JP5673083B2 - Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system - Google Patents

Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system Download PDF

Info

Publication number
JP5673083B2
JP5673083B2 JP2010288533A JP2010288533A JP5673083B2 JP 5673083 B2 JP5673083 B2 JP 5673083B2 JP 2010288533 A JP2010288533 A JP 2010288533A JP 2010288533 A JP2010288533 A JP 2010288533A JP 5673083 B2 JP5673083 B2 JP 5673083B2
Authority
JP
Japan
Prior art keywords
characteristic
secondary battery
time point
ocv
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010288533A
Other languages
Japanese (ja)
Other versions
JP2012137330A (en
Inventor
小川 大輔
大輔 小川
茂樹 山手
山手  茂樹
禎弘 片山
禎弘 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2010288533A priority Critical patent/JP5673083B2/en
Publication of JP2012137330A publication Critical patent/JP2012137330A/en
Application granted granted Critical
Publication of JP5673083B2 publication Critical patent/JP5673083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、非水電解質二次電池の開回路電圧の特性であるOCV特性を推定するOCV特性推定方法、OCV特性推定装置、及び非水電解質二次電池とOCV特性推定装置とを備える蓄電システムに関する。   The present invention relates to an OCV characteristic estimation method, an OCV characteristic estimation apparatus, an OCV characteristic estimation apparatus that estimates an OCV characteristic that is a characteristic of an open circuit voltage of a nonaqueous electrolyte secondary battery, and a power storage system that includes the nonaqueous electrolyte secondary battery and the OCV characteristic estimation apparatus. About.

世界的な環境問題への取り組みとして、ガソリン自動車から電気自動車への転換が重要になってきている。このため、リチウムイオン二次電池などの非水電解質二次電池を電気自動車の電源として使用することが検討されている。   The shift from gasoline cars to electric cars has become important as a global environmental problem. For this reason, use of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery as a power source for an electric vehicle has been studied.

しかしながら、当該二次電池は、過充電及び過放電に対して比較的弱く、過充電または過放電となった場合には、電池性能が低下する。このため、当該二次電池の開回路電圧の特性であるOCV特性を把握し、当該二次電池に通電する電流値や電気量を制御することで、過充電または過放電を防ぐ必要がある。つまり、当該二次電池の電池性能の低下を防ぐためには、OCV特性を正確に把握することが極めて重要である。   However, the secondary battery is relatively weak against overcharge and overdischarge, and battery performance deteriorates when overcharge or overdischarge occurs. For this reason, it is necessary to prevent overcharge or overdischarge by grasping the OCV characteristic which is the characteristic of the open circuit voltage of the secondary battery and controlling the current value and the amount of electricity supplied to the secondary battery. That is, in order to prevent a decrease in battery performance of the secondary battery, it is extremely important to accurately grasp the OCV characteristics.

このため、従来、当該二次電池のOCV特性を把握する技術が提案されている(例えば、特許文献1及び2参照)。特許文献1では、予め測定した値から充電率と開回路電圧との関係を示す特性を取得し、OCV特性を把握している。また、特許文献2では、放電容量や放電電流などを用いた演算式による放電特性に基づいて、OCV特性を把握している。   For this reason, the technique which grasps | ascertains the OCV characteristic of the said secondary battery conventionally is proposed (for example, refer patent document 1 and 2). In patent document 1, the characteristic which shows the relationship between a charging rate and an open circuit voltage is acquired from the value measured beforehand, and the OCV characteristic is grasped | ascertained. Further, in Patent Document 2, the OCV characteristic is grasped based on the discharge characteristic by an arithmetic expression using the discharge capacity, the discharge current, and the like.

特開2001−231179号公報JP 2001-231179 A 特開2009−031219号公報JP 2009-031219 A

しかしながら、上記従来の技術においては、リチウムイオン二次電池などの非水電解質二次電池のOCV特性を、長期的には正確に把握することができないという問題がある。   However, the conventional technology has a problem that the OCV characteristics of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery cannot be accurately grasped in the long term.

つまり、上記特許文献1及び2に開示された技術においては、当該二次電池の経年使用によってもOCV特性は変化しないという前提で、OCV特性を把握している。しかしながら、本願発明者らは、鋭意研究と実験の結果、当該二次電池のOCV特性は、使用によって変化していくということを見出した。このため、上記従来の技術においては、当該二次電池が長期的に使用された場合には、当該二次電池のOCV特性を正確に把握することができないという問題がある。   In other words, in the techniques disclosed in Patent Documents 1 and 2, the OCV characteristics are grasped on the assumption that the OCV characteristics do not change even when the secondary battery is used over time. However, the inventors of the present application have found that the OCV characteristics of the secondary battery change with use as a result of intensive studies and experiments. For this reason, in the said prior art, when the said secondary battery is used for a long term, there exists a problem that the OCV characteristic of the said secondary battery cannot be grasped | ascertained correctly.

本発明は、上記問題を解決するためになされたものであり、リチウムイオン二次電池などの非水電解質二次電池のOCV特性を長期的に精度良く推定することができる非水電解質二次電池のOCV特性推定方法、OCV特性推定装置及び蓄電システムを提供することを目的とする。   The present invention has been made to solve the above-described problem, and can provide a non-aqueous electrolyte secondary battery capable of accurately estimating the OCV characteristics of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery over a long period of time. It is an object of the present invention to provide an OCV characteristic estimation method, an OCV characteristic estimation device, and a power storage system.

上記目的を達成するために、本発明の一態様に係るOCV特性推定方法は、コンピュータが、非水電解質二次電池の通電電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定方法であって、前記非水電解質二次電池の所定の第一時点での通電電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記非水電解質二次電池の前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得ステップと、前記第一時点から所定の第二時点までの前記非水電解質二次電池の充放電可能な容量の減少量である減少容量を取得する減少容量取得ステップと、取得された前記第一正極OCP特性と前記第一負極OCP特性と前記減少容量とを用いて、前記非水電解質二次電池の前記第二時点でのOCV特性を推定する推定ステップとを含む。   In order to achieve the above object, an OCV characteristic estimation method according to an aspect of the present invention is a method in which a computer estimates an OCV characteristic indicating a relationship between an energization amount of electricity and an open circuit voltage of a nonaqueous electrolyte secondary battery. A first positive electrode OCP characteristic indicating a relationship between a first electric quantity, which is an energized electric quantity at a predetermined first point of time, and a positive electrode open circuit potential of the nonaqueous electrolyte secondary battery, and an estimation method, An OCP characteristic acquisition step of acquiring a first negative electrode OCP characteristic indicating a relationship between the first electric quantity of the electrolyte secondary battery and a negative electrode open circuit potential; and the non-water from the first time point to a predetermined second time point Using a decrease capacity acquisition step of acquiring a decrease capacity that is a decrease in chargeable / dischargeable capacity of the electrolyte secondary battery, and using the acquired first positive electrode OCP characteristic, first negative electrode OCP characteristic, and the decrease capacity The non-aqueous electrolyte secondary battery And a estimation step of estimating the OCV characteristics at the second time point.

これによれば、取得した第一正極OCP特性と第一負極OCP特性と減少容量とを用いて、第二時点でのOCV特性を推定する。つまり、第一正極OCP特性と第一負極OCP特性とから第一時点でのOCV特性を把握することができるが、その第一時点でのOCV特性と減少容量とを用いることで、第一時点から所定の期間経過後の第二時点でのOCV特性を推定することができる。このため、期間が経過しても経過期間に応じたOCV特性を推定することができるので、リチウムイオン二次電池などの非水電解質二次電池のOCV特性を、長期的に精度良く推定することができる。   According to this, the OCV characteristic at the second time point is estimated using the acquired first positive electrode OCP characteristic, first negative electrode OCP characteristic, and reduced capacity. That is, the OCV characteristic at the first time point can be grasped from the first positive electrode OCP characteristic and the first negative electrode OCP characteristic, but the first time point can be obtained by using the OCV characteristic and the reduced capacity at the first time point. From this, it is possible to estimate the OCV characteristic at the second time point after a predetermined period has elapsed. For this reason, since the OCV characteristic according to the elapsed period can be estimated even if the period elapses, the OCV characteristic of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery is accurately estimated in the long term. Can do.

また、好ましくは、前記推定ステップでは、前記非水電解質二次電池の前記第二時点での通電電気量である第二電気量に前記減少容量を加算した値を前記第一正極OCP特性の前記第一電気量に代入して得られる、前記第二電気量と正極開回路電位との関係を示す特性を第二正極OCP特性として算出し、前記非水電解質二次電池の前記第二電気量を前記第一負極OCP特性の前記第一電気量に代入して得られる、前記第二電気量と負極開回路電位との関係を示す特性を第二負極OCP特性として算出し、算出した前記第二正極OCP特性における前記第二電気量に対する正極開回路電位から、前記第二負極OCP特性における前記第二電気量に対する負極開回路電位を減ずることにより得られる前記第二電気量と開回路電圧との関係を示す特性を、前記第二時点でのOCV特性と推定する。   Preferably, in the estimation step, a value obtained by adding the reduced capacity to a second electric quantity that is an energized electric quantity at the second time point of the non-aqueous electrolyte secondary battery is the first positive electrode OCP characteristic. A characteristic indicating the relationship between the second electric quantity and the positive open circuit potential obtained by substituting the first electric quantity is calculated as a second positive OCP characteristic, and the second electric quantity of the non-aqueous electrolyte secondary battery is calculated. Calculated as the second negative electrode OCP characteristic, the characteristic indicating the relationship between the second electric quantity and the negative open circuit potential obtained by substituting the first negative electrode OCP characteristic into the first electric quantity. The second electric quantity and the open circuit voltage obtained by subtracting the negative open circuit potential for the second electric quantity in the second negative OCP characteristic from the positive open circuit potential for the second electric quantity in the double positive OCP characteristic, Show the relationship Sexual estimates that OCV characteristics at the second time point.

これによれば、第一正極OCP特性と減少容量とから第二正極OCP特性を算出し、第一負極OCP特性から第二負極OCP特性を算出し、算出した第二正極OCP特性と第二負極OCP特性とから、第二時点でのOCV特性を推定する。ここで、本願発明者らは、鋭意研究と実験の結果、第二正極OCP特性が、第一正極OCP特性での通電電気量を減少容量分移動させた特性と精度良く一致することを見出した。つまり、第一正極OCP特性と減少容量とから、第二正極OCP特性を精度良く容易な計算で算出することができる。このため、容易に精度の良い第二時点でのOCV特性を推定することができるため、リチウムイオン二次電池などの非水電解質二次電池のOCV特性を、長期的に精度良く容易に推定することができる。   According to this, the second positive electrode OCP characteristic is calculated from the first positive electrode OCP characteristic and the reduced capacity, the second negative electrode OCP characteristic is calculated from the first negative electrode OCP characteristic, and the calculated second positive electrode OCP characteristic and the second negative electrode are calculated. The OCV characteristic at the second time point is estimated from the OCP characteristic. Here, as a result of intensive studies and experiments, the inventors of the present application have found that the second positive electrode OCP characteristic coincides with the characteristic in which the amount of energized electricity in the first positive electrode OCP characteristic is shifted by the reduced capacity with high accuracy. . That is, the second positive electrode OCP characteristic can be calculated accurately and easily from the first positive electrode OCP characteristic and the reduced capacity. For this reason, since the OCV characteristic at the second time point with high accuracy can be estimated easily, the OCV characteristic of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery can be easily estimated with high accuracy over the long term. be able to.

また、好ましくは、前記減少容量取得ステップでは、前記非水電解質二次電池の前記第一時点での充放電可能な容量である第一可逆容量を測定するとともに、前記非水電解質二次電池の前記第二時点での充放電可能な容量である第二可逆容量を測定し、前記第一可逆容量から前記第二可逆容量を減じることにより算出される前記減少容量を取得する。   Preferably, in the reduced capacity acquisition step, a first reversible capacity that is a chargeable / dischargeable capacity at the first time point of the nonaqueous electrolyte secondary battery is measured, and the nonaqueous electrolyte secondary battery is The second reversible capacity, which is a chargeable / dischargeable capacity at the second time point, is measured, and the reduced capacity calculated by subtracting the second reversible capacity from the first reversible capacity is obtained.

