JP2013140037A - Ocv characteristic estimation device for nonaqueous electrolyte secondary battery, ocv characteristic estimation method, power storage system, and battery pack - Google Patents

Ocv characteristic estimation device for nonaqueous electrolyte secondary battery, ocv characteristic estimation method, power storage system, and battery pack Download PDF

Info

Publication number
JP2013140037A
JP2013140037A JP2011289916A JP2011289916A JP2013140037A JP 2013140037 A JP2013140037 A JP 2013140037A JP 2011289916 A JP2011289916 A JP 2011289916A JP 2011289916 A JP2011289916 A JP 2011289916A JP 2013140037 A JP2013140037 A JP 2013140037A
Authority
JP
Japan
Prior art keywords
open circuit
circuit potential
characteristic
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011289916A
Other languages
Japanese (ja)
Other versions
JP5825101B2 (en
Inventor
Shigeki Yamate
山手  茂樹
Yohei Tao
洋平 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2011289916A priority Critical patent/JP5825101B2/en
Publication of JP2013140037A publication Critical patent/JP2013140037A/en
Application granted granted Critical
Publication of JP5825101B2 publication Critical patent/JP5825101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an OCV characteristic estimation device, capable of rapidly and accurately estimating the OCV characteristic of a nonaqueous electrolyte secondary battery.SOLUTION: An OCV characteristic estimation device 100 comprises: an OCP characteristic acquisition part 110 which acquires the OCP characteristic of a first positive electrode and the OCP characteristic of a first negative electrode; an open circuit potential acquisition part 120 which acquires the open circuit potential of the first positive electrode, the open circuit potential of the first negative electrode, a difference quantity of electricity, the open circuit potential of a second positive electrode, and the open circuit potential of a second negative electrode; a deterioration rate calculation part 130 which calculate the deterioration rate of a positive electrode and the deterioration rate of a negative electrode using the OCP characteristic of the first positive electrode, the OCP characteristic of the first negative electrode, the open circuit potential of the first positive electrode, the open circuit potential of the first negative electrode, the difference quantity of electricity, the open circuit potential of the second positive electrode, and the open circuit potential of the second negative electrode; a deviation amount calculation part 140 which calculates the amount of deviation using the deterioration rate of a positive electrode, the deterioration rate of a negative electrode, the OCP characteristic of the first positive electrode, and the OCP characteristic of the first negative electrode; and an OCV characteristic calculation part 150 which calculates the OCV characteristic using the amount of deviation, the deterioration rate of a positive electrode, the deterioration rate of a negative electrode, the OCP characteristic of the first positive electrode, and the OCP characteristic of the first negative electrode.

Description

本発明は、非水電解質二次電池のOCV特性を推定するOCV特性推定装置、OCV特性推定方法、蓄電システム及び組電池に関する。   The present invention relates to an OCV characteristic estimation device, an OCV characteristic estimation method, a power storage system, and an assembled battery that estimate OCV characteristics of a nonaqueous electrolyte secondary battery.

世界的な環境問題への取り組みとして、ガソリン自動車から電気自動車への転換が重要になってきている。このため、リチウムイオン二次電池などの非水電解質二次電池を動力源に用いた電気自動車の開発が進められている。   The shift from gasoline cars to electric cars has become important as a global environmental problem. For this reason, development of an electric vehicle using a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery as a power source is in progress.

ここで、当該二次電池を有効に活用するためには、当該二次電池の電池容量を正確に推定して、当該二次電池の劣化状態を把握することが重要である。そして、当該二次電池の電池容量を正確に推定するためには、当該二次電池の開回路電圧の特性であるOCV特性を正確に把握することが必要である。   Here, in order to effectively use the secondary battery, it is important to accurately estimate the battery capacity of the secondary battery and grasp the deterioration state of the secondary battery. In order to accurately estimate the battery capacity of the secondary battery, it is necessary to accurately grasp the OCV characteristic that is the characteristic of the open circuit voltage of the secondary battery.

このため、従来、当該二次電池のOCV特性を把握する技術が提案されている(例えば、特許文献1及び非特許文献1参照)。特許文献1には、二次電池の劣化状態の判定のために、間欠充放電試験を繰り返すことによって、OCV特性を取得する方法が開示されている。また、非特許文献1には、リチウムイオン二次電池における低率放電特性を測定し、所定の関数を当該特性にフィッティングさせることでOCV特性を推定する方法が開示されている。   For this reason, the technique which grasps | ascertains the OCV characteristic of the said secondary battery conventionally is proposed (for example, refer patent document 1 and nonpatent literature 1). Patent Document 1 discloses a method for acquiring OCV characteristics by repeating an intermittent charge / discharge test for determination of a deterioration state of a secondary battery. Non-Patent Document 1 discloses a method of estimating OCV characteristics by measuring low-rate discharge characteristics in a lithium ion secondary battery and fitting a predetermined function to the characteristics.

特開2011−40198号公報JP2011-40198A

K.Honkura et al.、Journal of Power Sources 196(2011)、10141−10147K. Honkura et al. , Journal of Power Sources 196 (2011), 10141-10147

しかしながら、上記のような従来のOCV特性を把握する技術では、迅速に精度良くOCV特性を推定することはできないという問題がある。   However, the conventional technique for grasping the OCV characteristic as described above has a problem that the OCV characteristic cannot be estimated quickly and accurately.

つまり、特許文献1に開示された技術では、間欠充放電試験を繰り返し測定するのに時間を要するため、迅速にOCV特性を推定することができない。また、当該間欠充放電試験の間は電池が使用不能になるという問題もある。   That is, in the technique disclosed in Patent Document 1, it takes time to repeatedly measure the intermittent charge / discharge test, and thus the OCV characteristic cannot be estimated quickly. There is also a problem that the battery becomes unusable during the intermittent charge / discharge test.

また、非特許文献1に開示された技術では、低率放電特性を測定するのに時間を要するため、迅速にOCV特性を推定することができない。また、所定の関数を当該特性にフィッティングさせることでOCV特性を推定しているが、当該フィッティングを精度良く行うのは困難であり、当該フィッティングの精度が悪いと精度良くOCV特性を推定することはできない。   Further, in the technique disclosed in Non-Patent Document 1, it takes time to measure the low-rate discharge characteristics, and thus the OCV characteristics cannot be estimated quickly. In addition, the OCV characteristic is estimated by fitting a predetermined function to the characteristic. However, it is difficult to perform the fitting with high accuracy. If the fitting accuracy is low, the OCV characteristic is accurately estimated. Can not.

本発明は、上記問題を解決するためになされたものであり、リチウムイオン二次電池などの非水電解質二次電池において、迅速に精度良くOCV特性を推定することができるOCV特性推定装置、OCV特性推定方法、蓄電システム及び組電池を提供することを目的とする。   The present invention has been made in order to solve the above-described problem. An OCV characteristic estimation apparatus and OCV capable of quickly and accurately estimating OCV characteristics in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. An object is to provide a characteristic estimation method, a power storage system, and an assembled battery.

上記目的を達成するために、本発明の一態様に係るOCV特性推定装置は、正極及び負極の開回路電位である正極開回路電位及び負極開回路電位を参照極を用いて測定することができる非水電解質二次電池の、電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定装置であって、所定の第一状態での前記非水電解質二次電池の電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記第一状態での前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得部と、所定の第二状態での所定の第一充電時点における正極開回路電位及び負極開回路電位である第一正極開回路電位及び第一負極開回路電位を取得するとともに、前記第一充電時点から第二充電時点へ通電した場合の通電電気量である差分電気量と、前記第二充電時点における正極開回路電位及び負極開回路電位である第二正極開回路電位及び第二負極開回路電位とを取得する開回路電位取得部と、前記OCP特性取得部が取得した前記第一正極OCP特性及び前記第一負極OCP特性と、前記開回路電位取得部が取得した前記第一正極開回路電位、前記第一負極開回路電位、前記差分電気量、前記第二正極開回路電位及び前記第二負極開回路電位とを用いて、正極及び負極の劣化の度合いを示す正極劣化率及び負極劣化率を算出する劣化率算出部と、算出された前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出するずれ量算出部と、算出された前記ずれ量と、前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態でのOCV特性を算出するOCV特性算出部とを備える。   In order to achieve the above object, an OCV characteristic estimation device according to one embodiment of the present invention can measure a positive open circuit potential and a negative open circuit potential, which are open circuit potentials of a positive electrode and a negative electrode, using a reference electrode. An OCV characteristic estimation device for estimating an OCV characteristic indicating a relationship between an electric quantity and an open circuit voltage of a nonaqueous electrolyte secondary battery, wherein the electric quantity of the nonaqueous electrolyte secondary battery in a predetermined first state A first positive OCP characteristic indicating a relationship between a certain first electric quantity and a positive open circuit potential; and a first negative OCP characteristic indicating a relation between the first electric quantity and a negative open circuit potential in the first state. An OCP characteristic acquisition unit to acquire, and a first positive open circuit potential and a first negative open circuit potential that are a positive open circuit potential and a negative open circuit potential at a predetermined first charging time in a predetermined second state , From the first charging time to the second charging time The differential electric quantity, which is the energized electric quantity when the electric current is applied, and the second positive open circuit potential and the second negative open circuit potential, which are the positive open circuit potential and the negative open circuit potential at the second charging point, are acquired. A circuit potential acquisition unit; the first positive OCP characteristic and the first negative OCP characteristic acquired by the OCP characteristic acquisition unit; the first positive open circuit potential acquired by the open circuit potential acquisition unit; Deterioration rate for calculating a positive electrode deterioration rate and a negative electrode deterioration rate indicating the degree of deterioration of the positive electrode and the negative electrode using the open circuit potential, the differential electric quantity, the second positive electrode open circuit potential, and the second negative electrode open circuit potential. Using the calculation unit, the calculated positive electrode deterioration rate and negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic, the positive electrode OCP characteristic and the negative electrode OCP characteristic in the second state The amount of electricity Using the deviation amount calculation unit for calculating the amount, the calculated deviation amount, the positive electrode deterioration rate and the negative electrode deterioration rate, the first positive electrode OCP characteristic and the first negative electrode OCP characteristic, the second An OCV characteristic calculation unit for calculating the OCV characteristic in the state.

これによれば、OCV特性推定装置は、第一正極OCP特性、第一負極OCP特性、第一正極開回路電位、第一負極開回路電位、差分電気量、第二正極開回路電位及び第二負極開回路電位を用いて、正極劣化率及び負極劣化率を算出し、正極劣化率、負極劣化率、第一正極OCP特性及び第一負極OCP特性を用いて、第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出し、ずれ量、正極劣化率、負極劣化率、第一正極OCP特性及び第一負極OCP特性を用いて、第二状態でのOCV特性を算出する。つまり、OCV特性推定装置は、当該正極劣化率、当該負極劣化率及び当該ずれ量を算出することで、第二状態でのOCV特性を算出する。ここで、本願発明者らは、鋭意研究の結果、当該正極劣化率、当該負極劣化率及び当該ずれ量を用いて、非水電解質二次電池のOCV特性を正確に推定することができることを見出した。また、OCV特性推定装置は、当該正極劣化率、当該負極劣化率及び当該ずれ量を用いてOCV特性を算出するため、実際に充放電を行い測定するような必要がなく、迅速に当該OCV特性を推定することができる。このため、OCV特性推定装置は、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   According to this, the OCV characteristic estimation device includes a first positive OCP characteristic, a first negative OCP characteristic, a first positive open circuit potential, a first negative open circuit potential, a differential electric quantity, a second positive open circuit potential, and a second positive open circuit potential. The negative electrode open circuit potential is used to calculate the positive electrode deterioration rate and the negative electrode deterioration rate, and the positive electrode OCP characteristic in the second state is calculated using the positive electrode deterioration rate, the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic. And the negative electrode OCP characteristic, and the OCV characteristic in the second state is calculated using the deviation amount, the positive electrode deterioration rate, the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic. To do. That is, the OCV characteristic estimation device calculates the OCV characteristic in the second state by calculating the positive electrode deterioration rate, the negative electrode deterioration rate, and the shift amount. Here, as a result of intensive studies, the inventors of the present application have found that the OCV characteristics of the nonaqueous electrolyte secondary battery can be accurately estimated using the positive electrode deterioration rate, the negative electrode deterioration rate, and the shift amount. It was. In addition, since the OCV characteristic estimation device calculates the OCV characteristic using the positive electrode deterioration rate, the negative electrode deterioration rate, and the deviation amount, it is not necessary to actually perform charge and discharge and measure the OCV characteristic quickly. Can be estimated. For this reason, the OCV characteristic estimation device can estimate the OCV characteristic of the nonaqueous electrolyte secondary battery quickly and accurately.

また、好ましくは、前記劣化率算出部は、前記第一正極OCP特性から得られる前記第一正極開回路電位及び前記第二正極開回路電位における電気量の差を正極差分電気量として算出し、前記第一負極OCP特性から得られる前記第一負極開回路電位及び前記第二負極開回路電位における電気量の差を負極差分電気量として算出し、前記差分電気量を前記正極差分電気量で除した値を前記正極劣化率として算出し、前記差分電気量を前記負極差分電気量で除した値を前記負極劣化率として算出する。   Preferably, the deterioration rate calculation unit calculates a difference in electric quantity between the first positive open circuit potential and the second positive open circuit potential obtained from the first positive OCP characteristic as a positive differential electric quantity, The difference in electric quantity between the first negative open circuit potential and the second negative open circuit potential obtained from the first negative OCP characteristic is calculated as a negative differential electric quantity, and the differential electric quantity is divided by the positive differential electric quantity. The obtained value is calculated as the positive electrode deterioration rate, and a value obtained by dividing the differential electric quantity by the negative electrode differential electric quantity is calculated as the negative electrode deterioration rate.

これによれば、OCV特性推定装置は、正極差分電気量及び負極差分電気量を算出し、差分電気量を正極差分電気量で除した値を正極劣化率とし、差分電気量を負極差分電気量で除した値を負極劣化率として算出する。これにより、OCV特性推定装置は、当該正極劣化率及び当該負極劣化率を容易に算出することができる。このため、OCV特性推定装置は、容易に、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   According to this, the OCV characteristic estimation device calculates the positive differential electric quantity and the negative differential electric quantity, sets a value obtained by dividing the differential electric quantity by the positive differential electric quantity as a positive electrode deterioration rate, and sets the differential electric quantity as the negative differential electric quantity. The value divided by is calculated as the negative electrode deterioration rate. Thereby, the OCV characteristic estimation device can easily calculate the positive electrode deterioration rate and the negative electrode deterioration rate. For this reason, the OCV characteristic estimation device can estimate the OCV characteristic of the nonaqueous electrolyte secondary battery easily and quickly with high accuracy.

また、好ましくは、前記ずれ量算出部は、前記第一正極OCP特性に前記正極劣化率を乗じた特性から得られる前記第一正極開回路電位または前記第二正極開回路電位における電気量を正極電気量として算出するとともに、前記第一負極OCP特性に前記負極劣化率を乗じた特性から得られる前記第一負極開回路電位または前記第二負極開回路電位における電気量を負極電気量として算出し、前記正極電気量と前記負極電気量との差分を前記ずれ量として算出する。   Preferably, the deviation amount calculation unit calculates the amount of electricity in the first positive electrode open circuit potential or the second positive electrode open circuit potential obtained from the characteristic obtained by multiplying the first positive electrode OCP characteristic by the positive electrode deterioration rate. The amount of electricity is calculated as the amount of electricity at the first negative electrode open circuit potential or the second negative electrode open circuit potential obtained from the characteristic obtained by multiplying the first negative electrode OCP characteristic by the negative electrode deterioration rate. The difference between the positive electrode electric quantity and the negative electrode electric quantity is calculated as the deviation amount.

これによれば、OCV特性推定装置は、正極電気量及び負極電気量を算出し、正極電気量と負極電気量との差分を当該ずれ量として算出する。これにより、OCV特性推定装置は、当該ずれ量を容易に算出することができる。このため、OCV特性推定装置は、容易に、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   According to this, the OCV characteristic estimation device calculates the positive electrode electric quantity and the negative electrode electric quantity, and calculates the difference between the positive electrode electric quantity and the negative electrode electric quantity as the deviation amount. Thereby, the OCV characteristic estimation apparatus can easily calculate the deviation amount. For this reason, the OCV characteristic estimation device can estimate the OCV characteristic of the nonaqueous electrolyte secondary battery easily and quickly with high accuracy.

