, occurs continuously when the negative electrode open potential is 0.6 V to 1.0 V. Therefore, for example, the film formation potential Uside is set to 0.6 V, 0.8 V or 1. It may be set as 0.0V.

<正極における副反応電流値iPE
従来、正負極組成対応ずれ容量ΔQは、負極表面上でのSEI被膜形成(副反応)の影響が主であると考えられていた。負極で形成される被膜は、SEIのほか、LiF、LiCoなどがあるが、負極副反応電流値iNEは、上述のターフェルの式により推定されていた。
<Vaccine side reaction current value i PE at positive electrode>
Conventionally, it has been considered that the deviation capacity ΔQ corresponding to the positive and negative electrode compositions is mainly affected by the formation of an SEI film (a side reaction) on the surface of the negative electrode. The coating formed on the negative electrode includes LiF, Li 2 Co 3 , etc. in addition to SEI, and the negative electrode side reaction current value iNE was estimated by the above-mentioned Tafel equation.

本発明者は、正極で形成される被膜についても、同じように考え、同様にターフェルの式により推定できるのではないかという仮説をたて、実験によりこの仮説が正しいことを見出した。 The present inventor considered the same for the film formed by the positive electrode, made a hypothesis that it could be estimated by the Tafel equation, and found that this hypothesis was correct by experiments.

そこで、正極においても、セル電圧VB及びセル温度TBに基づいて、下記式(4)のターフェル式により正極副反応電流値iPEを算出する。
ここで、iを交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UPEを正極開放電位とする。
Therefore, also in the positive electrode, the positive electrode side reaction current value iPE is calculated by the Tafel equation of the following equation (4) based on the cell voltage VB and the cell temperature TB.
Here, i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, and UP E is the positive electrode open potential.

Figure 2022026770000007
そして、この正極副反応電流値iPEに基づいて、負極ずれ量ΔQNEを算出する。
Figure 2022026770000007
Then, the negative electrode deviation amount ΔQNE is calculated based on the positive electrode side reaction current value iPE .

<正負極組成対応ずれ容量ΔQ(t~t)の総容量>
そして、図5に示すフォローチャートのS87において、このように算出した負極副反応電流値iNEと、正極副反応電流値iPEとから、ΔQ(t0~t1)=(iNE-iPE)×Δtを算出する。すなわち、負極副反応電流値iNEと正極副反応電流値iPEの差に、経過時間Δtを乗じて、経過時間Δtの正負極組成対応ずれ容量ΔQ(t~t)の総容量を算出する(S87)。なお、iNE×Δt-iPE×Δt=ΔQNE-ΔQPE=ΔQ(t~t)としてもよい。
<Total capacity of deviation capacity ΔQ (t 0 to t 1 ) corresponding to positive and negative electrode composition>
Then, in S87 of the follow chart shown in FIG. 5, ΔQ (t0 to t1) = ( iNE - iPE ) from the negative electrode side reaction current value iNE and the positive electrode side reaction current value iPE calculated in this way. Calculate × Δt. That is, the difference between the negative electrode side reaction current value iNE and the positive electrode side reaction current value iPE is multiplied by the elapsed time Δt to obtain the total capacity of the positive and negative electrode composition-corresponding deviation capacity ΔQ (t 0 to t 1 ) with the elapsed time Δt. Calculate (S87). In addition, i NE × Δt−i PE × Δt = ΔQ NE −ΔQ PE = ΔQ (t 0 to t 1 ) may be set.

<正負極の副反応電流値の被膜成長に応じた減衰>
なお、前記ターフェル式では、SEI被膜の厚みによる電流値への影響については、考慮されていない。そこで、ΔQPE、ΔQNEの算出において、各経過時間における被膜形成量に応じて、副反応電流値を減衰させた値を用いてΔQPE、ΔQNEを算出する。
<Attenuation of the side reaction current value of the positive and negative electrodes according to the film growth>
In the Tafel equation, the influence of the thickness of the SEI coating on the current value is not taken into consideration. Therefore, in the calculation of ΔQ PE and ΔQ NE, ΔQ PE and ΔQ NE are calculated using the values obtained by attenuating the side reaction current values according to the amount of film formation at each elapsed time.

図9は、被膜成長のモデルを示す模式図である。図10は、被膜形成量と副反応電流値の関係を示す式である。図11は、被膜量の逆数に対する電流値の減衰率を示すグラフである。図12は、経過時間と被膜形成量と副反応電流値の関係を示す表である。図13は、従来技術の劣化度推定結果と本実施形態の劣化度推定結果を比較するグラフである。図9~13を参照して、正負極の副反応電流値の被膜成長に応じた減衰について説明する。 FIG. 9 is a schematic diagram showing a model of film growth. FIG. 10 is an equation showing the relationship between the film formation amount and the side reaction current value. FIG. 11 is a graph showing the attenuation rate of the current value with respect to the reciprocal of the coating amount. FIG. 12 is a table showing the relationship between the elapsed time, the amount of film formation, and the side reaction current value. FIG. 13 is a graph comparing the deterioration degree estimation result of the prior art and the deterioration degree estimation result of the present embodiment. With reference to FIGS. 9 to 13, the attenuation of the side reaction current values of the positive and negative electrodes according to the film growth will be described.