これによれば、第一可逆容量及び第二可逆容量を測定して、当該第一可逆容量と第二可逆容量とから減少容量を算出して取得する。これにより、容易に減少容量を取得することができるため、リチウムイオン二次電池などの非水電解質二次電池のOCV特性を、長期的に精度良く容易に推定することができる。   According to this, the first reversible capacity and the second reversible capacity are measured, and the reduced capacity is calculated and acquired from the first reversible capacity and the second reversible capacity. Thereby, since a reduced capacity can be easily acquired, the OCV characteristic of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery can be easily estimated with high accuracy over a long period of time.

なお、本発明は、このような非水電解質二次電池のOCV特性推定方法として実現することができるだけでなく、当該OCV特性推定方法に含まれるステップを行う処理部を備えるOCV特性推定装置としても実現することができる。また、本発明は、このようなOCV特性推定装置に含まれる特徴的な処理部を備える集積回路としても実現することができる。   The present invention can be realized not only as an OCV characteristic estimation method for such a non-aqueous electrolyte secondary battery, but also as an OCV characteristic estimation apparatus including a processing unit that performs steps included in the OCV characteristic estimation method. Can be realized. The present invention can also be realized as an integrated circuit including a characteristic processing unit included in such an OCV characteristic estimation device.

また、本発明は、非水電解質二次電池と、当該非水電解質二次電池の通電電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定装置とを備える蓄電システムとしても実現することができる。   The present invention also provides a power storage system including a non-aqueous electrolyte secondary battery and an OCV characteristic estimation device that estimates an OCV characteristic indicating a relationship between an energized electricity amount of the non-aqueous electrolyte secondary battery and an open circuit voltage. Can be realized.

また、本発明は、OCV特性推定方法に含まれる特徴的な処理をコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD−ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。   The present invention can also be realized as a program that causes a computer to execute characteristic processing included in the OCV characteristic estimation method. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.

本発明によると、リチウムイオン二次電池などの非水電解質二次電池のOCV特性を長期的に精度良く推定することができる。   According to the present invention, the OCV characteristics of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery can be accurately estimated over the long term.

本発明の実施の形態に係るOCV特性推定装置を備える蓄電システムの外観図である。It is an external view of an electrical storage system provided with the OCV characteristic estimation apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るOCV特性推定装置の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the OCV characteristic estimation apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るOCV特性推定データの一例を示す図である。It is a figure which shows an example of OCV characteristic estimation data which concerns on embodiment of this invention. 本発明の実施の形態に係るOCV特性推定装置が二次電池のOCV特性を推定する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in which the OCV characteristic estimation apparatus which concerns on embodiment of this invention estimates the OCV characteristic of a secondary battery. 本発明の実施の形態に係るOCP特性取得部が第一正極OCP特性と第一負極OCP特性とを取得する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in which the OCP characteristic acquisition part which concerns on embodiment of this invention acquires a 1st positive electrode OCP characteristic and a 1st negative electrode OCP characteristic. 本発明の実施の形態に係るOCP特性取得部が取得する初期正極OCP特性と初期負極OCP特性とを示す図である。It is a figure which shows the initial stage positive electrode OCP characteristic and the initial stage negative electrode OCP characteristic which the OCP characteristic acquisition part which concerns on embodiment of this invention acquires. 本発明の実施の形態に係るOCP特性取得部が取得する第一正極OCP特性と第一負極OCP特性とを示す図である。It is a figure which shows the 1st positive electrode OCP characteristic and 1st negative electrode OCP characteristic which the OCP characteristic acquisition part which concerns on embodiment of this invention acquires. 本発明の実施の形態に係る減少容量取得部が減少容量を取得する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process in which the reduction capacity acquisition part which concerns on embodiment of this invention acquires reduction capacity. 本発明の実施の形態に係る推定部が第二時点でのOCV特性を推定する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which the estimation part which concerns on embodiment of this invention estimates OCV characteristic in a 2nd time. 本発明の実施の形態に係る推定部が推定する第二時点でのOCV特性を示す図である。It is a figure which shows the OCV characteristic in the 2nd time point which the estimation part which concerns on embodiment of this invention estimates. 本発明の実施の形態に係るOCV特性推定装置が推定するOCV特性の変化を示す図である。It is a figure which shows the change of the OCV characteristic which the OCV characteristic estimation apparatus which concerns on embodiment of this invention estimates. 本発明の実施の形態に係るOCV特性推定装置を集積回路で実現する構成を示すブロック図である。It is a block diagram which shows the structure which implement | achieves the OCV characteristic estimation apparatus which concerns on embodiment of this invention with an integrated circuit.

以下、図面を参照しながら、本発明の実施の形態に係るOCV特性推定装置、及び当該OCV特性推定装置を備える蓄電システムについて説明する。   Hereinafter, an OCV characteristic estimation device according to an embodiment of the present invention and a power storage system including the OCV characteristic estimation device will be described with reference to the drawings.

まず、蓄電システム10の構成について、説明する。   First, the configuration of the power storage system 10 will be described.

図1は、本発明の実施の形態に係るOCV特性推定装置100を備える蓄電システム10の外観図である。   FIG. 1 is an external view of a power storage system 10 including an OCV characteristic estimation device 100 according to an embodiment of the present invention.

同図に示すように、蓄電システム10は、OCV特性推定装置100と、複数(同図では6個)の二次電池200と、OCV特性推定装置100及び複数の二次電池200を収容する収容ケース300とを備えている。   As shown in the figure, the power storage system 10 accommodates the OCV characteristic estimation device 100, a plurality (six in the figure) secondary batteries 200, and the OCV characteristic estimation device 100 and the plurality of secondary batteries 200. Case 300 is provided.

OCV特性推定装置100は、複数の二次電池200の上方に配置され、複数の二次電池200のOCV特性を推定する回路を搭載した回路基板である。具体的には、OCV特性推定装置100は、複数の二次電池200に接続されており、複数の二次電池200から情報を取得して、複数の二次電池200の通電電気量と開回路電圧との関係を示すOCV特性を推定する。このOCV特性推定装置100の詳細な機能構成の説明については、後述する。   The OCV characteristic estimation device 100 is a circuit board on which a circuit that is disposed above the plurality of secondary batteries 200 and estimates the OCV characteristics of the plurality of secondary batteries 200 is mounted. Specifically, the OCV characteristic estimation device 100 is connected to a plurality of secondary batteries 200, acquires information from the plurality of secondary batteries 200, and the energized electricity amount and the open circuit of the plurality of secondary batteries 200. An OCV characteristic indicating a relationship with the voltage is estimated. The detailed functional configuration of the OCV characteristic estimation apparatus 100 will be described later.

ここで、二次電池200のOCV特性とは、二次電池200の通電電気量と開回路電圧(OCV:Open Circuit Voltage)との関係を示す特性である。また、開回路電圧とは、二次電池200の正極と負極との間の開回路電位(OCP:Open Circuit Potential)の電位差であり、二次電池200の正極開回路電位から負極開回路電位を差し引いた値である。   Here, the OCV characteristic of the secondary battery 200 is a characteristic indicating the relationship between the energized electricity amount of the secondary battery 200 and the open circuit voltage (OCV). Further, the open circuit voltage is a potential difference of an open circuit potential (OCP) between the positive electrode and the negative electrode of the secondary battery 200, and the negative circuit open circuit potential is calculated from the positive circuit open circuit potential of the secondary battery 200. Subtracted value.

また、正極開回路電位及び負極開回路電位とは、二次電池200が外部回路から電気的に切り離された(正極と負極との間に負荷をかけていない)状態が十分な時間経過した時点での、二次電池200の正極の電位及び負極の電位である。つまり、開回路電圧は、二次電池200に電流が流れていない状態が十分な時間経過したときの当該二次電池200の正極と負極との間の電圧を示している。   Further, the positive open circuit potential and the negative open circuit potential are the time when a sufficient time has elapsed after the secondary battery 200 is electrically disconnected from the external circuit (no load is applied between the positive electrode and the negative electrode). The positive electrode potential and the negative electrode potential of the secondary battery 200 in FIG. That is, the open circuit voltage indicates a voltage between the positive electrode and the negative electrode of the secondary battery 200 when a sufficient time has passed without a current flowing through the secondary battery 200.

なお、ここでは、OCV特性推定装置100は複数の二次電池200の上方に配置されているが、OCV特性推定装置100はどこに配置されていてもよい。   Here, OCV characteristic estimation device 100 is arranged above a plurality of secondary batteries 200, but OCV characteristic estimation device 100 may be arranged anywhere.

二次電池200は、正極と負極とを有する非水電解質二次電池であり、例えば、リチウムイオン二次電池である。つまり、二次電池200は、例えば、正極がコバルト酸リチウムなどのリチウム遷移金属酸化物、負極が炭素材料の二次電池である。また、同図では6個の矩形状の二次電池200が直列に配置されて組電池を構成している。なお、二次電池200の個数は6個に限定されず、他の複数個数または1個であってもよい。また二次電池200の形状も特に限定されない。   The secondary battery 200 is a non-aqueous electrolyte secondary battery having a positive electrode and a negative electrode, for example, a lithium ion secondary battery. That is, the secondary battery 200 is, for example, a secondary battery in which the positive electrode is a lithium transition metal oxide such as lithium cobalt oxide and the negative electrode is a carbon material. In FIG. 6, six rectangular secondary batteries 200 are arranged in series to form an assembled battery. In addition, the number of the secondary batteries 200 is not limited to six, and may be another plural number or one. Further, the shape of the secondary battery 200 is not particularly limited.

次に、OCV特性推定装置100の詳細な機能構成について、説明する。   Next, a detailed functional configuration of the OCV characteristic estimation apparatus 100 will be described.

図2は、本発明の実施の形態に係るOCV特性推定装置100の機能的な構成を示すブロック図である。   FIG. 2 is a block diagram showing a functional configuration of OCV characteristic estimation apparatus 100 according to the embodiment of the present invention.

OCV特性推定装置100は、二次電池200の通電電気量と開回路電圧との関係を示すOCV特性を推定する装置である。同図に示すように、OCV特性推定装置100は、OCP特性取得部110、減少容量取得部120、推定部130及び記憶部140を備えている。   The OCV characteristic estimation apparatus 100 is an apparatus that estimates the OCV characteristic indicating the relationship between the energized electricity amount of the secondary battery 200 and the open circuit voltage. As shown in the figure, the OCV characteristic estimation device 100 includes an OCP characteristic acquisition unit 110, a reduced capacity acquisition unit 120, an estimation unit 130, and a storage unit 140.

OCP特性取得部110は、二次電池200の所定の第一時点での通電電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、二次電池200の第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得する。   The OCP characteristic acquisition unit 110 includes a first positive electrode OCP characteristic indicating a relationship between a first electric quantity that is an energized electric quantity at a predetermined first time point of the secondary battery 200 and a positive electrode open circuit potential; A first negative electrode OCP characteristic indicating a relationship between the first electric quantity and the negative electrode open circuit potential is obtained.

具体的には、OCP特性取得部110は、二次電池200の初期状態での正極に対する通電電気量と正極開回路電位との関係を示す初期正極OCP特性と、二次電池200の初期状態での負極に対する通電電気量と負極開回路電位との関係を示す初期負極OCP特性とを、記憶部140から読み出すことによって取得する。   Specifically, the OCP characteristic acquisition unit 110 includes an initial positive OCP characteristic indicating the relationship between the amount of electricity supplied to the positive electrode in the initial state of the secondary battery 200 and the positive open circuit potential, and the initial state of the secondary battery 200. The initial negative electrode OCP characteristic indicating the relationship between the amount of electricity supplied to the negative electrode and the open circuit potential of the negative electrode is obtained by reading from the storage unit 140.