また、好ましくは、前記OCV特性算出部は、前記第一電気量に前記ずれ量を加算した値を第二電気量として算出し、前記第一正極OCP特性における第一電気量を前記第二電気量に変更した場合の正極OCP特性に前記正極劣化率を乗じることで、前記第二状態での正極OCP特性である第二正極OCP特性を算出し、前記第一負極OCP特性に前記負極劣化率を乗じることで、前記第二状態での負極OCP特性である第二負極OCP特性を算出し、算出した前記第二正極OCP特性から前記第二負極OCP特性を差し引いて、前記第二状態でのOCV特性を算出する。   Preferably, the OCV characteristic calculation unit calculates a value obtained by adding the deviation amount to the first electric quantity as a second electric quantity, and calculates the first electric quantity in the first positive electrode OCP characteristic as the second electric quantity. By multiplying the positive electrode OCP characteristic when the amount is changed by the positive electrode deterioration rate, the second positive electrode OCP characteristic that is the positive electrode OCP characteristic in the second state is calculated, and the negative electrode deterioration rate is added to the first negative electrode OCP characteristic. The second negative electrode OCP characteristic, which is the negative electrode OCP characteristic in the second state, is calculated by subtracting the second negative electrode OCP characteristic from the calculated second positive electrode OCP characteristic. An OCV characteristic is calculated.

これによれば、OCV特性推定装置は、第一正極OCP特性における電気量に当該ずれ量を加算した場合の正極OCP特性に正極劣化率を乗じた特性から、第一負極OCP特性に負極劣化率を乗じた特性を差し引いて、第二状態でのOCV特性を算出する。これにより、OCV特性推定装置は、容易に第二状態でのOCV特性を算出することができる。このため、OCV特性推定装置は、容易に、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   According to this, the OCV characteristic estimation device calculates the negative electrode deterioration rate from the characteristic obtained by multiplying the positive electrode OCP characteristic by the positive electrode deterioration rate when the deviation amount is added to the amount of electricity in the first positive electrode OCP characteristic. The OCV characteristic in the second state is calculated by subtracting the characteristic multiplied by. Thereby, the OCV characteristic estimation apparatus can easily calculate the OCV characteristic in the second state. For this reason, the OCV characteristic estimation device can estimate the OCV characteristic of the nonaqueous electrolyte secondary battery easily and quickly with high accuracy.

また、好ましくは、前記第一正極開回路電位と前記第二正極開回路電位との差分は、所定の値よりも大きい。   Preferably, the difference between the first positive open circuit potential and the second positive open circuit potential is larger than a predetermined value.

これによれば、第一正極開回路電位と第二正極開回路電位との差分は、所定の値よりも大きい。ここで、第一正極開回路電位と第二正極開回路電位との差分が大きいほど、正極OCP特性の傾きが大きくなるので、OCV特性推定装置は、精度良くOCV特性を算出することができる。このため、OCV特性推定装置は、さらに精度良く、非水電解質二次電池のOCV特性を推定することができる。   According to this, the difference between the first positive electrode open circuit potential and the second positive electrode open circuit potential is larger than the predetermined value. Here, the greater the difference between the first positive electrode open circuit potential and the second positive electrode open circuit potential, the greater the slope of the positive electrode OCP characteristic, so the OCV characteristic estimation device can calculate the OCV characteristic with high accuracy. For this reason, the OCV characteristic estimation apparatus can estimate the OCV characteristic of the nonaqueous electrolyte secondary battery with higher accuracy.

また、上記目的を達成するために、本発明の一態様に係る組電池は、参照極を有する1の非水電解質二次電池を含む複数の非水電解質二次電池と、前記1の非水電解質二次電池の電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定装置とを備え、前記OCV特性推定装置は、推定した前記1の非水電解質二次電池のOCV特性を、前記複数の非水電解質二次電池全体のOCV特性と推定する。   In order to achieve the above object, an assembled battery according to one embodiment of the present invention includes a plurality of nonaqueous electrolyte secondary batteries including one nonaqueous electrolyte secondary battery having a reference electrode, and the nonaqueous electrolyte according to the first aspect. An OCV characteristic estimation device for estimating an OCV characteristic indicating a relationship between an electric quantity of the electrolyte secondary battery and an open circuit voltage, and the OCV characteristic estimation apparatus includes the estimated OCV characteristic of the non-aqueous electrolyte secondary battery according to the first aspect. Is estimated as the OCV characteristics of the plurality of non-aqueous electrolyte secondary batteries as a whole.

これによれば、組電池は、参照極を有する1の非水電解質二次電池を含む複数の非水電解質二次電池と、当該1の非水電解質二次電池のOCV特性推定装置とを備えており、OCV特性推定装置は、推定した当該1の非水電解質二次電池のOCV特性を、複数の非水電解質二次電池全体のOCV特性と推定する。これにより、組電池は、当該1の非水電解質二次電池のOCV特性を迅速に精度良く推定することができるため、全ての非水電解質二次電池全体のOCV特性を迅速に精度良く推定することができる。   According to this, the assembled battery includes a plurality of nonaqueous electrolyte secondary batteries including one nonaqueous electrolyte secondary battery having a reference electrode, and an OCV characteristic estimation device for the one nonaqueous electrolyte secondary battery. The OCV characteristic estimation apparatus estimates the estimated OCV characteristic of the one nonaqueous electrolyte secondary battery as the OCV characteristics of the plurality of nonaqueous electrolyte secondary batteries as a whole. As a result, the assembled battery can quickly and accurately estimate the OCV characteristic of the one nonaqueous electrolyte secondary battery, and therefore quickly and accurately estimate the OCV characteristics of all the nonaqueous electrolyte secondary batteries. be able to.

また、好ましくは、前記1の非水電解質二次電池は、電池表面温度が、前記複数の非水電解質二次電池のうちの他の非水電解質二次電池の電池表面温度の平均値よりも高い。   Preferably, in the first nonaqueous electrolyte secondary battery, the battery surface temperature is higher than an average value of battery surface temperatures of other nonaqueous electrolyte secondary batteries among the plurality of nonaqueous electrolyte secondary batteries. high.

これによれば、組電池は、電池表面温度が、他の非水電解質二次電池の平均値よりも高い非水電解質二次電池について、OCV特性を推定する。ここで、非水電解質二次電池は、電池表面温度が高いほど、劣化し易い傾向にある。このため、組電池は、劣化し易い電池のOCV特性を推定することで、組電池としての寿命の把握を正確に行うことができる。   According to this, the assembled battery estimates the OCV characteristics of the nonaqueous electrolyte secondary battery whose battery surface temperature is higher than the average value of other nonaqueous electrolyte secondary batteries. Here, the nonaqueous electrolyte secondary battery tends to deteriorate as the battery surface temperature increases. For this reason, an assembled battery can grasp | ascertain the lifetime as an assembled battery correctly by estimating the OCV characteristic of the battery which deteriorates easily.

また、本発明は、このようなOCV特性推定装置として実現することができるだけでなく、当該OCV特性推定装置が備える特徴的な処理部の処理をステップとするOCV特性推定方法としても実現することができる。また、本発明は、このようなOCV特性推定装置に含まれる特徴的な処理部を備える集積回路としても実現することができる。   In addition, the present invention can be realized not only as such an OCV characteristic estimation apparatus, but also as an OCV characteristic estimation method that uses the processing of a characteristic processing unit included in the OCV characteristic estimation apparatus as a step. it can. The present invention can also be realized as an integrated circuit including a characteristic processing unit included in such an OCV characteristic estimation device.

また、本発明は、非水電解質二次電池と、当該非水電解質二次電池の電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定装置とを備える蓄電システムとして実現することもできる。   In addition, the present invention is realized as a power storage system including a non-aqueous electrolyte secondary battery and an OCV characteristic estimation device that estimates an OCV characteristic indicating a relationship between an electric quantity of the non-aqueous electrolyte secondary battery and an open circuit voltage. You can also.

また、本発明は、OCV特性推定方法に含まれる特徴的な処理をコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD−ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。   The present invention can also be realized as a program that causes a computer to execute characteristic processing included in the OCV characteristic estimation method. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.

本発明によると、リチウムイオン二次電池などの非水電解質二次電池において、迅速に精度良くOCV特性を推定することができる。   According to the present invention, OCV characteristics can be estimated quickly and accurately in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

本発明の実施の形態に係るOCV特性推定装置を備える組電池の外観斜視図である。It is an external appearance perspective view of an assembled battery provided with the OCV characteristic estimation apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る二次電池の外観斜視図である。1 is an external perspective view of a secondary battery according to an embodiment of the present invention. 本発明の実施の形態に係るOCV特性推定装置の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the OCV characteristic estimation apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る第一状態データの一例を示す図である。It is a figure which shows an example of the 1st state data which concern on embodiment of this invention. 本発明の実施の形態に係る第二状態データの一例を示す図である。It is a figure which shows an example of the 2nd state data which concern on embodiment of this invention. 二次電池のOCV特性の経時変化を説明するための図である。It is a figure for demonstrating the time-dependent change of the OCV characteristic of a secondary battery. 二次電池のOCV特性の経時変化を説明するための図である。It is a figure for demonstrating the time-dependent change of the OCV characteristic of a secondary battery. 本発明の実施の形態に係るOCV特性推定装置が二次電池のOCV特性を推定する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in which the OCV characteristic estimation apparatus which concerns on embodiment of this invention estimates the OCV characteristic of a secondary battery. 本発明の実施の形態に係るOCV特性推定装置が二次電池のOCV特性を推定する処理を説明するための図である。It is a figure for demonstrating the process in which the OCV characteristic estimation apparatus which concerns on embodiment of this invention estimates the OCV characteristic of a secondary battery. 本発明の実施の形態に係る劣化率算出部が正極劣化率及び負極劣化率を算出する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in which the deterioration rate calculation part which concerns on embodiment of this invention calculates a positive electrode deterioration rate and a negative electrode deterioration rate. 本発明の実施の形態に係る劣化率算出部が正極劣化率及び負極劣化率を算出する処理を説明するための図である。It is a figure for demonstrating the process in which the deterioration rate calculation part which concerns on embodiment of this invention calculates a positive electrode deterioration rate and a negative electrode deterioration rate. 本発明の実施の形態に係るずれ量算出部が正極OCP特性と負極OCP特性との電気量のずれ量を算出する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in which the deviation | shift amount calculation part which concerns on embodiment of this invention calculates the deviation | shift amount of the electrical quantity of positive electrode OCP characteristic and negative electrode OCP characteristic. 本発明の実施の形態に係るずれ量算出部が正極OCP特性と負極OCP特性との電気量のずれ量を算出する処理を説明するための図である。It is a figure for demonstrating the process in which the deviation | shift amount calculation part which concerns on embodiment of this invention calculates the deviation | shift amount of the electrical quantity of a positive electrode OCP characteristic and a negative electrode OCP characteristic. 本発明の実施の形態に係るOCV特性算出部が第二状態でのOCV特性を算出する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in which the OCV characteristic calculation part which concerns on embodiment of this invention calculates the OCV characteristic in a 2nd state. 本発明の実施の形態に係るOCV特性算出部が第二状態でのOCV特性を算出する処理を説明するための図である。It is a figure for demonstrating the process in which the OCV characteristic calculation part which concerns on embodiment of this invention calculates the OCV characteristic in a 2nd state. 本発明の実施の形態に係るOCV特性推定装置を集積回路で実現する構成を示すブロック図である。It is a block diagram which shows the structure which implement | achieves the OCV characteristic estimation apparatus which concerns on embodiment of this invention with an integrated circuit.

以下、図面を参照しながら、本発明の実施の形態に係るOCV特性推定装置、及び当該OCV特性推定装置を備える組電池について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、特許請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。   Hereinafter, an OCV characteristic estimation device according to an embodiment of the present invention and an assembled battery including the OCV characteristic estimation device will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.

まず、組電池10の構成について、説明する。   First, the configuration of the assembled battery 10 will be described.

図1は、本発明の実施の形態に係るOCV特性推定装置100を備える組電池10の外観斜視図である。   FIG. 1 is an external perspective view of an assembled battery 10 including an OCV characteristic estimation device 100 according to an embodiment of the present invention.

同図に示すように、組電池10は、OCV特性推定装置100と、複数の二次電池200(同図では、二次電池201〜210の10個の二次電池)と、OCV特性推定装置100及び複数の二次電池200を収容する収容ケース300とを備えている。   As shown in the figure, the assembled battery 10 includes an OCV characteristic estimation device 100, a plurality of secondary batteries 200 (10 secondary batteries 201 to 210 in the figure), and an OCV characteristic estimation device. 100 and a housing case 300 that houses a plurality of secondary batteries 200.

OCV特性推定装置100は、複数の二次電池200の上方に配置され、複数の二次電池200の電気量と開回路電圧との関係を示すOCV特性を推定する回路を搭載した回路基板である。具体的には、OCV特性推定装置100は、例えば二次電池203に接続されており、二次電池203からの情報を取得して、二次電池203のOCV特性を推定する。   The OCV characteristic estimation device 100 is a circuit board on which a circuit that is disposed above a plurality of secondary batteries 200 and estimates an OCV characteristic indicating the relationship between the amount of electricity and the open circuit voltage of the plurality of secondary batteries 200 is mounted. . Specifically, the OCV characteristic estimation device 100 is connected to, for example, the secondary battery 203, acquires information from the secondary battery 203, and estimates the OCV characteristic of the secondary battery 203.

なお、二次電池200のOCV特性とは、二次電池200に通電される電気量と開回路電圧(OCV:Open Circuit Voltage)との関係を示す特性である。また、開回路電圧とは、二次電池200の正極と負極との間の開回路電位(OCP:Open Circuit Potential)の電位差であり、二次電池200の正極開回路電位から負極開回路電位を差し引いた値である。   Note that the OCV characteristic of the secondary battery 200 is a characteristic indicating a relationship between the amount of electricity supplied to the secondary battery 200 and an open circuit voltage (OCV). Further, the open circuit voltage is a potential difference of an open circuit potential (OCP) between the positive electrode and the negative electrode of the secondary battery 200, and the negative circuit open circuit potential is calculated from the positive circuit open circuit potential of the secondary battery 200. Subtracted value.

また、正極開回路電位及び負極開回路電位とは、二次電池200が外部回路から電気的に切り離された(正極と負極との間に負荷をかけていない)状態が十分な時間経過した時点での、二次電池200の正極の電位及び負極の電位である。つまり、開回路電圧は、二次電池200に電流が流れていない状態が十分な時間経過したときの当該二次電池200の正極と負極との間の電圧を示している。   Further, the positive open circuit potential and the negative open circuit potential are the time when a sufficient time has elapsed after the secondary battery 200 is electrically disconnected from the external circuit (no load is applied between the positive electrode and the negative electrode). The positive electrode potential and the negative electrode potential of the secondary battery 200 in FIG. That is, the open circuit voltage indicates a voltage between the positive electrode and the negative electrode of the secondary battery 200 when a sufficient time has passed without a current flowing through the secondary battery 200.

ここで、OCV特性推定装置100が接続されている二次電池203は、電池表面温度が、複数の二次電池201〜210のうちの他の二次電池201、202、204〜210の電池表面温度の平均値よりも高いものとする。そして、OCV特性推定装置100は、推定した二次電池203のOCV特性を、複数の二次電池200全体のOCV特性と推定する。   Here, the secondary battery 203 to which the OCV characteristic estimation device 100 is connected has a battery surface temperature of the other secondary batteries 201, 202, and 204 to 210 among the plurality of secondary batteries 201 to 210. It is assumed that the temperature is higher than the average value. And the OCV characteristic estimation apparatus 100 estimates the estimated OCV characteristic of the secondary battery 203 as the OCV characteristic of the some secondary battery 200 whole.