図10(a)に示すように、リチウムイオン二次電池1の組み立て直後(コンディショニング前)の時間tは、集電箔1cと合材1aとが貼り合された状態で、SEI被膜1seiは形成されていない。使用に応じて、時間tでは、図10(b)に示すようにSEI被膜1seiが、形成される。さらに使用を続け、時間tになると図10(c)のようにSEI被膜1seiが厚く成長する。このSEI被膜1seiは、抵抗となり電流の流れを妨げる。副反応電流値Iは、厚さxに依存する。副反応電流値Iは、図11に示す式のように、1/xに比例する(kは係数)。そして、(t~t)におけるΔQを算出する場合に、図12に示す「1/Σ副電流値×t/mAh」と「副反応電流値の減衰率/%」の関係により、減衰させた(t~t)における副反応電流値を用いて(t~t)におけるΔQを算出する。 As shown in FIG. 10A, the time t 0 immediately after the assembly of the lithium ion secondary battery 1 (before conditioning) is such that the current collector foil 1c and the mixture 1a are bonded to each other, and the SEI coating 1sei is formed. Not formed. Depending on use, at time t1, the SEI coating 1sei is formed as shown in FIG. 10 (b). Further use is continued, and at time t2, the SEI coating 1sei grows thickly as shown in FIG . 10 (c). This SEI coating 1sei becomes a resistance and obstructs the flow of current. The side reaction current value I depends on the thickness x. The side reaction current value I is proportional to 1 / x as shown in FIG. 11 (k is a coefficient). Then, when calculating ΔQ in (t 1 to t 2 ), it is attenuated due to the relationship between “1 / Σ subcurrent value × t / mAh” and “adverse reaction current value attenuation rate /%” shown in FIG. The ΔQ at (t 1 to t 2 ) is calculated using the side reaction current values at (t 1 to t 2 ).

その結果、図13に示すように、時間がt~t~tと経過していくと、被膜量は、累積的に厚くなるとともに、副反応電流値Iは、厚さxの逆数に比例して小さくなる。
本実施形態では、以上に述べた正負極の副反応電流値の被膜成長に応じた減衰を考慮するため、図14に示すように、本実施形態の劣化推定の方法は、従来の技術によるターフェル式のみの劣化推定の方法よりも、より実際の劣化に近い推定が可能となっている。
As a result, as shown in FIG. 13, as the time elapses from t 1 to t 2 to t n , the coating amount is cumulatively thickened, and the side reaction current value I is the reciprocal of the thickness x. It becomes smaller in proportion to.
In the present embodiment, since the attenuation of the side reaction current values of the positive and negative electrodes described above according to the film growth is taken into consideration, as shown in FIG. 14, the method of estimating the deterioration of the present embodiment is Tafel by the conventional technique. It is possible to estimate the deterioration closer to the actual deterioration than the deterioration estimation method using only the equation.

<負極劣化量を推定(S9)>
ここで、図3のフローチャートに戻り負極劣化量を推定(S9)について説明する。負極劣化量は、すなわち負極ずれ量ΔQNEで、S8において算出されたその区間の負極の副反応電流値iNEを積算したものである。
<Estimate the amount of negative electrode deterioration (S9)>
Here, returning to the flowchart of FIG. 3, the estimation of the amount of deterioration of the negative electrode (S9) will be described. The negative electrode deterioration amount is, that is, the negative electrode deviation amount ΔQ NE , which is the sum of the adverse reaction current values iNE of the negative electrode in that section calculated in S8.

<負極劣化量に応じた充電電流閾値ICmaxを決定(S10)>
ここでは、予め「負極劣化-Li析出許容電流マップ」取得(S2)において取得したマップ2(図14参照)から、負極劣化量を推定(S9)の手順において推定した充電電流閾値ICmaxを決定する(S10)。新たに決定された充電電流閾値ICmaxは、それまでECU100のメモリ102に記憶されていた充電電流閾値ICmaxに上書きして更新をする。
<Determine the charge current threshold ICmax according to the amount of deterioration of the negative electrode (S10)>
Here, the charge current threshold ICmax estimated in the procedure of estimating the amount of negative electrode deterioration (S9) is determined from the map 2 (see FIG. 14) acquired in advance in the acquisition of the “negative electrode deterioration-Li precipitation allowable current map” (S2). (S10). The newly determined charge current threshold value ICmax is updated by overwriting the charge current threshold value ICmax stored in the memory 102 of the ECU 100 until then.