そして、OCP特性取得部110は、二次電池200の第一電気量に第一時点での正極の相対位置ずれ(充放電可能な容量の減少量)を加算した値を初期正極OCP特性の初期電気量に代入して得られる、第一電気量と正極開回路電位との関係を示す特性を第一正極OCP特性として算出することで、第一正極OCP特性を取得する。   Then, the OCP characteristic acquisition unit 110 uses a value obtained by adding the relative displacement of the positive electrode at the first time point (a decrease amount of chargeable / dischargeable capacity) to the first electric quantity of the secondary battery 200. The first positive OCP characteristic is obtained by calculating the characteristic indicating the relationship between the first electric quantity and the positive open circuit potential obtained by substituting for the electric quantity as the first positive OCP characteristic.

また、OCP特性取得部110は、二次電池200の第一電気量を初期負極OCP特性の初期電気量に代入して得られる、第一電気量と負極開回路電位との関係を示す特性を第一負極OCP特性として算出することで、第一負極OCP特性を取得する。   In addition, the OCP characteristic acquisition unit 110 has a characteristic indicating the relationship between the first electric quantity and the negative open circuit potential obtained by substituting the first electric quantity of the secondary battery 200 into the initial electric quantity of the initial negative electrode OCP characteristic. The first negative electrode OCP characteristic is obtained by calculating as the first negative electrode OCP characteristic.

なお、所定の第一時点とは、OCV特性を推定する計算の基準となる時点である。ここで、当該第一時点はどのような時点でもよいが、例えば、二次電池200の工場出荷時点である。なお、第一時点は、分、時、日、月など、どのような単位で表現されてもかまわない。   The predetermined first time point is a time point serving as a reference for calculation for estimating the OCV characteristic. Here, the first time point may be any time point, for example, the factory shipment time of the secondary battery 200. The first time point may be expressed in any unit such as minutes, hours, days, and months.

減少容量取得部120は、第一時点から所定の第二時点までの二次電池200の充放電可能な容量の減少量である減少容量を取得する。   The reduced capacity acquisition unit 120 acquires a reduced capacity that is a reduction amount of the chargeable / dischargeable capacity of the secondary battery 200 from the first time point to a predetermined second time point.

具体的には、減少容量取得部120は、まず、測定するなどして記憶部140に記憶されている二次電池200の第一時点での充放電可能な容量である第一可逆容量を取得する。また、減少容量取得部120は、二次電池200の第二時点での充放電可能な容量である第二可逆容量を測定し、第一可逆容量から第二可逆容量を減じることにより算出される減少容量を取得する。   Specifically, the reduced capacity acquisition unit 120 first acquires a first reversible capacity that is a chargeable / dischargeable capacity at the first time point of the secondary battery 200 stored in the storage unit 140 by measurement or the like. To do. Further, the reduced capacity acquisition unit 120 measures the second reversible capacity, which is a chargeable / dischargeable capacity at the second time point of the secondary battery 200, and is calculated by subtracting the second reversible capacity from the first reversible capacity. Get reduced capacity.

そして、減少容量取得部120は、取得した減少容量を第二時点での正極のOCP特性における通電電気量の相対位置ずれとして、記憶部140に記憶させることで、記憶部140に記憶されているOCP特性における通電電気量の相対位置ずれを更新する。また、減少容量取得部120は、測定した第二可逆容量を記憶部140に記憶させ、第一可逆容量を第二可逆容量に更新する。   And the reduction | decrease capacity acquisition part 120 is memorize | stored in the memory | storage part 140 by making the memory | storage part 140 memorize | store the acquired reduction | decrease capacity | capacitance as a relative position shift | offset | difference of the electricity supply amount in the OCP characteristic of a positive electrode in a 2nd time point. The relative positional deviation of the energized electricity amount in the OCP characteristic is updated. Further, the reduced capacity acquisition unit 120 stores the measured second reversible capacity in the storage unit 140 and updates the first reversible capacity to the second reversible capacity.

なお、所定の第二時点とは、第一時点から二次電池200の使用を継続して所定の期間が経過した時点であるが、当該所定の期間はどのような期間であってもよく、特に限定されない。また、当該所定の期間の単位も特に限定されず、例えば、分オーダー、時間オーダー、日オーダー、月オーダーなどの期間である。つまり、第二時点は、第一時点と同様に、分、時、日、月など、どのような単位で表現されてもかまわない。   The predetermined second time point is a time point when a predetermined period has elapsed from the first time point when the use of the secondary battery 200 is continued, but the predetermined time period may be any period, There is no particular limitation. Further, the unit of the predetermined period is not particularly limited, and is, for example, a period such as a minute order, an hour order, a day order, or a month order. That is, the second time point may be expressed in any unit such as minutes, hours, days, months, and the like, similar to the first time point.

推定部130は、OCP特性取得部110が取得した第一正極OCP特性及び第一負極OCP特性と、減少容量取得部120が取得した減少容量とを用いて、二次電池200の第二時点でのOCV特性を推定する。   The estimation unit 130 uses the first positive electrode OCP characteristic and the first negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit 110 and the reduced capacity acquired by the reduced capacity acquisition unit 120 at the second time point of the secondary battery 200. The OCV characteristic of is estimated.

具体的には、推定部130は、二次電池200の第二時点での通電電気量である第二電気量に減少容量を加算した値を第一正極OCP特性の第一電気量に代入して得られる、第二電気量と正極開回路電位との関係を示す特性を第二正極OCP特性として算出する。   Specifically, the estimation unit 130 substitutes a value obtained by adding the reduced capacity to the second electric quantity that is the energized electric quantity at the second time point of the secondary battery 200 into the first electric quantity of the first positive electrode OCP characteristic. The characteristic indicating the relationship between the second electric quantity and the positive open circuit potential obtained in this way is calculated as the second positive electrode OCP characteristic.

また、推定部130は、二次電池200の第二電気量を第一負極OCP特性の第一電気量に代入して得られる、第二電気量と負極開回路電位との関係を示す特性を第二負極OCP特性として算出する。   In addition, the estimation unit 130 has a characteristic indicating a relationship between the second electric quantity and the negative open circuit potential obtained by substituting the second electric quantity of the secondary battery 200 into the first electric quantity of the first negative electrode OCP characteristic. Calculated as the second negative electrode OCP characteristic.

そして、推定部130は、算出した第二正極OCP特性における第二電気量に対する正極開回路電位から、算出した第二負極OCP特性における第二電気量に対する負極開回路電位を減ずることにより得られる第二電気量と開回路電圧との関係を示す特性を、第二時点でのOCV特性と推定する。   Then, the estimating unit 130 obtains the first obtained by subtracting the negative open circuit potential for the second electric quantity in the calculated second negative OCP characteristic from the positive open circuit potential for the second electric quantity in the calculated second positive OCP characteristic. The characteristic indicating the relationship between the two electric quantities and the open circuit voltage is estimated as the OCV characteristic at the second time point.

このように、減少容量取得部120は、第三時点、第四時点というように可逆容量を測定し、減少容量を取得していくことで、記憶部140に記憶されているOCP特性における通電電気量の相対位置ずれと、可逆容量とを繰り返し更新していく。そして、推定部130は、記憶部140に記憶されている初期正極OCP特性と初期負極OCP特性とOCP特性における通電電気量の相対位置ずれとから、最新のOCV特性を推定する。   In this way, the reduced capacity acquisition unit 120 measures the reversible capacity as in the third time point and the fourth time point, and acquires the reduced capacity, thereby energizing electricity in the OCP characteristic stored in the storage unit 140. The relative displacement of the quantity and the reversible capacity are repeatedly updated. Then, the estimation unit 130 estimates the latest OCV characteristic from the initial positive electrode OCP characteristic, the initial negative electrode OCP characteristic, and the relative displacement of the energized electricity amount in the OCP characteristic stored in the storage unit 140.

記憶部140は、OCV特性を推定するための情報を記憶するためのメモリである。具体的には、記憶部140は、OCV特性を推定するための情報を含むOCV特性推定データ141を記憶している。OCV特性推定データ141の詳細については、後述する。   The storage unit 140 is a memory for storing information for estimating the OCV characteristic. Specifically, the storage unit 140 stores OCV characteristic estimation data 141 including information for estimating the OCV characteristic. Details of the OCV characteristic estimation data 141 will be described later.

図3は、本発明の実施の形態に係るOCV特性推定データ141の一例を示す図である。   FIG. 3 is a diagram showing an example of the OCV characteristic estimation data 141 according to the embodiment of the present invention.

OCV特性推定データ141は、初期正極OCP特性と初期負極OCP特性と相対位置ずれと可逆容量とを示すデータの集まりである。つまり、同図に示すように、OCV特性推定データ141は、「初期正極OCP特性」、「初期負極OCP特性」、「相対位置ずれ」及び「可逆容量」を含むデータテーブルである。   The OCV characteristic estimation data 141 is a collection of data indicating an initial positive electrode OCP characteristic, an initial negative electrode OCP characteristic, a relative positional shift, and a reversible capacity. That is, as shown in the figure, the OCV characteristic estimation data 141 is a data table including “initial positive OCP characteristic”, “initial negative OCP characteristic”, “relative position shift”, and “reversible capacity”.

具体的には、「初期正極OCP特性」には、初期状態での二次電池200の通電電気量と正極開回路電位との関係を示す関数P(q)が記憶されている。また、「初期負極OCP特性」には、初期状態での二次電池200の通電電気量と負極開回路電位との関係を示す関数N(q)が記憶されている。   Specifically, in the “initial positive electrode OCP characteristic”, a function P (q) indicating the relationship between the energized electricity amount of the secondary battery 200 and the positive electrode open circuit potential in the initial state is stored. Further, in the “initial negative electrode OCP characteristic”, a function N (q) indicating the relationship between the amount of electricity supplied to the secondary battery 200 and the negative open circuit potential in the initial state is stored.

また、「相対位置ずれ」には、正極のOCP特性における通電電気量の相対的なずれ量(減少容量)を示す値であるΔqが記憶されている。また、「可逆容量」には、二次電池200の充放電可能な容量である可逆容量Qが記憶されている。   In the “relative position deviation”, Δq, which is a value indicating a relative deviation amount (decreasing capacity) of the energized electricity amount in the OCP characteristic of the positive electrode, is stored. Further, the “reversible capacity” stores a reversible capacity Q that is a chargeable / dischargeable capacity of the secondary battery 200.

ここで、OCV特性推定データ141には、初期正極OCP特性及び初期負極OCP特性と、初期状態での可逆容量とが事前に書き込まれている。なお、OCP特性取得部110は、OCV特性推定データ141に書き込まれるデータをユーザの入力などから取得し、記憶部140に記憶させることで、OCV特性推定データ141に当該データを書き込むことにしてもよい。   Here, in the OCV characteristic estimation data 141, the initial positive electrode OCP characteristic, the initial negative electrode OCP characteristic, and the reversible capacity in the initial state are written in advance. The OCP characteristic acquisition unit 110 may acquire data to be written in the OCV characteristic estimation data 141 from a user input or the like, and store the data in the OCV characteristic estimation data 141 by storing the data in the storage unit 140. Good.

また、減少容量取得部120は、測定した可逆容量と取得した減少容量とを記憶部140に記憶させることで、OCV特性推定データ141の相対位置ずれと可逆容量とを更新する。   The reduced capacity acquisition unit 120 updates the relative position shift and the reversible capacity of the OCV characteristic estimation data 141 by storing the measured reversible capacity and the acquired reduced capacity in the storage unit 140.

次に、OCV特性推定装置100が二次電池200のOCV特性を推定する処理について説明する。   Next, the process in which the OCV characteristic estimation apparatus 100 estimates the OCV characteristic of the secondary battery 200 will be described.