なお、ここでは、OCV特性推定装置100は複数の二次電池200の上方に配置されているが、OCV特性推定装置100はどこに配置されていてもよい。このOCV特性推定装置100の詳細な機能構成の説明については、後述する。   Here, OCV characteristic estimation device 100 is arranged above a plurality of secondary batteries 200, but OCV characteristic estimation device 100 may be arranged anywhere. The detailed functional configuration of the OCV characteristic estimation apparatus 100 will be described later.

また、同図では、10個の矩形状の二次電池200が配置されて組電池を構成している。なお、二次電池200の個数は10個に限定されず、他の複数個数または1個であってもよい。また二次電池200の形状も特に限定されない。   In the same figure, ten rectangular secondary batteries 200 are arranged to constitute an assembled battery. Note that the number of secondary batteries 200 is not limited to ten, but may be other plural numbers or one. Further, the shape of the secondary battery 200 is not particularly limited.

次に、OCV特性推定装置100が接続されている二次電池203の構成について、説明する。   Next, the configuration of the secondary battery 203 to which the OCV characteristic estimation device 100 is connected will be described.

図2は、本発明の実施の形態に係る二次電池203の外観斜視図である。なお、同図は、電池ケース内部を透視した図となっている。   FIG. 2 is an external perspective view of secondary battery 203 according to the embodiment of the present invention. In addition, the figure is a figure which saw through the inside of a battery case.

二次電池203は、電気を充電し、また、電気を放電することのできる二次電池であり、より具体的には、リチウムイオン二次電池である。同図に示すように、二次電池203は、電池容器210と、正極端子220と、負極端子230とを備え、電池容器210は、上壁であるふた板211を備えている。また、電池容器210内方には、発電要素212と、正極集電部材213と、負極集電部材214と、参照極215とが配置されている。なお、二次電池203の電池容器210の内部には電解液などの液体が封入されているが、当該液体の図示は省略する。   The secondary battery 203 is a secondary battery that can charge and discharge electricity, and more specifically, is a lithium ion secondary battery. As shown in the figure, the secondary battery 203 includes a battery container 210, a positive electrode terminal 220, and a negative electrode terminal 230, and the battery container 210 includes a lid plate 211 that is an upper wall. In addition, a power generation element 212, a positive current collector 213, a negative current collector 214, and a reference electrode 215 are disposed inside the battery container 210. Note that a liquid such as an electrolytic solution is sealed in the battery container 210 of the secondary battery 203, but the illustration of the liquid is omitted.

なお、図1に示された二次電池203以外の二次電池201、202、204〜210についても、二次電池203と同様の構成を有するが、参照極215については備えられていなくともよい。   The secondary batteries 201, 202, 204 to 210 other than the secondary battery 203 shown in FIG. 1 have the same configuration as the secondary battery 203, but the reference electrode 215 may not be provided. .

電池容器210は、金属からなる矩形筒状で底を備える筐体本体と、当該筐体本体の開口を閉塞する金属製のふた板211とで構成されている。また、電池容器210は、発電要素212等を内部に収容後、ふた板211と筐体本体とが溶接等されることにより、内部を密封することができるものとなっている。   The battery container 210 includes a casing main body having a rectangular cylindrical shape and a bottom, and a metal lid plate 211 that closes an opening of the casing main body. In addition, the battery container 210 can seal the inside by housing the power generation element 212 and the like and then welding the lid plate 211 and the housing body.

発電要素212は、詳細な図示は省略するが、正極と負極とセパレータとを備え、電気を蓄えることができる部材である。正極は、アルミニウムからなる長尺帯状の正極集電体シートの表面に正極活物質層が形成されたものである。負極は、銅からなる長尺帯状の負極集電体シートの表面に負極活物質層が形成されたものである。セパレータは、樹脂からなる微多孔性のシートである。そして、発電要素212は、負極と正極との間にセパレータが挟み込まれるように層状に配置されたものを全体が長円形状となるように巻き回されて形成されている。   Although not shown in detail, the power generation element 212 is a member that includes a positive electrode, a negative electrode, and a separator and can store electricity. In the positive electrode, a positive electrode active material layer is formed on the surface of a long belt-shaped positive electrode current collector sheet made of aluminum. The negative electrode is obtained by forming a negative electrode active material layer on the surface of a long strip-shaped negative electrode current collector sheet made of copper. The separator is a microporous sheet made of resin. The power generation element 212 is formed by winding a layered arrangement so that a separator is sandwiched between a negative electrode and a positive electrode so that the whole becomes an oval shape.

さらに詳しくは、上記正極と上記負極は、上記セパレータを介し、長尺帯状の幅方向に互いにずらして、当該幅方向に沿う回転軸を中心に長円形状に巻回されている。そして、上記正極及び上記負極は、それぞれのずらす方向の端縁部を活物質の非形成部とすることにより、巻回軸の一端部には、活物質が形成されていない正極集電体であるアルミニウム箔が露出し、巻回軸の他端部には、活物質が形成されていない負極集電体である銅箔が露出している。また、発電要素212の巻回軸方向の両端部には正極集電部材213及び負極集電部材214が上記巻回軸方向と垂直方向に延びて配置されている。   More specifically, the positive electrode and the negative electrode are wound in an ellipse shape around the rotation axis along the width direction while being shifted from each other in the width direction of the long band through the separator. And the positive electrode and the negative electrode are positive electrode current collectors in which no active material is formed at one end of the winding shaft by making the edge portions in the respective shifting directions into non-active material forming portions. A certain aluminum foil is exposed, and a copper foil, which is a negative electrode current collector on which no active material is formed, is exposed at the other end of the winding shaft. Further, a positive electrode current collector member 213 and a negative electrode current collector member 214 are disposed at both ends of the power generation element 212 in the winding axis direction so as to extend in a direction perpendicular to the winding axis direction.

ここで、正極活物質としては、LiMPO、LiMSiO、LiMBO(MはFe、Ni、Mn、Co等から選択される1種又は2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、マンガン酸リチウム等のスピネル化合物、LiMO(MはFe、Ni、Mn、Co等から選択される1種又は2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いることができる。 Here, as the positive electrode active material, polyanion compounds such as LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), titanic acid, etc. Use of spinel compounds such as lithium and lithium manganate, lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), etc. it can.

なお、本発明を適用するにあたり、検出の精度の観点から、電位特性が平坦でなく、傾きの変化が大きい正極材料が用いられることが好ましい。具体的には、正極活物質として、上記のリチウム遷移金属酸化物LiMOを用いたものであることが好ましい。 In applying the present invention, from the viewpoint of detection accuracy, it is preferable to use a positive electrode material whose potential characteristics are not flat and whose change in inclination is large. Specifically, it is preferable to use the above lithium transition metal oxide LiMO 2 as the positive electrode active material.

また、負極活物質としては、リチウムイオンを吸蔵放出可能な負極活物質であれば、適宜公知の材料を使用できる。例えば、リチウム金属、リチウム合金(リチウム−ケイ素、リチウム−アルミニウム、リチウム−鉛、リチウム−錫、リチウム−アルミニウム−錫、リチウム−ガリウム、及びウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、ケイ素酸化物、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物などが挙げられる。 Moreover, as a negative electrode active material, if a negative electrode active material which can occlude / release lithium ion, a well-known material can be used suitably. For example, lithium is occluded in addition to lithium metal and lithium alloys (lithium-containing alloys such as lithium-silicon, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys). Releasable alloys, carbon materials (eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, etc.), silicon oxide, metal oxide, lithium metal oxide (Li 4 Ti 5 O 12 ) and polyphosphoric acid compounds.

正極端子220は、発電要素212の正極に電気的に接続された電極端子であり、負極端子230は、発電要素212の負極に電気的に接続された電極端子である。つまり、正極端子220及び負極端子230は、発電要素212に蓄えられている電気を二次電池203の外部回路に導出し、また、二次電池203内部の発電要素212に電気を導入するための金属製の電極端子である。また、正極端子220及び負極端子230は、発電要素212の上方に配置されたふた板211に取り付けられている。   The positive electrode terminal 220 is an electrode terminal electrically connected to the positive electrode of the power generation element 212, and the negative electrode terminal 230 is an electrode terminal electrically connected to the negative electrode of the power generation element 212. That is, the positive electrode terminal 220 and the negative electrode terminal 230 lead out the electricity stored in the power generation element 212 to the external circuit of the secondary battery 203 and introduce electricity into the power generation element 212 inside the secondary battery 203. It is a metal electrode terminal. The positive electrode terminal 220 and the negative electrode terminal 230 are attached to a lid plate 211 disposed above the power generation element 212.

正極集電部材213は、発電要素212の正極集電体と電池容器210の側壁との間に配置され、正極端子220と発電要素212の正極とに電気的に接続される導電性と剛性とを備えた部材である。なお、正極集電部材213は、発電要素212の正極集電体と同様、アルミニウムで形成されている。   The positive electrode current collector 213 is disposed between the positive electrode current collector of the power generation element 212 and the side wall of the battery container 210, and has electrical conductivity and rigidity electrically connected to the positive electrode terminal 220 and the positive electrode of the power generation element 212. It is a member provided with. The positive current collector 213 is made of aluminum, like the positive current collector of the power generation element 212.

負極集電部材214は、発電要素212の負極集電体と電池容器210の側壁との間に配置され、負極端子230と発電要素212の負極とに電気的に接続される導電性と剛性とを備えた部材である。なお、負極集電部材214は、発電要素212の負極集電体と同様、銅で形成されている。   The negative electrode current collector 214 is disposed between the negative electrode current collector of the power generation element 212 and the side wall of the battery container 210, and has electrical conductivity and rigidity electrically connected to the negative electrode terminal 230 and the negative electrode of the power generation element 212. It is a member provided with. The negative electrode current collector 214 is made of copper, like the negative electrode current collector of the power generation element 212.

参照極215は、二次電池203の正極及び負極の電位を測定するための第3の電極であり、発電要素212と電池容器210との間に配置されている。具体的には、参照極215は、ステンレス製の参照極リードの先に金属リチウムを貼付し、金属リチウムだけが露出するように加工されている。   The reference electrode 215 is a third electrode for measuring the potentials of the positive electrode and the negative electrode of the secondary battery 203, and is disposed between the power generation element 212 and the battery container 210. Specifically, the reference electrode 215 is processed so that only lithium metal is exposed by attaching metallic lithium to the tip of a stainless steel reference electrode lead.

ここで、参照極215としては、金属リチウム、リチウム−アルミニウム合金やリチウム−錫合金などのリチウム合金、LiTi12やLiFePOなどの電位平坦を有する活物質を適宜Liを挿入すること等によって電位平坦を示す状態にしたものなど、安定した電位を示すものであれば、どのようなものであってもよい。 Here, as the reference electrode 215, Li is appropriately inserted as an active material having a flat potential such as metallic lithium, a lithium alloy such as a lithium-aluminum alloy or a lithium-tin alloy, or Li 4 Ti 5 O 12 or LiFePO 4. Any device may be used as long as it exhibits a stable potential, such as a state in which the potential is flattened by the like.

また、参照極215の配置位置は、電池容器210内において発電要素212と参照極215との間で液絡があれば、どのような位置に配置されていてもよい。   In addition, the reference electrode 215 may be arranged at any position in the battery container 210 as long as there is a liquid junction between the power generation element 212 and the reference electrode 215.

例えば、参照極215にセパレータを巻きつける構成でもよい。この場合、液絡を保持する観点から、発電要素212に用いられるセパレータを発電要素212からはみ出すようにし、これを参照極215を包むセパレータとして用いることが望ましい。   For example, the separator may be wound around the reference electrode 215. In this case, from the viewpoint of maintaining a liquid junction, it is desirable that the separator used for the power generation element 212 protrudes from the power generation element 212 and is used as a separator that wraps the reference electrode 215.

また、電池容器210と正極端子220及び負極端子230との間で電気的絶縁がなされている場合には、電池容器210を参照極215とすることができる。この場合、電池容器210の材質としては、例えば、アルミニウム、鉄、ステンレス、ニッケルメッキ鋼板などの金属が挙げられる。また、電池容器210が鉄、ステンレス、ニッケルメッキ鋼板などの金属リチウムと反応しないものの場合には、参照極となる金属リチウム参照極を電気的に接続することもできる。   Further, when the battery case 210 is electrically insulated from the positive electrode terminal 220 and the negative electrode terminal 230, the battery case 210 can be used as the reference electrode 215. In this case, examples of the material of the battery container 210 include metals such as aluminum, iron, stainless steel, and nickel-plated steel plate. In the case where the battery container 210 does not react with metallic lithium, such as iron, stainless steel, or nickel-plated steel plate, a metallic lithium reference electrode serving as a reference electrode can be electrically connected.

次に、OCV特性推定装置100の詳細な機能構成について、説明する。   Next, a detailed functional configuration of the OCV characteristic estimation apparatus 100 will be described.

図3は、本発明の実施の形態に係るOCV特性推定装置100の機能的な構成を示すブロック図である。   FIG. 3 is a block diagram showing a functional configuration of OCV characteristic estimation apparatus 100 according to the embodiment of the present invention.

OCV特性推定装置100は、二次電池203に接続され、二次電池203の電気量と開回路電圧との関係を示すOCV特性を推定する装置である。同図に示すように、OCV特性推定装置100は、OCP特性取得部110、開回路電位取得部120、劣化率算出部130、ずれ量算出部140、OCV特性算出部150及び記憶部160を備えている。   The OCV characteristic estimation apparatus 100 is an apparatus that is connected to the secondary battery 203 and estimates the OCV characteristic indicating the relationship between the amount of electricity of the secondary battery 203 and the open circuit voltage. As shown in the figure, the OCV characteristic estimation device 100 includes an OCP characteristic acquisition unit 110, an open circuit potential acquisition unit 120, a deterioration rate calculation unit 130, a deviation amount calculation unit 140, an OCV characteristic calculation unit 150, and a storage unit 160. ing.

OCP特性取得部110は、所定の第一状態での二次電池203の電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、当該第一状態での第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得する。なお、正極開回路電位は、正極の開回路電位であり、負極開回路電位は、負極の開回路電位である。   The OCP characteristic acquisition unit 110 includes a first positive OCP characteristic indicating a relationship between a first electric quantity that is an electric quantity of the secondary battery 203 in a predetermined first state and a positive open circuit potential, and the first state. A first negative electrode OCP characteristic indicating a relationship between the first electric quantity and the negative electrode open circuit potential is obtained. The positive open circuit potential is a positive open circuit potential, and the negative open circuit potential is a negative open circuit potential.

また、第一状態とは、二次電池203のOCV特性を推定する計算の基準となる状態である。ここで、当該第一状態はどのような状態でもよいが、例えば、二次電池203の工場出荷時や充放電を開始する時点での状態である。   The first state is a state serving as a reference for calculation for estimating the OCV characteristic of the secondary battery 203. Here, the first state may be any state. For example, the first state is a state when the secondary battery 203 is shipped from the factory or when charging / discharging is started.

開回路電位取得部120は、所定の第二状態での所定の第一充電時点における正極開回路電位及び負極開回路電位である第一正極開回路電位及び第一負極開回路電位を取得する。また、開回路電位取得部120は、当該第一充電時点から第二充電時点へ通電した場合の通電電気量である差分電気量と、当該第二充電時点における正極開回路電位及び負極開回路電位である第二正極開回路電位及び第二負極開回路電位とを取得する。   The open circuit potential acquisition unit 120 acquires a first positive open circuit potential and a first negative open circuit potential that are a positive open circuit potential and a negative open circuit potential at a predetermined first charging time in a predetermined second state. In addition, the open circuit potential acquisition unit 120 includes a differential electricity amount that is an energized electricity amount when energizing from the first charging time to the second charging time, and a positive open circuit potential and a negative open circuit potential at the second charging time. The second positive electrode open circuit potential and the second negative electrode open circuit potential are acquired.