<充電電流IC≧充電電流閾値ICmaxか否かを判断(S11)>
続いて、リチウムイオン二次電池1に対する充電電流ICを常時監視し、S10で決定された充電電流閾値ICmaxを基準値として、充電電流ICが、充電電流閾値ICmaxを超えているか否かを判断する。充電電流ICが、充電電流閾値ICmaxを超えていなければ(S11:NO)、充電電流ICの制限はせず、そのまま、S8において算出されたその区間の負極副反応電流値iNEを積算したΔQNEを記憶して(S14)、次の処理を行う(S15:NO→S4)。
<Determining whether or not the charging current IC ≥ the charging current threshold IC max (S11)>
Subsequently, the charging current IC for the lithium ion secondary battery 1 is constantly monitored, and it is determined whether or not the charging current IC exceeds the charging current threshold ICmax with the charging current threshold ICmax determined in S10 as a reference value. .. If the charging current IC does not exceed the charging current threshold IC max (S11: NO), the charging current IC is not limited, and ΔQ obtained by integrating the negative electrode side reaction current value iNE in that section calculated in S8 as it is. The NE is stored (S14), and the next process is performed (S15: NO → S4).

一方、充電電流ICが、充電電流閾値ICmaxを超えていると判断した場合は(S11:YES)、リチウムイオン二次電池1に印加される充電電流ICを、リミッターにより充電電流閾値ICmaxに抑制する(S12)。そして、S8において算出されたその区間の負極副反応電流値iNEを積算したΔQNEを記憶して(S14)、次の処理を行う(S15:NO→S4)。 On the other hand, when it is determined that the charging current IC exceeds the charging current threshold ICmax (S11: YES), the charging current IC applied to the lithium ion secondary battery 1 is suppressed to the charging current threshold ICmax by the limiter. (S12). Then, the ΔQ NE obtained by integrating the negative electrode side reaction current value iNE calculated in S8 is stored (S14), and the next process is performed (S15: NO → S4).

車両10の運転者などにより、車両10の運用が終了し、電源が切られて電池の使用が終了する場合は(S15:YES)、処理を終了する。
(実施形態の効果)
本実施形態は、上記構成から以下のような効果を奏する。
When the operation of the vehicle 10 is terminated by the driver of the vehicle 10 and the power is turned off and the use of the battery is terminated (S15: YES), the process is terminated.
(Effect of embodiment)
This embodiment has the following effects from the above configuration.

(1)本実施形態の副反応電流を用いたリチウムイオン二次電池1のLi析出抑制制御方法では、負極で金属リチウムが析出しない充電電流ICの範囲でリチウムイオン二次電池1を充電するため、負極における金属リチウムの析出を効果的に抑制することができる。 (1) In the Li precipitation suppression control method of the lithium ion secondary battery 1 using the side reaction current of the present embodiment, the lithium ion secondary battery 1 is charged within the range of the charging current IC in which metallic lithium does not precipitate at the negative electrode. , The precipitation of metallic lithium on the negative electrode can be effectively suppressed.

(2)また、金属リチウムが析出しない範囲で、最大限の充電電流ICとすることができるため、リチウムイオン二次電池1の劣化を抑制しつつ、最大限に電池性能を引き出すことができる。 (2) Further, since the maximum charging current IC can be obtained within the range where metallic lithium does not precipitate, the battery performance can be maximized while suppressing the deterioration of the lithium ion secondary battery 1.

(3)負極の劣化状態に応じて、連続的に充電電流閾値ICmaxを動的に変化させるため、副反応電流による劣化が進行する中で、常にその時の劣化状態に合わせて性能を無駄なく最大限に引き出すことができる。 (3) Since the charging current threshold ICmax is continuously dynamically changed according to the deterioration state of the negative electrode, the performance is always maximized according to the deterioration state at that time while the deterioration due to the side reaction current progresses. It can be pulled out to the limit.

従来は、図15に示すように、許容される充電電流ICは、固定的に制限されており、さらに、金属リチウムの析出に密接な負極劣化量INEではなく、電池全体の容量低下量のみを判断していたため、充電電流ICの制限も負極の劣化の程度のかかわらず、一定の電流値で静的に制限していた。そのため、電池全体の容量の劣化がないときも、マージンを見て制限していたため、図15に示す領域1の部分での充電電流ICを印加することなく、領域2の範囲で充電をしていた。さらに、電池全体の容量がΔQに低下すると、今度は充電電流ICを制限していても、金属リチウムが析出するような充電電流ICとなって、ますます電池の劣化を促進することになってしまう。 Conventionally, as shown in FIG. 15, the allowable charging current IC is fixedly limited, and further, not the negative electrode deterioration amount I NE , which is closely related to the precipitation of metallic lithium, but only the capacity reduction amount of the entire battery. Therefore, the charging current IC was also statically limited at a constant current value regardless of the degree of deterioration of the negative electrode. Therefore, even when the capacity of the entire battery does not deteriorate, it is limited by looking at the margin. Therefore, the battery is charged in the range of the region 2 without applying the charging current IC in the portion of the region 1 shown in FIG. rice field. Furthermore, when the capacity of the entire battery drops to ΔQ2 , even if the charging current IC is limited this time, the charging current IC becomes such that metallic lithium precipitates, which further accelerates the deterioration of the battery. It ends up.