図4は、本発明の実施の形態に係るOCV特性推定装置100が二次電池200のOCV特性を推定する処理の一例を示すフローチャートである。   FIG. 4 is a flowchart showing an example of processing in which the OCV characteristic estimation device 100 according to the embodiment of the present invention estimates the OCV characteristic of the secondary battery 200.

同図に示すように、まず、OCP特性取得部110は、二次電池200の第一正極OCP特性と第一負極OCP特性とを取得する(S102)。   As shown in the figure, first, the OCP characteristic acquisition unit 110 acquires the first positive electrode OCP characteristic and the first negative electrode OCP characteristic of the secondary battery 200 (S102).

具体的には、OCP特性取得部110は、二次電池200の初期正極OCP特性及び初期負極OCP特性と第一時点での正極の相対位置ずれとから、第一正極OCP特性と第一負極OCP特性とを取得する。なお、このOCP特性取得部110が第一正極OCP特性と第一負極OCP特性とを取得する処理の詳細な説明については、後述する。   Specifically, the OCP characteristic acquisition unit 110 calculates the first positive electrode OCP characteristic and the first negative electrode OCP characteristic from the initial positive electrode OCP characteristic and the initial negative electrode OCP characteristic of the secondary battery 200 and the relative positional deviation of the positive electrode at the first time point. Get properties and. A detailed description of the process in which the OCP characteristic acquisition unit 110 acquires the first positive OCP characteristic and the first negative OCP characteristic will be described later.

そして、減少容量取得部120は、減少容量を取得する(S104)。   Then, the reduced capacity acquisition unit 120 acquires the reduced capacity (S104).

具体的には、減少容量取得部120は、二次電池200の第一可逆容量を取得するとともに第二可逆容量を測定し、当該第一可逆容量と第二可逆容量とから減少容量を取得する。また、減少容量取得部120は、取得した減少容量と測定した第二可逆容量とを、記憶部140に記憶させる。   Specifically, the reduced capacity acquisition unit 120 acquires the first reversible capacity of the secondary battery 200, measures the second reversible capacity, and acquires the reduced capacity from the first reversible capacity and the second reversible capacity. . Further, the reduced capacity acquisition unit 120 causes the storage unit 140 to store the acquired reduced capacity and the measured second reversible capacity.

なお、この減少容量取得部120が減少容量を取得する処理の詳細な説明については、後述する。   The detailed description of the process in which the reduced capacity acquisition unit 120 acquires the reduced capacity will be described later.

そして、推定部130は、二次電池200の第二時点でのOCV特性を推定する(S106)。   And the estimation part 130 estimates the OCV characteristic in the 2nd time of the secondary battery 200 (S106).

具体的には、推定部130は、OCP特性取得部110が取得した第一正極OCP特性及び第一負極OCP特性と減少容量取得部120が取得した減少容量とから、第二正極OCP特性及び第二負極OCP特性を算出して、第二時点でのOCV特性を推定する。   Specifically, the estimation unit 130 determines the second positive OCP characteristic and the first negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit 110 and the first negative electrode OCP characteristic and the decreased capacity acquired by the reduced capacity acquisition unit 120. The two negative electrode OCP characteristics are calculated, and the OCV characteristics at the second time point are estimated.

なお、この推定部130が第二時点でのOCV特性を推定する処理の詳細な説明については、後述する。   A detailed description of the process in which the estimation unit 130 estimates the OCV characteristic at the second time point will be described later.

このように、減少容量取得部120は、繰り返し可逆容量を測定し、減少容量を取得していくことで、記憶部140に記憶されているOCP特性における通電電気量の相対位置ずれと、可逆容量とを繰り返し更新していく。そして、推定部130は、記憶部140に記憶されている初期正極OCP特性と初期負極OCP特性とOCP特性における通電電気量の相対位置ずれとから、最新のOCV特性を推定する。   As described above, the reduced capacity acquisition unit 120 repeatedly measures the reversible capacity and acquires the reduced capacity, so that the relative positional deviation of the energized electricity amount in the OCP characteristic stored in the storage unit 140 and the reversible capacity are obtained. Will be updated repeatedly. Then, the estimation unit 130 estimates the latest OCV characteristic from the initial positive electrode OCP characteristic, the initial negative electrode OCP characteristic, and the relative displacement of the energized electricity amount in the OCP characteristic stored in the storage unit 140.

なお、初期正極OCP特性と初期負極OCP特性とは、更新されることなく、記憶部140に記憶されている。   Note that the initial positive electrode OCP characteristic and the initial negative electrode OCP characteristic are stored in the storage unit 140 without being updated.

以上のようにして、OCV特性推定装置100が二次電池200のOCV特性を推定する処理は、終了する。   As described above, the process in which the OCV characteristic estimation device 100 estimates the OCV characteristic of the secondary battery 200 ends.

次に、OCP特性取得部110が第一正極OCP特性と第一負極OCP特性とを取得する処理(図4のS102)について、詳細に説明する。   Next, a process (S102 in FIG. 4) in which the OCP characteristic acquisition unit 110 acquires the first positive electrode OCP characteristic and the first negative electrode OCP characteristic will be described in detail.

図5は、本発明の実施の形態に係るOCP特性取得部110が第一正極OCP特性と第一負極OCP特性とを取得する処理の一例を示すフローチャートである。   FIG. 5 is a flowchart illustrating an example of processing in which the OCP characteristic acquisition unit 110 according to the embodiment of the present invention acquires the first positive OCP characteristic and the first negative OCP characteristic.

同図に示すように、まず、OCP特性取得部110は、二次電池200の初期正極OCP特性及び初期負極OCP特性と、二次電池200の第一時点での正極の相対位置ずれとを取得する(S202)。   As shown in the figure, first, the OCP characteristic acquisition unit 110 acquires the initial positive electrode OCP characteristic and the initial negative electrode OCP characteristic of the secondary battery 200, and the relative positional deviation of the positive electrode at the first time point of the secondary battery 200. (S202).

ここで、初期正極OCP特性及び初期負極OCP特性と初期状態での可逆容量とは、予め測定され、予め記憶部140に記憶されていることとするが、予めOCP特性取得部110の回路構成やプログラムに組み込まれているものとすることもできる。あるいは、ユーザによって入力ができるものとしてもよい。   Here, the initial positive and negative OCP characteristics and the reversible capacity in the initial state are measured in advance and stored in the storage unit 140 in advance. It can also be built into the program. Or it is good also as what can be input by the user.

初期正極OCP特性及び初期負極OCP特性と初期状態での可逆容量とは、以下のように1つの二次電池200に対して測定を行うことによって取得することができる。   The initial positive electrode OCP characteristic, the initial negative electrode OCP characteristic, and the reversible capacity in the initial state can be obtained by measuring one secondary battery 200 as follows.

まず、OCV特性推定対象のリチウムイオン二次電池と同一種類の初期状態でのリチウムイオン二次電池を入手する。なお、初期状態とは、例えばリチウムイオン二次電池の工場出荷時点(上記の第一時点)での状態とすることができ、市販電池を購入すること等によって当該初期状態でのリチウムイオン二次電池を入手することができる。   First, a lithium ion secondary battery in the initial state of the same type as the lithium ion secondary battery whose OCV characteristics are to be estimated is obtained. The initial state can be, for example, the state at the time of factory shipment of the lithium ion secondary battery (the first time point described above), and the lithium ion secondary battery in the initial state can be obtained by purchasing a commercially available battery. A battery is available.

そして、このようにして入手したリチウムイオン二次電池から初期正極OCP特性及び初期負極OCP特性と初期状態での可逆容量とを測定によって取得する。なお、これらのデータを測定する方法としては、限定されるものではなく、例えば、入手したリチウムイオン二次電池を解体して、正極及び負極を取り出し、当該リチウムイオン二次電池に用いられている電解液と同等の電解液中で測定してもよいし、あるいは、入手したリチウムイオン二次電池の電解液部分に参照極を挿入し、充放電を行うことによって測定してもよい。   Then, the initial positive electrode OCP characteristic, the initial negative electrode OCP characteristic, and the reversible capacity in the initial state are acquired from the lithium ion secondary battery thus obtained by measurement. The method for measuring these data is not limited. For example, the obtained lithium ion secondary battery is disassembled, the positive electrode and the negative electrode are taken out, and used for the lithium ion secondary battery. It may be measured in an electrolytic solution equivalent to the electrolytic solution, or may be measured by inserting a reference electrode into the electrolytic solution portion of the obtained lithium ion secondary battery and performing charge / discharge.

なお、測定の手順としては、まず、リチウムイオン二次電池を放電末状態とし、その時点での正極OCP及び負極OCPの値を記録し、次いで、参照極を挿入した測定あるいは解体した正極及び負極それぞれに対する測定を行うことが好ましい。   As a measurement procedure, first, the lithium ion secondary battery was put into a discharged state, the values of the positive electrode OCP and the negative electrode OCP at that time were recorded, and then the measurement was performed by inserting the reference electrode or the disassembled positive electrode and negative electrode It is preferable to perform measurements for each.

そして、このように第一時点での状態を初期状態としてリチウムイオン二次電池を入手して測定する場合、第一時点での特性を測定しているため第一時点での相対位置ずれはないものとすることができることから、OCP特性取得部110は、二次電池200の第一時点での正極の相対位置ずれをゼロと取得してよい。   And when obtaining and measuring a lithium ion secondary battery with the state at the first time point as the initial state in this way, there is no relative displacement at the first time point because the characteristics at the first time point are measured. Therefore, the OCP characteristic acquisition unit 110 may acquire the relative displacement of the positive electrode at the first time point of the secondary battery 200 as zero.

なお、初期正極OCP特性及び初期負極OCP特性の測定は、第一時点ではなく、リチウムイオン二次電池の使用中の任意の時点において測定してもよい。この場合、第一時点での相対位置ずれはゼロではなくなるため、OCP特性取得部110は、当該OCP特性の測定時点から第一時点までの可逆容量の減少量を第一時点での相対位置ずれとして算出する。この場合、リチウムイオン二次電池に対して参照極を挿入して測定をするだけでなく、リチウムイオン二次電池を解体して、正極及び負極を取り出して測定することにより、初期正極OCP特性、初期負極OCP特性及び相対位置ずれの取得が容易となる。   The initial positive electrode OCP characteristic and the initial negative electrode OCP characteristic may be measured not at the first time point but at any time point during use of the lithium ion secondary battery. In this case, since the relative positional deviation at the first time point is not zero, the OCP characteristic acquisition unit 110 determines the amount of decrease in the reversible capacity from the measurement time point of the OCP characteristic to the first time point as the relative positional deviation at the first time point. Calculate as In this case, not only the measurement by inserting the reference electrode into the lithium ion secondary battery, but also by disassembling the lithium ion secondary battery and taking out and measuring the positive electrode and the negative electrode, It becomes easy to obtain the initial negative electrode OCP characteristics and the relative positional deviation.

ここで、OCP特性取得部110が取得する初期正極OCP特性と初期負極OCP特性について、説明する。   Here, the initial positive electrode OCP characteristic and the initial negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit 110 will be described.

図6は、本発明の実施の形態に係るOCP特性取得部110が取得する初期正極OCP特性と初期負極OCP特性とを示す図である。つまり、同図は、二次電池200の初期状態での通電電気量と正極及び負極の開回路電位との関係の特性を示すグラフである。   FIG. 6 is a diagram showing the initial positive electrode OCP characteristic and the initial negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit 110 according to the embodiment of the present invention. That is, the figure is a graph showing the characteristics of the relationship between the amount of electricity supplied in the initial state of the secondary battery 200 and the open circuit potentials of the positive electrode and the negative electrode.