ここで、開回路電位取得部120は、参照極215を用いて二次電池203の正極開回路電位及び負極開回路電位を測定することで、上記の第一正極開回路電位、第一負極開回路電位、第二正極開回路電位及び第二負極開回路電位を取得することができる。   Here, the open circuit potential acquisition unit 120 measures the positive electrode open circuit potential and the negative electrode open circuit potential of the secondary battery 203 using the reference electrode 215, whereby the first positive electrode open circuit potential and the first negative electrode open circuit potential described above are measured. A circuit potential, a second positive open circuit potential, and a second negative open circuit potential can be obtained.

なお、第二状態とは、第一状態から二次電池203が充放電を開始して所定の期間が経過した場合の状態であり、二次電池203のOCV特性を推定したい状態である。また、第一充電時点及び第二充電時点は、当該第二状態内の時点であればどのような時点であってもよく、分、時、日、月など、どのような単位で表現されてもかまわない。   The second state is a state in which the secondary battery 203 starts charging / discharging from the first state and a predetermined period has elapsed, and is a state in which the OCV characteristic of the secondary battery 203 is desired to be estimated. In addition, the first charging time and the second charging time may be any time as long as they are within the second state, and are expressed in any unit such as minutes, hours, days, and months. It doesn't matter.

劣化率算出部130は、OCP特性取得部110が取得した第一正極OCP特性及び第一負極OCP特性と、開回路電位取得部120が取得した第一正極開回路電位、第一負極開回路電位、差分電気量、第二正極開回路電位及び第二負極開回路電位とを用いて、正極及び負極の劣化の度合いを示す正極劣化率及び負極劣化率を算出する。   The deterioration rate calculation unit 130 includes the first positive OCP characteristic and the first negative OCP characteristic acquired by the OCP characteristic acquisition unit 110, the first positive open circuit potential and the first negative open circuit potential acquired by the open circuit potential acquisition unit 120. Then, the positive electrode deterioration rate and the negative electrode deterioration rate indicating the degree of deterioration of the positive electrode and the negative electrode are calculated using the differential electric quantity, the second positive electrode open circuit potential, and the second negative electrode open circuit potential.

具体的には、劣化率算出部130は、第一正極OCP特性から得られる第一正極開回路電位及び第二正極開回路電位における電気量の差を正極差分電気量として算出し、第一負極OCP特性から得られる第一負極開回路電位及び第二負極開回路電位における電気量の差を負極差分電気量として算出する。そして、劣化率算出部130は、差分電気量を正極差分電気量で除した値を正極劣化率として算出し、差分電気量を負極差分電気量で除した値を負極劣化率として算出する。   Specifically, the deterioration rate calculation unit 130 calculates the difference in the electric quantity between the first positive electrode open circuit potential and the second positive electrode open circuit potential obtained from the first positive electrode OCP characteristic as the positive electrode differential electric quantity, A difference in electricity between the first negative electrode open circuit potential and the second negative electrode open circuit potential obtained from the OCP characteristic is calculated as a negative electrode differential electric quantity. Then, the deterioration rate calculation unit 130 calculates a value obtained by dividing the difference electricity amount by the positive electrode difference electricity amount as a positive electrode deterioration rate, and calculates a value obtained by dividing the difference electricity amount by the negative electrode difference electricity amount as a negative electrode deterioration rate.

ずれ量算出部140は、劣化率算出部130が算出した正極劣化率及び負極劣化率と、OCP特性取得部110が取得した第一正極OCP特性及び第一負極OCP特性とを用いて、第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出する。   The deviation amount calculation unit 140 uses the positive electrode deterioration rate and the negative electrode deterioration rate calculated by the deterioration rate calculation unit 130 and the first positive electrode OCP characteristic and the first negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit 110, A deviation amount of the electric quantity between the positive electrode OCP characteristic and the negative electrode OCP characteristic in the state is calculated.

具体的には、ずれ量算出部140は、第一正極OCP特性に正極劣化率を乗じた特性から得られる第一正極開回路電位または第二正極開回路電位における電気量を正極電気量として算出するとともに、第一負極OCP特性に負極劣化率を乗じた特性から得られる第一負極開回路電位または第二負極開回路電位における電気量を負極電気量として算出する。そして、ずれ量算出部140は、正極電気量と負極電気量との差分をずれ量として算出する。   Specifically, the deviation amount calculation unit 140 calculates the amount of electricity at the first positive electrode open circuit potential or the second positive electrode open circuit potential obtained from the characteristic obtained by multiplying the first positive electrode OCP characteristic by the positive electrode deterioration rate as the positive electrode electric quantity. In addition, the amount of electricity at the first negative electrode open circuit potential or the second negative electrode open circuit potential obtained from the characteristic obtained by multiplying the first negative electrode OCP characteristic by the negative electrode deterioration rate is calculated as the negative electrode electric quantity. And the deviation | shift amount calculation part 140 calculates the difference of positive electrode electric quantity and negative electrode electric quantity as deviation | shift amount.

OCV特性算出部150は、ずれ量算出部140が算出したずれ量と、劣化率算出部130が算出した正極劣化率及び負極劣化率と、OCP特性取得部110が取得した第一正極OCP特性及び第一負極OCP特性とを用いて、第二状態でのOCV特性を算出する。   The OCV characteristic calculation unit 150 includes the deviation amount calculated by the deviation amount calculation unit 140, the positive electrode deterioration rate and the negative electrode deterioration rate calculated by the deterioration rate calculation unit 130, the first positive electrode OCP characteristic acquired by the OCP characteristic acquisition unit 110, and The OCV characteristic in the second state is calculated using the first negative electrode OCP characteristic.

具体的には、OCV特性算出部150は、第一電気量にずれ量を加算した値を第二電気量として算出し、第一正極OCP特性における第一電気量を第二電気量に変更した場合の正極OCP特性に正極劣化率を乗じることで、第二状態での正極OCP特性である第二正極OCP特性を算出する。また、OCV特性算出部150は、第一負極OCP特性に負極劣化率を乗じることで、第二状態での負極OCP特性である第二負極OCP特性を算出する。そして、OCV特性算出部150は、算出した第二正極OCP特性から第二負極OCP特性を差し引いて、第二状態でのOCV特性を算出する。   Specifically, the OCV characteristic calculation unit 150 calculates a value obtained by adding the deviation amount to the first electric quantity as the second electric quantity, and changes the first electric quantity in the first positive electrode OCP characteristic to the second electric quantity. By multiplying the positive electrode OCP characteristic in this case by the positive electrode deterioration rate, the second positive electrode OCP characteristic that is the positive electrode OCP characteristic in the second state is calculated. In addition, the OCV characteristic calculation unit 150 calculates the second negative electrode OCP characteristic that is the negative electrode OCP characteristic in the second state by multiplying the first negative electrode OCP characteristic by the negative electrode deterioration rate. Then, the OCV characteristic calculation unit 150 calculates the OCV characteristic in the second state by subtracting the second negative electrode OCP characteristic from the calculated second positive electrode OCP characteristic.

記憶部160は、二次電池203のOCV特性を推定するための情報を記憶しているメモリである。具体的には、記憶部160は、第一状態における情報である第一状態データ161と、第二状態における情報である第二状態データ162とを記憶している。   The storage unit 160 is a memory that stores information for estimating the OCV characteristic of the secondary battery 203. Specifically, the storage unit 160 stores first state data 161 that is information in the first state and second state data 162 that is information in the second state.

図4Aは、本発明の実施の形態に係る第一状態データ161の一例を示す図である。   FIG. 4A is a diagram showing an example of the first state data 161 according to the embodiment of the present invention.

第一状態データ161は、第一状態における情報を示すデータの集まりである。つまり、同図に示すように、第一状態データ161は、「第一正極OCP特性」及び「第一負極OCP特性」を含むデータテーブルである。   The first state data 161 is a collection of data indicating information in the first state. That is, as shown in the figure, the first state data 161 is a data table including “first positive OCP characteristic” and “first negative OCP characteristic”.

本実施の形態では、この第一正極OCP特性及び第一負極OCP特性は、事前に測定され、記憶部160に記憶されており、OCP特性取得部110は、記憶部160から第一正極OCP特性及び第一負極OCP特性を読み出すことで、第一正極OCP特性及び第一負極OCP特性を取得する。なお、OCV特性推定装置100が当該第一正極OCP特性及び第一負極OCP特性を測定し、記憶部160に記憶させる構成でもかまわない。   In the present embodiment, the first positive electrode OCP characteristic and the first negative electrode OCP characteristic are measured in advance and stored in the storage unit 160, and the OCP characteristic acquisition unit 110 receives the first positive electrode OCP characteristic from the storage unit 160. And the 1st negative electrode OCP characteristic and the 1st negative electrode OCP characteristic are acquired by reading the 1st negative electrode OCP characteristic. The OCV characteristic estimation device 100 may measure the first positive electrode OCP characteristic and the first negative electrode OCP characteristic and store them in the storage unit 160.

図4Bは、本発明の実施の形態に係る第二状態データ162の一例を示す図である。   FIG. 4B is a diagram showing an example of the second state data 162 according to the embodiment of the present invention.

第二状態データ162は、第二状態における情報を示すデータの集まりである。つまり、同図に示すように、第二状態データ162は、「第一正極開回路電位」、「第一負極開回路電位」、「差分電気量」、「第二正極開回路電位」及び「第二負極開回路電位」を含むデータテーブルである。   The second state data 162 is a collection of data indicating information in the second state. That is, as shown in the figure, the second state data 162 includes “first positive open circuit potential”, “first negative open circuit potential”, “difference electric quantity”, “second positive open circuit potential”, and “ 6 is a data table including “second negative electrode open circuit potential”.

つまり、開回路電位取得部120は、第一正極開回路電位、第一負極開回路電位、差分電気量、第二正極開回路電位及び第二負極開回路電位を取得して、これらのデータを記憶部160に書き込むことで、第二状態データ162を更新する。   That is, the open circuit potential acquisition unit 120 acquires the first positive electrode open circuit potential, the first negative electrode open circuit potential, the differential electric quantity, the second positive electrode open circuit potential, and the second negative electrode open circuit potential, and obtains these data. The second state data 162 is updated by writing to the storage unit 160.

また、劣化率算出部130、ずれ量算出部140及びOCV特性算出部150は、記憶部160に記憶されている第一状態データ161及び第二状態データ162から必要なデータを読み出して、それぞれ算出を行う。   Further, the deterioration rate calculation unit 130, the deviation amount calculation unit 140, and the OCV characteristic calculation unit 150 read out necessary data from the first state data 161 and the second state data 162 stored in the storage unit 160, and calculate them, respectively. I do.

次に、二次電池203のOCV特性の経時変化について、説明する。   Next, a change with time in the OCV characteristic of the secondary battery 203 will be described.

図5及び図6は、二次電池203のOCV特性の経時変化を説明するための図である。具体的には、図5の(a)は、初期状態での二次電池203の正極開回路電位と負極開回路電位とを示すグラフであり、図5の(b)は、負極SEI形成後の二次電池203の正極開回路電位と負極開回路電位とを示すグラフである。また、図6は、図5の(b)からさらに時間経過後の二次電池203の正極開回路電位と負極開回路電位とを示すグラフである。   5 and 6 are diagrams for explaining the change over time in the OCV characteristic of the secondary battery 203. FIG. Specifically, FIG. 5A is a graph showing the positive electrode open circuit potential and the negative electrode open circuit potential of the secondary battery 203 in the initial state, and FIG. 5B is a graph after the negative electrode SEI is formed. 4 is a graph showing a positive open circuit potential and a negative open circuit potential of the secondary battery 203 of FIG. FIG. 6 is a graph showing the positive electrode open circuit potential and the negative electrode open circuit potential of the secondary battery 203 after the elapse of time from FIG. 5B.

まず、負極へのSEI(Solid Electrolyte Interphase)形成などにより、負極におけるリチウムの吸蔵放出以外にリチウムイオン(電気量)が使用されると、図5の(a)のグラフから図5の(b)のグラフに移行する。つまり、負極SEI形成に使われて正極に返せないリチウム量(電気量)の分だけ、負極開回路電位のグラフが相対的に右側に移動する。   First, when lithium ions (amount of electricity) are used in addition to occlusion / release of lithium in the negative electrode due to formation of SEI (Solid Electrolyte Interface) on the negative electrode, the graph of FIG. 5 (a) to FIG. 5 (b) Move to the graph. That is, the negative open circuit potential graph moves relatively to the right by the amount of lithium (amount of electricity) that is used to form the negative electrode SEI and cannot be returned to the positive electrode.

そして、さらに二次電池203の充放電が行われて劣化が進むと、負極SEI形成がさらに進み、かつ、正極または負極の容量が低下する。ここで、負極SEI形成がさらに進むと、図6の(a)のグラフから図6の(b)のグラフに移行する。つまり、負極開回路電位のグラフがさらに右側に移動する。また、正極または負極の容量が低下すると、図6の(a)のグラフから図6の(c)のグラフに移行する。つまり、正極開回路電位または負極開回路電位のグラフが横方向に縮小される。   When the secondary battery 203 is further charged and discharged and further deteriorates, the formation of the negative electrode SEI further proceeds, and the capacity of the positive electrode or the negative electrode decreases. Here, when the negative electrode SEI formation further proceeds, the graph of FIG. 6A shifts to the graph of FIG. 6B. That is, the negative electrode open circuit potential graph further moves to the right. Further, when the capacity of the positive electrode or the negative electrode decreases, the graph of FIG. 6A shifts to the graph of FIG. 6C. That is, the graph of the positive open circuit potential or the negative open circuit potential is reduced in the horizontal direction.

このため、二次電池203の劣化が進むと、負極SEI形成がさらに進み、かつ、正極または負極の容量が低下するため、負極開回路電位のグラフが右側に移動するとともに、正極開回路電位または負極開回路電位のグラフが横方向に縮小される。   For this reason, as the deterioration of the secondary battery 203 progresses, the formation of the negative electrode SEI further progresses, and the capacity of the positive electrode or the negative electrode decreases, so that the negative electrode open circuit potential graph moves to the right side, and the positive electrode open circuit potential or The graph of the negative open circuit potential is reduced in the horizontal direction.

このように、二次電池203の正極OCP特性及び負極OCP特性が経時的に変化するため、二次電池203のOCV特性も経時的に変化する。   Thus, since the positive electrode OCP characteristic and the negative electrode OCP characteristic of the secondary battery 203 change with time, the OCV characteristic of the secondary battery 203 also changes with time.

次に、OCV特性推定装置100が二次電池203のOCV特性を推定する処理について説明する。   Next, the process in which the OCV characteristic estimation apparatus 100 estimates the OCV characteristic of the secondary battery 203 will be described.

図7は、本発明の実施の形態に係るOCV特性推定装置100が二次電池203のOCV特性を推定する処理の一例を示すフローチャートである。   FIG. 7 is a flowchart showing an example of processing in which the OCV characteristic estimation device 100 according to the embodiment of the present invention estimates the OCV characteristic of the secondary battery 203.

図8は、本発明の実施の形態に係るOCV特性推定装置100が二次電池203のOCV特性を推定する処理を説明するための図である。   FIG. 8 is a diagram for explaining processing in which the OCV characteristic estimation device 100 according to the embodiment of the present invention estimates the OCV characteristic of the secondary battery 203.

まず、図7に示すように、OCP特性取得部110は、第一状態において、第一正極OCP特性と第一負極OCP特性とを取得する(S102)。   First, as shown in FIG. 7, the OCP characteristic acquisition unit 110 acquires the first positive electrode OCP characteristic and the first negative electrode OCP characteristic in the first state (S102).

なお、この第一正極OCP特性と第一負極OCP特性とは、例えば単極試験によって予め測定され、記憶部160に記憶されている。   The first positive electrode OCP characteristic and the first negative electrode OCP characteristic are measured in advance by, for example, a single electrode test and stored in the storage unit 160.

ここで、上記の単極試験としては、例えば、二次電池203に用いる正極及び負極と同じ材質で、1.5×2.0cmに加工したものを試験極とし、参照極および対極として金属リチウムを用いて試験を行うことができる。また、電位範囲は、例えば、正極については4.3〜2.75(V vs.Li/Li)とし、負極は0.02〜2.0(V vs.Li/Li)とする。 Here, as the above single electrode test, for example, the same material as the positive electrode and the negative electrode used for the secondary battery 203 and processed to 1.5 × 2.0 cm 2 is used as a test electrode, and a metal as a reference electrode and a counter electrode. The test can be performed using lithium. The potential range, for example, for the positive electrode and 4.3~2.75 (V vs.Li + / Li) , anode and 0.02~2.0 (V vs.Li + / Li) .