一方、本実施形態では、図14に示すように、負極劣化量INEに着目して、その劣化状態で許容される充電電流ICを充電電流閾値ICmaxとして算出し、その範囲で最大の電流値まで充電許容するため、劣化状態が小さいときも、劣化状態が大きいときも、その許容される範囲を十分に生かし切った活用ができる。また、使用期間の末期においても、充電電流閾値ICmaxを十分に小さくすることで、劣化を促進させるようなことがない。 On the other hand, in the present embodiment, as shown in FIG. 14, paying attention to the negative electrode deterioration amount IN, the charge current IC allowed in the deteriorated state is calculated as the charge current threshold IC max, and the maximum current value in the range is calculated. Since it allows charging up to, it can be fully utilized within the permissible range regardless of whether the deterioration state is small or the deterioration state is large. Further, even at the end of the usage period, the deterioration is not promoted by sufficiently reducing the charge current threshold value ICmax.

(4)リチウムイオン二次電池1の使用にあたり、予め、そのリチウムイオン二次電池1の固有の劣化特性を取得することで、車載された場合に個々のリチウムイオン二次電池1の劣化特性に応じた精密な制御をすることができる。実施形態では、新車を例に説明しているが、中古車や中古の二次電池でも、予めそのリチウムイオン二次電池1の固有の劣化特性を取得することで本実施形態の副反応電流を用いたリチウムイオン二次電池1のLi析出抑制制御方法を実施することができる。 (4) When using the lithium ion secondary battery 1, by acquiring the deterioration characteristics unique to the lithium ion secondary battery 1 in advance, the deterioration characteristics of the individual lithium ion secondary batteries 1 can be obtained when mounted on a vehicle. Precise control can be performed according to the situation. In the embodiment, a new vehicle is described as an example, but even in a used car or a used secondary battery, the side reaction current of the present embodiment can be obtained by acquiring the peculiar deterioration characteristics of the lithium ion secondary battery 1 in advance. The method for controlling Li precipitation suppression of the lithium ion secondary battery 1 used can be implemented.

(5)セル電圧VBから、負極開放電位VNE、正極開放電位VPEを推定する場合に、正極・負極の容量-OCP(Open circuit potential)特性(電池容量とそのときの正極・負極の開放電位との関係を示すもの)を示すグラフにおいて、正負極組成対応ずれ容量ΔQを参照して負極開放電位VNE、正極開放電位VPEを推定するため、正確な電位を推定をすることで、正確に劣化を推定できる。 (5) When the negative electrode open potential V NE and the positive electrode open potential V PE are estimated from the cell voltage VB, the positive electrode / negative electrode capacity-OCP (Open circuit potential) characteristics (battery capacity and opening of the positive electrode / negative electrode at that time). In the graph showing the relationship with the potential), the negative electrode open potential V NE and the positive electrode open potential V PE are estimated with reference to the positive / negative electrode composition-corresponding shift capacity ΔQ. Deterioration can be estimated accurately.

(6)リチウムイオン二次電池1の負極の劣化を、ターフェル式に基づいた副反応電流値に基づくSEI被膜の成長に基づいて判断している。このため、負極の副反応電流値を積算することで正確なSEI被膜の成長を推定し、このデータから負極の容量劣化量を正確に推定するため、実測しなくても理論的に正確な劣化を推定できる。 (6) Deterioration of the negative electrode of the lithium ion secondary battery 1 is determined based on the growth of the SEI coating based on the side reaction current value based on the Tafel equation. Therefore, since the growth of the SEI coating is estimated accurately by integrating the side reaction current values of the negative electrode, and the amount of capacitance deterioration of the negative electrode is accurately estimated from this data, the deterioration is theoretically accurate without actual measurement. Can be estimated.

(7)さらに、負極SEI被膜の成長に応じて負極副反応電流値iNEが減少するが、この負極SEI被膜の成長に応じた負極副反応電流値iNEの減少を反映することで、より正確に負極の劣化を推定することができる。 (7) Further, the negative electrode side reaction current value iNE decreases with the growth of the negative electrode SEI coating, but by reflecting the decrease of the negative electrode side reaction current value iNE with the growth of the negative electrode SEI coating, it becomes more The deterioration of the negative electrode can be estimated accurately.

(8)車両10のECU100により、予め記憶された「そのリチウムイオン二次電池固有の劣化特性」と「負極劣化-Li析出許容電流マップ2」に基づいて、セル電圧VBとセル温度TBからのデータのみで制御することができる。そのため、車両10における構成は、ECU100に本実施形態のLi析出抑制制御方法のプログラムをインストールするだけで、制御装置18を、副反応電流を用いたリチウムイオン二次電池のLi析出抑制制御装置とすることができる。 (8) From the cell voltage VB and the cell temperature TB based on the "deterioration characteristics peculiar to the lithium ion secondary battery" and the "negative electrode deterioration-Li precipitation allowable current map 2" stored in advance by the ECU 100 of the vehicle 10. It can be controlled only by data. Therefore, in the configuration of the vehicle 10, only by installing the program of the Li precipitation suppression control method of the present embodiment in the ECU 100, the control device 18 is combined with the Li precipitation suppression control device of the lithium ion secondary battery using the side reaction current. can do.