同図に示すように、P(q)は、二次電池200の初期状態での通電電気量qと正極開回路電位との関係である初期正極OCP特性を示しており、通電電気量qが大きくなるほど充電が進行し、一般的に正極電位が貴な方向に変化する。また、N(q)は、二次電池200の初期状態での通電電気量qと負極開回路電位との関係である初期負極OCP特性を示しており、通電電気量qが大きくなるほど充電が進行し、一般的に負極電位が卑な方向に変化する。   As shown in the figure, P (q) indicates the initial positive electrode OCP characteristic that is the relationship between the energized electricity quantity q in the initial state of the secondary battery 200 and the positive open circuit potential, and the energized electricity quantity q is Charging progresses as the value increases, and the positive electrode potential generally changes in a noble direction. N (q) indicates an initial negative electrode OCP characteristic that is a relationship between an energization electricity amount q in the initial state of the secondary battery 200 and a negative electrode open circuit potential, and charging progresses as the energization electricity amount q increases. In general, however, the negative electrode potential changes in a base direction.

また、初期正極OCP特性から初期負極OCP特性を差し引いたP(q)−N(q)(同図に示す点線部分)は、二次電池200の初期状態での通電電気量qと開回路電圧との関係の特性を示している。また、同図のQ1は、二次電池200の初期状態における充放電可能な容量を示している。   Further, P (q) -N (q) (dotted line portion shown in the figure) obtained by subtracting the initial negative electrode OCP characteristic from the initial positive electrode OCP characteristic is an energization quantity q and an open circuit voltage in the initial state of the secondary battery 200. Shows the characteristics of the relationship. Further, Q1 in the figure indicates the chargeable / dischargeable capacity of the secondary battery 200 in the initial state.

図5に戻り、OCP特性取得部110は、第一正極OCP特性と第一負極OCP特性とを取得する(S204)。   Returning to FIG. 5, the OCP characteristic acquisition unit 110 acquires the first positive OCP characteristic and the first negative OCP characteristic (S204).

ここで、上記のように第一時点での状態を初期状態としてリチウムイオン二次電池を入手して測定する方法では、第一時点での相対位置ずれはないので、OCP特性取得部110は、初期正極OCP特性及び初期負極OCP特性を、それぞれ第一正極OCP特性及び第一負極OCP特性として取得する。   Here, in the method of obtaining and measuring the lithium ion secondary battery with the state at the first time point as the initial state as described above, since there is no relative positional shift at the first time point, the OCP characteristic acquisition unit 110 is The initial positive electrode OCP characteristic and the initial negative electrode OCP characteristic are acquired as a first positive electrode OCP characteristic and a first negative electrode OCP characteristic, respectively.

また、第一時点での相対位置ずれがある場合には、OCP特性取得部110は、二次電池200の第一時点での通電電気量である第一電気量に第一時点での相対位置ずれを加算した値を初期正極OCP特性の初期電気量に代入して得られる、第一電気量と正極開回路電位との関係を示す特性を第一正極OCP特性として算出することで、第一正極OCP特性を取得する。   In addition, when there is a relative position shift at the first time point, the OCP characteristic acquisition unit 110 sets the relative position at the first time point to the first electricity amount that is the energized electricity amount at the first time point of the secondary battery 200. By calculating, as the first positive electrode OCP characteristic, a characteristic indicating the relationship between the first electric quantity and the positive circuit open circuit potential obtained by substituting the value obtained by adding the deviation into the initial electric quantity of the initial positive electrode OCP characteristic. The positive OCP characteristic is acquired.

つまり、初期正極OCP特性をP(q)、第一時点での正極の相対位置ずれをΔqとした場合、OCP特性取得部110は、第一正極OCP特性をP(q+Δq)と算出する。   That is, when the initial positive electrode OCP characteristic is P (q) and the relative positional deviation of the positive electrode at the first time point is Δq, the OCP characteristic acquisition unit 110 calculates the first positive electrode OCP characteristic as P (q + Δq).

また、OCP特性取得部110は、二次電池200の第一電気量を初期負極OCP特性の初期電気量に代入して得られる、第一電気量と負極開回路電位との関係を示す特性を第一負極OCP特性として算出することで、第一負極OCP特性を取得する。   In addition, the OCP characteristic acquisition unit 110 has a characteristic indicating the relationship between the first electric quantity and the negative open circuit potential obtained by substituting the first electric quantity of the secondary battery 200 into the initial electric quantity of the initial negative electrode OCP characteristic. The first negative electrode OCP characteristic is obtained by calculating as the first negative electrode OCP characteristic.

つまり、OCP特性取得部110は、第一負極OCP特性をN(q)と算出する。   That is, the OCP characteristic acquisition unit 110 calculates the first negative electrode OCP characteristic as N (q).

図7は、本発明の実施の形態に係るOCP特性取得部110が取得する第一正極OCP特性と第一負極OCP特性とを示す図である。つまり、同図は、二次電池200の第一時点での通電電気量と正極及び負極の開回路電位との関係の特性を示すグラフである。   FIG. 7 is a diagram showing the first positive electrode OCP characteristic and the first negative electrode OCP characteristic acquired by the OCP characteristic acquisition unit 110 according to the embodiment of the present invention. That is, the figure is a graph showing the characteristics of the relationship between the amount of electricity supplied at the first time point of the secondary battery 200 and the open circuit potentials of the positive electrode and the negative electrode.

同図に示すように、P(q+Δq)は、二次電池200の第一時点での通電電気量qと正極開回路電位との関係である第一正極OCP特性を示している。また、N(q)は、二次電池200の第一時点での通電電気量qと負極開回路電位との関係である第一負極OCP特性を示している。   As shown in the figure, P (q + Δq) indicates the first positive electrode OCP characteristic which is the relationship between the energization amount q and the positive electrode open circuit potential at the first time point of the secondary battery 200. N (q) represents a first negative electrode OCP characteristic that is a relationship between the amount of electricity q applied at the first time of the secondary battery 200 and the negative circuit open circuit potential.

また、第一正極OCP特性から第一負極OCP特性を差し引いたP(q+Δq)−N(q)(同図に示す点線部分)は、二次電池200の第一時点での通電電気量qと開回路電圧との関係の特性を示している。   Further, P (q + Δq) −N (q) (dotted line portion shown in the figure) obtained by subtracting the first negative electrode OCP characteristic from the first positive electrode OCP characteristic is the amount of energized electricity q at the first time point of the secondary battery 200. The characteristic of the relationship with the open circuit voltage is shown.

また、同図のQ3は、二次電池200の第一時点における充放電可能な容量を示している。つまり、初期状態ではQ1の部分が充放電可能な容量であったが、第一時点までの電池の使用によって、Q2の部分が充放電できなくなったことを示している。   Moreover, Q3 of the figure has shown the chargeable / dischargeable capacity | capacitance in the 1st time of the secondary battery 200. That is, in the initial state, the Q1 portion has a chargeable / dischargeable capacity, but the use of the battery up to the first time point prevents the Q2 portion from being charged / discharged.

なお、第一正極OCP特性P(q+Δq)のグラフは、初期正極OCP特性P(q)のグラフが形を変えずに、通電電気量qの軸方向(同図に示す左右方向)にΔqずれた曲線を示している。   Note that the graph of the first positive electrode OCP characteristic P (q + Δq) is shifted by Δq in the axial direction (the left-right direction shown in the figure) of the energized electricity q without changing the shape of the graph of the initial positive electrode OCP characteristic P (q). Shows a curved line.

以上のようにして、OCP特性取得部110が第一正極OCP特性と第一負極OCP特性とを取得する処理(図4のS102)は、終了する。   As described above, the process (S102 in FIG. 4) in which the OCP characteristic acquisition unit 110 acquires the first positive OCP characteristic and the first negative OCP characteristic ends.

次に、減少容量取得部120が減少容量を取得する処理(図4のS104)について、詳細に説明する。   Next, the process (S104 in FIG. 4) in which the reduced capacity acquisition unit 120 acquires the reduced capacity will be described in detail.

図8は、本発明の実施の形態に係る減少容量取得部120が減少容量を取得する処理の一例を示すフローチャートである。   FIG. 8 is a flowchart showing an example of processing in which the reduced capacity acquisition unit 120 according to the embodiment of the present invention acquires the reduced capacity.

同図に示すように、まず、減少容量取得部120は、二次電池200の第一時点での充放電可能な容量である第一可逆容量を取得する(S302)。具体的には、減少容量取得部120は、記憶部140から、OCV特性推定データ141に書き込まれている二次電池200の第一可逆容量を取得する。つまり、上記のように第一時点での状態を初期状態としてリチウムイオン二次電池を入手して測定された可逆容量は第一可逆容量であるので、減少容量取得部120は、当該可逆容量を第一可逆容量として取得する。具体的には、減少容量取得部120は、図7に示されたQ3の容量を取得する。   As shown in the figure, first, the reduced capacity acquisition unit 120 acquires a first reversible capacity, which is a chargeable / dischargeable capacity at the first time point of the secondary battery 200 (S302). Specifically, the reduced capacity acquisition unit 120 acquires the first reversible capacity of the secondary battery 200 written in the OCV characteristic estimation data 141 from the storage unit 140. That is, as described above, the reversible capacity measured by obtaining the lithium ion secondary battery with the state at the first time point as the initial state is the first reversible capacity. Obtained as the first reversible capacity. Specifically, the reduced capacity acquisition unit 120 acquires the capacity of Q3 shown in FIG.

なお、OCV特性推定データ141に第一可逆容量が書き込まれていない場合には、減少容量取得部120は、第一時点において二次電池200の第一可逆容量を測定して、測定した第一可逆容量をOCV特性推定データ141に書き込んでおくことにしてもよい。例えば、減少容量取得部120は、第一時点において、OCV特性推定対象のリチウムイオン二次電池を満充電後に放電させることにより、第一可逆容量を測定する。なお、減少容量取得部120が第一可逆容量を測定する処理は特に限定されず、減少容量取得部120はどのような方法で第一可逆容量を測定してもよい。   When the first reversible capacity is not written in the OCV characteristic estimation data 141, the reduced capacity acquisition unit 120 measures the first reversible capacity of the secondary battery 200 at the first time point and measures the first reversible capacity. The reversible capacity may be written in the OCV characteristic estimation data 141. For example, the reduced capacity acquisition unit 120 measures the first reversible capacity by discharging the lithium ion secondary battery that is the target of OCV characteristic estimation after full charge at the first time point. The process in which the reduced capacity acquisition unit 120 measures the first reversible capacity is not particularly limited, and the reduced capacity acquisition unit 120 may measure the first reversible capacity by any method.

次に、減少容量取得部120は、二次電池200の第二時点での充放電可能な容量である第二可逆容量を測定する(S306)。つまり、減少容量取得部120は、第一時点から二次電池200の使用を継続して所定の期間が経過した後の第二時点での第二可逆容量を測定する。なお、減少容量取得部120は、第一可逆容量を測定する場合と同様の処理により、第二可逆容量を測定する。   Next, the reduced capacity acquisition unit 120 measures a second reversible capacity, which is a chargeable / dischargeable capacity at the second time point of the secondary battery 200 (S306). That is, the reduced capacity acquisition unit 120 measures the second reversible capacity at the second time point after the predetermined period has elapsed by continuing to use the secondary battery 200 from the first time point. Note that the reduced capacity acquisition unit 120 measures the second reversible capacity by the same processing as that for measuring the first reversible capacity.

そして、減少容量取得部120は、第一時点から所定の第二時点までの二次電池200の充放電可能な容量の減少量である減少容量を算出する(S308)。具体的には、減少容量取得部120は、取得した第一可逆容量から測定した第二可逆容量を減じることにより、減少容量を算出する。   Then, the reduced capacity acquisition unit 120 calculates a reduced capacity, which is a reduction amount of the chargeable / dischargeable capacity of the secondary battery 200 from the first time point to a predetermined second time point (S308). Specifically, the reduced capacity acquisition unit 120 calculates the reduced capacity by subtracting the second reversible capacity measured from the acquired first reversible capacity.