そして、当該単極試験において、満充電まで充電した後、1/20CmAで1時間放電後、3時間放置し電位測定することを30回繰り返すことで、図5の(a)に示したような正極OCP特性と負極OCP特性とを得ることができる。これにより、図8に示す第一正極OCP特性f(q)及び第一負極OCP特性g(q)を、既知関数として得ることができる。   And in the said monopolar test, after charging to full charge, after discharging for 1 hour at 1/20 CmA, leaving it for 3 hours and measuring the potential 30 times, as shown in FIG. Positive electrode OCP characteristics and negative electrode OCP characteristics can be obtained. Thereby, the first positive electrode OCP characteristic f (q) and the first negative electrode OCP characteristic g (q) shown in FIG. 8 can be obtained as known functions.

このようにして、第一正極OCP特性f(q)及び第一負極OCP特性g(q)は、事前に測定され、記憶部160に記憶される。そして、OCP特性取得部110は、記憶部160の第一状態データ161から、当該第一正極OCP特性及び第一負極OCP特性を読み出すことで、図8に示す第一正極OCP特性f(q)及び第一負極OCP特性g(q)を取得する。   Thus, the first positive electrode OCP characteristic f (q) and the first negative electrode OCP characteristic g (q) are measured in advance and stored in the storage unit 160. And the OCP characteristic acquisition part 110 reads the said 1st positive electrode OCP characteristic and 1st negative electrode OCP characteristic from the 1st state data 161 of the memory | storage part 160, The 1st positive electrode OCP characteristic f (q) shown in FIG. And the 1st negative electrode OCP characteristic g (q) is acquired.

次に、図7に戻り、開回路電位取得部120は、第二状態において、第一充電時点での第一正極開回路電位及び第一負極開回路電位を取得する(S104)。   Next, returning to FIG. 7, in the second state, the open circuit potential acquisition unit 120 acquires the first positive open circuit potential and the first negative open circuit potential at the first charging time (S104).

具体的には、開回路電位取得部120は、参照極215を用いて二次電池203の正極開回路電位及び負極開回路電位を測定することで、図8に示す第一正極開回路電位P及び第一負極開回路電位Nを取得する。ここで、図8に示すように、第一正極開回路電位Pは、第二状態における正極OCP特性f’(q)上の点であり、第一負極開回路電位Nは、第二状態における負極OCP特性g’(q)上の点である。 Specifically, the open circuit potential acquisition unit 120 measures the positive open circuit potential and the negative open circuit potential of the secondary battery 203 by using the reference electrode 215, whereby the first positive open circuit potential P shown in FIG. acquires a and the first FukyokuHiraki circuit potential N a. Here, as shown in FIG. 8, the first positive electrode open circuit potential P A is a point on the positive electrode OCP characteristic f ′ (q) in the second state, and the first negative electrode open circuit potential N A is the second This is a point on the negative electrode OCP characteristic g ′ (q) in the state.

そして、開回路電位取得部120は、取得した第一正極開回路電位P及び第一負極開回路電位Nを記憶部160に書き込むことで、第二状態データ162を更新する。 The open circuit potential acquisition unit 120, by writing the first SeikyokuHiraki circuit potential P A and the first FukyokuHiraki circuit potential N A acquired in the storage unit 160, and updates the second state data 162.

次に、図7に戻り、開回路電位取得部120は、第二状態において、第一充電時点から第二充電時点まで通電された場合、当該通電された電気量である差分電気量と、当該第二充電時点における第二正極開回路電位及び第二負極開回路電位とを取得する(S106)。   Next, returning to FIG. 7, when the open circuit potential acquisition unit 120 is energized from the first charging time to the second charging time in the second state, the difference electricity amount that is the energized electricity amount, The second positive electrode open circuit potential and the second negative electrode open circuit potential at the second charging time are acquired (S106).

具体的には、開回路電位取得部120は、参照極215を用いて二次電池203の正極開回路電位及び負極開回路電位を測定することで、図8に示す第二正極開回路電位P及び第二負極開回路電位Nを取得する。ここで、図8に示すように、第二正極開回路電位Pは、第二状態における正極OCP特性f’(q)上の点であり、第二負極開回路電位Nは、第二状態における負極OCP特性g’(q)上の点である。 Specifically, the open circuit potential acquisition unit 120 measures the positive open circuit potential and the negative open circuit potential of the secondary battery 203 by using the reference electrode 215, whereby the second positive open circuit potential P shown in FIG. It acquires B and a second FukyokuHiraki circuit potential N B. Here, as shown in FIG. 8, the second positive electrode open circuit potential P B is a point on the positive electrode OCP characteristic f ′ (q) in the second state, and the second negative electrode open circuit potential N B is This is a point on the negative electrode OCP characteristic g ′ (q) in the state.

また、開回路電位取得部120は、第一充電時点から第二充電時点まで通電された電気量を測定することで、図8に示す差分電気量QABを取得する。そして、開回路電位取得部120は、取得した差分電気量QABと、第二正極開回路電位P及び第二負極開回路電位Nとを記憶部160に書き込むことで、第二状態データ162を更新する。 Further, the open circuit potential acquisition unit 120 acquires the difference electric quantity Q AB shown in FIG. 8 by measuring the electric quantity supplied from the first charging time to the second charging time. Then, the open circuit potential acquisition unit 120 writes the acquired differential electric quantity Q AB , the second positive electrode open circuit potential P B, and the second negative electrode open circuit potential N B into the storage unit 160, thereby obtaining the second state data. 162 is updated.

なお、開回路電位取得部120は、第一正極開回路電位Pと第二正極開回路電位Pとの差分が所定の値よりも大きくなるように、第一正極開回路電位P及び第二正極開回路電位Pを取得するのが好ましい。 Incidentally, the open circuit potential acquisition unit 120, so that the difference between the first SeikyokuHiraki circuit potential P A and the second SeikyokuHiraki circuit potential P B is larger than a predetermined value, and the first SeikyokuHiraki circuit potential P A It is preferable to acquire the second positive electrode open circuit potential P B.

ここで、上記所定の値とは、大きい値であればあるほど望ましいが、例えば、二次電池203の定格容量Q、電気量QにおいてDOD(Depth Of Discharge)をD=Q/Qとした場合のD≧0.1となる区間における変化量ΔDと、PとPとの差分ΔEとの比率が、ΔE/ΔD>0.1Vとなるような値であるのが好ましい。また、さらに好ましくは、ΔE/ΔD>0.05Vとなるような値である。 Here, the predetermined value is preferably as large as possible. For example, the DOD (Depth Of Discharge) in the rated capacity Q 0 and the electric quantity Q of the secondary battery 203 is D = Q / Q 0 . and the amount of change [Delta] D in D ≧ 0.1 and comprising sections in the case of the ratio between the difference Delta] E between P a and P B is preferably a value such that ΔE / ΔD> 0.1V. More preferably, the value is such that ΔE / ΔD> 0.05V.

なお、二次電池の定格容量Q(Ah)は、十分に小さい電流値で放電させたときの放電容量を指すものとし、次のようにして測定されたものを用いることができる。 Note that the rated capacity Q 0 (Ah) of the secondary battery refers to the discharge capacity when discharged at a sufficiently small current value, and can be measured as follows.

(1)二次電池をあらかじめ1/20CAで放電カット電圧3.0Vまで放電する。
(2)二次電池を1/20CAで充電カット電圧4.2Vまで定電流充電したのち、4.2Vでの定電圧充電を総充電時間30時間となるまで継続して行う。
(3)二次電池を1/20CAで放電カット電圧3.0Vまで放電し、得られた放電容量をQ(Ah)とする。
(1) The secondary battery is previously discharged at 1/20 CA to a discharge cut voltage of 3.0V.
(2) The secondary battery is charged at a constant current up to a charge cut voltage of 4.2 V at 1/20 CA, and then the constant voltage charge at 4.2 V is continuously performed until the total charging time reaches 30 hours.
(3) The secondary battery is discharged at 1/20 CA to a discharge cut voltage of 3.0 V, and the obtained discharge capacity is defined as Q 0 (Ah).

ただし、1CAの電流値は二次電池の公称容量を基準にするものであり、公称容量1Ahの二次電池においては、1CA=1Aである。   However, the current value of 1CA is based on the nominal capacity of the secondary battery, and in the secondary battery with the nominal capacity of 1 Ah, 1CA = 1A.

また、開回路電位は、二次電池に参照極を設けた状態で上記工程(1)および(2)を実施したのち、以下に示す(3)’の工程を25回繰り返すことによって得ることができる。   Further, the open circuit potential can be obtained by repeating the above-described steps (1) and (2) with the reference electrode provided in the secondary battery and then repeating the following step (3) ′ 25 times. it can.

(3)’二次電池を1/20CAで1時間または放電カット電圧3.0Vとなるまで放電したのち、2時間開回路状態で放置し、得られた電位を開回路電位とする。   (3) The secondary battery is discharged at 1/20 CA for 1 hour or until the discharge cut voltage reaches 3.0 V, and then left in an open circuit state for 2 hours, and the obtained potential is set as an open circuit potential.

なお、二次電池から負極を取り出して、別途3端子式セルを組み立てて、単極での開回路電位測定を行うこともできる。   It is also possible to take out the negative electrode from the secondary battery, separately assemble a three-terminal cell, and perform open circuit potential measurement with a single electrode.

次に、図7に戻り、劣化率算出部130は、第一正極OCP特性、第一負極OCP特性、第一正極開回路電位、第一負極開回路電位、差分電気量、第二正極開回路電位及び第二負極開回路電位を用いて、正極劣化率及び負極劣化率を算出する(S108)。   Next, returning to FIG. 7, the deterioration rate calculation unit 130 includes the first positive OCP characteristic, the first negative OCP characteristic, the first positive open circuit potential, the first negative open circuit potential, the differential electric quantity, and the second positive open circuit. The positive electrode deterioration rate and the negative electrode deterioration rate are calculated using the potential and the second negative electrode open circuit potential (S108).

具体的には、劣化率算出部130は、記憶部160に記憶されている第一状態データ161から第一正極OCP特性f(q)及び第一負極OCP特性g(q)を読み出し、第二状態データ162から、第一正極開回路電位P、第一負極開回路電位N、差分電気量QAB、第二正極開回路電位P及び第二負極開回路電位Nを読み出して、正極劣化率及び負極劣化率を算出する。なお、この劣化率算出部130が正極劣化率及び負極劣化率を算出する処理の詳細な説明については、後述する。 Specifically, the deterioration rate calculation unit 130 reads the first positive electrode OCP characteristic f (q) and the first negative electrode OCP characteristic g (q) from the first state data 161 stored in the storage unit 160, and the second From the state data 162, the first positive electrode open circuit potential P A , the first negative electrode open circuit potential N A , the differential electric quantity Q AB , the second positive electrode open circuit potential P B and the second negative electrode open circuit potential N B are read out, The positive electrode deterioration rate and the negative electrode deterioration rate are calculated. A detailed description of the process in which the deterioration rate calculation unit 130 calculates the positive electrode deterioration rate and the negative electrode deterioration rate will be described later.

そして、ずれ量算出部140は、正極劣化率、負極劣化率、第一正極OCP特性及び第一負極OCP特性を用いて、第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出する(S110)。   Then, the deviation amount calculation unit 140 uses the positive electrode deterioration rate, the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic to shift the electric amount between the positive electrode OCP characteristic and the negative electrode OCP characteristic in the second state. The amount is calculated (S110).

具体的には、ずれ量算出部140は、記憶部160に記憶されている第一状態データ161から第一正極OCP特性f(q)及び第一負極OCP特性g(q)を読み出し、当該ずれ量を算出する。なお、このずれ量算出部140が当該ずれ量を算出する処理の詳細な説明については、後述する。   Specifically, the deviation amount calculation unit 140 reads the first positive electrode OCP characteristic f (q) and the first negative electrode OCP characteristic g (q) from the first state data 161 stored in the storage unit 160, and the deviation is calculated. Calculate the amount. Note that a detailed description of the process by which the deviation amount calculation unit 140 calculates the deviation amount will be described later.

そして、OCV特性算出部150は、ずれ量、正極劣化率、負極劣化率、第一正極OCP特性及び第一負極OCP特性を用いて、第二状態でのOCV特性を算出する(S112)。   Then, the OCV characteristic calculation unit 150 calculates the OCV characteristic in the second state using the deviation amount, the positive electrode deterioration rate, the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic (S112).

具体的には、OCV特性算出部150は、記憶部160に記憶されている第一状態データ161から第一正極OCP特性f(q)及び第一負極OCP特性g(q)を読み出し、第二状態でのOCV特性を算出する。なお、このOCV特性算出部150が第二状態でのOCV特性を算出する処理の詳細な説明については、後述する。   Specifically, the OCV characteristic calculation unit 150 reads the first positive electrode OCP characteristic f (q) and the first negative electrode OCP characteristic g (q) from the first state data 161 stored in the storage unit 160, and The OCV characteristic in the state is calculated. A detailed description of the process in which the OCV characteristic calculation unit 150 calculates the OCV characteristic in the second state will be described later.

以上のようにして、OCV特性推定装置100が二次電池203のOCV特性を推定する処理は、終了する。   As described above, the process in which the OCV characteristic estimation device 100 estimates the OCV characteristic of the secondary battery 203 ends.

次に、劣化率算出部130が正極劣化率及び負極劣化率を算出する処理(図7のS108)について、詳細に説明する。   Next, the process (S108 in FIG. 7) in which the deterioration rate calculation unit 130 calculates the positive electrode deterioration rate and the negative electrode deterioration rate will be described in detail.

図9は、本発明の実施の形態に係る劣化率算出部130が正極劣化率及び負極劣化率を算出する処理の一例を示すフローチャートである。   FIG. 9 is a flowchart illustrating an example of processing in which the deterioration rate calculation unit 130 according to the embodiment of the present invention calculates the positive electrode deterioration rate and the negative electrode deterioration rate.

図10は、本発明の実施の形態に係る劣化率算出部130が正極劣化率及び負極劣化率を算出する処理を説明するための図である。   FIG. 10 is a diagram for explaining processing in which the deterioration rate calculation unit 130 according to the embodiment of the present invention calculates the positive electrode deterioration rate and the negative electrode deterioration rate.

まず、図9に示すように、劣化率算出部130は、第一正極OCP特性から得られる第一正極開回路電位及び第二正極開回路電位における電気量の差を正極差分電気量として算出する(S202)。また、劣化率算出部130は、第一負極OCP特性から得られる第一負極開回路電位及び第二負極開回路電位における電気量の差を負極差分電気量として算出する(S202)。   First, as illustrated in FIG. 9, the deterioration rate calculation unit 130 calculates a difference in electric quantity between the first positive electrode open circuit potential and the second positive electrode open circuit potential obtained from the first positive electrode OCP characteristic as a positive electrode differential electric quantity. (S202). Further, the deterioration rate calculation unit 130 calculates the difference in the amount of electricity between the first negative electrode open circuit potential and the second negative electrode open circuit potential obtained from the first negative electrode OCP characteristic as a negative electrode differential electric amount (S202).

具体的には、図10に示すように、劣化率算出部130は、第一正極OCP特性f(q)から得られる第一正極開回路電位P及び第二正極開回路電位Pにおける電気量の差である正極差分電気量Qを算出する。つまり、劣化率算出部130は、第一正極OCP特性f(q)に第二正極開回路電位Pを代入した場合の電気量から、第一正極OCP特性f(q)に第一正極開回路電位Pを代入した場合の電気量を差し引いた値を、正極差分電気量Qとして算出する。 Specifically, as shown in FIG. 10, the deterioration rate calculator 130, electric in the first SeikyokuHiraki circuit potential P A and second SeikyokuHiraki circuit potential P B obtained from the first positive electrode OCP characteristics f (q) calculating a positive difference the quantity of electricity Q P is a difference in the amount. That is, the deterioration rate calculation unit 130 calculates the first positive electrode OCP characteristic f (q) from the first positive electrode OCP characteristic f (q) based on the quantity of electricity when the second positive electrode open circuit potential P B is substituted for the first positive electrode OCP characteristic f (q). the value obtained by subtracting the amount of electricity when substituting circuit potential P a, is calculated as a positive difference the quantity of electricity Q P.