(9)そのため、既存の車両10においても簡単な構造で適応が容易であるため、後付けで装着することも容易である。既存の車両でも効率的な制御をすることができる。
(変形例)本発明は、上記各実施形態には限定されず、下記のように実施することもできる。
(9) Therefore, even in the existing vehicle 10, it has a simple structure and is easy to adapt, so that it can be easily mounted afterwards. Efficient control can be performed even with existing vehicles.
(Variation Example) The present invention is not limited to each of the above embodiments, and can be carried out as follows.

○実施形態では、車両に搭載された例を示したが、必ずしも自動車に搭載されたものに限らず、船舶や鉄道、航空機や、さらに固定型のものでの実施を排除するものではない。
○実施形態では、図1に示すようなリチウムイオン二次電池1を例に挙げて説明したが、リチウムイオン二次電池1は、円筒状の形状や、立方体のような形状であってもよい。また、正極及び負極は、巻回したものに限らず、複数の正極板、負極板が積層されたようなものであってもよい。
○ In the embodiment, an example of being mounted on a vehicle is shown, but the implementation is not necessarily limited to that mounted on an automobile, and does not exclude implementation on ships, railroads, aircraft, and even fixed type ones.
○ In the embodiment, the lithium ion secondary battery 1 as shown in FIG. 1 has been described as an example, but the lithium ion secondary battery 1 may have a cylindrical shape or a cubic shape. .. Further, the positive electrode and the negative electrode are not limited to those wound, and may be one in which a plurality of positive electrode plates and negative electrode plates are laminated.

○図1には、単一のセル電池を示したが、車両10においては、リチウムイオン二次電池1は、セル電池を単位にこれを連結してスタックとして使用しており、本実施形態の副反応電流を用いたリチウムイオン二次電池のLi析出抑制制御方法は、それぞれセル電池毎に独立して実施されるが、組電池全体を制御するようにしてもよい。 ○ FIG. 1 shows a single cell battery, but in the vehicle 10, the lithium ion secondary battery 1 is used as a stack by connecting the cell batteries as a unit, and is used as a stack. The Li precipitation suppression control method for the lithium ion secondary battery using the side reaction current is carried out independently for each cell battery, but the entire assembled battery may be controlled.

○実施形態の実施において、数1~8に示された数式(1)~(4)は、処理の一例であり、充電電流閾値ICmaxを算出できれば、そのプロセスは限定されない。数式によらず、すべてデータをテーブルやマップで換算するようなものでもよい。 -In the embodiment of the embodiment, the mathematical formulas (1) to (4) shown in the equations 1 to 8 are examples of the processing, and the process is not limited as long as the charge current threshold value ICmax can be calculated. Regardless of the formula, all the data may be converted into a table or a map.

○充電電流ICの制御については、これを充電電圧VCに換算して制御するようにしてもよい。
○本実施形態のリチウムイオン二次電池のLi析出抑制制御方法において、ここから得られたデータを用いて、例えば充電におけるセルSOCの制御や劣化予測を行うようにしてもよい。
○ Regarding the control of the charging current IC, this may be converted into the charging voltage VC for control.
○ In the Li precipitation suppression control method for the lithium ion secondary battery of the present embodiment, the data obtained from this may be used to control the cell SOC and predict deterioration in charging, for example.

○充電電流閾値ICmaxによる制御は、安全のために一定のマージンを設けてもよい。また、完全に連続的でなくても、段階的・間歇的に変化させるようなものでもよい。
○図3、図5、図8に例示したフローチャートは、処理の一例であり、その順序を変更し、またステップの付加、削除もしくは変更をして実施することができることは言うまでもない。
○ The control by the charge current threshold value ICmax may be provided with a certain margin for safety. Further, it may not be completely continuous, but may be changed stepwise or intermittently.
○ It goes without saying that the flowcharts illustrated in FIGS. 3, 5, and 8 are examples of processing, and the order can be changed, and steps can be added, deleted, or changed.

○図6(a),(b)、図7、図11、図13、図14に例示したグラフは、概念的な一例であり、これらに限定されるものではない。また、必ずしも実施に当たって、グラフを作製する必要もない。 ○ The graphs illustrated in FIGS. 6 (a) and 6 (b), FIG. 7, FIG. 11, FIG. 13, and FIG. 14 are conceptual examples and are not limited thereto. In addition, it is not always necessary to create a graph for implementation.

○また、本発明は、特許請求の範囲を逸脱しない限り、当業者により、その構成を付加、削除または変更をし、又はカテゴリーを変えて装置として実施することができることは言うまでもない。 ○ Further, it goes without saying that the present invention can be implemented as a device by a person skilled in the art by adding, deleting or changing its configuration, or by changing the category, as long as it does not deviate from the scope of claims.