そして、減少容量取得部120は、取得した減少容量を、第二時点での正極のOCP特性における通電電気量の相対位置ずれとして記憶部140に記憶させるとともに、測定した第二可逆容量を記憶部140に記憶させる(S310)。これにより、減少容量取得部120は、記憶部140に記憶されているOCV特性推定データ141の相対位置ずれを更新するとともに、可逆容量を第二可逆容量に書き換えることで、可逆容量を更新する。   Then, the reduced capacity acquisition unit 120 stores the acquired reduced capacity in the storage unit 140 as a relative positional shift of the energized electricity amount in the OCP characteristic of the positive electrode at the second time point, and stores the measured second reversible capacity in the storage unit. 140 (S310). Thereby, the reduced capacity acquisition unit 120 updates the relative position shift of the OCV characteristic estimation data 141 stored in the storage unit 140 and updates the reversible capacity by rewriting the reversible capacity to the second reversible capacity.

以上のようにして、減少容量取得部120が減少容量を取得する処理(図4のS104)は、終了する。   As described above, the process in which the reduced capacity acquisition unit 120 acquires the reduced capacity (S104 in FIG. 4) ends.

次に、推定部130が第二時点でのOCV特性を推定する処理(図4のS106)について、詳細に説明する。   Next, a process (S106 in FIG. 4) in which the estimation unit 130 estimates the OCV characteristic at the second time point will be described in detail.

図9は、本発明の実施の形態に係る推定部130が第二時点でのOCV特性を推定する処理の一例を示すフローチャートである。   FIG. 9 is a flowchart illustrating an example of processing for estimating the OCV characteristic at the second time point by the estimation unit 130 according to the embodiment of the present invention.

同図に示すように、まず、推定部130は、第二正極OCP特性を算出する(S402)。具体的には、推定部130は、二次電池200の第二時点での通電電気量である第二電気量に減少容量を加算した値を第一正極OCP特性の第一電気量に代入して得られる、第二電気量と正極開回路電位との関係を示す特性を第二正極OCP特性として算出する。   As shown in the figure, first, the estimation unit 130 calculates the second positive electrode OCP characteristic (S402). Specifically, the estimation unit 130 substitutes a value obtained by adding the reduced capacity to the second electric quantity that is the energized electric quantity at the second time point of the secondary battery 200 into the first electric quantity of the first positive electrode OCP characteristic. The characteristic indicating the relationship between the second electric quantity and the positive open circuit potential obtained in this way is calculated as the second positive electrode OCP characteristic.

つまり、第一正極OCP特性をP(q+Δq)、減少容量をQ4とした場合、減少容量取得部120は、第二時点での正極のOCP特性における通電電気量の相対位置ずれとして、「Δq+Q4」を記憶部140のOCV特性推定データ141に記憶させている。このため、推定部130は、第二正極OCP特性をP(q+Δq+Q4)と算出する。   That is, when the first positive electrode OCP characteristic is P (q + Δq) and the reduced capacity is Q4, the reduced capacity acquisition unit 120 calculates “Δq + Q4” as the relative displacement of the energized electricity amount in the OCP characteristic of the positive electrode at the second time point. Is stored in the OCV characteristic estimation data 141 of the storage unit 140. For this reason, the estimation unit 130 calculates the second positive electrode OCP characteristic as P (q + Δq + Q4).

また、推定部130は、第二負極OCP特性を算出する(S404)。具体的には、推定部130は、二次電池200の第二電気量を第一負極OCP特性の第一電気量に代入して得られる、第二電気量と負極開回路電位との関係を示す特性を第二負極OCP特性として算出する。   Further, the estimating unit 130 calculates the second negative electrode OCP characteristic (S404). Specifically, the estimation unit 130 obtains the relationship between the second electric quantity and the negative open circuit potential obtained by substituting the second electric quantity of the secondary battery 200 into the first electric quantity of the first negative electrode OCP characteristic. The characteristic shown is calculated as the second negative electrode OCP characteristic.

つまり、第一負極OCP特性をN(q)とした場合、推定部130は、第二負極OCP特性をN(q)と算出する。   That is, when the first negative electrode OCP characteristic is N (q), the estimation unit 130 calculates the second negative electrode OCP characteristic as N (q).

そして、推定部130は、第二時点でのOCV特性を算出する(S406)。具体的には、推定部130は、算出した第二正極OCP特性における第二電気量に対する正極開回路電位から、算出した第二負極OCP特性における第二電気量に対する負極開回路電位を減ずることにより得られる第二電気量と開回路電圧との関係を示す特性を、第二時点でのOCV特性と算出する。   Then, the estimation unit 130 calculates the OCV characteristic at the second time point (S406). Specifically, the estimation unit 130 subtracts the negative open circuit potential for the second electric quantity in the calculated second negative OCP characteristic from the positive open circuit potential for the second electric quantity in the calculated second positive OCP characteristic. The characteristic indicating the relationship between the obtained second electric quantity and the open circuit voltage is calculated as the OCV characteristic at the second time point.

つまり、第二正極OCP特性をP(q+Δq+Q4)、第二負極OCP特性をN(q)とした場合、推定部130は、第二時点でのOCV特性を、P(q+Δq+Q4)−N(q)と算出する。   That is, when the second positive electrode OCP characteristic is P (q + Δq + Q4) and the second negative electrode OCP characteristic is N (q), the estimation unit 130 sets the OCV characteristic at the second time point to P (q + Δq + Q4) −N (q). And calculate.

図10は、本発明の実施の形態に係る推定部130が推定する第二時点でのOCV特性を示す図である。つまり、同図は、二次電池200の第二時点での通電電気量と、正極及び負極の開回路電位との関係及び開回路電圧との関係の特性を示すグラフである。   FIG. 10 is a diagram illustrating OCV characteristics at the second time point estimated by the estimation unit 130 according to the embodiment of the present invention. That is, the figure is a graph showing the characteristics of the relationship between the amount of electricity supplied at the second time point of the secondary battery 200, the open circuit potential of the positive electrode and the negative electrode, and the open circuit voltage.

同図に示すように、P(q+Δq+Q4)は、二次電池200の第二時点での通電電気量qと正極開回路電位との関係である第二正極OCP特性を示している。また、N(q)は、二次電池200の第二時点での通電電気量qと負極開回路電位との関係である第二負極OCP特性を示している。   As shown in the figure, P (q + Δq + Q4) represents the second positive electrode OCP characteristic which is the relationship between the energization amount q and the positive electrode open circuit potential at the second time point of the secondary battery 200. N (q) indicates the second negative electrode OCP characteristic that is the relationship between the amount of electricity q applied at the second time point of the secondary battery 200 and the negative open circuit potential.

また、第二正極OCP特性から第二負極OCP特性を差し引いたP(q+Δq+Q4)−N(q)(同図に示す点線部分)は、二次電池200の第二時点での通電電気量qと開回路電圧との関係の特性を示している。   Further, P (q + Δq + Q4) −N (q) (dotted line portion shown in the figure) obtained by subtracting the second negative electrode OCP characteristic from the second positive electrode OCP characteristic is the amount of energized electricity q at the second time point of the secondary battery 200. The characteristic of the relationship with the open circuit voltage is shown.

また、同図のQ5は、二次電池200の第二時点における充放電可能な容量を示している。つまり、第一時点ではQ3の部分が充放電可能な容量であったが、第一時点から第二時点までの電池の使用によって、Q4の部分が充放電できなくなったことを示している。   Moreover, Q5 of the figure has shown the capacity | capacitance which can be charged / discharged in the 2nd time of the secondary battery 200. FIG. That is, although the Q3 portion has a chargeable / dischargeable capacity at the first time point, the use of the battery from the first time point to the second time point indicates that the Q4 portion cannot be charged / discharged.

ここで、Q3は、減少容量取得部120が測定した第一可逆容量を示しており、Q5は、減少容量取得部120が測定した第二可逆容量を示しており、Q4は、減少容量取得部120が取得する減少容量を示している。   Here, Q3 represents the first reversible capacity measured by the reduced capacity acquisition unit 120, Q5 represents the second reversible capacity measured by the reduced capacity acquisition unit 120, and Q4 represents the reduced capacity acquisition unit. 120 shows the reduced capacity acquired.

なお、第二正極OCP特性P(q+Δq+Q4)のグラフは、第一正極OCP特性P(q+Δq)のグラフが形を変えずに、通電電気量qの軸方向(同図に示す左右方向)にQ4ずれた曲線を示している。つまり、第二正極OCP特性P(q+Δq+Q4)のグラフは、初期正極OCP特性P(q)のグラフが形を変えずに、通電電気量qの軸方向(同図に示す左右方向)にΔq+Q4ずれた曲線を示している。   Note that the graph of the second positive electrode OCP characteristic P (q + Δq + Q4) is Q4 in the axial direction (the left-right direction shown in the figure) of the energized electricity quantity q without changing the shape of the graph of the first positive electrode OCP characteristic P (q + Δq). A deviated curve is shown. That is, the graph of the second positive electrode OCP characteristic P (q + Δq + Q4) does not change the shape of the graph of the initial positive electrode OCP characteristic P (q), and Δq + Q4 shifts in the axial direction (the left-right direction shown in the figure) of the energized electricity q. Shows a curved line.

また、第二負極OCP特性N(q)のグラフは、第一負極OCP特性N(q)のグラフと同じ曲線を示している。   The graph of the second negative electrode OCP characteristic N (q) shows the same curve as the graph of the first negative electrode OCP characteristic N (q).

つまり、二次電池200の充放電を繰り返し行っても、正極及び負極について単極の劣化はほぼ起こらない。一方、二次電池200の充放電を繰り返し行うことで、見かけ上、二次電池200の内部抵抗が増加する。しかしながら、この見かけ上の内部抵抗の増加は、ドーパントであるリチウムイオンの一部が負極にリチウム含有被膜が成長する反応のために消費される結果、これが正極及び負極間の容量バランスのずれを生じているにすぎないことを本願発明者らは見いだした。   That is, even if the secondary battery 200 is repeatedly charged and discharged, the single electrode is hardly deteriorated with respect to the positive electrode and the negative electrode. On the other hand, by repeatedly charging and discharging the secondary battery 200, the internal resistance of the secondary battery 200 is apparently increased. However, this apparent increase in internal resistance is due to the consumption of some of the dopant lithium ions due to the reaction of the lithium-containing film growing on the negative electrode, which results in a capacitive balance shift between the positive and negative electrodes. The present inventors have found that this is only the case.

このため、二次電池200のOCV特性が、正極及び負極の充放電プロファイルがずれていくことで変化していく。このことを考慮して、ある時点での電池状態図と、その後減少した電池容量とから、二次電池200のOCV特性を推定することができる。   For this reason, the OCV characteristic of the secondary battery 200 changes as the charge / discharge profiles of the positive electrode and the negative electrode shift. Considering this, the OCV characteristic of the secondary battery 200 can be estimated from the battery state diagram at a certain point in time and the battery capacity decreased thereafter.

以上のようにして、推定部130が第二時点でのOCV特性を推定する処理(図4のS106)は、終了する。   As described above, the process of estimating the OCV characteristic at the second time by the estimation unit 130 (S106 in FIG. 4) ends.

次に、OCV特性推定装置100が推定する二次電池200の使用によるOCV特性の変化について、説明する。   Next, a change in the OCV characteristic due to the use of the secondary battery 200 estimated by the OCV characteristic estimation apparatus 100 will be described.

図11は、本発明の実施の形態に係るOCV特性推定装置100が推定するOCV特性の変化を示す図である。なお、同図では、図6、7、10で示したOCV特性のグラフを拡大して示している。   FIG. 11 is a diagram showing a change in the OCV characteristic estimated by the OCV characteristic estimation apparatus 100 according to the embodiment of the present invention. In the figure, the OCV characteristic graphs shown in FIGS.