また、同様に、劣化率算出部130は、第一負極OCP特性g(q)から得られる第一負極開回路電位N及び第二負極開回路電位Nにおける電気量の差である負極差分電気量Qを算出する。つまり、劣化率算出部130は、第一負極OCP特性g(q)に第二負極開回路電位Nを代入した場合の電気量から、第一負極OCP特性g(q)に第一負極開回路電位Nを代入した場合の電気量を差し引いた値を、負極差分電気量Qとして算出する。 Similarly, the deterioration rate calculator 130, the negative electrode difference is the difference between the quantity of electricity in the first FukyokuHiraki circuit potential N A and second FukyokuHiraki circuit potential N B obtained from the first negative electrode OCP characteristic g (q) to calculate the quantity of electricity Q N. That is, the deterioration rate calculator 130, the quantity of electricity when substituting the second FukyokuHiraki circuit potential N B to the first negative electrode OCP characteristic g (q), the first negative GokuHiraki First negative OCP characteristic g (q) the value obtained by subtracting the amount of electricity when substituting circuit potential N a, is calculated as a negative electrode differential electric quantity Q N.

そして、図9に戻り、劣化率算出部130は、差分電気量を正極差分電気量で除した値を正極劣化率として算出し、差分電気量を負極差分電気量で除した値を負極劣化率として算出する(S204)。   Then, returning to FIG. 9, the deterioration rate calculation unit 130 calculates a value obtained by dividing the difference electricity amount by the positive electrode difference electricity amount as a positive electrode deterioration rate, and calculates a value obtained by dividing the difference electricity amount by the negative electrode difference electricity amount. (S204).

具体的には、劣化率算出部130は、正極劣化率D及び負極劣化率Dを、以下の式1及び式2によって算出する。 Specifically, the deterioration rate calculator 130, a positive electrode degradation rate D P and the negative electrode degradation rate D N, is calculated by Equation 1 and Equation 2 below.

正極劣化率D=差分電気量QAB/正極差分電気量Q (式1)
負極劣化率D=差分電気量QAB/負極差分電気量Q (式2)
Positive electrode deterioration rate D P = difference electric quantity Q AB / positive electrode differential electric quantity Q P (Formula 1)
Negative electrode deterioration rate D N = difference electric quantity Q AB / negative electrode differential electric quantity Q N (Formula 2)

以上のようにして、劣化率算出部130が正極劣化率及び負極劣化率を算出する処理(図7のS108)は、終了する。   As described above, the process in which the deterioration rate calculation unit 130 calculates the positive electrode deterioration rate and the negative electrode deterioration rate (S108 in FIG. 7) ends.

次に、ずれ量算出部140が正極OCP特性と負極OCP特性との電気量のずれ量を算出する処理(図7のS110)について、詳細に説明する。   Next, a process (S110 in FIG. 7) in which the deviation amount calculation unit 140 calculates the deviation amount of the electrical quantity between the positive electrode OCP characteristic and the negative electrode OCP characteristic will be described in detail.

図11は、本発明の実施の形態に係るずれ量算出部140が正極OCP特性と負極OCP特性との電気量のずれ量を算出する処理の一例を示すフローチャートである。   FIG. 11 is a flowchart illustrating an example of processing in which the deviation amount calculation unit 140 according to the embodiment of the present invention calculates the deviation amount of the electrical quantity between the positive electrode OCP characteristic and the negative electrode OCP characteristic.

図12は、本発明の実施の形態に係るずれ量算出部140が正極OCP特性と負極OCP特性との電気量のずれ量を算出する処理を説明するための図である。   FIG. 12 is a diagram for explaining processing in which the deviation amount calculation unit 140 according to the embodiment of the present invention calculates the deviation amount of the electric quantity between the positive electrode OCP characteristic and the negative electrode OCP characteristic.

まず、図11に示すように、ずれ量算出部140は、第一正極OCP特性に正極劣化率を乗じた特性から得られる第一正極開回路電位または第二正極開回路電位における電気量を正極電気量として算出する(S302)。また、ずれ量算出部140は、第一負極OCP特性に負極劣化率を乗じた特性から得られる第一負極開回路電位または第二負極開回路電位における電気量を負極電気量として算出する(S302)。   First, as shown in FIG. 11, the deviation amount calculation unit 140 calculates the amount of electricity at the first positive electrode open circuit potential or the second positive electrode open circuit potential obtained from the characteristic obtained by multiplying the first positive electrode OCP characteristic by the positive electrode deterioration rate. Calculated as the amount of electricity (S302). Further, the deviation amount calculation unit 140 calculates the electric quantity at the first negative electrode open circuit potential or the second negative electrode open circuit potential obtained from the characteristic obtained by multiplying the first negative electrode OCP characteristic by the negative electrode deterioration rate as the negative electrode electric quantity (S302). ).

具体的には、図12に示すように、ずれ量算出部140は、第一正極OCP特性f(q)に正極劣化率Dを乗じた特性Df(q)(=f’(q))から得られる第一正極開回路電位Pにおける電気量を正極電気量qPAとして算出する。また、ずれ量算出部140は、第一負極OCP特性g(q)に負極劣化率Dを乗じた特性Dg(q)(=g’(q))から得られる第一負極開回路電位Nにおける電気量を負極電気量qNAとして算出する。 Specifically, as shown in FIG. 12, the shift amount calculating unit 140, a first positive electrode OCP characteristics f characteristics multiplied by the positive electrode degradation rate D P in (q) D P f (q ) (= f '(q the electric quantity is calculated as a positive electrode electricity quantity q PA in the first SeikyokuHiraki circuit potential P a obtained from)). Further, the shift amount calculating unit 140, a first negative electrode OCP characteristic g (q) in the anode degradation rate D N obtained by multiplying the characteristic D N g (q) (= g '(q)) first FukyokuHiraki circuit obtained from calculating the quantity of electricity at the potential N a as a negative electrode electricity quantity q NA.

そして、図11に戻り、ずれ量算出部140は、正極電気量と負極電気量との差分をずれ量として算出する(S304)。具体的には、図12に示すように、ずれ量算出部140は、正極電気量qPAと負極電気量qNAとの差分Cをずれ量として算出する。 Returning to FIG. 11, the deviation amount calculation unit 140 calculates the difference between the positive electrode amount and the negative electrode amount as the deviation amount (S304). Specifically, as shown in FIG. 12, the shift amount calculating unit 140 calculates the amount of deviation of the difference C between the positive electricity quantity q PA and the negative electricity quantity q NA.

なお、ステップS302において、ずれ量算出部140は、図12に示すように、特性Df(q)から得られる第二正極開回路電位Pにおける電気量を正極電気量qPBとして算出し、特性Dg(q)から得られる第二負極開回路電位Nにおける電気量を負極電気量qNBとして算出することにしてもよい。この場合、ステップS304においては、ずれ量算出部140は、正極電気量qPBと負極電気量qNBとの差分Cをずれ量として算出する。 In step S302, as shown in FIG. 12, the deviation amount calculation unit 140 calculates the electric quantity at the second positive electrode open circuit potential P B obtained from the characteristic D P f (q) as the positive electric quantity q PB. , it may be possible to calculate the quantity of electricity in the second FukyokuHiraki circuit potential N B obtained from the characteristics D N g (q) as the negative electrode electricity quantity q NB. In this case, in step S304, the deviation amount calculation unit 140 calculates the difference C between the positive electrode electric quantity qPB and the negative electrode electric quantity qNB as the deviation amount.

以上のようにして、ずれ量算出部140が正極OCP特性と負極OCP特性との電気量のずれ量を算出する処理(図7のS110)は、終了する。   As described above, the process (S110 in FIG. 7) in which the deviation amount calculation unit 140 calculates the deviation amount of the electric quantity between the positive electrode OCP characteristic and the negative electrode OCP characteristic ends.

次に、OCV特性算出部150が第二状態でのOCV特性を算出する処理(図7のS112)について、詳細に説明する。   Next, the process (S112 in FIG. 7) in which the OCV characteristic calculation unit 150 calculates the OCV characteristic in the second state will be described in detail.

図13は、本発明の実施の形態に係るOCV特性算出部150が第二状態でのOCV特性を算出する処理の一例を示すフローチャートである。   FIG. 13 is a flowchart showing an example of a process in which the OCV characteristic calculation unit 150 according to the embodiment of the present invention calculates the OCV characteristic in the second state.

図14は、本発明の実施の形態に係るOCV特性算出部150が第二状態でのOCV特性を算出する処理を説明するための図である。   FIG. 14 is a diagram for explaining processing in which the OCV characteristic calculation unit 150 according to the embodiment of the present invention calculates the OCV characteristic in the second state.

まず、図13に示すように、OCV特性算出部150は、第一電気量にずれ量を加算した値を第二電気量として算出し、第一正極OCP特性における第一電気量を第二電気量に変更した場合の正極OCP特性に正極劣化率を乗じることで、第二状態での正極OCP特性である第二正極OCP特性を算出する(S402)。また、OCV特性算出部150は、第一負極OCP特性に負極劣化率を乗じることで、第二状態での負極OCP特性である第二負極OCP特性を算出する(S402)。   First, as shown in FIG. 13, the OCV characteristic calculation unit 150 calculates a value obtained by adding the deviation amount to the first electric quantity as the second electric quantity, and calculates the first electric quantity in the first positive electrode OCP characteristic as the second electric quantity. By multiplying the positive electrode OCP characteristic when the amount is changed by the positive electrode deterioration rate, the second positive electrode OCP characteristic that is the positive electrode OCP characteristic in the second state is calculated (S402). Further, the OCV characteristic calculation unit 150 calculates the second negative electrode OCP characteristic which is the negative electrode OCP characteristic in the second state by multiplying the first negative electrode OCP characteristic by the negative electrode deterioration rate (S402).

具体的には、図14に示すように、OCV特性算出部150は、第一電気量qにずれ量Cを加算して、第二電気量(q+C)を算出する。そして、OCV特性算出部150は、第一正極OCP特性f(q)における第一電気量qを第二電気量(q+C)に変更した場合の正極OCP特性f(q+C)に正極劣化率Dを乗じることで、第二正極OCP特性Df(q+C)(=E)を算出する。また、OCV特性算出部150は、第一負極OCP特性g(q)に負極劣化率Dを乗じることで、第二負極OCP特性Dg(q)(=E)を算出する。 Specifically, as illustrated in FIG. 14, the OCV characteristic calculation unit 150 calculates the second electric quantity (q + C) by adding the deviation quantity C to the first electric quantity q. Then, the OCV characteristic calculation unit 150 changes the positive electrode deterioration rate D P to the positive electrode OCP characteristic f (q + C) when the first electric quantity q in the first positive electrode OCP characteristic f (q) is changed to the second electric quantity (q + C). by multiplying, calculating a second positive electrode OCP characteristics D P f (q + C) (= E P). Furthermore, OCV characteristic calculation unit 150, by multiplying the first negative OCP characteristic g (q) in the anode degradation rate D N, to calculate a second negative electrode OCP characteristic D N g (q) (= E N).

そして、図13に戻り、OCV特性算出部150は、算出した第二正極OCP特性から第二負極OCP特性を差し引いて、第二状態でのOCV特性を算出する(S404)。具体的には、OCV特性算出部150は、第二状態でのOCV特性Eを、以下の式3によって算出する。   Returning to FIG. 13, the OCV characteristic calculation unit 150 calculates the OCV characteristic in the second state by subtracting the second negative electrode OCP characteristic from the calculated second positive electrode OCP characteristic (S404). Specifically, the OCV characteristic calculation unit 150 calculates the OCV characteristic E in the second state by the following Expression 3.

E=E−E=Df(q+C)−Dg(q) (式3) E = E P −E N = D P f (q + C) −D N g (q) (Formula 3)

なお、上記により、Cは、以下の式4によって表される。   In addition, by the above, C is represented by the following formula 4.

C=D −1−1(E)−D −1−1(E) (式4) C = D P -1 f -1 ( E P) -D N -1 g -1 (E N) ( Equation 4)

以上のようにして、OCV特性算出部150が第二状態でのOCV特性を算出する処理(図7のS112)は、終了する。   As described above, the process of calculating the OCV characteristic in the second state by the OCV characteristic calculation unit 150 (S112 in FIG. 7) ends.

以上のように、本発明の実施の形態に係るOCV特性推定装置100によれば、第一正極OCP特性、第一負極OCP特性、第一正極開回路電位、第一負極開回路電位、差分電気量、第二正極開回路電位及び第二負極開回路電位を用いて、正極劣化率及び負極劣化率を算出し、正極劣化率、負極劣化率、第一正極OCP特性及び第一負極OCP特性を用いて、第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出し、ずれ量、正極劣化率、負極劣化率、第一正極OCP特性及び第一負極OCP特性を用いて、第二状態でのOCV特性を算出する。つまり、OCV特性推定装置100は、当該正極劣化率、当該負極劣化率及び当該ずれ量を算出することで、第二状態でのOCV特性を算出する。ここで、本願発明者らは、鋭意研究の結果、当該正極劣化率、当該負極劣化率及び当該ずれ量を用いて、非水電解質二次電池のOCV特性を正確に推定することができることを見出した。また、OCV特性推定装置100は、当該正極劣化率、当該負極劣化率及び当該ずれ量を用いてOCV特性を算出するため、実際に充放電を行い測定するような必要がなく、迅速に当該OCV特性を推定することができる。このため、OCV特性推定装置100は、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   As described above, according to the OCV characteristic estimation device 100 according to the embodiment of the present invention, the first positive electrode OCP characteristic, the first negative electrode OCP characteristic, the first positive electrode open circuit potential, the first negative electrode open circuit potential, the differential electricity The positive electrode deterioration rate and the negative electrode deterioration rate are calculated using the amount, the second positive electrode open circuit potential and the second negative electrode open circuit potential, and the positive electrode deterioration rate, the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic are calculated. And calculating a deviation amount of the electric quantity between the positive electrode OCP characteristic and the negative electrode OCP characteristic in the second state, and using the deviation amount, the positive electrode deterioration rate, the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic. Then, the OCV characteristic in the second state is calculated. That is, the OCV characteristic estimation device 100 calculates the OCV characteristic in the second state by calculating the positive electrode deterioration rate, the negative electrode deterioration rate, and the shift amount. Here, as a result of intensive studies, the inventors of the present application have found that the OCV characteristics of the nonaqueous electrolyte secondary battery can be accurately estimated using the positive electrode deterioration rate, the negative electrode deterioration rate, and the shift amount. It was. In addition, since the OCV characteristic estimation device 100 calculates the OCV characteristic using the positive electrode deterioration rate, the negative electrode deterioration rate, and the deviation amount, it is not necessary to actually perform charge and discharge and measure the OCV characteristic quickly. Characteristics can be estimated. For this reason, the OCV characteristic estimation apparatus 100 can estimate the OCV characteristic of a nonaqueous electrolyte secondary battery quickly and accurately.

また、OCV特性推定装置100は、正極差分電気量及び負極差分電気量を算出し、差分電気量を正極差分電気量で除した値を正極劣化率とし、差分電気量を負極差分電気量で除した値を負極劣化率として算出する。これにより、OCV特性推定装置100は、当該正極劣化率及び当該負極劣化率を容易に算出することができる。このため、OCV特性推定装置100は、容易に、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   The OCV characteristic estimation apparatus 100 calculates the positive differential electric quantity and the negative differential electric quantity, the value obtained by dividing the differential electric quantity by the positive differential electric quantity is set as the positive electrode deterioration rate, and the differential electric quantity is divided by the negative differential electric quantity. The calculated value is calculated as the negative electrode deterioration rate. Thereby, the OCV characteristic estimation apparatus 100 can easily calculate the positive electrode deterioration rate and the negative electrode deterioration rate. For this reason, the OCV characteristic estimation apparatus 100 can estimate the OCV characteristic of a nonaqueous electrolyte secondary battery easily and quickly with high accuracy.