1…リチウムイオン二次電池(二次電池)
2…(負極劣化-Li析出許容電流)マップ
10…車両
18…制御装置
20…監視ユニット
21…電圧センサ
22…電流センサ
23…温度センサ
30…PCU
100…ECU
101…CPU
102…メモリ
200…劣化特性取得の装置
VB…セル電圧
IB…セル電流
TB…セル温度
IC…充電電流
ICmax…充電電流閾値
…時間(初期値)
…時間
Δt…時間(経過時間)
ΔQ…正負極組成対応ずれ容量
ΔQNE…負極ずれ量
ΔQPE…正極ずれ量
loss…保存前後の電池満容量の容量低下量
SD…自己放電容量
NE…(負極の容量に応じた)負極開放電位
PE…(正極の容量に応じた)正極開放電位
NE0…負極の容量に応じた負極開放電位(劣化のない初期値)
PE0…正極の容量に応じた正極開放電位(劣化のない初期値)
NE…負極劣化量[Ah]
PE…正極劣化量[Ah]
NE…負極副反応電流値[A]
PE…正極副反応電流値[A]
NE0…(劣化特性として取得された)負極副反応電流値[A]
PE0…(劣化特性として取得された)正極副反応電流値[A]
1 ... Lithium-ion secondary battery (secondary battery)
2 ... (Negative electrode deterioration-Li precipitation allowable current) Map 10 ... Vehicle 18 ... Control device 20 ... Monitoring unit 21 ... Voltage sensor 22 ... Current sensor 23 ... Temperature sensor 30 ... PCU
100 ... ECU
101 ... CPU
102 ... Memory 200 ... Device for acquiring deterioration characteristics VB ... Cell voltage IB ... Cell current TB ... Cell temperature IC ... Charging current ICmax ... Charging current threshold t 0 ... Time (initial value)
t 1 ... time Δt ... time (elapsed time)
ΔQ… Positive and negative electrode composition-corresponding displacement ΔQ NE … Negative electrode displacement ΔQ PE … Positive electrode displacement Q loss … Capacity decrease in battery full capacity before and after storage Q SD … Self-discharge capacity V NE … (depending on the capacity of the negative electrode) Negative electrode open potential V PE … (according to the capacity of the positive electrode) Positive electrode open potential V NE0 … Negative electrode open potential according to the capacity of the negative electrode (initial value without deterioration)
V PE0 : Positive electrode open potential according to the capacity of the positive electrode (initial value without deterioration)
I NE ... Negative electrode deterioration amount [Ah]
I PE ... Positive electrode deterioration amount [Ah]
i NE ... Negative negative side reaction current value [A]
i PE … Positive electrode side reaction current value [A]
i NE0 ... Negative negative side reaction current value (acquired as deterioration characteristic) [A]
i PE0 ... Positive electrode side reaction current value (acquired as deterioration characteristic) [A]

Claims (10)