同図のF0(q)は、初期状態でのOCV特性を示しており、F1(q)は、第一時点でのOCV特性を示しており、F2(q)は、OCV特性推定装置100が推定した第二時点でのOCV特性を示している。   F0 (q) in the figure indicates the OCV characteristic in the initial state, F1 (q) indicates the OCV characteristic at the first time point, and F2 (q) indicates that the OCV characteristic estimating apparatus 100 The OCV characteristic at the estimated second time point is shown.

つまり、同図に示すように、二次電池200が使用されて充放電を繰り返すことにより、多くの場合、通電電気量と開回路電圧との関係を示すOCVカーブの位置や形状が変化する。   In other words, as shown in the figure, when the secondary battery 200 is used and charging and discharging are repeated, in many cases, the position and shape of the OCV curve indicating the relationship between the energized electricity amount and the open circuit voltage change.

なお、本願発明者らは、市販のリチウムイオン二次電池を購入して、45℃で2000サイクルの寿命試験を実施した結果、減少容量として200mAhを得た。このため、本願発明者らは、F2(q)=P(q+Δq+Q4)−N(q)においてQ4=200mAhとして、第二時点でのOCV特性F2(q)を算出した。その結果、実際のリチウムイオン二次電池のOCV測定値と良い一致を示した。   In addition, as a result of purchasing a commercially available lithium ion secondary battery and conducting a life test of 2000 cycles at 45 ° C., the present inventors obtained 200 mAh as a reduced capacity. Therefore, the inventors of the present application calculated the OCV characteristic F2 (q) at the second time point with Q4 = 200 mAh in F2 (q) = P (q + Δq + Q4) −N (q). As a result, the OCV measured value of the actual lithium ion secondary battery was in good agreement.

以上のように、本発明の実施の形態に係るOCV特性推定装置100によれば、取得した第一正極OCP特性と第一負極OCP特性と減少容量とを用いて、第二時点でのOCV特性を推定する。つまり、第一正極OCP特性と第一負極OCP特性とから第一時点でのOCV特性を把握することができるが、その第一時点でのOCV特性と減少容量とを用いることで、第一時点から所定の期間経過後の第二時点でのOCV特性を推定することができる。このため、期間が経過しても経過期間に応じたOCV特性を推定することができるので、二次電池200のOCV特性を、長期的に精度良く推定することができる。   As described above, according to the OCV characteristic estimation apparatus 100 according to the embodiment of the present invention, using the acquired first positive electrode OCP characteristic, first negative electrode OCP characteristic, and reduced capacity, the OCV characteristic at the second time point. Is estimated. That is, the OCV characteristic at the first time point can be grasped from the first positive electrode OCP characteristic and the first negative electrode OCP characteristic, but the first time point can be obtained by using the OCV characteristic and the reduced capacity at the first time point. From this, it is possible to estimate the OCV characteristic at the second time point after a predetermined period has elapsed. For this reason, since the OCV characteristic according to the elapsed period can be estimated even if the period elapses, the OCV characteristic of the secondary battery 200 can be accurately estimated in the long term.

また、第一正極OCP特性と減少容量とから第二正極OCP特性を算出し、第一負極OCP特性から第二負極OCP特性を算出し、算出した第二正極OCP特性と第二負極OCP特性とから、第二時点でのOCV特性を推定する。ここで、本願発明者らは、鋭意研究と実験の結果、第二正極OCP特性が、第一正極OCP特性での通電電気量を減少容量分移動させた特性と精度良く一致することを見出した。つまり、第一正極OCP特性と減少容量とから、第二正極OCP特性を精度良く容易な計算で算出することができる。このため、容易に精度の良い第二時点でのOCV特性を推定することができるため、二次電池200のOCV特性を、長期的に精度良く容易に推定することができる。   Further, the second positive electrode OCP characteristic is calculated from the first positive electrode OCP characteristic and the reduced capacity, the second negative electrode OCP characteristic is calculated from the first negative electrode OCP characteristic, and the calculated second positive electrode OCP characteristic and second negative OCP characteristic From the above, the OCV characteristic at the second time point is estimated. Here, as a result of intensive studies and experiments, the inventors of the present application have found that the second positive electrode OCP characteristic coincides with the characteristic in which the amount of energized electricity in the first positive electrode OCP characteristic is shifted by the reduced capacity with high accuracy. . That is, the second positive electrode OCP characteristic can be calculated accurately and easily from the first positive electrode OCP characteristic and the reduced capacity. For this reason, since the OCV characteristic at the second time point with high accuracy can be easily estimated, the OCV characteristic of the secondary battery 200 can be easily estimated with high accuracy in the long term.

また、初期正極OCP特性と正極の相対位置ずれとから第一正極OCP特性を算出することで、当該第一正極OCP特性を取得する。例えば、第一時点での二次電池200を解体して正極の相対位置ずれを測定することで、第一正極OCP特性を容易に算出することができる。これにより、第一正極OCP特性を容易に取得することができ、二次電池200のOCV特性を、長期的に精度良く容易に推定することができる。   Further, the first positive electrode OCP characteristic is obtained by calculating the first positive electrode OCP characteristic from the initial positive electrode OCP characteristic and the relative positional deviation of the positive electrode. For example, the first positive electrode OCP characteristic can be easily calculated by disassembling the secondary battery 200 at the first time point and measuring the relative positional deviation of the positive electrode. Thereby, the first positive electrode OCP characteristic can be easily acquired, and the OCV characteristic of the secondary battery 200 can be easily estimated with high accuracy in the long term.

また、第一可逆容量を測定するなどにより取得し、また第二可逆容量を測定することで、当該第一可逆容量と第二可逆容量とから減少容量を算出して取得する。これにより、容易に減少容量を取得することができるため、二次電池200のOCV特性を、長期的に精度良く容易に推定することができる。   Moreover, it acquires by measuring a 1st reversible capacity | capacitance etc., and by measuring a 2nd reversible capacity | capacitance, a reduced capacity | capacitance is calculated and acquired from the said 1st reversible capacity | capacitance and a 2nd reversible capacity | capacitance. Thereby, since the reduced capacity can be easily obtained, the OCV characteristic of the secondary battery 200 can be easily estimated with high accuracy in the long term.

以上、本発明の実施の形態に係る蓄電システム10及びOCV特性推定装置100について説明したが、本発明は、この実施の形態に限定されるものではない。   The power storage system 10 and the OCV characteristic estimation device 100 according to the embodiment of the present invention have been described above, but the present invention is not limited to this embodiment.

つまり、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   That is, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、上記実施の形態では、OCP特性取得部110が、初期正極OCP特性及び初期負極OCP特性と第一時点での正極の相対位置ずれとから、第一正極OCP特性と第一負極OCP特性とを取得することで、推定部130は、第一正極OCP特性及び第一負極OCP特性から、第二時点でのOCV特性を推定することとした。しかし、OCP特性取得部110は、初期正極OCP特性及び初期負極OCP特性と第一時点での正極の相対位置ずれを用いなくとも、ユーザによる入力などによって第一正極OCP特性と第一負極OCP特性とを取得することにしてもよい。つまり、OCP特性取得部110がある時点における正極OCP特性と負極OCP特性とを取得し、減少容量取得部120がその時点から所定の期間経過した時点までの減少容量を取得することができれば、推定部130は、その所定の期間経過した時点でのOCV特性を推定することができる。   For example, in the above embodiment, the OCP characteristic acquisition unit 110 calculates the first positive electrode OCP characteristic and the first negative electrode OCP characteristic from the initial positive electrode OCP characteristic, the initial negative electrode OCP characteristic, and the relative positional deviation of the positive electrode at the first time point. Thus, the estimation unit 130 estimates the OCV characteristic at the second time point from the first positive electrode OCP characteristic and the first negative electrode OCP characteristic. However, the OCP characteristic acquisition unit 110 does not use the initial positive electrode OCP characteristic, the initial negative electrode OCP characteristic, and the relative positional deviation of the positive electrode at the first time point, and the first positive electrode OCP characteristic and the first negative electrode OCP characteristic can be input by a user or the like. May be obtained. That is, if the OCP characteristic acquisition unit 110 acquires the positive OCP characteristic and the negative OCP characteristic at a certain point, and the reduced capacity acquisition unit 120 can acquire the reduced capacity from that point to the time when a predetermined period has elapsed, it is estimated. The unit 130 can estimate the OCV characteristic when the predetermined period has elapsed.

また、本発明は、このような蓄電システム10またはOCV特性推定装置100として実現することができるだけでなく、OCV特性推定装置100に含まれる特徴的な処理部をステップとするOCV特性推定方法としても実現することができる。   In addition, the present invention can be realized not only as the power storage system 10 or the OCV characteristic estimation apparatus 100 but also as an OCV characteristic estimation method using a characteristic processing unit included in the OCV characteristic estimation apparatus 100 as a step. Can be realized.

また、本発明に係るOCV特性推定装置100が備える各処理部は、集積回路であるLSI(Large Scale Integration)として実現されてもよい。つまり、図12に示すように、本発明は、OCP特性取得部110、減少容量取得部120及び推定部130を備える集積回路150として実現することができる。図12は、本発明の実施の形態に係るOCV特性推定装置100を集積回路で実現する構成を示すブロック図である。   Each processing unit included in the OCV characteristic estimation apparatus 100 according to the present invention may be realized as an LSI (Large Scale Integration) that is an integrated circuit. That is, as shown in FIG. 12, the present invention can be realized as an integrated circuit 150 including an OCP characteristic acquisition unit 110, a reduced capacity acquisition unit 120, and an estimation unit 130. FIG. 12 is a block diagram showing a configuration for realizing OCV characteristic estimation apparatus 100 according to the embodiment of the present invention with an integrated circuit.

なお、集積回路150が備える各処理部は、個別に1チップ化されても良いし、一部または全てを含むように1チップ化されても良い。   Each processing unit included in the integrated circuit 150 may be individually made into one chip, or may be made into one chip so as to include a part or all of them.

ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。   The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.

また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。   Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI, or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.

さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてあり得る。   Furthermore, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. There is a possibility of adaptation of biotechnology.

また、本発明は、OCV特性推定方法に含まれる特徴的な処理をコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD−ROM等の記録媒体及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。   The present invention can also be realized as a program that causes a computer to execute characteristic processing included in the OCV characteristic estimation method. Needless to say, such a program can be distributed via a recording medium such as a CD-ROM and a transmission medium such as the Internet.

本発明は、リチウムイオン二次電池などの非水電解質二次電池のOCV特性を長期的に精度良く推定することができる非水電解質二次電池のOCV特性推定装置等に適用できる。   The present invention can be applied to an OCV characteristic estimation device for a nonaqueous electrolyte secondary battery that can accurately estimate the OCV characteristics of a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery over a long period of time.