また、OCV特性推定装置100は、正極電気量及び負極電気量を算出し、正極電気量と負極電気量との差分を当該ずれ量として算出する。これにより、OCV特性推定装置100は、当該ずれ量を容易に算出することができる。このため、OCV特性推定装置100は、容易に、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   Moreover, the OCV characteristic estimation apparatus 100 calculates the positive electrode electric amount and the negative electrode electric amount, and calculates the difference between the positive electrode electric amount and the negative electrode electric amount as the deviation amount. Thereby, the OCV characteristic estimation apparatus 100 can easily calculate the deviation amount. For this reason, the OCV characteristic estimation apparatus 100 can estimate the OCV characteristic of a nonaqueous electrolyte secondary battery easily and quickly with high accuracy.

また、OCV特性推定装置100は、第一正極OCP特性における電気量に当該ずれ量を加算した場合の正極OCP特性に正極劣化率を乗じた特性から、第一負極OCP特性に負極劣化率を乗じた特性を差し引いて、第二状態でのOCV特性を算出する。これにより、OCV特性推定装置100は、容易に第二状態でのOCV特性を算出することができる。このため、OCV特性推定装置100は、容易に、迅速に精度良く、非水電解質二次電池のOCV特性を推定することができる。   The OCV characteristic estimation apparatus 100 multiplies the first negative electrode OCP characteristic by the negative electrode deterioration rate from the characteristic obtained by multiplying the positive electrode OCP characteristic by the positive electrode deterioration rate when the deviation amount is added to the amount of electricity in the first positive electrode OCP characteristic. The OCV characteristic in the second state is calculated by subtracting the obtained characteristic. Thereby, the OCV characteristic estimation apparatus 100 can easily calculate the OCV characteristic in the second state. For this reason, the OCV characteristic estimation apparatus 100 can estimate the OCV characteristic of a nonaqueous electrolyte secondary battery easily and quickly with high accuracy.

また、第一正極開回路電位と第二正極開回路電位との差分は、所定の値よりも大きい。ここで、第一正極開回路電位と第二正極開回路電位との差分が大きいほど、正極OCP特性の傾きが大きくなるので、OCV特性推定装置100は、精度良くOCV特性を算出することができる。このため、OCV特性推定装置100は、さらに精度良く、非水電解質二次電池のOCV特性を推定することができる。   Further, the difference between the first positive electrode open circuit potential and the second positive electrode open circuit potential is larger than a predetermined value. Here, the greater the difference between the first positive electrode open circuit potential and the second positive electrode open circuit potential, the greater the slope of the positive electrode OCP characteristic. Therefore, the OCV characteristic estimation apparatus 100 can calculate the OCV characteristic with high accuracy. . For this reason, the OCV characteristic estimation apparatus 100 can estimate the OCV characteristic of the nonaqueous electrolyte secondary battery with higher accuracy.

また、本発明の実施の形態に係る組電池10によれば、参照極215を有する二次電池203を含む複数の二次電池200と、二次電池203のOCV特性推定装置100とを備えており、OCV特性推定装置100は、推定した二次電池203のOCV特性を、複数の二次電池200全体のOCV特性と推定する。これにより、組電池10は、二次電池203のOCV特性を迅速に精度良く推定することができるため、全ての二次電池200全体のOCV特性を迅速に精度良く推定することができる。   Moreover, according to the assembled battery 10 which concerns on embodiment of this invention, the some secondary battery 200 containing the secondary battery 203 which has the reference pole 215, and the OCV characteristic estimation apparatus 100 of the secondary battery 203 are provided. Therefore, the OCV characteristic estimation device 100 estimates the estimated OCV characteristic of the secondary battery 203 as the OCV characteristic of the plurality of secondary batteries 200 as a whole. As a result, the assembled battery 10 can quickly and accurately estimate the OCV characteristics of the secondary battery 203, and thus can quickly and accurately estimate the OCV characteristics of all the secondary batteries 200.

また、組電池10は、電池表面温度が、他の二次電池の平均値よりも高い二次電池203について、OCV特性を推定する。ここで、二次電池は、電池表面温度が高いほど、劣化し易い傾向にある。このため、組電池10は、劣化し易い電池のOCV特性を推定することで、組電池としての寿命の把握を正確に行うことができる。   In addition, the assembled battery 10 estimates the OCV characteristics of the secondary battery 203 whose battery surface temperature is higher than the average value of other secondary batteries. Here, the secondary battery tends to deteriorate as the battery surface temperature increases. For this reason, the assembled battery 10 can accurately grasp the lifetime of the assembled battery by estimating the OCV characteristics of the battery that is easily deteriorated.

以上、本発明の実施の形態に係るOCV特性推定装置100及び組電池10について説明したが、本発明は、この実施の形態に限定されるものではない。   Although the OCV characteristic estimation device 100 and the assembled battery 10 according to the embodiment of the present invention have been described above, the present invention is not limited to this embodiment.

つまり、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   That is, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、本発明は、二次電池203と、二次電池203のOCV特性を推定するOCV特性推定装置100とを備える蓄電システムとして実現することもできる。   For example, the present invention can also be realized as a power storage system including the secondary battery 203 and the OCV characteristic estimation device 100 that estimates the OCV characteristic of the secondary battery 203.

また、本発明は、このようなOCV特性推定装置100として実現することができるだけでなく、OCV特性推定装置100が備える特徴的な処理部の処理をステップとするOCV特性推定方法としても実現することができる。   In addition, the present invention can be realized not only as such an OCV characteristic estimation apparatus 100 but also as an OCV characteristic estimation method using the processing of a characteristic processing unit included in the OCV characteristic estimation apparatus 100 as a step. Can do.

また、本発明は、OCV特性推定方法に含まれる特徴的な処理をコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD−ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。   The present invention can also be realized as a program that causes a computer to execute characteristic processing included in the OCV characteristic estimation method. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.

また、本発明に係るOCV特性推定装置100が備える各処理部は、集積回路であるLSI(Large Scale Integration)として実現されてもよい。例えば、図15に示すように、本発明は、OCP特性取得部110、開回路電位取得部120、劣化率算出部130、ずれ量算出部140及びOCV特性算出部150を備える集積回路170として実現することができる。図15は、本発明の実施の形態に係るOCV特性推定装置100を集積回路で実現する構成を示すブロック図である。   Each processing unit included in the OCV characteristic estimation apparatus 100 according to the present invention may be realized as an LSI (Large Scale Integration) that is an integrated circuit. For example, as shown in FIG. 15, the present invention is realized as an integrated circuit 170 including an OCP characteristic acquisition unit 110, an open circuit potential acquisition unit 120, a deterioration rate calculation unit 130, a deviation amount calculation unit 140, and an OCV characteristic calculation unit 150. can do. FIG. 15 is a block diagram showing a configuration for realizing OCV characteristic estimation apparatus 100 according to the embodiment of the present invention with an integrated circuit.

なお、集積回路170が備える各処理部は、個別に1チップ化されても良いし、一部または全てを含むように1チップ化されても良い。   Each processing unit included in the integrated circuit 170 may be individually made into one chip, or may be made into one chip so as to include a part or all of them.

ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。   The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.

また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。   Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.

さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてあり得る。   Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. There is a possibility of adaptation of biotechnology.

本発明は、リチウムイオン二次電池などの非水電解質二次電池において、迅速に精度良くOCV特性を推定することができるOCV特性推定装置等に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to an OCV characteristic estimation device that can quickly and accurately estimate OCV characteristics in a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery.

10 組電池
100 OCV特性推定装置
110 OCP特性取得部
120 開回路電位取得部
130 劣化率算出部
140 ずれ量算出部
150 OCV特性算出部
160 記憶部
161 第一状態データ
162 第二状態データ
170 集積回路
200、201〜210 二次電池
210 電池容器
211 ふた板
212 発電要素
213 正極集電部材
214 負極集電部材
215 参照極
220 正極端子
230 負極端子
300 収容ケース
DESCRIPTION OF SYMBOLS 10 Assembly battery 100 OCV characteristic estimation apparatus 110 OCP characteristic acquisition part 120 Open circuit electric potential acquisition part 130 Degradation rate calculation part 140 Deviation amount calculation part 150 OCV characteristic calculation part 160 Storage part 161 First state data 162 Second state data 170 Integrated circuit 200, 201-210 Secondary battery 210 Battery container 211 Cover plate 212 Power generation element 213 Positive electrode current collecting member 214 Negative electrode current collecting member 215 Reference electrode 220 Positive electrode terminal 230 Negative electrode terminal 300 Storage case

Claims (10)