セル電圧を測定する電圧測定のステップと、
取得した前記セル電圧から正極開放電位と負極開放電位を推定する電位推定のステップと、
セル温度を取得するセル温度測定のステップと、
前記推定した正極開放電位及び負極開放電位とセル温度とから、正極副反応電流値及び負極副反応電流値を推定する副反応電流推定のステップと、
推定した前記負極副反応電流値を積算して負極劣化量を推定する負極劣化量推定のステップと、
前記推定した負極劣化量に応じてLi析出を抑制する範囲で許容される上限の充電電流を決定する充電電流決定のステップと
を備えたことを特徴とするリチウムイオン二次電池のLi析出抑制制御方法。
The voltage measurement step to measure the cell voltage and
A step of potential estimation for estimating the positive electrode open potential and the negative electrode open potential from the acquired cell voltage, and
The cell temperature measurement step to acquire the cell temperature, and
A step of side reaction current estimation for estimating a positive electrode side reaction current value and a negative electrode side reaction current value from the estimated positive electrode open potential, negative electrode open potential, and cell temperature.
The step of estimating the negative electrode deterioration amount by integrating the estimated negative electrode side reaction current values and estimating the negative electrode deterioration amount, and
The Li precipitation suppression control of the lithium ion secondary battery is provided with a charging current determination step of determining the upper limit charge current allowed within the range in which Li precipitation is suppressed according to the estimated negative electrode deterioration amount. Method.
前記充電電流決定のステップにおいて、負極劣化量に応じて、Li析出を生じない限界の充電電流と対応させたマップに基づいて、Li析出を抑制する範囲で許容される上限の充電電流を決定することを特徴とする請求項1に記載のリチウムイオン二次電池のLi析出抑制制御方法。 In the charge current determination step, the upper limit charge current allowed within the range in which Li precipitation is suppressed is determined based on the map corresponding to the limit charge current that does not cause Li precipitation, depending on the amount of negative electrode deterioration. The method for controlling Li precipitation suppression of a lithium ion secondary battery according to claim 1. 推定した前記正極副反応電流値及び負極副反応電流値から容量劣化量を推定する容量劣化量予測のステップをさらに備えたことを特徴とする請求項1又は請求項2に記載のリチウムイオン二次電池のLi析出抑制制御方法。 The lithium ion secondary according to claim 1 or 2, further comprising a step of predicting the amount of capacity deterioration for estimating the amount of capacity deterioration from the estimated positive electrode side reaction current value and the negative electrode side reaction current value. A method for controlling Li precipitation suppression of a battery. 前記充電電流決定のステップにおいて決定されたLi析出を抑制する範囲で許容される上限の充電電流を閾値として、前記リチウムイオン二次電池の充電電流を制限する充電のステップと
を備えることを特徴とする請求項1~3のいずれか一項に記載のリチウムイオン二次電池のLi析出抑制制御方法。
It is characterized by comprising a charging step of limiting the charging current of the lithium ion secondary battery with the upper limit charging current allowed in the range of suppressing Li precipitation determined in the charging current determination step as a threshold. The method for controlling Li precipitation suppression of a lithium ion secondary battery according to any one of claims 1 to 3.
前記充電のステップにおいて、前記負極劣化量推定のステップにおいて負極劣化量を推定する毎に前記閾値を更新することを特徴とする請求項4に記載のリチウムイオン二次電池のLi析出抑制制御方法。 The Li precipitation suppression control method for a lithium ion secondary battery according to claim 4, wherein in the charging step, the threshold value is updated every time the negative electrode deterioration amount is estimated in the negative electrode deterioration amount estimation step. 前記負極劣化量算出のステップにおいて、
を交換電流密度、αを移動係数、Fをファラデー定数、Rを気体定数、Tを絶対温度、Usideを被膜形成電位、UNEを負極開放電位、UPEを正極開放電位としたとき、
下記式(3)
Figure 2022026770000008
により算出した負極副反応電流値iNEを算出し、
正極劣化量算出のステップにおいて、
下記式(4)
Figure 2022026770000009
により正極副反応電流値iPEを算出する
ことを特徴とする請求項1~5のいずれか一項に記載のリチウムイオン二次電池のLi析出抑制制御方法。
In the step of calculating the amount of deterioration of the negative electrode,
When i 0 is the exchange current density, α is the transfer coefficient, F is the Faraday constant, R is the gas constant, T is the absolute temperature, U side is the film formation potential, UNE is the negative electrode open potential, and UP E is the positive electrode open potential. ,
The following formula (3)
Figure 2022026770000008
Calculate the negative electrode side reaction current value iNE calculated by
In the step of calculating the amount of deterioration of the positive electrode,
The following formula (4)
Figure 2022026770000009
The Li precipitation suppression control method for a lithium ion secondary battery according to any one of claims 1 to 5, wherein the positive electrode side reaction current value iPE is calculated by the above method.
前記負極劣化量算出のステップにおいて、経過時間に応じて副反応電流値を減衰させた値を用いて負極劣化量を算出することを特徴とする請求項1~6に記載のリチウムイオン二次電池のLi析出抑制制御方法。 The lithium ion secondary battery according to claim 1 to 6, wherein in the step of calculating the negative electrode deterioration amount, the negative electrode deterioration amount is calculated using a value obtained by attenuated the side reaction current value according to the elapsed time. Li precipitation suppression control method. 前記リチウムイオン二次電池のLi析出抑制制御方法を実行する前に、
リチウムイオン二次電池を特定の条件で保存する保存のステップと、
前記保存したリチウムイオン二次電池の保存前後の電池満容量の容量低下量を測定する容量低下量測定のステップと、
前記保存したリチウムイオン二次電池の保存前後の自己放電容量を測定する自己放電容量測定のステップと、
前記容量低下量及び自己放電容量とから、前記保存時の特定条件における正極及び負極の副反応電流値を求めるステップとを含む
劣化特性取得のステップ
を備えたことを特徴とする請求項1~7のいずれか一項に記載のリチウムイオン二次電池のLi析出抑制制御方法。
Before executing the Li precipitation suppression control method for the lithium ion secondary battery,
The storage step of storing the lithium-ion secondary battery under specific conditions,
The step of measuring the capacity reduction amount to measure the capacity reduction amount of the battery full capacity before and after the storage of the stored lithium ion secondary battery, and
The self-discharge capacity measurement step for measuring the self-discharge capacity of the stored lithium ion secondary battery before and after storage, and
Claims 1 to 7 include a step of acquiring deterioration characteristics including a step of obtaining a side reaction current value of a positive electrode and a negative electrode under a specific condition at the time of storage from the capacity decrease amount and the self-discharge capacity. The method for controlling Li precipitation suppression of a lithium ion secondary battery according to any one of the above.
リチウムイオン二次電池のセル電圧を検出する電圧センサと、
リチウムイオン二次電池のセル温度を検出する温度センサと、
CPUとメモリとを有したコンピュータと
を備えたリチウムイオン二次電池の制御装置であって、
前記コンピュータは、請求項1~8のいずれか一項に記載のリチウムイオン二次電池のLi析出抑制制御方法を実行する制御手段を構成することを特徴とするリチウムイオン二次電池の制御装置。
A voltage sensor that detects the cell voltage of a lithium-ion secondary battery,
A temperature sensor that detects the cell temperature of a lithium-ion secondary battery,
A control device for a lithium-ion secondary battery including a computer having a CPU and a memory.
The computer is a control device for a lithium ion secondary battery, which comprises a control means for executing the Li precipitation suppression control method for the lithium ion secondary battery according to any one of claims 1 to 8.
前記リチウムイオン二次電池は車両に搭載され、前記コンピュータが前記車両に搭載されたコンピュータであることを特徴とする請求項9に記載のリチウムイオン二次電池の制御装置。 The control device for a lithium ion secondary battery according to claim 9, wherein the lithium ion secondary battery is mounted on a vehicle, and the computer is a computer mounted on the vehicle.
JP2020130391A 2020-07-31 2020-07-31 Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY Pending JP2022026770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020130391A JP2022026770A (en) 2020-07-31 2020-07-31 Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020130391A JP2022026770A (en) 2020-07-31 2020-07-31 Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY

Publications (1)

Publication Number Publication Date
JP2022026770A true JP2022026770A (en) 2022-02-10

Family

ID=80263693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020130391A Pending JP2022026770A (en) 2020-07-31 2020-07-31 Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY

Country Status (1)

Country Link
JP (1) JP2022026770A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220917A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Device and method for determining deterioration of lithium ion secondary battery
JP2013140037A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Ocv characteristic estimation device for nonaqueous electrolyte secondary battery, ocv characteristic estimation method, power storage system, and battery pack
JP2013254710A (en) * 2012-06-08 2013-12-19 Gs Yuasa Corp Power storage element life estimation device, life estimation method, and power storage system
JP2014032826A (en) * 2012-08-02 2014-02-20 Toyota Motor Corp State estimation device of secondary cell
JP2014167406A (en) * 2013-02-28 2014-09-11 Sekisui Chem Co Ltd Battery model construction method, and accumulator degradation estimation device
US20170139013A1 (en) * 2015-11-16 2017-05-18 Samsung Electronic, Co. Ltd. Computing system for identification of solid-solid interphase products
JP2017139109A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Battery system
JP2017190979A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Battery degradation estimation device
JP2017195727A (en) * 2016-04-22 2017-10-26 トヨタ自動車株式会社 Battery control apparatus
JP2019139999A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 Control device for secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220917A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Device and method for determining deterioration of lithium ion secondary battery
JP2013140037A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Ocv characteristic estimation device for nonaqueous electrolyte secondary battery, ocv characteristic estimation method, power storage system, and battery pack
JP2013254710A (en) * 2012-06-08 2013-12-19 Gs Yuasa Corp Power storage element life estimation device, life estimation method, and power storage system
JP2014032826A (en) * 2012-08-02 2014-02-20 Toyota Motor Corp State estimation device of secondary cell
JP2014167406A (en) * 2013-02-28 2014-09-11 Sekisui Chem Co Ltd Battery model construction method, and accumulator degradation estimation device
US20170139013A1 (en) * 2015-11-16 2017-05-18 Samsung Electronic, Co. Ltd. Computing system for identification of solid-solid interphase products
JP2017139109A (en) * 2016-02-03 2017-08-10 トヨタ自動車株式会社 Battery system
JP2017190979A (en) * 2016-04-12 2017-10-19 トヨタ自動車株式会社 Battery degradation estimation device
JP2017195727A (en) * 2016-04-22 2017-10-26 トヨタ自動車株式会社 Battery control apparatus
JP2019139999A (en) * 2018-02-13 2019-08-22 トヨタ自動車株式会社 Control device for secondary battery

Similar Documents

Publication Publication Date Title
JP7483078B2 (en) Secondary battery abnormality detection device and secondary battery
EP3617726B1 (en) Method of estimating deteriorated state of secondary battery and secondary battery system
US9475480B2 (en) Battery charge/discharge control device and hybrid vehicle using the same
EP3245096B1 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
JP6183663B2 (en) Secondary battery control device
US8305085B2 (en) Lithium-ion battery controlling apparatus and electric vehicle
JP5026287B2 (en) Method for estimating the maximum output of a battery for a hybrid electric vehicle
JP5741348B2 (en) Secondary battery system and vehicle
JP4810417B2 (en) Remaining capacity calculation device for power storage device
JP2013019709A (en) Secondary battery system and vehicle
JP7227195B2 (en) Method for determining deterioration of lithium-ion secondary battery and device for determining deterioration of lithium-ion secondary battery
JP2013134962A (en) Lithium ion secondary battery system
JP7137760B2 (en) Charge/discharge control method for secondary battery
CN107636885B (en) Storage device, control device, and moving body
CN113036834B (en) Battery system and control method of lithium ion battery
US10527681B2 (en) Degradation estimator for energy storage device, energy storage apparatus, input-output control device for energy storage device, and method for controlling input and output of energy storage device
JP2019160662A (en) Secondary battery deterioration estimation device
JP2008276972A (en) Control device of lithium secondary battery, motor driving device, control method of lithium secondary battery, and computer readable recording medium having recorded program to make computer perform control method of lithium secondary battery
CN113178625B (en) Diagnostic device for secondary battery and SOC unevenness detection method
JP2022026770A (en) Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY
JP7100151B2 (en) Battery control device
JP2018085278A (en) Control system
CN113809412A (en) Battery system
JP7226201B2 (en) charging control system
JP7040408B2 (en) Rechargeable battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230718