10 蓄電システム
100 OCV特性推定装置
110 OCP特性取得部
120 減少容量取得部
130 推定部
140 記憶部
141 OCV特性推定データ
150 集積回路
200 二次電池
300 収容ケース
DESCRIPTION OF SYMBOLS 10 Power storage system 100 OCV characteristic estimation apparatus 110 OCP characteristic acquisition part 120 Decrease capacity acquisition part 130 Estimation part 140 Storage part 141 OCV characteristic estimation data 150 Integrated circuit 200 Secondary battery 300 Storage case

Claims (6)

コンピュータが、非水電解質二次電池の通電電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定方法であって、
前記非水電解質二次電池の所定の第一時点での通電電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記非水電解質二次電池の前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得ステップと、
前記第一時点から所定の第二時点までの前記非水電解質二次電池の充放電可能な容量の減少量である減少容量を、容量の測定により取得する減少容量取得ステップと、
取得された前記第一正極OCP特性と前記第一負極OCP特性と前記減少容量とを用いて、前記非水電解質二次電池の前記第二時点でのOCV特性を推定する推定ステップと
を含むOCV特性推定方法。
An OCV characteristic estimation method in which a computer estimates an OCV characteristic indicating a relationship between an energized electricity amount of an non-aqueous electrolyte secondary battery and an open circuit voltage,
A first positive electrode OCP characteristic indicating a relationship between a first electric quantity, which is an energized electric quantity at a predetermined first time point of the nonaqueous electrolyte secondary battery, and a positive electrode open circuit potential; and the non-aqueous electrolyte secondary battery An OCP characteristic acquisition step of acquiring a first negative electrode OCP characteristic indicating a relationship between the first electric quantity and the negative electrode open circuit potential;
A reduced capacity acquisition step of acquiring a reduced capacity , which is a reduced amount of chargeable / dischargeable capacity of the nonaqueous electrolyte secondary battery from the first time point to a predetermined second time point , by measuring the capacity ;
An estimation step for estimating an OCV characteristic at the second time point of the non-aqueous electrolyte secondary battery using the acquired first positive electrode OCP characteristic, the first negative electrode OCP characteristic, and the reduced capacity. Characteristic estimation method.
前記非水電解質二次電池は、正極がリチウム遷移金属酸化物からなり、負極が炭素材料からなるリチウムイオン二次電池であり、
前記推定ステップでは、
前記非水電解質二次電池の前記第二時点での通電電気量である第二電気量に前記減少容量を加算した値を前記第一正極OCP特性の前記第一電気量に代入して得られる、前記第二電気量と正極開回路電位との関係を示す特性を第二正極OCP特性として算出し、
前記非水電解質二次電池の前記第二電気量を前記第一負極OCP特性の前記第一電気量に代入して得られる、前記第二電気量と負極開回路電位との関係を示す特性を第二負極OCP特性として算出し、
算出した前記第二正極OCP特性における前記第二電気量に対する正極開回路電位から、前記第二負極OCP特性における前記第二電気量に対する負極開回路電位を減ずることにより得られる前記第二電気量と開回路電圧との関係を示す特性を、前記第二時点でのOCV特性と推定する
請求項1に記載のOCV特性推定方法。
The non-aqueous electrolyte secondary battery is a lithium ion secondary battery in which a positive electrode is made of a lithium transition metal oxide and a negative electrode is made of a carbon material,
In the estimation step,
The non-aqueous electrolyte secondary battery is obtained by substituting a value obtained by adding the reduced capacity to the second electric quantity that is the energized electric quantity at the second time point into the first electric quantity of the first positive electrode OCP characteristic. , Calculating the characteristic indicating the relationship between the second electric quantity and the positive open circuit potential as the second positive OCP characteristic,
A characteristic showing a relationship between the second electric quantity and the negative open circuit potential obtained by substituting the second electric quantity of the non-aqueous electrolyte secondary battery into the first electric quantity of the first negative electrode OCP characteristic. Calculated as the second negative electrode OCP characteristic,
The second electric quantity obtained by subtracting the negative open circuit potential with respect to the second electric quantity in the second negative electrode OCP characteristic from the positive open circuit potential with respect to the second electric quantity in the calculated second positive electrode OCP characteristic; The OCV characteristic estimation method according to claim 1, wherein a characteristic indicating a relationship with an open circuit voltage is estimated as an OCV characteristic at the second time point.
前記減少容量取得ステップでは、前記非水電解質二次電池の前記第一時点での充放電可能な容量である第一可逆容量を測定するとともに、前記非水電解質二次電池の前記第二時点での充放電可能な容量である第二可逆容量を測定し、前記第一可逆容量から前記第二可逆容量を減じることにより算出される前記減少容量を取得する
請求項1または2に記載のOCV特性推定方法。
In the reduced capacity acquisition step, a first reversible capacity that is a chargeable / dischargeable capacity at the first time point of the non-aqueous electrolyte secondary battery is measured, and at the second time point of the non-aqueous electrolyte secondary battery. The OCV characteristic according to claim 1, wherein a second reversible capacity that is a chargeable / dischargeable capacity of the first reversible capacity is measured, and the reduced capacity calculated by subtracting the second reversible capacity from the first reversible capacity is acquired. Estimation method.
非水電解質二次電池の通電電気量と開回路電圧との関係を示すOCV特性を推定するOCV特性推定装置であって、
前記非水電解質二次電池の所定の第一時点での通電電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記非水電解質二次電池の前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得部と、
前記第一時点から所定の第二時点までの前記非水電解質二次電池の充放電可能な容量の減少量である減少容量を、容量の測定により取得する減少容量取得部と、
取得された前記第一正極OCP特性と前記第一負極OCP特性と前記減少容量とを用いて、前記非水電解質二次電池の前記第二時点でのOCV特性を推定する推定部と
を備えるOCV特性推定装置。
An OCV characteristic estimation device for estimating an OCV characteristic indicating a relationship between an energization amount of electricity and an open circuit voltage of a nonaqueous electrolyte secondary battery,
A first positive electrode OCP characteristic indicating a relationship between a first electric quantity, which is an energized electric quantity at a predetermined first time point of the nonaqueous electrolyte secondary battery, and a positive electrode open circuit potential; and the non-aqueous electrolyte secondary battery An OCP characteristic acquisition unit for acquiring a first negative electrode OCP characteristic indicating a relationship between the first electric quantity and the negative electrode open circuit potential;
A reduced capacity acquisition unit that acquires a reduced capacity , which is a reduced amount of chargeable / dischargeable capacity of the nonaqueous electrolyte secondary battery from the first time point to a predetermined second time point , by measuring the capacity ;
An OCV comprising: an estimation unit that estimates an OCV characteristic of the nonaqueous electrolyte secondary battery at the second time point using the acquired first positive electrode OCP characteristic, the first negative electrode OCP characteristic, and the reduced capacity. Characteristic estimation device.
非水電解質二次電池と、
前記非水電解質二次電池の通電電気量と開回路電圧との関係を示すOCV特性を推定する請求項4に記載のOCV特性推定装置と
を備える蓄電システム。
A non-aqueous electrolyte secondary battery;
A power storage system comprising: the OCV characteristic estimation device according to claim 4 that estimates an OCV characteristic indicating a relationship between an energized electricity amount of the nonaqueous electrolyte secondary battery and an open circuit voltage.
非水電解質二次電池の通電電気量と開回路電圧との関係を示すOCV特性を推定する集積回路であって、
前記非水電解質二次電池の所定の第一時点での通電電気量である第一電気量と正極開回路電位との関係を示す第一正極OCP特性と、前記非水電解質二次電池の前記第一電気量と負極開回路電位との関係を示す第一負極OCP特性とを取得するOCP特性取得部と、
前記第一時点から所定の第二時点までの前記非水電解質二次電池の充放電可能な容量の減少量である減少容量を、容量の測定により取得する減少容量取得部と、
取得された前記第一正極OCP特性と前記第一負極OCP特性と前記減少容量とを用いて、前記非水電解質二次電池の前記第二時点でのOCV特性を推定する推定部と
を備える集積回路。
An integrated circuit for estimating an OCV characteristic indicating a relationship between an energization amount of electricity and an open circuit voltage of a nonaqueous electrolyte secondary battery,
A first positive electrode OCP characteristic indicating a relationship between a first electric quantity, which is an energized electric quantity at a predetermined first time point of the nonaqueous electrolyte secondary battery, and a positive electrode open circuit potential; and the non-aqueous electrolyte secondary battery An OCP characteristic acquisition unit for acquiring a first negative electrode OCP characteristic indicating a relationship between the first electric quantity and the negative electrode open circuit potential;
A reduced capacity acquisition unit that acquires a reduced capacity , which is a reduced amount of chargeable / dischargeable capacity of the nonaqueous electrolyte secondary battery from the first time point to a predetermined second time point , by measuring the capacity ;
An integration unit that estimates an OCV characteristic at the second time point of the non-aqueous electrolyte secondary battery using the acquired first positive electrode OCP characteristic, the first negative electrode OCP characteristic, and the reduced capacity; circuit.
JP2010288533A 2010-12-24 2010-12-24 Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system Active JP5673083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288533A JP5673083B2 (en) 2010-12-24 2010-12-24 Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288533A JP5673083B2 (en) 2010-12-24 2010-12-24 Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system

Publications (2)

Publication Number Publication Date
JP2012137330A JP2012137330A (en) 2012-07-19
JP5673083B2 true JP5673083B2 (en) 2015-02-18

Family

ID=46674873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288533A Active JP5673083B2 (en) 2010-12-24 2010-12-24 Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system

Country Status (1)

Country Link
JP (1) JP5673083B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994521B2 (en) * 2012-09-21 2016-09-21 株式会社Gsユアサ State estimation device, open-circuit voltage characteristics generation method
DE102015214128A1 (en) 2015-07-27 2017-02-02 Robert Bosch Gmbh Method and apparatus for estimating a current open circuit voltage profile of a battery
KR102452626B1 (en) * 2018-03-07 2022-10-06 주식회사 엘지에너지솔루션 Apparatus and method for estimating SOC-OCV profile
CN110850305B (en) * 2019-12-02 2022-06-03 劢微机器人科技(深圳)有限公司 Method and device for calculating electric quantity of lead-acid battery and computer-readable storage medium
SE545415C2 (en) * 2021-12-21 2023-09-05 Scania Cv Ab Method for degradation diagnosis of an electrochemical cell
CN114460475B (en) * 2022-04-12 2022-07-22 深圳市思远半导体有限公司 Battery OCV determining method and device and battery SOC estimating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018681B2 (en) * 2008-08-01 2012-09-05 トヨタ自動車株式会社 Control method of lithium ion secondary battery and lithium ion secondary battery system
JP4649682B2 (en) * 2008-09-02 2011-03-16 株式会社豊田中央研究所 Secondary battery state estimation device

Also Published As

Publication number Publication date
JP2012137330A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
US10371757B2 (en) Post-deterioration performance estimating apparatus and post-deterioration performance estimating method for energy storage device, and energy storage system
CN108369258B (en) State estimation device and state estimation method
JP5673083B2 (en) Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system
JP5825101B2 (en) Non-aqueous electrolyte secondary battery OCV characteristic estimation device, OCV characteristic estimation method, power storage system, and assembled battery
US9983269B2 (en) Apparatus and method for estimating life of energy storage device and energy storage system
JP6477957B2 (en) Estimation device, power storage device, estimation method, and computer program
JP5673097B2 (en) Non-aqueous electrolyte secondary battery OCV characteristic estimation method, OCV characteristic estimation apparatus, and power storage system
JP2012122817A (en) Reversible capacity estimation method of nonaqueous electrolyte secondary battery, life prediction method, reversible capacity estimation method, life prediction device and power storage system
JP5874543B2 (en) Storage device lifetime estimation device, lifetime estimation method, and storage system
JPWO2015005141A1 (en) Power storage device state estimation method
JP5474993B2 (en) Method for determining the state of charge of a battery in the charge or discharge phase
JP6655801B2 (en) Lithium ion secondary battery life estimation device
JP2014509040A (en) Method for estimating the self-discharge of a lithium battery
CN108459272A (en) Condition estimating device and method, battery pack, vehicle, accumulating system, memory
JP5582099B2 (en) Battery life deterioration estimation device, battery life deterioration estimation method, and power storage system
KR20220034543A (en) Method for estimating state of charge of battery
JP2015511309A (en) Method and apparatus for determining state of charge of electrical energy storage
CN116264842A (en) Battery SOH estimation device and method
CN109444750A (en) A kind of capacity of lead acid battery predictor method
JP2013253940A (en) Life estimating device and life estimating method for electricity storage element, and electricity storage system
JP5842611B2 (en) Battery electrode potential estimation device, battery electrode potential estimation method, and power storage system
JP6206031B2 (en) Storage device lifetime estimation device, lifetime estimation method, and storage system
JP6406470B1 (en) Management device, power storage module, management method, and computer program
JP5935524B2 (en) Capacitance estimation device after degradation of power storage element, capacity estimation method after degradation, and power storage system
KR101741587B1 (en) A method for measuring a series resistance of a secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150