正極及び負極の開回路電位である正極開回路電位及び負極開回路電位を参照極を用いて測定することができる非水電解質二次電池の、電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定装置であって、
所定の第一状態での前記非水電解質二次電池の電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記第一状態での前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得部と、
所定の第二状態での所定の第一充電時点における正極開回路電位及び負極開回路電位である第一正極開回路電位及び第一負極開回路電位を取得するとともに、前記第一充電時点から第二充電時点へ通電した場合の通電電気量である差分電気量と、前記第二充電時点における正極開回路電位及び負極開回路電位である第二正極開回路電位及び第二負極開回路電位とを取得する開回路電位取得部と、
前記OCP特性取得部が取得した前記第一正極OCP特性及び前記第一負極OCP特性と、前記開回路電位取得部が取得した前記第一正極開回路電位、前記第一負極開回路電位、前記差分電気量、前記第二正極開回路電位及び前記第二負極開回路電位とを用いて、正極及び負極の劣化の度合いを示す正極劣化率及び負極劣化率を算出する劣化率算出部と、
算出された前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出するずれ量算出部と、
算出された前記ずれ量と、前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態でのOCV特性を算出するOCV特性算出部と
を備えるOCV特性推定装置。
OCV characteristics showing the relationship between the amount of electricity and the open circuit voltage of a non-aqueous electrolyte secondary battery capable of measuring the positive circuit open circuit potential and the negative circuit open circuit potential, which are the open circuit potential of the positive electrode and the negative electrode, using the reference electrode An OCV characteristic estimation device for estimating
A first positive electrode OCP characteristic indicating a relationship between a first electric quantity that is an electric quantity of the non-aqueous electrolyte secondary battery in a predetermined first state and a positive electrode open circuit potential; and the first electric electricity in the first state. An OCP characteristic acquisition unit for acquiring a first negative electrode OCP characteristic indicating a relationship between the amount and the negative electrode open circuit potential;
A first positive open circuit potential and a first negative open circuit potential, which are a positive open circuit potential and a negative open circuit potential at a predetermined first charge time in a predetermined second state, and A difference electric quantity that is an energized electric quantity when energized to two charging points, and a second positive open circuit potential and a second negative open circuit potential that are positive open circuit potential and negative open circuit potential at the second charging point. An open circuit potential acquisition unit to acquire;
The first positive electrode OCP characteristic and the first negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit, the first positive electrode open circuit potential acquired by the open circuit potential acquisition unit, the first negative electrode open circuit potential, and the difference A deterioration rate calculating unit that calculates a positive electrode deterioration rate and a negative electrode deterioration rate indicating the degree of deterioration of the positive electrode and the negative electrode using the electric quantity, the second positive electrode open circuit potential, and the second negative electrode open circuit potential,
Using the calculated positive electrode deterioration rate and negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic, the amount of electricity between the positive electrode OCP characteristic and the negative electrode OCP characteristic in the second state is calculated. A deviation amount calculation unit for calculating a deviation amount;
An OCV characteristic for calculating an OCV characteristic in the second state using the calculated deviation amount, the positive electrode deterioration rate and the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic. An OCV characteristic estimation device comprising: a calculation unit.
前記劣化率算出部は、
前記第一正極OCP特性から得られる前記第一正極開回路電位及び前記第二正極開回路電位における電気量の差を正極差分電気量として算出し、
前記第一負極OCP特性から得られる前記第一負極開回路電位及び前記第二負極開回路電位における電気量の差を負極差分電気量として算出し、
前記差分電気量を前記正極差分電気量で除した値を前記正極劣化率として算出し、
前記差分電気量を前記負極差分電気量で除した値を前記負極劣化率として算出する
請求項1に記載のOCV特性推定装置。
The deterioration rate calculator is
Calculating the difference in the amount of electricity between the first positive electrode open circuit potential and the second positive electrode open circuit potential obtained from the first positive electrode OCP characteristics as a positive differential electric quantity;
Calculating the difference in electric quantity between the first negative electrode open circuit potential and the second negative electrode open circuit potential obtained from the first negative electrode OCP characteristic as a negative electrode differential electric quantity;
A value obtained by dividing the difference electric quantity by the positive electrode difference electric quantity is calculated as the positive electrode deterioration rate,
The OCV characteristic estimation apparatus according to claim 1, wherein a value obtained by dividing the differential electric quantity by the negative electrode differential electric quantity is calculated as the negative electrode deterioration rate.
前記ずれ量算出部は、
前記第一正極OCP特性に前記正極劣化率を乗じた特性から得られる前記第一正極開回路電位または前記第二正極開回路電位における電気量を正極電気量として算出するとともに、前記第一負極OCP特性に前記負極劣化率を乗じた特性から得られる前記第一負極開回路電位または前記第二負極開回路電位における電気量を負極電気量として算出し、
前記正極電気量と前記負極電気量との差分を前記ずれ量として算出する
請求項1または2に記載のOCV特性推定装置。
The deviation amount calculation unit
The amount of electricity at the first positive electrode open circuit potential or the second positive electrode open circuit potential obtained from the property obtained by multiplying the first positive electrode OCP property by the positive electrode deterioration rate is calculated as the positive electrode electric amount, and the first negative electrode OCP The amount of electricity in the first negative electrode open circuit potential or the second negative electrode open circuit potential obtained from the property obtained by multiplying the property by the negative electrode deterioration rate is calculated as the negative electrode electric amount,
The OCV characteristic estimation apparatus according to claim 1, wherein a difference between the positive electrode electric amount and the negative electrode electric amount is calculated as the shift amount.
前記OCV特性算出部は、
前記第一電気量に前記ずれ量を加算した値を第二電気量として算出し、
前記第一正極OCP特性における第一電気量を前記第二電気量に変更した場合の正極OCP特性に前記正極劣化率を乗じることで、前記第二状態での正極OCP特性である第二正極OCP特性を算出し、
前記第一負極OCP特性に前記負極劣化率を乗じることで、前記第二状態での負極OCP特性である第二負極OCP特性を算出し、
算出した前記第二正極OCP特性から前記第二負極OCP特性を差し引いて、前記第二状態でのOCV特性を算出する
請求項1〜3のいずれか1項に記載のOCV特性推定装置。
The OCV characteristic calculator is
A value obtained by adding the deviation amount to the first electric quantity is calculated as a second electric quantity,
By multiplying the positive electrode OCP characteristic when the first electric quantity in the first positive electrode OCP characteristic is changed to the second electric quantity by the positive electrode deterioration rate, the second positive electrode OCP characteristic that is the positive electrode OCP characteristic in the second state is obtained. Calculate the characteristics,
By multiplying the first negative electrode OCP characteristic by the negative electrode deterioration rate, a second negative electrode OCP characteristic that is a negative electrode OCP characteristic in the second state is calculated,
The OCV characteristic estimation apparatus according to claim 1, wherein the OCV characteristic in the second state is calculated by subtracting the second negative electrode OCP characteristic from the calculated second positive electrode OCP characteristic.
前記第一正極開回路電位と前記第二正極開回路電位との差分は、所定の値よりも大きい
請求項1〜4のいずれか1項に記載のOCV特性推定装置。
The OCV characteristic estimation apparatus according to any one of claims 1 to 4, wherein a difference between the first positive electrode open circuit potential and the second positive electrode open circuit potential is larger than a predetermined value.
非水電解質二次電池と、
前記非水電解質二次電池の電気量と開回路電圧との関係を示すOCV特性を推定する請求項1〜5のいずれか1項に記載のOCV特性推定装置と
を備える蓄電システム。
A non-aqueous electrolyte secondary battery;
An OCV characteristic estimation apparatus according to any one of claims 1 to 5, which estimates an OCV characteristic indicating a relationship between an amount of electricity of the nonaqueous electrolyte secondary battery and an open circuit voltage.
参照極を有する1の非水電解質二次電池を含む複数の非水電解質二次電池と、
前記1の非水電解質二次電池の電気量と開回路電圧との関係を示すOCV特性を推定する請求項1〜5のいずれか1項に記載のOCV特性推定装置とを備え、
前記OCV特性推定装置は、推定した前記1の非水電解質二次電池のOCV特性を、前記複数の非水電解質二次電池全体のOCV特性と推定する
組電池。
A plurality of non-aqueous electrolyte secondary batteries including one non-aqueous electrolyte secondary battery having a reference electrode;
The OCV characteristic estimation device according to any one of claims 1 to 5, which estimates an OCV characteristic indicating a relationship between an amount of electricity and an open circuit voltage of the nonaqueous electrolyte secondary battery.
The OCV characteristic estimation device estimates the estimated OCV characteristic of the first non-aqueous electrolyte secondary battery as the OCV characteristic of the plurality of non-aqueous electrolyte secondary batteries as a whole.
前記1の非水電解質二次電池は、電池表面温度が、前記複数の非水電解質二次電池のうちの他の非水電解質二次電池の電池表面温度の平均値よりも高い
請求項7に記載の組電池。
The battery surface temperature of the one nonaqueous electrolyte secondary battery is higher than an average value of battery surface temperatures of other nonaqueous electrolyte secondary batteries among the plurality of nonaqueous electrolyte secondary batteries. The assembled battery as described.
コンピュータが、正極及び負極の開回路電位である正極開回路電位及び負極開回路電位を参照極を用いて測定することができる非水電解質二次電池の、電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定方法であって、
所定の第一状態での前記非水電解質二次電池の電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記第一状態での前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得ステップと、
所定の第二状態での所定の第一充電時点における正極開回路電位及び負極開回路電位である第一正極開回路電位及び第一負極開回路電位を取得するとともに、前記第一充電時点から第二充電時点へ通電した場合の通電電気量である差分電気量と、前記第二充電時点における正極開回路電位及び負極開回路電位である第二正極開回路電位及び第二負極開回路電位とを取得する開回路電位取得ステップと、
前記OCP特性取得ステップで取得された前記第一正極OCP特性及び前記第一負極OCP特性と、前記開回路電位取得ステップで取得された前記第一正極開回路電位、前記第一負極開回路電位、前記差分電気量、前記第二正極開回路電位及び前記第二負極開回路電位とを用いて、正極及び負極の劣化の度合いを示す正極劣化率及び負極劣化率を算出する劣化率算出ステップと、
算出された前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出するずれ量算出ステップと、
算出された前記ずれ量と、前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態でのOCV特性を算出するOCV特性算出ステップと
を含むOCV特性推定方法。
The relationship between the amount of electricity and the open circuit voltage of a nonaqueous electrolyte secondary battery in which a computer can measure the positive circuit open circuit potential and the negative circuit open circuit potential, which are open circuit potentials of the positive electrode and the negative electrode, using the reference electrode. An OCV characteristic estimation method for estimating an OCV characteristic to be shown,
A first positive electrode OCP characteristic indicating a relationship between a first electric quantity that is an electric quantity of the non-aqueous electrolyte secondary battery in a predetermined first state and a positive electrode open circuit potential; and the first electric electricity in the first state. An OCP characteristic acquisition step of acquiring a first negative electrode OCP characteristic indicating a relationship between the amount and the negative electrode open circuit potential;
A first positive open circuit potential and a first negative open circuit potential, which are a positive open circuit potential and a negative open circuit potential at a predetermined first charge time in a predetermined second state, and A difference electric quantity that is an energized electric quantity when energized to two charging points, and a second positive open circuit potential and a second negative open circuit potential that are positive open circuit potential and negative open circuit potential at the second charging point. An open circuit potential acquisition step to acquire;
The first positive electrode OCP characteristic and the first negative electrode OCP characteristic acquired in the OCP characteristic acquisition step, the first positive electrode open circuit potential acquired in the open circuit potential acquisition step, the first negative electrode open circuit potential, A deterioration rate calculating step for calculating a positive electrode deterioration rate and a negative electrode deterioration rate indicating the degree of deterioration of the positive electrode and the negative electrode using the differential electric quantity, the second positive electrode open circuit potential, and the second negative electrode open circuit potential;
Using the calculated positive electrode deterioration rate and negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic, the amount of electricity between the positive electrode OCP characteristic and the negative electrode OCP characteristic in the second state is calculated. A deviation amount calculating step for calculating a deviation amount;
An OCV characteristic for calculating an OCV characteristic in the second state using the calculated deviation amount, the positive electrode deterioration rate and the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic. An OCV characteristic estimation method including a calculation step.
正極及び負極の開回路電位である正極開回路電位及び負極開回路電位を参照極を用いて測定することができる非水電解質二次電池の、電気量と開回路電圧との関係を示すOCV特性を推定する集積回路であって、
所定の第一状態での前記非水電解質二次電池の電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記第一状態での前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得部と、
所定の第二状態での所定の第一充電時点における正極開回路電位及び負極開回路電位である第一正極開回路電位及び第一負極開回路電位を取得するとともに、前記第一充電時点から第二充電時点へ通電した場合の通電電気量である差分電気量と、前記第二充電時点における正極開回路電位及び負極開回路電位である第二正極開回路電位及び第二負極開回路電位とを取得する開回路電位取得部と、
前記OCP特性取得部が取得した前記第一正極OCP特性及び前記第一負極OCP特性と、前記開回路電位取得部が取得した前記第一正極開回路電位、前記第一負極開回路電位、前記差分電気量、前記第二正極開回路電位及び前記第二負極開回路電位とを用いて、正極及び負極の劣化の度合いを示す正極劣化率及び負極劣化率を算出する劣化率算出部と、
算出された前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態での正極OCP特性と負極OCP特性との電気量のずれ量を算出するずれ量算出部と、
算出された前記ずれ量と、前記正極劣化率及び前記負極劣化率と、前記第一正極OCP特性及び前記第一負極OCP特性とを用いて、前記第二状態でのOCV特性を算出するOCV特性算出部と
を備える集積回路。
OCV characteristics showing the relationship between the amount of electricity and the open circuit voltage of a non-aqueous electrolyte secondary battery capable of measuring the positive circuit open circuit potential and the negative circuit open circuit potential, which are the open circuit potential of the positive electrode and the negative electrode, using the reference electrode An integrated circuit for estimating
A first positive electrode OCP characteristic indicating a relationship between a first electric quantity that is an electric quantity of the non-aqueous electrolyte secondary battery in a predetermined first state and a positive electrode open circuit potential; and the first electric electricity in the first state. An OCP characteristic acquisition unit for acquiring a first negative electrode OCP characteristic indicating a relationship between the amount and the negative electrode open circuit potential;
A first positive open circuit potential and a first negative open circuit potential, which are a positive open circuit potential and a negative open circuit potential at a predetermined first charge time in a predetermined second state, and A difference electric quantity that is an energized electric quantity when energized to two charging points, and a second positive open circuit potential and a second negative open circuit potential that are positive open circuit potential and negative open circuit potential at the second charging point. An open circuit potential acquisition unit to acquire;
The first positive electrode OCP characteristic and the first negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit, the first positive electrode open circuit potential acquired by the open circuit potential acquisition unit, the first negative electrode open circuit potential, and the difference A deterioration rate calculating unit that calculates a positive electrode deterioration rate and a negative electrode deterioration rate indicating the degree of deterioration of the positive electrode and the negative electrode using the electric quantity, the second positive electrode open circuit potential, and the second negative electrode open circuit potential,
Using the calculated positive electrode deterioration rate and negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic, the amount of electricity between the positive electrode OCP characteristic and the negative electrode OCP characteristic in the second state is calculated. A deviation amount calculation unit for calculating a deviation amount;
An OCV characteristic for calculating an OCV characteristic in the second state using the calculated deviation amount, the positive electrode deterioration rate and the negative electrode deterioration rate, the first positive electrode OCP characteristic, and the first negative electrode OCP characteristic. An integrated circuit comprising a calculation unit.
JP2011289916A 2011-12-28 2011-12-28 Non-aqueous electrolyte secondary battery OCV characteristic estimation device, OCV characteristic estimation method, power storage system, and assembled battery Active JP5825101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011289916A JP5825101B2 (en) 2011-12-28 2011-12-28 Non-aqueous electrolyte secondary battery OCV characteristic estimation device, OCV characteristic estimation method, power storage system, and assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011289916A JP5825101B2 (en) 2011-12-28 2011-12-28 Non-aqueous electrolyte secondary battery OCV characteristic estimation device, OCV characteristic estimation method, power storage system, and assembled battery

Publications (2)

Publication Number Publication Date
JP2013140037A true JP2013140037A (en) 2013-07-18
JP5825101B2 JP5825101B2 (en) 2015-12-02

Family

ID=49037597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011289916A Active JP5825101B2 (en) 2011-12-28 2011-12-28 Non-aqueous electrolyte secondary battery OCV characteristic estimation device, OCV characteristic estimation method, power storage system, and assembled battery

Country Status (1)

Country Link
JP (1) JP5825101B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140690A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Negative electrode charge reserve amount estimation device of nonaqueous electrolyte secondary battery, negative electrode charge reserve amount estimation method, power storage system and battery pack
JP2017083274A (en) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 Control device of lithium ion secondary battery
JP2017163687A (en) * 2016-03-09 2017-09-14 トヨタ自動車株式会社 Power supply system
JP2018078023A (en) * 2016-11-09 2018-05-17 トヨタ自動車株式会社 Controller of lithium ion secondary battery
WO2019017183A1 (en) * 2017-07-19 2019-01-24 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
JP2019020392A (en) * 2017-07-19 2019-02-07 株式会社Gsユアサ Estimation device, accumulation of electricity device, estimation method, and computer program
US10302704B2 (en) 2015-08-20 2019-05-28 Samsung Electronics Co., Ltd. Method and battery system predicting state of charge of a battery
JP2019124535A (en) * 2018-01-15 2019-07-25 株式会社デンソー Power supply system
JP2022026770A (en) * 2020-07-31 2022-02-10 プライムアースEvエナジー株式会社 Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY
US11598817B2 (en) 2018-04-17 2023-03-07 Mitsubishi Electric Corporation Storage cell diagnostic device and storage cell diagnostic method, and storage cell control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044930A (en) * 2007-08-10 2009-02-26 Toyota Motor Corp Power supply system, and vehicle equipped therewith
JP2010060384A (en) * 2008-09-02 2010-03-18 Toyota Central R&D Labs Inc Apparatus for estimating state of secondary battery
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2011220917A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Device and method for determining deterioration of lithium ion secondary battery
JP2011258337A (en) * 2010-06-07 2011-12-22 Toyota Motor Corp System and method for determining deterioration of lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009044930A (en) * 2007-08-10 2009-02-26 Toyota Motor Corp Power supply system, and vehicle equipped therewith
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2010060384A (en) * 2008-09-02 2010-03-18 Toyota Central R&D Labs Inc Apparatus for estimating state of secondary battery
JP2011220917A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Device and method for determining deterioration of lithium ion secondary battery
JP2011258337A (en) * 2010-06-07 2011-12-22 Toyota Motor Corp System and method for determining deterioration of lithium ion secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140690A (en) * 2011-12-28 2013-07-18 Gs Yuasa Corp Negative electrode charge reserve amount estimation device of nonaqueous electrolyte secondary battery, negative electrode charge reserve amount estimation method, power storage system and battery pack
US10302704B2 (en) 2015-08-20 2019-05-28 Samsung Electronics Co., Ltd. Method and battery system predicting state of charge of a battery
JP2017083274A (en) * 2015-10-27 2017-05-18 トヨタ自動車株式会社 Control device of lithium ion secondary battery
JP2017163687A (en) * 2016-03-09 2017-09-14 トヨタ自動車株式会社 Power supply system
JP2018078023A (en) * 2016-11-09 2018-05-17 トヨタ自動車株式会社 Controller of lithium ion secondary battery
JP2019078771A (en) * 2017-07-19 2019-05-23 株式会社Gsユアサ Estimation device, accumulation of electricity device, estimation method, and computer program
JP2019020392A (en) * 2017-07-19 2019-02-07 株式会社Gsユアサ Estimation device, accumulation of electricity device, estimation method, and computer program
WO2019017183A1 (en) * 2017-07-19 2019-01-24 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
JP7111015B2 (en) 2017-07-19 2022-08-02 株式会社Gsユアサ Estimation device, power storage device, estimation method, and computer program
JP2019124535A (en) * 2018-01-15 2019-07-25 株式会社デンソー Power supply system
JP7102742B2 (en) 2018-01-15 2022-07-20 株式会社デンソー Power system
US11598817B2 (en) 2018-04-17 2023-03-07 Mitsubishi Electric Corporation Storage cell diagnostic device and storage cell diagnostic method, and storage cell control system
DE112018007494B4 (en) 2018-04-17 2024-06-13 Mitsubishi Electric Corporation STORAGE BATTERY DIAGNOSTIC DEVICE, STORAGE BATTERY DIAGNOSTIC PROCEDURE AND STORAGE BATTERY CONTROL SYSTEM
JP2022026770A (en) * 2020-07-31 2022-02-10 プライムアースEvエナジー株式会社 Li PRECIPITATION SUPPRESSION CONTROL METHOD OF LITHIUM ION SECONDARY BATTERY, AND CONTROL APPARATUS OF THE LITHIUM ION SECONDARY BATTERY

Also Published As

Publication number Publication date
JP5825101B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5825101B2 (en) Non-aqueous electrolyte secondary battery OCV characteristic estimation device, OCV characteristic estimation method, power storage system, and assembled battery
JP6237643B2 (en) Post-degradation performance estimation device for storage element, post-degradation performance estimation method, and storage system
JP5853692B2 (en) Non-aqueous electrolyte secondary battery negative charge reserve amount estimation device, negative charge reserve amount estimation method, power storage system, and assembled battery
JP7111015B2 (en) Estimation device, power storage device, estimation method, and computer program
JP6638227B2 (en) Power storage element deterioration state estimation device, storage element deterioration state estimation method, and power storage system
US20110121786A1 (en) Method of detecting condition of secondary battery
JP7172599B2 (en) SOC ESTIMATION DEVICE FOR ELECTRICAL STORAGE ELEMENT, ELECTRICAL STORAGE DEVICE, SOC ESTIMATION METHOD FOR ELECTRICAL STORAGE ELEMENT
US11181584B2 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
KR20130124326A (en) Electrochemical cell based on lithium technology with internal reference electrode, process for its production and methods for simultaneous monitoring of the voltage or impedance of the anode and the cathode thereof
KR20180115817A (en) Method and system for estimating a capacity of individual electrodes and the total capacity of a lithium-ion battery system
US20200018798A1 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
JP5673083B2 (en) Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system
US11480619B2 (en) Estimation apparatus, estimation method, and computer program
JP5842611B2 (en) Battery electrode potential estimation device, battery electrode potential estimation method, and power storage system
JP6607079B2 (en) Storage element state estimation device and storage element state estimation method
WO2019017183A1 (en) Estimation device, power storage device, estimation method, and computer program
JP2013253940A (en) Life estimating device and life estimating method for electricity storage element, and electricity storage system
JP6773195B2 (en) Power storage system and computer program
JP6206031B2 (en) Storage device lifetime estimation device, lifetime estimation method, and storage system
US10761143B2 (en) Storage amount estimation device, energy storage module, storage amount estimation method, and computer program
US11150303B2 (en) Management device, energy storage module, management method, and computer program
Ovejas Benedicto Determination of the state of health of Li-ion batteries: the irreversible entropy production approach
JP5935524B2 (en) Capacitance estimation device after degradation of power storage element, capacity estimation method after degradation, and power storage system
JP2011076976A (en) Method and device for calculating dischargeable capacity
JP6642099B2 (en) Energy storage element state estimation device and energy storage element state estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5825101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150